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Effects of exemplar similarity on the development of automaticity were investigated with a 
task in which participants judged the numerosity of random patterns of between 6 and 11 dots. 
After several days of training, response times were the same at all levels of numerosity, 
signaling the development of automaticity. In Experiment 1, response times to new patterns 
were a function of their similarity to old patterns. In Experiment 2, responses to patterns with 
high within-category similarity became automatized more quickly than responses to patterns 
with low within-category similarity. In Experiment 3, responses to patterns with high 
between-category similarity became automatized more slowly than responses to patterns with 
low between-category similarity. A new theory, the exemplar-based random walk (EBRW) 
model, was used to explain the results. Combining elements of G. D. Logan's (1988) instance 
theory of automaticity and R. M. Nosofsky's (1986) generalized context model of categoriza- 
tion, the theory embeds a dynamic similarity-based memory retrieval mechanism within a 
competitive random walk decision process. 

People often make perceptual and conceptual judgments 
about objects in the world quickly, with little thought or 
effort and without conscious intention. Considerable progress 
has been made in understanding the quantitative and qualita- 
tive changes that occur during the development of automatic- 
ity or the acquisition of cognitive skill, and in delineating the 
conditions under which it may be acquired (see Kahneman 
& Treisman, 1984; Logan, 1985; Schneider, Dumais, & 
Shiffrin, 1984; Shiffrin, 1988). 

One highly influential model of the acquisition of cogni- 
tive skill, Logan's (1988) instance theory, attributes the 
development of automaticity to a shift from the use of fairly 
general algorithmic processes to the retrieval of specific 
memories for past skilled actions. In contrast to traditional 
resource-based accounts of automaticity (e.g., LaBerge & 
Samuels, 1974; Posner & Snyder, 1975; Shiffrin & Schneider, 
1977),~instance theory argues that automaticity is largely a 
memory phenomenon, governed by the same principles that 
govern memory. According to instance theory, memory- 
based processes and algorithmic processes race in parallel, 
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with the first to complete driving the response. The algorith- 
mic processes are assumed to remain unchanged with 
experience, but memory retrieval gets faster because of 
additional instances being stored in memory. As these 
additional instances are stored, the amount of time required 
for memory retrieval decreases, causing memory retrieval to 
win the race over the algorithm; soon, responses are 
determined entirely by memory retrieval, signaling the 
development of automaticity. 

Instance theory has accounted successfully for a wide 
variety of data: It predicts power law decreases in the mean 
and standard deviation of response times with training 
(Logan, 1988, 1992; Newell & Rosenbloom, 1981) and has 
also shown considerable power in accounting for the devel- 
opment of automaticity in memory search (Strayer & 
Kramer, 1990), lexical decision (Logan, 1988, 1990), alpha- 
bet arithmetic (Logan & Klapp, 1991; Klapp, Boches, 
Trabert, & Logan, 1991), numerosity judgments (Lassaline 
& Logan, 1993), and repetition priming (Logan, 1990). In 
contrast to some accounts of skill acquisition (e.g., Ander- 
son, 1982, 1987, 1993; Anderson & Fincham, 1994; LaBerge 
& Samuels, 1974), instance theory also predicts extremely 
narrow transfer to new objects. That is, automaticity in a task 
is specific to the particular instances of skilled action that 
have been experienced and stored in memory. 

The highly specific nature of transfer to new objects was 
demonstrated by Lassaline and Logan (1993; see also Logan 
& Klapp, 1991) using a numerosity judgment task. In this 
task, spatial patterns of between 6 and 11 elements were 
presented (a manipulation of numerosity), and people were 
asked to judge the number of elements as rapidly as possible 
without making errors. Initially, response times increased 
roughly linearly with numerosity, suggesting that people 
counted each element in a pattern. According to instance 
theory, this initial performance reflects algorithmic process- 
ing. After several days of training on a fixed set of patterns, 
however, response times became the same for all patterns, 
regardless of numerosity. Such a zero slope is a classic 
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signature indicating that a task has become automatized 
(e.g., Schneider & Shiffrin, 1977). These results are consis- 
tent with the notion that people relied on memory for the 
numerosity of those patterns and did not have to count the 
elements. According to instance theory, this final perfor- 
mance reflects a shift to memory-based processing; memory 
retrieval eventually wins the race over algorithmic process- 
ing as more and more instances are stored in memory. 

However, it is also possible that people learned general 
strategies for judging numerosities of any patterns, rather 
than remembering the numerosities of specific patterns. To 
assess the specificity of the automaticity for these numeros- 
ity judgments, Lassaline and Logan (1993) presented new 
patterns after 12 days of training. Response times were again 
found to increase roughly linearly with numerosity, with the 
magnitude of the response times nearly identical to what 
they were before training--that is, no transfer to the new 
patterns of elements was found. Lassaline and Logan tested 
the bounds of generalization in a number of ways: Variations 
irrelevant to the task of judging numerosity, such as 
changing the shape of each dement in a pattern or changing 
the color of a subset of elements in a pattern, produced little 
or no effect on response times (i.e., response time slopes 
remained flat). Changing the orientation of a pattern by 
180 ° , however, produced dramatic effects--the response 
times were nearly identical to what they were during the first 
session of the experiment. In keeping with much of the 
extant automaticity literature, such manipulations of pattern 
similarity were relatively large in scale. 

Empirical Goal 

The empirical goal of the present studies was to investi- 
gate the effects of more fine-grained manipulations of 
pattern similarity on the development and transfer of automa- 
ticity in numerosity judgments. The general methodology of 
the present experiments was similar to that used by Lassa- 
line and Logan (1993). People were trained to judge the 
numerosity of dot patterns with automaticity signaled by a 
zero slope for the function relating response time and 
numerosity. The key added manipulation was that similarity 
between patterns was explicitly controlled at transfer or 
during training. 

The motivation for these studies was the large body of 
results demonstrating effects of exemplar similarity on 
perceptual categorization; in the present studies, it is useful 
to think of each level of numerosity as a unique category. 
First, new transfer items are classified confidently when they 
are similar to specific category members stored in memory 
(e.g., Homa, Dunbar, & Nob_re, 1991; Homa & Vosburgh, 
1976; Nosofsky, 1991; Shin & Nosofsky, 1992): Experiment 
1 investigated transfer of numerosity judgments to new 
patterns of varying similarity to specific old, "automatized" 
patterns. 

Second, category learning is influenced by how similar 
category members are to one another (within-category 
similarity) and by how similar they are to members of other 
categories (between-category similarity); in general, increas- 
ing within-category similarity facilitates category learning 

(e.g., Homa, 1984; Homa & Cultice, 1984), whereas increas- 
ing between-category similarity impedes category learning 
(e.g., Homa, 1984; Omohundro & Homa, 1981). Experi- 
ments 2 and 3 investigated the effects of within- and 
between-category pattern similarity, respectively, on the 
development of automaticity. Specific theoretical motiva- 
tions and details of these experiments are given later in the 
article. 

One reason for using the numerosity judgment task was 
that the patterns of elements are the same as stimuli used in 
the classic "dot pattern" or "prototype distortion" tasks 
used in innumerable perceptual categorization studies (begin- 
ning with Posner & Keele, 1968). Similarity between 
patterns can easily be parametrically manipulated with 
statistical distortion algorithms (Posner, Goldsmith, & Wel- 
ton, 1967). These dot pattern stimuli also have the advantage 
that they are essentially infinitely variable and have a 
complex dimensional structure that resists obvious descrip- 
tion, so the artificial categories created from these patterns 
seem, to a certain degree, to mimic the structure of many 
real-world, natural categories (see Homa, 1984). 

Theoretical Goal 

The theoretical goal of the present work was to extend 
instance theory to account for the observed effects of pattern 
similarity on the development of automaticity. Conceptually, 
Logan (1988, 1990, 1992) described a pure instance model. 
Only stored instances identical to the presented item can be 
retrieved from memory. Notions of exemplar ~ similarity, a 
critical component of many theories of memory (e.g., 
Gillund & Shiffrin, 1984; Hintzman, 1988; Jacoby & 
Brooks, 1984; Metcalfe-Eich, 1982; Murdock, 1982) and 
categorization (e.g., Brooks, 1987; Hintzman, 1986; Medin 
& Schaffer, 1978; Nosofsky, 1984, 1986), are absent (see 
Logan, 1988). In fact, most automaticity studies have neither 
manipulated nor measured the similarity of objects (see, 
however, Feustel, Shitfrin, & Salasoo, 1983). Further devel- 
opment of the instance theory of automaticity must embed 
the memory retrieval component within richer representa- 
tional and process models of memory and categorization. 

Also, in its present conceptualization, instance theory is a 
first-instance race process. The first memory retrieved 
determines the overt response (assuming memory retrieval 
wins the race against the algorithm). As is explained later, 
such a race process cannot account for performance in 
situations in which responses compete as a result of similari- 
ties between items associated with alternative categories 
(see Experiment 3). 

A general model of automaticity and categorization, 
called the exemplar-based random walk model (Nosofsky & 
Palmed, in press-a, in press-b; hereinafter referred to as the 

l Throughout this article, the terms instance and exemplar refer 
to the same basic underlying type of memory representation. The 
term instance is generally used within the context of Logan's 
(1988) instance theory (without similarity-based retrieval). The 
term exemplar is generally used within the context of the GCM and 
the EBRW (with similarity-based retrieval). 
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EBRW), is used to understand, explain, and motivate the 
experiments reported in this article. The EBRW incorporates 
important elements of both Logan's (1988) instance theory 
of automaticity and Nosofsky's (1984, 1986) generalized 
context model (GCM) of categorization. As with Logan's 
model, algorithmic and memory-based processes compete to 
produce a response, and automaticity reflects a shift from 
primarily algorithmicjto primarily memory-based processes. 
But in keeping with the GCM, memory retrieval is similarity 
based, and responses are determined by the relative similar- 
ity of a probe to members of the various response categories. 
Extending instance theory, memory retrieval is determined 
by a competitive random walk process rather than a first- 
instance race process. The following section highlights key 
aspects of instance theory and the GCM that were incorpo- 
rated in the development of the EBRW. 

Logan's (1988) Instance Theory of Automaticity 

Instance theory posits the development of automaticity as 
a shift from algorithmic or rule-based processing to memory- 
based processing. It makes three fundamental assumptions: 
obligatory encoding---attention to an object causes it to be 
committed to memory, at least to some degree; obligatory 
retrieval--attention to an object causes all available informa- 
tion associated with an object to be retrieved from memory; 
instance representations--memory is specific to the particu- 
lar aspects of the objects that have been experienced (in 
contrast to abstractionist or prototype accounts). 

Three additional assumptions provide a process model of 
automaticity: First, memory retrieval time is a random 
variable. Second, performance is determined by the first 
memory trace to be retrieved. This assumption makes the 
instance theory a race model, whereby the fastest winning 
retrieval determines performance (relative to the processing 
time of the algorithm). Third, all instances are assumed to 
have the same distribution of retrieval times. 

A fundamental prediction of parallel race models is that 
increasing the number of runners (i.e., memories) in the race 
decreases the expected winning time. Imagine a race with 
only 2 runners who have finishing times that are identically 
distributed random variables. The winner is the person with 
the fastest (minimum) finishing time. Compare this with a 
race among 20 runners, each of whom have the same 
finishing time distributions as above. The winning time 
tends to be faster with 20 runners than with only 2 runners 
because of the random nature of the finishing times--there is 
a higher probability of one very fast finishing time as the 
number of runners increases. 

Within a race model framework, the prediction of de- 
creases in response time with increases in the number of 
stored instances reduces to the problem of finding the 
minimum of N samples drawn from the same underlying 
distribution. Assuming memory retrieval time that is distrib- 
uted as a Weibull, the minimum time for N samples 
decreases as a power law function of N (Colonlus, 1995; 
Logan, 1992, 1995). This property of the instance theory is 
what allows it to account for the fundamental power law 
decreases in response time observed with training. Further- 

more, the shape of the Weibull dislribution closely re- 
sembles the ex-Gaussian and the gamma distributions, 
which have provided close approximations to observed 
response time distributions (Luce, 1986; Ratcliff, 1978; 
Ratcliff & Murdock, 1976; Townsend & Ashby, 1983). 

Although instance theory has successfully accounted for a 
wide variety of automaticity findings, there are two funda- 
mental limitations in its current process formulation. First, 
as acknowledged by Logan (1988), there is no notion of 
similarity-based retrieval (see also Lassaline & Logan, 
1993); the only instances entering the race are those that are 
identical to the presented item. This assumption was largely 
made for simplicity and mathematical convenience; in fact, 
Logan (1992) demonstrated that many fundamental predic- 
tions of instance theory held up when differential memory 
retrieval rates (possibly arising from differential similarity 
between items) were introduced. The vast set of findings on 
similarity effects in the memory and categorization litera- 
tures (see Homa, 1984; Smith & Medin, 1981) suggest that 
important similarity effects may be found in automaticity 
tasks as well. 

Second, as a race model, only the first instance retrieved 
drives the response. As such, no possibility exists for a form 
of response competition to emerge, whereby positive evi- 
dence for one response causes negative evidence against all 
other responses. If one allows for similarity-based retrieval, 
then under many circumstances more than one response 
could be available when an item is presented, depending on 
how similar the presented item is to exemplars associated 
with various responses. For example, to preview results to 
be presented in Experiment 3, suppose people are asked to 
judge the numerosity of patterns that are very similar to 
patterns of a different numerosity. Intuitively, numerosity 
judgments for these patterns should be relatively slow. With 
a simple first-instance race model, however, there is no way 
to predict such a result; rather, the presence of similar 
patterns of a different numerosity would be expected to 
speed up numerosity judgment, albeit at the cost of more 
e r r o r s .  

The newly proposed EBRW (Nosofsky & Palmed, in 
press-b), which I tested in the studies reported in this article, 
allows for both similarity-based retrieval and response 
competition, through the use of a random-walk decision 
process (Link, 1975; Link & Heath, 1975; Luce, 1986; 
Ratcliff, 1978; Townsend & Ashby, 1983; see also Strayer & 
Kramer, 1994a, 1994b). 

Nosofsky 'S (1986) Generalized Context Model 
of Categorization 

The GCM is a generalized version of the context model of 
categorization proposed by Medin and Schaffer (1978). 
Categories are represented in terms of stored exemplars, and 
categorization decisions are based on the relative summed 
similarity of a probe item to the exemplars of each category. 
Exemplars are represented as points in a multidimensional 



AUTOMATICITY AND EXEMPLAR SIMILARITY 327 

psychological space (Nosofsky, 1992c). 2 The similarity 
between exemplars i and j is an exponentially decreasing 
function of distance in the psychological space (Shepard, 
1987) and is given by 

su=exp (-cdij), (1) 

where c is a general sensitivity parameter that scales the 
psychological distances, d~, between stimuli. 

The probability of classifying item i as a member of 
Category A, P(A[i), is given by the relative summed 
similarity of i to the exemplars of Category A divided by the 
summed similarity of i to the exemplars of all categories: 
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Figure 1. Illustration of the random walk process of the exemplar- 
based random walk (EBRW) model. Evidence (vertical axis) 
accumulates over time (horizontal axis) for a Category A or 
Category B response. A response is made when the random walk 
counter crosses one of the response boundaries, and the response 
time (RT) is given by the time when boundary is crossed. 

where L is the set of all categories and CL is the set of 
members of category L, which is the choice rule of Luce 
(1963) and Shepard (1957). 

The GCM has had success in accounting for a wide 
variety of categorization findings (for reviews, see Nosof- 
sky, 1992a, 1992b). In an example especially pertinent to the 
present research, Shin and Nosofsky (1992) demonstrated 
that the GCM could predict effects within the classic 
prototype distortion paradigm (Posner & Keele, 1968, 
1970). The stimuli were random dot patterns generated by 
statistically distorting a prototype pattern. A multidimen- 
sional scaling (MDS; Carroll & Wish, 1974) analysis 
revealed the underlying psychological coordinates of each of 
the presented dot patterns. Given this MDS solution, the 
GCM prodded excellent accounts of the data under a wide 
variety of experimental conditions. In particular, the model 
accounted for the effects of similarity between prototypes 
and old exemplars (Homa & Vosburgh, 1976), category size 
effects (Homa & Chambliss, 1975; Homa, Sterling, & 
Trepel, 1981), delay of transfer phase (Homa et al., 1981; 
Homa & Vosburgh, 1976; Posner & Keele, 1970), and 
effects of individual item frequency (Nosofsky, 1991). 

One important shortcoming of the GCM, however, is the 
lack of a dynamic exemplar retrieval component; that is, the 
GCM does not specify how long it takes to retrieve 
exemplars from memory, nor does it specify how long it 
takes to arrive at a categorization decision. Thus, there is no 
way for the GCM to predict categorization response times. 
Surprisingly, few attempts have been made to formalize 
process models of multidimensional classification response 
times (see, however, Ashby, Boynton, & Lee, 1994, for one 
approach). One of the main goals in developing the EBRW 
was to allow the exemplar-based framework to be extended 
to predict response times, thus opening up a wide variety of 
new territories for theoretical investigation. 

Exemplar-Based Random Walk (EBRW) Model 

The EBRW makes the same representational assumptions 
as those underlying the generalized context model: Catego- 
ries (or response classes) are represented in terms of stored 
exemplars, exemplars are represented as points in some 
multidimensional psychological space, and similarities are 
an exponentially decreasing function of distance in that 
space. 

As with Logan's (1988) instance theory, when an item is 
presented, exemplars race to be retrieved from memory. 
However, in the EBRW, all exemplars race to be retrieved 
with rates proportional to their similarity to the presented 
item. Furthermore, unlike Logan's model, in which the first 
retrieved instance drives the response, in the EBRW, each 
retrieval provides incremental evidence to drive a random 
walk. Once sufficient evidence is accumulated, then a 
response is made available. The actual overt response is 
determined by a race between this memory retrieval process 
and an algorithmic or rule-based process. (See Nosofsky, 
Palmeri, & McKinley, 1994, and Palmeri & Nosofsky, 1995, 
for one possible rule-based model of classification learning.) 

As illustrated for a two-category case in Figure 1, the 
random walk has a counter accruing information over time 
for a Category A or a Category B response. When the 
counter crosses one of the response boundaries (+A or -B ) ,  
a response is made (A or B), and the response time (RT) is 
given by the time when the boundary is crossed. When item i 
is presented, all exemplars race to be retrieved from 
memory, with race times that are exponentially distributed 
random variables. The exponential function was chosen 
primarily for its simplicity (it is a special case of the 

2 In the full instantiation of the GCM, selective attention 
mechanisms operate to "stretch" distances along diagnostic dimen- 
sions and "shrink" distances along nondiagnostic dimensions (see 
Nosofsky, 1984, 1986). 
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Weibnll), its analytic tractability, and because of its history 
of use in psychological RT models (e.g., Bundesen, 1990; Logan, 
1996; Townsend & Ashby, 1983). The exponential probability 
density function for exemplar j being retrieved from memory at 
time t, given presentation of item i, is given by 

f (O = so exp ( - sq  0, (3) 

where sij is the similarity between exemplar j and the 
presented item i. Note, therefore, that the exemplars that are 
most likely to win the race and be retrieved are those that are 
most similar to the test item. 

Suppose x is the winning exemplar, and let tx denote the 
time to retrieve this exemplar. Then the random walk time is 
increased by 

A T = ot + tx, (4) 

where ¢x is a constant time associated with each step. A 
psychological interpretation of ot is that it represents the time 
needed to extract the category label from the retrieved 
memory and to accumulate this information in the random 
walk counter. If x belongs to Category A, then the random 
walk counter is increased by 1, whereas if x belongs to 
Category B, then the counter is decreased by 1. A response is 
made if the counter crosses one of the response boundaries; 
otherwise another probe of memory is made, upon which a 
new race ensues, producing a new increase or decrease to the 
random walk. Each new memory retrieval entails a new race 
of exemplars. In summary, RTs are determined by the total 
number of steps it takes to reach one of the response barriers 
and by the amount of time it takes to make each step. 

The EBRW combines elements of both the GCM and 
instance theory. It is informative to note that both the GCM 
and instance theories are essentially special cases of the 
EBRW: If A = 1, the EBRW is formally identical to the 
GC~; ifA = 1 and zero similarity is assumed between noniden- 
tical exemplars, the EBRW is essentially the same as instance 
theory (see Nosofsky & Palmed, in press-b, for details). 

At this point, I highlight some key predictions of the 
EBRW; later, Monte-Carlo simulations are presented that 
corroborate these fundamental predictions. First, the EBRW 
predicts that RTs get faster with practice. Every time an item 
is presented, a new exemplar is stored in memory. Because 
of the statistical properties of the race underlying memory 
retrieval within the EBRW, the time to retrieve the "win- 
ning" exemplar gets faster as more exemplars are stored (cf. 
Logan, 1988), thereby driving the random walk at a faster rate. 

Second, similarity of an item to exemplars stored in 
memory influences RT. When an item is similar to other 
items of the same category, responses get faster. According 
to the EBRW, exemplars race with rates proportional to their 
similarity to the presented item. When similarity increases, 
retrieval rates get faster, leading to faster retrieval times for 
the winning exemplar, leading to faster RTs. 

Third, when an item is similar to items of other categories, 
RTs get slower. According to the EBRW, when an item is 
similar to exemplars of more than one category, RTs get 
slower because the retrieved exemplars from other catego- 

des subtract from the random walk, slowing progress toward 
the correct boundary. 

Instance theory could readily be extended to account for 
the effects of within-category similarity----one needs only to 
assume that instances race according to their similarity to the 
presented item. However, the pure race-model formalism of 
instance theory cannot account for the response competition 
effects due to manipulations of between-category similarity. 

Nosofsky and Palmed (in press-b) demonstrated the 
success of the EBRW at predicting RT data in a variety of 
categorization experiments. For example, in one experiment, 
people engaged in 5 days of speeded categorization in which 
they learned to classify colors into two categories. RTs were 
highly systematic: In general, stimuli close to the "category 
boundary" were classified more slowly than those far from 
the category boundary. Basically, the closer a stimulus was 
to the boundary, the more similar it was to exemplars of both 
categories. Therefore, when memory was probed, exemplars 
of either category could be retrieved, causing the random 
walk to drift back and forth between the response bound- 
aries, leading to relatively slow RTs. It is this response 
competition that emerges as a result of between-category 
similarity that is uniquely predicted by the random walk 
process. 

The EBRW is one of the first process models to have been 
formulated to account for multidimensional perceptual clas- 
sification RTs. Perhaps of more importance, however, is that 

.beyond its ability to account for perceptual categorization, 
the EBRW can also account for the development of automa- 
ticity in cognitive Skills, thereby providing promise as a 
unified account of performance across these domains. 

Monte-Carlo Simulations 

In this section, I report Monte-Carlo simulations to 
corroborate the conceptual predictions just discussed and to 
illustrate some more detailed quantitative predictions of the 
EBRW that are tested in the experiments. 

First, increasing the number of presentations of an item 
should cause decreases in RT means and standard deviations 
in accxn'd with the well-known power law of practice (Logan, 
1988, 1992; Newell & Rosenbloom, 1981). Indeed, this power 
law speedup has been taken as a benchmark for all theories of 
automaficity and skill acquisition (e.g., Anderson, 1982, 1987; 
Cohen, Dunbar, & McClelland, 1990; Logan, 1988, 1992; 
Schneider, 1985). According to the power law, 

RT = A + BN -c, (5) 

where RTis response time (mean or standard deviation), A is 
the asymptotic response time, B is the difference between 
initial and final response time, N is the amount of practice, 
and C is the learning rate parameter that specifies the shape 
of the power law function. 

Simulations were performed to test whether the EBRW 
predicted decreases in RTs (means and standard deviations) that 
were in accord with the power law. Moreover, sinailarity was 
manipulated to ascertain how between- and within-category 
similarity influenced the shape of the power law function. 
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In all simulations to be reported in this section, two 
categories 3 were presented containing five exemplars each. 
With procedures analogous to ones used in previous work by 
Homa et al. (1981) and Busemeyer, Dewey, and Medin 
(1984), two parameters were defined to capture the average 
similarity relations among each pair of exemplars. For 
simplicity, the similarity, sw, between exemplars belonging 
to the same category (within-category similarity) was as- 
sumed to be the same for every pair of exemplars, and the 
similarity, sb, between exemplars belonging to different 
categories (between-category similarity) was also assumed 
to be the same for every pair of exemplars:  Thus, exemplars 
of the same category as a presented item raced with rate sw 
(an exemplar identical to the presented item raced with a 
maximal rate of 1.0), and exemplars of the opposite category 
from the presented item raced with rate sb. In all simula- 
tions, bias-free versions of the EBRW were assumed in 
which the botindaries for each response were the same 
distance from the starting position; presently, this distance 
was set to A = 5. (In applications of the EBRW to 
categorization RT data, Nosofsky & Palmeri, in press-b, 
found best fitting boundary distances of between 3 and 7 
units.) In all simulations, the random walk retrieval times 
were rescaled using a multiplicative term, k. 

Overt responses were determined by a race between the 
random walk memory process and a generic algorithmic 
process. Processing time for this algorithm was assumed to 
be normally distributed with mean la and standard deviation 
o" (Logan, 1988). A constant additive residual processing 
time, R, was assumed for basic perceptual and motor 
components. Each exemplar was presented eight times per 
block for 20 blocks (N = 1 . . .  20). Because the EBRW is 
stochastic, in the following simulations, 5,000 iterations 
were performed per set of parameter values. 

Extending Logan's (1988) instance theory, the EBRW 
predicts faster responses for items that are more similar to 
exemplars of their own category relative to exemplars of 
other categories. Adding similar items to the race speeds the 
expected time of the winning retrieval. To demonstrate this 
point, simulations were conducted that varied within- 
category similarity, sw, while holding all other parameters 
constant, with random walk parameters sb = .05, a = 0.05, 
A = 5, and k = 200; algorithm parameters la = 500 and cr = 
100; and residual time parameter R = 400. Within-category 
similarity, sw, was set equal to .15, .25, .35, and .45. As 
shown in Figure 2A, predicted RTs (black circles) were 
strongly influenced by within-category similarity--through- 
out training, exemplars from categories with high within- 
category similarity were judged more quickly than exem- 
plars from categories with low within-category similarity. 
Furthermore, as shown in Figure 2B, standard deviations 
decreased with training and were influenced by within- 
category similarity in an analogous way--responses from 
categories with high within-category similarity were less 
variable than responses from categories with low within- 
category similarity. 

As shown in Figure 2, power law functions (solid lines) 
were fitted to these simulated data to determine how well the 
EBRW predicted RT curves that were in accord with the 

power law. It was also important to examine how within- 
category similarity influenced the shape of these power 
curves (as reflected by the value of C). Table 1 displays 
parameters and fit values for the best fitting power law 
curves as a function of within-category similarity. The 
power law functions fitted the simulated RT means and 
standard deviations quite well (average correlation of .997, 
.971, respectively): Furthermore, as shown in Table 1, the 
exponent (C) increases as a function of sw. That is, the 
power law functions were steeper (approached asymptote 
more quickly) in conditions of  high within-category similar- 
ity than in conditions of low within-category similarity. 

The EBRW also predicts slower RTs when items are 
similar to exemplars of other categories. When an item is 
similar to exemplars of both categories, the random walk 
counter will wander between the two response boundaries, 
leading to slower RTs. Simulations were conducted varying 
between-category similarity, sb, with random walk param- 
eters sw = .45, a = 0.05, A = 5, and k = 200; algorithm 
parameters la = 500 and cr = 100; and residual time param- 
eter R = 400. Between-category similarity, sb, was set equal 
to .05,. 10,. 15, and .25. As shown in Figure 3A, throughout 
training, exemplars from categories with high between- 
category similarity were judged more slowly than exemplars 
from categories with low between-category similarity. In 
addition, as shown in Figure 3A, RTs were more variable for 
exemplars from categories with high between-category 
similarity. 

Table 2 displays the best parameters and fit values for the 
power law curves displayed in Figure 3. As expected, the 
power law functions fitted the simulated RT means ex- 
tremely well (average correlation of .999). The power law 
functions also fitted the simulated RT standard deviations 
quite well (average correlation of .981). 6 Finally, as shown 
in Table 2, the EBRW predicts decreasing values of C with 

3 Throughout this article, the term category is broadly construed 
to mean any collection of objects associated with the same 
response. 

4 The full version of the EBRW assumes objects to be repre- 
sented as points in a multidimensional psychological space. 
Nosofsky and Palmeri (in press-a, in press-b) made use of such 
representations when the physical stimuli remained the same across 
participants and when the theoretical goal was predicting RTs for 
individual stimuli. In the present experiments, however, the stimuli 
varied from person to person, and the goal was to predict RT for 
classes of stimuli (rather than individual stimuli). The similarity 
parameters capture the average similarity across a number of 
stimuli. The variance in these similarities is captured within other 
stochastic elements in the model (rather than through the introduc- 
tion of yet another set of parameters). 

5 As is evident in Figure 2B, early blocks of RT standard 
deviations seem to violate the power law function somewhat (see 
also Logan, 1992). When the power law was fitted to Blocks 3-20 
the fits improved: sw = .10, .15, .25, and .35; r = .987, .995, .997, 
and .998, respectively. 

6 As is evident in Figure 3B, early blocks of RT standard 
deviations seem to violate the power law function. When the power 
law was fitted to Blocks 3-20 the fits improved: sb = .05, .10, .15, 
and .25; r = .998, .997, .997, and .993, respectively. 
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Figure 2. Simulated data from the exemplar-based random walk model. The points display 
predicted response times as a function of training blocks for different values of within-category 
similarity (sw) with all other parameters held constant. A: mean response times. B: standard 
deviations (black circles). The solid lines are the best fitting power functions given in Table 1. 

increasing values of  sb. That is, the power law functions 
were shallower (approached asymptote more slowly) in 
conditions of high between-category similarity than in 
conditions of  low between-category similarity. 

In summary, the EBRW successfully predicted RT curves 

Table 1 
Parameter Values and Measures of Fit for Power Law 
Functions Fitted to the Simulated Response T'm~ ( RT) 
Means and Standard Deviations Shown in Figure 2 as a 
Function of Within-Category Similarity 

Parameter Within-category similarity (sw) 
and measure 

of fit .15 .25 .35 A5 

RT mean 

A 346.0 410.2 434.1 445.2 
B 535.1 440.5 382.9 340.8 
C 0.421 0.583 0.699 0.790 
RMSE 9.12 6.28 4.40 2.51 
r .995 .997 .998 .999 

RT standard deviation 

A - 120.6 -:90.2 -58.2 - 15.9 
B 255.6 219.6 182.3 137.2 
C 0.151 0.201 0.270 0.446 
RMSE 8.69 6.43 4.85 3.67 
r .940 .969 .982 .991 

Nose. A = asymptotic RT; B = the difference between initial and 
final RT; C = the learning rate parameter that specifies the shape of 
the power law function. 

that were in accord with the power law for both means and 
standard deviations. As noted by Logan (1988) and others 
(e.g., Cohen et al., 1990; Newell & Rosenbloom, 1981), the 
power law for means and standard deviations is a benchmark 
prediction that any theory of skill acquisition and automatic- 
ity must make in order to be taken seriously. Following the 
lead of instance theory, the EBRW predicts such power law 
decreases in RT as a result of  the underlying race component 
of  memory retrieval. As more instances are added to the 
race, memory retrieval gets faster. Analyses of  the experi- 
ments in this article include fits of the power law function to 
both the observed data and the EBRW predictions. 

Instance theory makes the very specific prediction that the 
exponents of  the power law functions for means and 
standard deviations should be identical (see Logan, 1988, 
1992). As indicated by the above simulations, the EBRW 
does not make such a prediction. The EBRW makes no 
strong predictions as to how the shapes of  power law curves 
for means and standard deviations are related (analytic 
solutions for the EBRW have been derived for mean RTs 
only; see Nosofsky & Palmeri, in press-b). In the present 
simulations, when the standard deviation of the algorithmic 
process was less than the mean of  the algorithmic process, 
the standard deviation power functions were less steep than 
those for the means. (In fact, in other simulations not 
reported, when the standard deviation of the algorithmic 
process was greater than the mean of the algorithmic 
process, the standard deviation power functions were more 
steep than those for the means, as observed in data by Logan 
& Etherton, 1994.) In the theoretical analyses of  the 
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Figure 3. Simulated data from the exemplar-based random walk model. The points display 
predicted response times as a function of training blocks for different values of between-category 
similarity (sb) with all other parameters held constant. A: mean response times. B: standard 
deviations (black circles). The solid lines are the best fitting power functions given in Table 2. 

experimental results, power law functions are fitted to the 
means and standard deviations to test the strong prediction 
of instance theory regarding equal exponents. 

Finally, as demonstrated above, the EBRW predicts that 
the shapes of the power law functions should vary systemati- 

Table 2 
Parameter Values and Measures of  Fit for Power Law 
Functions Fitted to the Simulated Response Time (RT) 
Means and Standard Deviations Shown in Figure 3 as a 
Function of  Between-Category Similarity 

Parameter 
and measure 

of fit 

Between-category similarity (sb) 

.05 .10 .15 .25 

RT mean 

A 450.2 455.8 458.8 452.9 
B 304.6 315.3 327.6 341.6 
C 0.858 0.801 0.718 0.590 
RMSE 1.95 2.28 2.91 4.06 
r .999 .999 .999 .998 

RT standard deviation 

A -1.3 -14.1 -28.2 -37.8 
B 118.4 136.9 159.0 180.9 
C 0.605 0.390 0.271 0.153 
RMSE 2.47 2.96 3.92 5.53 
r .995 .992 .985 .951 

Note. A = asymptotic RT; B = the difference between initial and 
final RT; C = the learning rate parameter that specifies the shape of 
the power law function. 

cally as a function of the similarities among exemplars. 
Increasing within-category similarity causes steeper power 
law functions (larger values of  C), whereas increasing 
between-category similarity causes shallower power law 
functions (smaller values of  C). These fundamental predic- 
tions of the EBRW are evaluated as part of  the theoretical 
analyses. In the experimental results and simulations, power 
law fits are analyzed to test whether the exponential terms 
vary systematically as a function of sw and sb. 

Overview o f  Exper iments  

The empirical goal of the present studies was to investi- 
gate the effects of  fine-grained manipulations of similarity 
on the development of autornatieity in a numerosity judg- 
ment task. The theoretical goal was to test the ability of a 
new model of categorization and automaticity, the EBRW, to 
account for the observed data. 

In each of these studies, participants were trained to judge 
the numerosity of patterns containing between 6 and 11 dots 
as rapidly a's possible without making errors. Extending 
previous work by Lassaline and Logan (1993), similarity 
was manipulated by spatially distorting these dot patterns. 
Autornaticity in these judgments was signaled by a zero 
slope for the function relating RT and numerosity. In each 
experiment, of key interest was how both mean RTs and 
slopes varied as a function of pattern similarity. 

Experiment 1 investigated how automatic numerosity 
judgments generalize to new patterns of varying similarity to 
the trained patterns. Experiments 2 and 3 investigated how 
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similarity influenced the development of automaticity. Ex- 
periment 2 manipulated within-category similarity; on the 
basis of  the above simulations, the central prediction was 
that automaticity would develop more rapidly for patterns 
that were similar to other patterns of  the same numerosity. 
Experiment 3 manipulated between-category similarity; the 
prediction was that automaticity would develop more slowly 
for patterns that were similar to patterns of  a different 
numerosity. Following each experiment, the EBRW was 
evaluated on its ability to account for the observed RT data. 

Exper imen t  1 

The goal of  this experiment was to examine the effects of  
exemplar similarity on generalizations to new objects follow- 
ing the development of  automaticity and to test the ability of  
the EBRW to account for the observed results. To date, 
systematic tests of  generalization have rarely been done in 
automaticity studies--people are usually tested on new 
objects and old objects, with similarity neither measured nor 
manipulated. 

The stimuli used in these studies were dot patterns such as 
those used in the seminal classification learning studies of  
Posner and Keele (1968, 1970; see also Homa, 1984; Homa 
et al., 1981; Shin & Nosofsky, 1992). Participants were 
trained for 13 sessions on a set of  patterns containing 
between 6 and 11 dots and were required to report how many 
dots were in each pattern as rapidly as possible without 
sacrificing accuracy. The development of  automaticity was 
signaled by a zero slope for the function relating RT to 
numerosity (Lassaline & Logan, 1993; Schneider & Shiffrin, 
1977). Following training, tests of  generalization were made 
over 7 transfer sessions. Participants were given old patterns 
as well as new patterns of  varying similarity to the old 
patterns. 

During the transfer sessions, in replication of  the predic- 
tions of  Logan's  (1988) instance theory, the EBRW predicts 
new (dissimilar) patterns to be judged as slowly as they were 
during the first training session and old patterns to be judged 
as quickly as they were during the last training session. 
Because memory retrieval rates in the EBRW are propor- 
tional to the similarity between the presented item and the 
exemplars stored in memory, the EBRW uniquely predicts 
new similar patterns to be judged with RTs inversely related 
to their similarity to the old training patterns--moderate- 
similarity patterns should be judged more quickly than 
low-similarity patterns. 

M e ~ o d  

Participants. Four graduate students from Indiana University 
participated in 20 experimental sessions. They were each paid 
$120. Each participant was tested individually. Each session took 
between 35 and 45 min. 

Stimuli. The stimuli were random dot patterns similar to those 
originally used by Posner and Keele (1968, 1970). Five unique 
patterns were generated at each level of numerosity (6, 7, 8, 9, 10, 
and 11). Each pattern was constructed by randomly placing 
between 6 and 11 dots within the center 30 × 30 of a 50 × 50 
square grid, subject to the constraint that the centers of any pair of 
dots be at least 2 units apart. Each dot had a diameter of 2 mm. Each 
pattern spanned a maximum of 10 cm x 10 cm on the center of a 14 
in. (35.6 cm) computer monitor. Every participant was exposed to a 
different set of randomly generated patterns. The same set of 
patterns was shown during all of the 13 training sessions. 

New, similar transfer items were created by a statistical distor- 
tion algorithm. Basically, this procedure shifts each dot in the 
pattern some random amount in some random direction. The 
amount of distortion has traditionally been measured in information- 
theoretic terms of "bits/dot." The distortion technique was origi- 
nally introduced by Fosner et al. (1967). A grid of 360 cells was 
defined around each dot in the pattern. The central dot was labeled 
0, the surround ring of cells was labeled 1-8, the next ring was 
labeled 9-24, and so on for a total of 360 cells. Five areas were 
designated around the central cell consisting of Cells 1-8 (first 
ring), 9-24 (second ring), 25-80 (third and fourth rings), and 
81-360 (fifth-ninth rings). The probability of moving the dot from 
its central location to one of the surrounding areas is given in Table 
3 as a function of the level of distortion in bits/dot. The dot had an 
equal probability of landing in any one of the cells within the 
selected area. 

Moderate-similarity patterns (moderate-level distortions at 6.0 
bits/dot) and low-similarity patterns (high-level distortions at 9.7 
bits/dot) were created. New, randomly generated, unrelated transfer 
items were created by means of the same procedures used to create 
the original training patterns. 

Procedure. At the start of each session, participants were given 
60 practice trials to familiarize them with the mapping from 
numerosity to key response. On every trial, a small cross-hairs 
appeared at the center of the screen for 500 ms, followed by a 
spelled out number between six and eleven. The participant was 
asked to press the corresponding response key as quickly and as 
accurately as possible. The number remained on the screen until a 
response was made. An error message was displayed following an 
incorrect response. Each level of numerosity (6--11) was repre- 
sented 10 times in random order (unblocked). 

During Sessions 1-13, each of the 5 stimuli at each of six levels 
of numerosity (30 total stimuli) was presented once per block for a 
total of 16 blocks (480 total trials per session). Presentation order 

Table 3 
Probabilities of  Moving a Dot to Each Area for the Levels of  Distortion Used in These 
Experiments (From Posner et al., 1967) 

Level of Area 
distortion Bits/dot 1 2 3 4 5 

Low 3.0 .59 .20 .16 .03 .02 
Moderate 6.0 .00 .40 .32 .15 .13 
High 9.7 Equally probable in a 29 × 29 square grid 
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was randomized for every participant and for every session. On 
every trial, a small cross-hairs appeared at the center of the screen 
for 500 ms, followed by a dot pattern. The participant was asked to 
press the response key corresponding to the number of dots in the 
pattern as quickly as possible without sacrificing accuracy. The 
pattern remained on the screen until a response was made. An error 
message was displayed following an incorrect response to ensure 
that participants judged true numerosity, rather than apparent 
numerosity. 

During Sessions 14-20, each of the 30 training stimuli was 
presented once per block for a total of two blocks. Following these 
two initial blocks, four blocks of transfer trials were presented. On 
each trial, an old item, a moderate-similarity new item, a low- 
similarity new item, or an unrelated new item was presented. Each 
old stimulus was presented once per block and was used twice per 
block to generate either a moderate-similarity or a low-similarity 
new item. Five new unrelated patterns at each of six levels of 
numerosity (30 random patterns) were also presented during each 
block. Thus, 120 transfer items (30 old, 30 moderate, 30 low, and 
30 unrelated) were presented once per block, yielding a total of 480 
transfer trials. All other aspects of the procedure were identical to 
those in Sessions 1-13. 

Responses were recorded from the computer keyboard. RTs were 
measured with the internal millisecond-accuracy timer in the 
personal computer (PC). The keys S, D, F, H, J, and K were labeled 
6, 7, 8, 9, I0, and 11, respectively. Participants rested three fingers 
from each hand on these keys. 

R e s u l t s  

Training data. Because the same qualitative trends were 
seen in the data from each individual participant, the data 
were averaged over all participants. Mean accuracies of the 
numerosity judgments for Sessions 1-13, averaged over 
numerosity, were .961, .968, .959, .967, .975, .980, .980, 
.974, .987, .979, .971, .972, and .973, respectively 
(M = .973). Average accuracy increased slightly across 
training sessions. Mean accuracies for Numerosities 6-11, 

averaged over sessions, were .989, .970, .963, .975, .959, 
and .979, respectively. Accuracy was slightly higher for the 
endpoints of the response range (6 and 11, M = .984), than 
the middle of the response range (7, 8, 9, and 10, M = .967). 
These impressions were confirmed by a 13 (session) × 6 
(numerosity) analysis of variance (ANOVA) conducted on 
the accuracy data from the training sessions (1-13). The 
main effects of numerosity and session were significant, F(5, 
15) = 2.93, M S E  = 0.0021, and F(12, 36) = 2.27, M S E  = 
0.0007, respectively. (The alpha level for all statistical tests 
reported in this article was set a tp  = .05.) 

Figure 4A displays mean correct RTs as a function of 
numerosity during Training Sessions 1-13. During the first 
few sessions, RTs increased roughly linearly with numeros- 
ity but gradually leveled out to be a nearly flat function of 
numerosity. Linear regression functions were fitted to the RT 
curves for each session, and the slopes of  these regression 
functions are plotted as a function of session in Figure 5. The 
initial positive slopes reflect the explicit counting process. 
The slopes gradually fell to near zero by the end of training, 
signaling the development of automaticity. 

To confirm these impressions, a 13 (session) × 6 (numer- 
osity) ANOVA was conducted on the mean correct RT data 
from the training sessions (1-13). The main effect of 
numerosity was significant, F(12, 36) = 33.07, M S E  = 
155,619.02, reflecting the increase in RTs for patterns with 
higher numerosity early in training. T h e  main effect of 
session was also significant, F(5, 15) = 8.28, M S E  = 
192,493.53, reflecting the decrease in RT over training 
sessions. The two-way Session × Numerosity interaction 
was significant, F(60, 180) = 5.49, M S E  = 25,777.41, 
reflecting the greater change in average RTs for high 
numerosity patterns relative to low numerosity patterns. 

Transfer  data. To test for the specificity of the memories 
for these patterns, during the transfer sessions, people were 
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Figure 4. A: Observed response times as a function of numerosity for each training session in 
Experiment 1. B: Response time predicted by the exemplar-based random walk (EBRW) model as a 
function of numerosity and training session in Experiment 1. 
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Figure 5. Slopes of finear regression functions fitted to the data in 
Figure 4A as a function of training session. 

presented with four types of patterns: old patterns (old), new 
patterns of moderate similarity to an old pattern (moderate), 
new patterns of low similarity to an old patterns (low), and 
new patterns unrelated to any old patterns (unrelated). The 
mean accuracy data for each type was .985 for old patterns, 
.970 for moderate patterns, .939 for low patterns, and .925 
for unrelated patterns. A 4 (type) X 6 (numerosity) ANOVA 
was conducted on the accuracy data from the transfer 
sessions (14-20). The main effect of  type was significant, 
F(3, 9) = 6.09, MSE = 0.02, reflecting the increasing 
accuracy as a function of similarity to the old patterns. 

Figure 6A displays mean correct RTs for each of the four 

types of transfer patterns as a function of numerosity, with 
Session 1 and Session 13 of training displayed for compari- 
son purposes. Numerosity judgments for new patterns were 
nearly as slow after 13 sessions of  practice as they were 
during the first session, as can be seen by comparing the 
solid curve representing the unrelated patterns with the 
dotted Session 1 curve in Figure 6A. Furthermore, judg- 
ments for old patterns were nearly as fast during the transfer 
sessions as they were at the end of training, as can be seen by 
comparing the solid curve representing the old patterns with 
the dotted, Session 13 curve in Figure 6A. These results 
basically replicate those obtained by Lassaline and Logan 
(1993). The most important new result is that the moderate 
patterns were judged more quickly than the low patterns, and 
the low patterns were judged more quickly than the unre- 
lated new patterns. Thus, as predicted by the EBRW, RTs got 
faster as the similarity of  the transfer patterns to the training 
patterns increased. The results provide evidence that memory 
retrieval within a highly automatized task is similarity 
dependent. 

To confirm these impressions, a 4 (type) x 6 (numerosity) 
ANOVA was conducted on the mean correct RT data from 
the transfer sessions. The main effect of  type was significant, 
F(3, 9) = 65.46, MSE = 812,539.21, reflecting the influence 
of pattern similarity on RTs. Old patterns were judged more 
quickly than moderate patterns, moderate patterns were 
judged more quickly than low patterns, and low patterns 
were judged more quickly than unrelated patterns. The main 
effect of  numerosity was significant, F(5, 15) = 13.97, 
MSE = 823,240.70, reflecting the greater average RT for higher 
numerosity patterns, especially for the low and unrelated 
patterns. The two-way Type x Numerosity interaction was 
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significant, F (15, 45) = 6.06, MSE = 161,524.30; the 
increase in RTs as a function of numerosity was steeper for 
patterns that were less similar to the training patterns. 

Theoret ical  Ana lyses  

The EBRW was next fitted to the data from this experi- 
ment. The random walk, with an upper and a lower decision 
boundary, allows two-choice decisions only. How can the 
model be extended to situations involving multiple response 
categories, as is encountered in the numerosity judgment 
task and many categorization tasks? One fairly simple 
extension allows multiple counters, one for each category or 
response. When evidence points to one category, then that 
response counter is increased. With a traditional counter 
model, an absolute threshold determines the response (e.g., 
LaBerge, 1962; Pike, 1973; Townsend & Ashby, 1983)-- 
when any counter exceeds this absolute threshold, a re- 
sponse is made. In the present extension of the EBRW, 
however, a relative threshold determines the response--  
when any given counter exceeds all other counters by this 
relative amount, a response is made. The two-counter 
version is basically identical to the random walk formalism. 

The EBRW was fitted to the observed RT data from the 
training sessions, shown in Figure 4A, by maximizing the 
correlation between the predicted and the observed data. An 
extensive grid search was performed to find the best fitting 
parameter values. Because the EBRW is stochastic, simula- 
tions were performed over 5,000 iterations for each set of 
parameters. 

Recall that overt responses are determined by a race 
between the random walk memory retrieval process and 
algorithmic processing. The free parameters for the random 
walk included the constant time increment, or, the response 
threshold, A, and the similarities between patterns. Because 
item similarities were not manipulated during the training 
phase, within-category similarity and between-category simi- 
larity were assumed to be the same for every pair of 
exemplars, sw = sb = s. The random walk retrieval times 
were rescaled using a multiplicative term, k. 

The algorithm is a counting process: For simplicity, it is 
assumed that every count is a normally distributed random 
variable with mean la and standard deviation tr. The time to 
count a pattern with n dots, therefore, is equal to the sum of n 
independent and identically distributed normal random 
variables (truncated at zero). It does not seem reasonable to 
expect a zero intercept for the counting process, however. 
Numerosity judgments do not increase linearly throughout 
the numerosity range; rather they are flat within the subitiz- 
ing range of 1 to 5 items (Mandler & Shebo, 1982; Trick & 
Pylyshyn, 1993, 1994). Rather than report the intercept term, 
which is a psychologically meaningless negative number, 
the mean counting time for a pattern with five elements is 
reported instead, labeled subit, where Intercept = subit - 
5.gt. 

Training. The EBRW fitted the training data quite well 
(r = .986), with random walk parameters s = .015, ct = 
0.0079, A = 3, k = 7,937, with counting process parameters 
la = 584.6, tr = 292.3, subit = 440.4, and with residual time 

parameter R = 101.8. I start the discussion by pointing out 
the ability of the EBRW to account for certain important 
qualitative trends. Figure 4B displays the predicted RT data 
as a function of numerosity and training session. Compari- 
son with Figure 4A reveals the excellent predictions. The 
primary shortcoming is the lack of the "bowing" found in 
the observed data in particular, observed Numerosity 6 and 
11 responses were slightly faster than expected. Part of this 
difference might have been due to response execution 
differences, which are not part of the EBRW simulations. 
That is, it might be easier to execute an extreme response 
(such as 6 or 11) than an intermediate response (see Klahr & 
Wallace, 1976, and Mandler & Sbebo, 1982, for similar 
findings of such endpoint effects); in fact, during the initial 
practice trials, responses to s/x and eleven were somewhat 
faster than responses to the other numbers. Furthermore, this 
bowing could have been due to differences in the similarity 
relations for the patterns at the end of the numerosity range 
relative to those in the middle. If  patterns close in terms of 
numerosity are visually more similar than those far apart in 
terms of numerosity (e.g., van Oeffelen & Vos, 1982), then 
the Numerosity 6 and 11 patterns are similar to fewer 
patterns of a different numerosity--there are no patterns of 
Numerosity 5 or 12--hence, they are judged more quickly. 

Transfer. To fit the transfer data, all of the above 
parameters were held fixed. Old patterns had similarity s = 
1.0 to one of the patterns stored in memory and s = .015 
(held fixed from above) to all other patterns; moderate 
patterns had similarity, sin, to one of the patterns in memory 
and s = .015 to all other patterns; low patterns had 
similarity, sl, to one of the patterns in memory and s = .015 
to all other patterns; and new patterns had similarity s = .015 
to all of the patterns in memory. A two-parameter version of 
the EBRW, with all other parameters held fixed, fitted the 
transfer data quite well (r = .962), with sm = .372, and sl = 
.199. Although no attempt was made to explicitly predict 
accuracy data, the fits were fairly good. The predicted 
(observed) accuracies for old, moderate, low, and unrelated 
patterns were 99.1% (98.5%), 96.9% (97.0%), 94.4% 
(93.9%), and 85.0% (92.5%), respectively. Figure 6B dis- 
plays the predicted RT data as a function of numerosity and 
transfer pattern type. Comparison with Figure 6A reveals the 
very good account of the transfer data. The primary shortcom- 
ing is that the predictions for unrelated patterns are closer to 
the Session 1 data than to the transfer data. This may indicate 
a small improvement in the general counting process with 
practice, or it might also be caused by similarities between 
some of the randomly generated unrelated patterns and a 
subset of the training patterns. 

Power law analyses. Next, power law functions were 
fitted to the observed and predicted mean RTs from the 
training sessions. As shown in Table 4, both the observed 
and predicted mean RTs were in accord with the power 
law (average robs = .996 and rpred = .996, average 
RMSEob~ = 39.05 and RMSEpr~d = 28.02). Figure 7 displays 
observed and predicted RT means along with the best fitting 
power law functions. 

Although no attempt was made to explicitly fit the RT 
standard deviations, as shown in Figure 8, the predicted 
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Table 4 
Measures of Goodness of Fit and Exponent Parameter C for Power law Fits to Observed 
and Predicted Response lime Means and,Standard Deviations From Experiment I 

Parameter Numerosity 
and measure 

of fit 6 7 8 9 10 11 

Observed means 

C 0.720 0.581 0.448 0.489 0.335 0.480 
RMSE 15.19 26.88 31.81 35.38 45.77 79.24 
r .997 .996 .998 .997 .997 .993 

Predicted means 

C 0.198 0.254 0.330 0.435 0.541 0.621 
RMSE 29.05 28.54 32.97 29.36 24.21 23.98 
r .986 .995 .997 .998 .999 .999 

Observed standard deviations 

C 0.913 0.321 0.121 0.096 0.099 0.121 
RMSE 23.06 31.90 96.52 146.01 155.41 175.58 
r .976 .912 .851 .715 .795 .839 

Note. 

Predicted standard deviations 

C 0.188 0.184 0.175 0.199 0.216 0.270 
RMSE 17.59 25.66 33.63 36.83 36.52 37.35 
r .985 .980 .976 .981 .987 .991 

C = the learning rate parameter that specifies the shape of the power law function. 

standard deviations were remarkably in line with the ob- 
served standard deviations (r  = .819). Power law functions 
fitted the noisy observed data fairly well (average ro~ = .848 
RMSEob~ = 104.75) and fitted the predicted standard devia- 
tions very well (average rind = .983 andRMSEpr~a = 31.26). 
Note that the essentially parameter-free EBRW fit the 
standard deviations almost as well as the 18-parameter 
power law functions (.819 vs. .848).  

Recall that instance theory makes a very strong prediction 
that the exponents of  the power law functions for means and 
standard deviations should be identical. However,  inspection 
of  Table 4 indicates that the exponents of  the standard 
deviations tend to be smaller than those of  the means 
(average observed C o = 0.509 vs. C,~ = 0.279) and are 
relatively closer in value to the exponents of  the EBRW 
standard deviations (average predicted Co = 0.205). As 
corroborating evidence, constrained fits of  the power law to 
the observed standard deviations were slightly better when 
the exponent was held fixed at the value from the EBRW 
standard deviations (average r = .830 and RMSE = 111.19) 
than when the exponent was held fixed at the value from the 
observed means (average r = .803 and RMSE = 117.85). 
Although these results shed some doubt on the strong 
predictions made by instance theory regarding equality of  
exponents for means and standard deviations, further re- 
search is clearly needed. 

Discussion 

Replicating the findings of  Lassaline and Logan (1993), 
numerosity judgment  times decreased with training, and the 
slope of  the function relating RT and numerosity fell to near 
zero. During the transfer sessions, old patterns were judged 
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Figure 7. A: observed response time means as a function of 
training session. B: exemplar-based random walk (EBRW) model 
predicted response time means as a function of training session. 
The rows display data and predictions for each level of numerosity 
from top (numerosity = 6) to the bottom (numerosity = 11). Black 
circles are observed and predicted means. Solid lines are best fitting 
power law functions (see Table 4). 



AUTOMATICITY AND EXEMPLAR SIMILARITY 337 

A Ob~o(:m 

. . . . . .  

c 

2 t2 

B EBRW 

2 12 
Session 

Figure 8. A: observed response time standard deviations as a 
function of training session. B: exemplar-based random walk 
(EBRVO model predicted response time standard deviations as a 
function of training session. The tows display data and predictions 
for each level of numerosity from top (numerosity = 6) to the 
bottom (numemsity = 11). Black circles are observed and pre- 
dicted standard deviations. Solid lines are best fitting power law 
functions (see Table 4). 

about as quickly as they were at the end of training, and new 
random patterns were judged about as slowly as they were at 
the start of training. These data are consistent with the notion 
that people shifted from a primary reliance on explicit 
counting procedures to a primary reliance on memory for 
instances. Automaticity in this task seems to reflect the 
storage of specific instances rather than the development of 
general procedural abilities (Lassaline & Logan, 1993; 
Logan, 1988). 

Logan and colleagues (Klapp et al., 1991; Lassaline & 
Logan, 1993; Logan & Klapp, 1991) have previously found 
instance-specific transfer in a variety of automaticity tasks. 
A goal of this experiment was to extend these results by 
demonstrating that transfer would be influenced by the 
similarity of new patterns to the original training patterns. 
Fine-grained effects of pattern similarity were observed by 
giving people new patterns that were moderate- or high- 
level spatial distortions of the presented patterns (in addition 
to the old and new patterns that Lassaline & Logan, 1993, 
had presented). RTs for these patterns decreased as a 
function of their similarity to the old training patterns: 
Responses were faster for moderate-similarity patterns than 
for low-similarity patterns and were faster for low-similarity 

patterns than for unrelated patterns; RT slopes were flatter 
for moderate-similarity patterns than for low-similarity 
patterns and were flatter for low-similarity patterns than for 
unrelated patterns. These generalization data demonstrate 
that the specific nature of transfer in automaticity tasks can 
be influenced by the similarity of patterns to stored exem- 
plars. 

To date, instance theory has been formalized with a fairly 
restricted process model of memory retrieval---only identi- 
cal instances are retrieved. This is a reasonable simplifying 
assumption, given that most automaticity studies have 
neither measured nor manipulated similarity. Clearly, a 
complete model of automatieity requires a richer process 
model that allows similarity-based memory retrieval, such 
as that incorporated into the EBRW. Theoretical analyses 
demonstrated that the EBRW, with similarity-based memory 
retrieval, could provide excellent qualitative and quantita- 
tive predictions of both the training and the transfer data. 
The EBRW also accounted for the power law decreases in 
RT means and standard deviations as a function of practice. 

Experiment 2 

Experiment 2 examined how the similarity of exemplars 
presented during training influenced the development of 
automaticity. A consistent finding in categorization studies is 
that categories with highly similar members are learned 
more quickly than categories with less similar members 
(e.g., Homa & Vosburgh, 1976). By an exemplar-based 
account, the evidence for an item being a member of any 
given category is a function of the similarity of that item to 
the members of that category relative to the similarity of that 
item to the members of other categories (Kruschke, 1992; 
Medin & Schaffer, 1978; Nosofsky, 1984, 1986). 

By extension, within an automatieity task, objects learned 
in conjunction with many similar objects should develop 
automatic responses more rapidly than objects learned in 
isolation. In the EBRW, all exemplars in memory race to be 
retrieved with rates that are proportional to their similarity to 
the presented item. When many similar items are presented 
that have the same response, all of these items race to be 
retrieved with fairly comparable rates. Hence, because of the 
statistical properties of race models, any one of these items 
could win the race and would do so more quickly as their 
number and similarity increased. In contrast, according to 
the pure version of instance theory, the presence of similar 
objects should have no effect on how rapidly automaticity is 
achieved----only the frequency with which any given object 
is presented should influence how rapidly it can be judged. 

In this experiment, people again learned to make rapid 
judgments of nurnerosity for a set of dot patterns. At each 
level of numerosity, moderate-similarity patterns were gen- 
erated by creating a set of moderate-level distortions from a 
random prototype pattern; low-similarity patterns were 
generated by creating a set of high-level distortions of a 
different random prototype pattern; and unrelated patterns 
were generated by creating a set of new random patterns. 
According to the EBRW, the slope of the RT x Numerosity 
function should approach zero more quickly for moderate- 
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similarity patterns than for low-similarity patterns and 
should approach zero more quickly for low-similarity pat- 
terns than for unrelated patterns. Furthermore, RTs should be 
faster for moderate-similari ty patterns than for low- 
similarity patterns and should be faster for low-similarity 
patterns than for unrelated patterns, at all stages of  learning. 

M e & o d  

Participants. Four graduate students from Indiana University 
participated in 20 experimental sessions. They were each paid $120 
for their participation. All participants were tested individually. 
Each session Wok between 35 and 45 min. 

Stimuli. The stimuli were random dot patterns constructed by 
using procedures similar to those used in Experiment 1. At each 
level of numerosity (6-11), three types of patterns were generated: 
moderate-similarity patterns (moderate), low-similarity patterns 
(low), and unrelated patterns (unrelated). A random dot prototype 
pattern was first created at each level of numerosity, 1 for the 
moderate patterns and 1 for the low patterns. From these prototype 
patterns, 4 moderate patterns were created at a moderate distortion 
level (6.0 hits/dot), and 4 low patterns were created at a high 
distortion level (9.7 bits/dot), at each level of numerosity. The 
prototype patterns were never presented. For the unrelated patterns, 
4 random dot patterns were created at each level of numerosity. 
Each person viewed 6 (numerosity) x 3 (types) x 4 (instances) = 
72 different patterns. Every participant was exposed to a different 
set of stimuli. The same set of patterns was shown during each of 
20 training sessions. 

Procedure. In each day's session, each of the 12 dot patterns at 
each of six levels of numerosity was presented once per block for a 
total of eight blocks (576 total trials). All other procedural details 
were identical to those used in Experiment 1. 

Results 

Accuracy increased slightly with training session; average 
accuracy for Sessions 1-5 was .956, for Sessions 6-10  was 

.967, for Sessions 11-15 was .973, and for sessions 16--20 
was .968 (M = .966). Accuracy was highest for moderate- 
similarity patterns (.978), next highest for low-similarity 
patterns (.963), and lowest for unrelated patterns (.957). A 3 
(type) x 20 (session) x 6 (numerosity) ANOVA was 
conducted on the accuracy data. The main effects of  type and 
session were significant, F(2, 6) = 6.48, MSE = 0.0091, and 
F(19, 57) = 2.65, MSE = 0.0015, respectively. 

Mean correct RTs as a function of  type, numerosity, and 
session are reported in Appendix A. As in Experiment 1, RTs 
initially increased linearly with numerosity but gradually 
flattened. Slopes of  linear regression lines fitted to the RT × 
Numerosity curves are shown in Figure 9A as a function of  
session and pattern tyPe- The slopes approached zero more 
quickly for moderate patterns than for low patterns and 
approached zero more quickly for low patterns than for 
unrelated patterns. The difference in slope across conditions 
was particularly evident during the early sessions. Note that 
the slopes started out at approximately the same level for all 
three types (moderate = 377 ms/dot, low = 350 ms/dot, and 
unrelated = 359 ms/dot; M = 362 ms/dot)---during Session 
1, people seemed to rely on counting for all types of  patterns, 
regardless of  their similarity to other patterns. By the end of 
training, the Slopes were also approximately the same for all 
three types (moderate = 12 ms/dot, low = 22 ms/dot, and 
unrelated = 15 ms/dot; M = 16 ms/dot)--during Session 
20, people seemed to rely on memory for all patterns. 

Figure 10 displays RTs as a function of  session and pattern 
type; the same overall pattern of  results was observed at each 
level of  numerosity, so RTs were collapsed across numeros- 
ity for purposes of  illustration. Throughout training, the 
moderate patterns were judged more quickly than the low 
patterns, and the low patterns were judged more quickly than 
the unrelated patterns. It is important to note that this 
relationship held up even at the end of  20 days of  training, 
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Figure 9. A: the observed slope of the Response Time × Numerosity regression line as a function 
of session and pattern type in Experiment 2. B: the exemplar-based random walk (EBRW) model 
predicted slope. Open squares indicate moderate-similarity (Moderate) patterns, filled circles 
indicate low-similarity (Low) patterns, and open triangles indicate unrelated (Unrelated) patterns. 
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A: response times as a function of session and pattern type, collapsed across numerosity, 
in Experiment 2. Open squares indicate moderate-similarity (Moderate) patterns, filled circles 
indicate low-similarity (Low) patterns, and open triangles indicate unrelated (Unrelated) patterns. B: 
the same data rescaled to enhance the differences in response times between pattern types for 
Sessions 15-20. 

after every pattern had been judged a large number of times, 
as is shown in Figure 10B. 

To confirm these impressions, a 3 (type) × 20 (session) x 
6 (numerosity) ANOVA was conducted on the mean correct 
RT data. The main effect of type was significant, F(2, 6) = 
74.52, M S E  = 67,204.38, reflecting the ordering of RTs with 
moderate patterns faster than low patterns and with low 
patterns faster than unrelated patterns. The main effect of 
session was significant, F(19, 57) = 43.17, M S E  = 
375,600.31, reflecting the decrease in RT with training. The 
main effect of numerosity was significant, F(5, 15) = 7.96, 
M S E  = 1,141,716.79, reflecting the slower RTs for higher 
numerosity patterns, especially early in training. The two- 
way Type x Session interaction was significant, F(38, 
114) = 5.33, MSE = 27,925.52, reflecting the faster 
decrease in RTs with session for moderate patterns than for 
either low or unrelated patterns. Finally, the two-way 
Session × Numerosity interaction was significant, F(95, 
285) = 9.92, M S E  = 47,069.31, reflecting the change in 
slope of the RT × Numerosity function with training. 

Theore t i ca l  A n a l y s e s  

The EBRW was next fitted to the complete set of observed 
RT data given in Appendix A, using a grid search to find 
parameters that maximized the correlation between the 
predicted and the observed data. The free parameters of the 
random walk were the similarity between moderate-level 
(moderate-similarity) distortions, sin; the similarity between 
high-level (low-similarity) distortions, sl; the residual simi- 
larity between unrelated patterns, sr;, the constant time 
increment, a; the response threshold, A; and the rescaling 
term, k. The counting process was again assumed to be a 

sum of n normally distributed random variables with mean p 
and standard deviation or and with subitizing term subit. As  
before, a constant residual time parameter, R, was also 
assumed. 

The EBRW fitted the 360 data points quite well (r = .976), 
with random walk parameters s m =  .140, sl = .055, sr = 
.020, a = 0.0023, A = 3, k = 11,621; with counting process 
parameters p = 642.6, cr = 321.3, subit = 490.3; and with 
residual time parameter R = 256.6. The predicted (ob- 
served) accuracies for moderate, low, and unrelated patterns 
were 97.5% (97.8%), 96.8% (96.3%), and 96.2% (95.7%), 
respectively. I start the discussion by pointing out some of 
the successful qualitative predictions of the EBRW. Appen- 
dix A displays the predicted RT data as a function of  pattern 
type, numerosity, and session. Regression lines were fitted to 
the predicted RTs as a function of numerosity for each 
session. Figure 9B displays the slope of the regressions lines 
as a function of session for the moderate, low, and unrelated 
patterns. Comparing the predictions in Figure 9B with the 
observed regression line slopes in Figure 9A reveals the 
model's ability to predict faster development of automaticity 
for moderate patterns than for low patterns and faster 
development for low patterns than for unrelated patterns, as 
signaled by flattening slopes. Although the EBRW predic- 
tions did capture the important qualitative difference be- 
tween the three types of patterns, the EBRW predicted the 
values of the slopes to decrease at a faster rate than was 
observed and predicted initial slopes that were higher than 
were observed. Overall, though, it is quite impressive that 
the EBRW was able to account for the critical aspects of  
such a derived measure. 

Figure 11 displays average predicted RTs for the moder- 
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Figure 11. Response times predicted by the exemplar-based 
random walk (EBRW) model as a function of session and pattern 
type, collapsed across numemsity, in Experiment 2. Open squares 
indicate moderate-similarity (Moderate) patterns, filled circles 
indicate low-similarity (Low) patterns, and open triangles indicate 
unrelated (Unrelated) patterns. 

ate, low, and unrelated patterns as a function of session, 
collapsed across numerosity. Comparison with Figure 10 
reveals that the EBRW predicted the trends in the data quite 
well (the correlation between average observed and pre- 
dicted data in Figures 10 and 11 was .993). The EBRW 
predicted faster responses for moderate patterns than for low 
patterns and predicted faster responses for low patterns than 
for unrelated patterns throughout training. 

As another measure of how well the EBRW could predict 
important aspects of the data, power law functions were 
fitted to the observed and predicted RTs for each level of 
numerosity for the moderate, low, and unrelated pattern 
types by using a hill-climbing algorithm that minimized 
RMSE. One reason for fitting power law functions was to 
determine how the shape of the RT curves, as given by the 
exponential term, C, changed under different experimental 
conditions. As indicated in Table 5, the observed and 
predicted mean RT curves for all three types of patterns were 
well accounted for by the power law functions. Of critical 
importance is the difference in the exponential term, C, 
between the moderate, low, and unrelated patterns. Overall, 
as shown in Table 5, the power law functions fitted to the 
observed data were steeper for moderate than for low 
patterns and were steeper for low than for unrelated patterns. 
Recall from the simulations reported earlier that increasing 
within-category similarity produced steeper power law func- 
tions. In these fits, as expected, the EBRW also predict~ 
steeper power law functions (large values of C) for the 
moderate patterns than for the low patterns and predicted 
slightly steeper functions for the low patterns than for the 
unrelated patterns. (See Appendix B for analyses of standard 
deviations.) 

Discussion 

In summary, the development of antomaticity in a numer- 
osity judgment task was influenced by the presence of 
similar patterns of the same numerosity. Moderate-similarity 
patterns developed an automatic response, as signaled by fiat 
slopes for functions relating RTs to numerosity, more 
quickly than low-similarity patterns, and low-similarity 
patterns developed an automatic response more quickly than 
unrelated patterns. In addition, responses were quicker for 
moderate-similarity patterns than for low-similarity pat- 
terns, and responses were quicker for low-similarity patterns 
than for unrelated patterns. This difference in RTs was found 
throughout training--significant differences were found even 
after 20 sessions of training on the same set of patterns. 

These results are one of the first demonstrations of 
pervasive similarity effects with extended training on novel 
stimuli (see also Nosofsky & Palmed, in press-b). In many 
categorization tasks, categories with high within-category 
similarity are learned more quickly than categories with low 
within-category similarity. However, most studies in the 
literature have used classification probabilities as the depen- 
dent measure and have conducted only a single session of 
training (see, however, Ashby et aL, 1994). This experiment 
demonstrated pervasive similarity effects after large amounts 
of training by using RTs as the dependent measure. 

The EBRW predicts that increasing within-category simi- 
larity should speed the development of automaticity and lead 
to faster RTs. When an item is similar to many exemplars 
belonging to the same category (or having the same numer- 
osity), any of those exemplars could be retrieved and would 
be retrieved relatively quickly, because of the statistical 
properties of race models. Theoretical analyses revealed that 
the EBRW provided excellent qualitative and quantitative 
accounts of the data. Furthermore, the EBRW provided a 
reasonably good account of how the shapes of the power law 
functions changed with increases in within-category similar- 
itympower law functions were steeper in conditions of high 
within-category similarity relative to conditions of low 
within-category similarity. 

Experiment 3 

Logan's (1988) instance theory is a pure race model. 
When an item is presented, instances race to be retrieved 
from memory, with the winner of this single race driving the 
response. Although this model is elegant in its simplicity, the 
present experiment aimed to demonstrate limitations of the 
single race conception and to suggest instead that competi- 
tive response processes, such as those embedded within a 
random walk framework, are necessary. 

The effects of exemplar similarity on the development of 
automaticity, demonstrated in the first two experiments, 
could be predicted by an extended version of Logan's (1988) 
instance theory that allows all exemplars to race with rates 
proportional to their similarity to the presented item. This 
assumption works, however, only when the similarity rela- 
tions are cooperative in nature--that is, when similar 
exemplars are all associated with the same response. If any 
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Table 5 
Measures of Goodness of Fit and Exponent Parameter C for Power Law Fits to Observed 
and Predicted Response Time Means at Each Level of Numerosity for Patterns 
From Experiment 2 

Mean type, 
parameter, 

and measure 
of fit 

Numerosity 

6 7 8 9 10 11 

Moderate-similarity patterns 

Observed means 
C 0.609 0.605 0.495 0.904 0.363 0.516 
RMSE 21.72 40.06 46.83 63.80 69.11 77.21 
r .989 .987 .990 .992 .993 .991 

Predicted means 
C 0.202 0.210 0.339 0.468 0.545 0.663 
RMSE 32.36 54.99 36.33 42.98 47.67 50.54 
r .981 .981 .996 .997 .997 .997 

Low-similarity patterns 

Observed means 
C 0.370 0.196 0.499 0.215 0.258 0.408 
RMSE 20.26 69.02 54.24 99.50 90.48 154.75 
r .995 .985 .994 .982 .988 .980 

Predicted means 
C 0.173 0.215 0.319 0.358 0.438 0.528 
RMSE 39.24 46.93 49.40 48.67 44.62 48.92 
r .970 .986 .993 .996 .998 .998 

Unrelated patterns 

Observed means 
C 0.153 0.180 0.360 0.245 0.240 0.280 
RMSE 36.29 45.95 101.74 79.95 133.74 141.05 
r .989 .991 .976 .988 .980 .983 

Predicted means 
C 0.174 0.213 0.268 0.300 0.364 0.470 
RMSE 38.50 46.23 49.02 55.07 66.12 45.38 
r .970 .987 .993 .995 .995 .998 

Note. C = the learning rate parameter that specifies the shape of the power law function. 

of  these similar exemplars is the winner of the race, then the 
same response is produced. What happens, however, when 
similar items are associated with different responses? 

Compare two situations: First, an item is similar to n - 1 
exemplars of its own category and is dissimilar to exemplars 
of  any other category; this yields n exemplars that have a 
high probability of being retrieved. In this case, the similar- 
ity relations are cooperative in nature; for ease of  exposition, 
let us call this condition the "friends." Second, an item is 
similar to n - 1 exemplars of  its own category but is also 
similar to n exemplars of  another category; this yields 2 .  n 
exemplars that have a high probability of  being retrieved. In 
this case, the similarity relations are not cooperative in 
nature; for ease of exposition, let us call this condition the 
"enemies." 

According to the extended similarity-based version of 
instance theory, all items race to be retrieved, now with rates 
proportional to their similarity, with the winning retrieval 
driving the response. For the enemies, this winning exem- 
plar could be associated with the correct response (that 
associated with the presented item), or it could also be 
associated with an incorrect response. If the time for the 

winner of the race gets faster when there are more runners in 
the race, then this version of instance theory predicts that the 
enemies could produce faster RTs than the friends, because 
there are more enemies than friends, albeit with many more 
errors. 

In contrast, intuition suggests and the EBRW predicts that 
friends should produce faster responses than enemies. 
According to the EBRW, when an item is similar to 
exemplars of  just a single category, then only those exem- 
plars will tend to be retrieved, causing the random walk 
counter to accumulate information in only a single direction 
and leading to relatively fast RTs. When an item is similar to 
exemplars of  more than one category, however, then any of 
those exemplars can be retrieved, causing the random walk 
counter to be increased on some retrievals and decreased on 
other retrievals and leading to relatively slow RTs. These 
suggestions were confirmed earlier during the discussion of 
Monte-Carlo simulations involving the EBRW. Basically, as 
between-category similarity increased, RTs got slower. 

This experiment used the same basic numerosity judg- 
ment task as in the previous two experiments. Between- 
category similarity (where category is equated with numer- 



342 PALMERI 

osity) was manipulated by creating statistical distortions of  
prototype patterns, but with some of  the distortions having 
an additional dot added to them. For example, six distortions 
were made from a prototype pattern containing eight dots. 
Three of  these new distortions then had an additional dot 
added, creating three patterns with nine dots. Presumably, 
these nine-dot patterns were highly similar to the eight-dot 
pattern from which they were created. Therefore, at each 
level of  numerosity, people judged the numerosity of  some 
patterns that were similar to patterns of  a different numeros- 
ity (enemies). For comparison, at each level of  numerosity, 
people also judged the numerosity of  some patterns that 
were similar only to patterns of  the same numerosity 
(friends). The EBRW predicts that RTs should be faster for 
the friends than for the enemies, as signaled by a zero slope 
for the function relating RTs to numerosity. A pure race 
model predicts the opposite. 7 

M e ~ o d  

Participants. Five graduate students from Indiana University 
participated in 20 experimental sessions. They were each paid $120 
for their participation. All participants were tested individually. 
Each session took between 35 and 45 rain. 

Stimuli. The stimuli were random dot patterns constructed by 
using procedures similar to those used in Experiments 1 and 2. Two 
types of patterns were generated: Friends were patterns that were 
similar only to patterns of the same numerosity; enemies were 
patterns that were similar to patterns of the same numerosity and 
that were similar to patterns of a different numerosity. 

For the friends, at each level of numerosity, two different 
prototype patterns were generated. From each of these two 
prototypes, three moderate-level distortions (6.0 bits/dot) were 
generated. The prototype patterns were never presented. 

For the enemies, at each of the even levels of numerosity (6, 8, 
and 10), two different prototype patterns were generated. From 
each of these two prototype patterns, three moderate-level distor- 
tions were generated. Three other moderate-level distortions of 
each prototype were generated, and then an additional dot was 
randomly placed within the pattern, subject to the constraint that 
the new dot was at least 4 nun away from any existing dot. This 
yielded three patterns of a numerosity that were one greater than 
the initial numerosity. The prototype patterns were never presented. 

Thus, there were three patterns with 6 dots that were similar to 
one another and that were similar to three other patterns with 7 
dots, and there were three other patterns with 6 dots that were 
similar to one another and that were similar to three other patterns 
with 7 dots. Similarly, there were three patterns with 8 dots that 
were similar to one another and that were similar to three other 
patterns with 9 dots, and there were three other patterns with 8 dots 
that were similar to one another and that were similar to three other 
patterns with 9 dots. There were comparable patterns with 10 and 
11 dots. In summary, at each level of numerosity, the friends were 
similar only to patterns that had the same numerosity; the enemies 
were similar to patterns of the same numerosity but were also 
similar to patterns that had different numerosities. 

Each participant viewed 6 (numerosity) × 2 (friends or ene- 
mies) × 6 (instances) = 72 different patterns. Every participant 
was exposed to a different set of randomly generated stimuli. The 
same set of patterns was shown during each of 20 training sessions. 

Procedure. In each day's session, each of the 12 dot patterns at 
each of six levels of numerosity was presented once per block for a 

total of eight blocks (576 trials). All other procedural details were 
identical to those used in Experiments 1 and 2. 

Results 

The accuracy data showed the following results: First, the 
friends were judged more accurately than the enemies (.974 
vs. .956,  respectively). Second, accuracy increased slightly 
with training--accuracy for Sessions 1-5 was .958, for 
Sessions 6-10 was .964, for Sessions 11-15 was .967, and 
for Sessions 16-20 was .970. Third, the ends o f  the 
numerosity response continuum tended to be judged some- 
what more accurately than the middle of  the response 
continuum--accuracy for Numerosities 6-11 were .977, 
.971, .947, .958, .973, and .963, respectively. To confirm 
these impressions, a 2 (type) x 20 (session) x 6 (numeros- 
ity) ANOVA was conducted on the accuracy data. The main 
effect of  type was significant, F(1, 4) = 9.40, MSE = 0.010, 
reflecting the higher accuracy for friends than for enemies. 
The main effect of  session was significant, F(19, 76) = 2.37, 
MSE = 0.0007, reflecting the overall increase in accuracy 
with training. The main effect of  numerosity was significant, 
F(5, 20) = 4.28, MSE = 0.0056, reflecting the lower 
accuracy at the middle of  the response range (Numerosities 
8 and 9). 

Mean correct RTs as a function of  numerosity, session, 
and type (friends or enemies) are given in Appendix C. As in 
Experiments 1 and 2, linear regression functions were fitted 
to the RT × Numerosity curves for every session. Figure 
12A displays the slopes of  the regression lines as a function 
of  session for both the friends and the enemies. The 
difference in slope between the friends (212) and the 
enemies (286) during Session 1 was likely due, in part, to 
averaging over eight blocks of  trials. During the first block 
of  Session 1, people had to count the dots in the patterns 
explicitly, so there is no reason to expect a difference in 
slopes initially. Clearly, however, automaticity must have 
begun to develop so quickly for the friends that there were 
appreciable slope differences by the end of  Session 1. By the 
end of  training, both the friends and the enemies eventually 
reached a slope near zero ( - 5  and - 3 ,  respectively). Note 
that this zero slope was reached more quickly for the friends 
than for the enemies; therefore, automaticity developed 
more quickly for the friends than for the enemies. 

Figure 13 displays RTs as a function of  session and type 
(friends or enemies), collapsed across numerosity. Through- 
out training, the friends were judged more quickly than the 
enemies. As shown in the right panel of  Figure 13, this 
difference held up even at the end of  20 days of  training. 

To confirm these impressions, a 2 (type) × 20 (session) × 
6 (numerosity) ANOVA was conducted on the mean correct 
RT data. The main effect of  type was significant, F(1, 4) = 

7 Clearly, this prediction depends on the relative number of 
friends and enemies. The critical point is that it is impossible for the 
race model to predict the friends to be faster than the enemies in the 
present design. 
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Figurel2. A: the observed slope of the Response Time x Numerosity regression line as a function 
of session and pattern type in Experiment 3. B: the exemplar-based random walk (EBRW) model 
predicted slope. Open circles indicate friends and filled triangles indicate enemies. 

11.40, MSE = 366,971.53, reflecting the faster RTs for 
friends than for enemies. The main effect of  session was 
significant, F(19, 76) = 39.07, MSE = 246,727.36, reflect- 
ing the decrease in RT with training. The main effect of 
numerosity was significant, F(5, 20) = 8.37, MSE = 
298,978.72, reflecting the slower RTs with increased numer- 
osity, especially early in training. The two-way Session × 
Numerosity interaction was also significant, F(95, 380) = 
6.77, MSE = 28,389.94, reflecting the change in the slope of 
the RT × Numerosity curves with training. 

Theoretical Analysis 

The EBRW was next fitted to the entire set of  observed RT 
d~ta given in Appendix C. The free parameters of the 
random walk were the similarity between moderate-level 
distortions, sm; the similarity between unrelated patterns, sr; 
the constant time increment, ct; the response threshold, A; 
and the rescaling term, k. The counting process was again 
assumed to be a sum of n normally distributed random 
variables with mean p and standard deviation or, with 
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Figure 13. A: response times as a function of session and pattern type, collapsed across numerosity, 
in Experiment 3. Open circles indicate friends and filled triangles indicate enemies. B: the same d_at~_ 
rescaled to show the differences in response times between pattern types for Sessions 15-20. 
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subitizing term subit .  As before, a constant residual time 
parameter, R, was also assumed. 

For the friends, at each level of numerosity, there were 
three patterns with similarity s m  to one another and similar- 
i ty  s r  to everything else. For the enemies, at each level of 
numerosity, there were three patterns with similarity s m  to 
one another, similarity s m  to three patterns of a different 
numerosity, and similarity s r  to everything else. 

The EBRW fitted the data quite well (r = .975), with 
random walk parameters s m =  .100, s r  = .018, et = 0.008, 
A = 3, and k = 7,694, with counting process parameters la = 
544.3, tr = 199.8, sub i t  = 462.8, and residual time 
parameter R = 188.3. The predicted (observed) accuracies 
for friends and enemies were 99.1% (97.4%) and 94.2% 
(95.6%), respectively. 

I begin the discussion by pointing out certain important 
qualitative predictions. Appendix C displays the predicted 
RTs as a function of type (friends or enemies), numerosity, 
and session. Regression lines were fitted to the predicted RTs 
as a function of numerosity for each session for the friends 
and the enemies. Figure 12B displays the slope of the 
regression lines as a function of session for the friends and 
the enemies. Mirroring the observed data shown in Figure 
12A, the friends achieved automaticity more quickly than 
the enemies. Although accounting for the qualitative trends, 
a quantitative shortcoming of the predictions was that the 
model overpredicted the rate at which the slopes reached 
zero, and underpredicted the magnitude of the slope differ- 
ences. 

Figure 14 displays predicted RTs for the friends and the 
enemies as a function of session, collapsed across numeros- 
ity. Comparison with Figure 13 reveals the excellent quanti- 
tative as well as qualitative fits to the data. (The correlation 
between the average data shown in Figure 13 and the 
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Figure 14. Response time predicted by the exemplar-based 
random walk (EBRW) model as a function of session and pattern 
type, collapsed across numerosity, in Experiment 3. Open circles 
indicate friends and closed triangles indicate enemies. 

average predictions shown in Figure 14 was excellent, 
r = .998.) 

As additional analyses, power law functions were fitted to 
the observed and predicted RTs for both the friends and the 
enemies at each level of numerosity. As shown in Table 6, 
power law functions fitted the observed means and the 
predicted means quite well, as expected. Of critical impor- 
tance, as predicted by the EBRW, the power law functions 
tended to be steeper for the friends than for the enemies. (See 
Appendix D for analyses of standard deviations.) 

D i s c u s s i o n  

In this experiment, the development of automaticity was 
influenced by the similarity of patterns having different 
numerosities. Patterns with high between-category similar- 
ity, the enemies, developed automatic responses more slowly 
than did patterns with low between-category similarity, the 
friends• Throughout training, the friends were judged more 
quickly than the enemies. Also, best fitting power law 
functions were steeper for the friends than for the enemies. 
Each of these important findings was accounted for by the 
EBRW. 

Recall that even an extended version of Logan's (1988) 
instance theory, allowing for similarity-based memory re- 
trieval, cannot account for the results of this experiment. 
Because responses are based on the first retrieved instance, 
the theory predicts the enemies to be judged more quickly 
than the friends, contrary to the data. As currently formu- 
lated, this version of Logan's instance theory also produces 
accuracy results that are inconsistent results with the task 
instructions. People were told to respond as quickly as 
possible without making errors, but instance theory predicts 
many errors to be made on the enemies. Clearly, some 
alteration of the theory is needed. These results suggest that 
competitive response processes, such as those incorporated 
into the EBRW, are necessary in generalizing the instance 
theory of automaticity. 

General  Discussion 

The present research investigated some acknowledged, 
but largely unexplored, parallels between automaticity and 
categorization. Although the automatic nature of perceptual 
classification and perceptual judgments is pervasive, little 
theoretical or empirical research has addressed how such 
levels of performance are achieved. Part of the reason for 
this state of affairs is that research on automaticity and 
research on categorization have had quite distinct histories. 
Whereas categorization has often been studied in conjunc- 
tion with concept formation and memory, automaticity has 
traditionally been viewed as a special topic in the study of 
attention (e.g., Posner & Snyder, 1975; Schneider & Shif- 
fri'n, 1977; Shiffrin, 1988; Shiffrin & Schneider, 1977; see 
~ Logan, 1988)• 

Part of the reason for this lack of communication also 
seems to be due to methodological differences. Automaticity 
studies usually involve extended training over many ses- 
sions and use fairly unitized or highly familiar stimuli, such 
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Table 6 
Measures of Goodness of Fit and Exponent Parameter C for Power Law Fits to Observed 
and Predicted Response Time Means at Each Level of Numerosity for Friends and 
Enemies From Experiment 3 

Mean type, 
parameter, 

and measure 
of fit 

Numerosity 

6 7 8 9 10 11 

Friends 

Observed means 
C 0.314 0.446 0.413 0.381 0.836 0.575 
RMSE 25.05 35.74 65.89 27.82 49.59 47.34 
r .991 .993 .989 .998 .993 .995 

Predicted means 
C 0.255 0.331 0.463 0.568 0.694 0.709 
RMSE 22.70 27.25 29.40 33.37 24.92 25.78 
r .993 .996 .997 .997 .999 .999 

Enemies 

Observed means 
C 0.368 0.235 0.288 0.410 0.409 0.488 
RMSE 27.92 33.57 29.68 30.76 94.96 99.81 
r .987 .993 .997 .998 .985 .983 

Predicted means 
C 0.233 0.301 0.393 0.503 0.575 0.698 
RMSE 21.27 29.20 26.84 37.53 34.85 28.86 
r .992 .995 .997 .996 .998 .999 

Note. C = the learning rate parameter that specifies the shape of the power law function. 

as numbers, words, or letters (see, however, Lightfoot & 
Shiffrin, 1992; Shiffrin, Czerwinski, & Lightfoot, 1991). 
Most categorization studies involving novel stimuli and 
formal modeling, on the other hand, usually involve a single 
training session, use less unitized or unfamiliar stimuli, such 
as schematic faces or random dot patterns, and often 
measure or manipulate stimulus similarity directly. 

Logan's (1988) instance theory of automaticity offers a 
starting point for relating these two domains. According to 
the theory, automaticity is largely a memory phenomenon. 
Tasks are automatic to the extent they rely on past instances 
stored in memory. However, the theory lacks similarity- 
based retrieval mechanisms that are central in categorization 
and memory models, and it is constrained by its instantiation 
as a first-instance race process. Nosofsky's (1984, 1986) 
generalized context model (GCM) provides a rich descrip- 
tion of exemplar similarity and categorization processes. 
However, the theory lacks a mechanism to allow RT 
predictions. 

A new theory of automaticity and perceptual classifica- 
tion, the EBRW (Nosofsky & Palmed, in press-b), combines 
elements of Logan's (1988) instance theory of automaticity 
and Nosofsky's (1986) GeM of categorization. The model 
embeds a dynamic similarity-based memory retrieval mech- 
anism within a competitive random walk decision process. 
Nosofsky and Palmed (in press-b) explained a wide variety 
of classification RT data with the EBRW. The goal of the 
present experiments was to test predictions of the model 
within the context of the development of automaticity. 

Summary of Results 

The goal of Experiment 1 was to assess generalizations to 
new objects following the development of automaticity. 
People were trained to judge the numerosity of dot patterns 
as quickly and as accurately as possible. Following training, 
they were asked to judge the numerosity of old patterns and 
new patterns of varying similarity to the old patterns. 
Mirroring classic categorization results (e.gr, Homa & 
Vosburgh, 1976; Posner & Keele, 1968; Shin & Nosofsky, 
1992; see also Estes, 1994; Smith & Medin, 1981) and 
consistent with the predictions of the EBRW, judgment RTs 
were determined by the similarity of the transfer patterns to 
the old training patterns. Old patterns were judged just as 
quickly as they were at the end of training, and new patterns 
were judged just as slowly as were new patterns at the start 
of training, replicating the results of Lassaline and Logan 
(1993). More important, new moderate-similarity and low- 
similarity distortions were judged with an intermediate RT, 
in accord with their similarity to the old patterns. 

The goal of Experiment 2 was to investigate the influence 
of exemplar similarity on the development of automaticity. 
At each level of numerosity, people were trained on three 
types of patterns: moderate-similarity patterns were moderate- 
level distortions of a prototype pattern, low-similarity pat- 
terns were high-level distortions of a prototype pattern, and 
unrelated patterns were randomly generated patterns. Analo- 
gous with traditional categorization studies, this design 
manipulated within-category similarity. In accord with the 
predictions of the EBRW, numerosity judgments became 
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automatized more quickly--as indicated by a zero slope for 
the function relating RT and numerosity for moderate- 
similarity patterns than for low-similarity or unrelated 
patterns. Similarly, throughout training, the moderate- 
similarity patterns were judged more quickly than the 
low-similarity or unrelated patterns. 

Finally, the goal of Experiment 3 was to further investi- 
gate the influence of exemplar similarity on the development 
of automaticity by manipulating between-category similar- 
ity. Distortions of a prototype pattern were created, as 
before, but now an additional dot was added to half of the 
patterns. In this way, there were patterns of different 
numerosities that were similar to one another; these patterns 
were called the enemies. For comparison, patterns were 
created that were similar only to other patterns of the same 
numerosity; these patterns were called friends. In accord 
with the predictions of the EBRW, the friends developed 
automatic judgments more quickly than the enemies, and the 
friends were judged more quickly than the enemies through- 
out training. 

The EBRW successfully accounted for the major qualita- 
tive trends in these experiments and provided reasonably 
good quantitative fits. The model also successfully predicted 
power law decreases in RT means and standard deviations. 
The shape of the power law functions for means changed 
systematically as a function of the similarity relations 
between patterns. In Experiment 2, power law functions 
were steeper for patterns with high within-category similar- 
ity than for patterns with low within-category similarity. In 
Experiment 3, power law functions were steeper for patterns 
with low between-category similarity than for patterns with 
high between-category similarity. 

Instance theory predicts that the exponents of the power 
law functions for means and standard deviations should be 
identical. However, the power law exponents of the EBRW 
standard deviations provided a better fit to the observed 
standard deviations than did the power law exponents of the 
observed means. Although these results were not overwhelm- 
ing in terms of quantitative measures of fit, the advantage for 
the EBRW was found across all three experiments. 

Although these experiments suggested limitations in the 
pure single race version of Logan's (1988) instance theory, 
the fundamental notion of automaticity as largely a memory 
phenomenon was fully supported. Both Logan's instance 
theory and the EBRW are exemplar-based models. The 
EBRW simply extends Logan's model by incorporating a 
similarity-based memory retrieval process and response 
competition in the form of a random walk decision process. 

Automatic#y, Categorization, and Perceptual 
Expertise 

The present research is consistent with some emerging 
notions of the development of perceptual expertise and 
automatieity in classification. In a variety of domains, such 
as diagnostic radiology, biological taxonomy, or paleontol- 
ogy, experts spend many years learning to classify objects on 
the basis of subtle perceptual cues. Novices in these domains 
are often presented with detailed sets of analytic rules that 

can be used to classify objects. These rules are often distilled 
from experts asked to formalize their thought processes-- 
the implicit assumption has been that experts develop and 
use intricate sets of classification rules. Expert performance 
in these domains, however, may be more than merely 
committing more and more rules to memory. Rather, certain 
aspects of expertise may reflect the vast memory for 
examples the expert has experienced. 

One of the foundations for the work on expertise comes 
from the studies of chess masters by de Groot (1965) and 
Chase and Simon (1973). These seminal studies suggested 
that one important key to achieving chess mastery seemed to 
lie in improved perceptual processing of the layout of chess 
pieces, rather than more rapid evaluation of legal chess 
moves. This perceptual skill results from years of practice. 
Whereas novices seem to rely on slow, conscious, deductive 
reasoning, experts seem to rely on fast, relatively uncon- 
scious processing--the chess master "sees" the fight moves. 
Chase and Simon explained chess mastery in terms of the 
size of perceptual structures (or chunks) that experts use 
relative to novices. In the present context, these chunks 
could have their basis within a rich exemplar memory 
system. Furthermore, Chase and Simon (see also de Groot, 
1965) found that when confronted with random patterns of 
chess pieces, chess masters' performance on memory and 
perception tasks using such configurations was reduced to 
that of novices (see, however, Gobet & Simon, 1996). 
Mirroring the results of the present studies using artificial 
dot pattern stimuli, transfer to new patterns of chess pieces 
that have not been seen before (because they were not valid 
positions according to the rules of chess) was very poor. 

Recent research on the development of expertise in 
medical diagnosis has also begun to recognize shifts from 
highly analytic, conscious reasoning processes to nonana- 
lytic, perceptual, and memory-based processes (e.g., Groen 
& Patel, 1988). For example, in a study using procedures 
similar to those of Chase and Simon (1973), Coughlin and 
Patel (1987) gave normal cases and randomly ordered cases 
to both physicians and medical students. Mirroring the 
results with chess masters, memory for the randomly 
presented case studies was as bad for the physicians as it was 
for the medical students (see also Myles-Worsley & Johns- 
ton, 1988). Physicians and medical students formulate 
information from clinical cases differently--the physicians 
recognize patterns of familiar problems but the students 
generally do not. 

Recall that in the present experiments, effects of exemplar 
similarity were found even after 20 days of training. In a 
series of studies using expert dermatologists, Brooks, Nor- 
man, and Allen (1991; Allen, Norman, & Brooks, 1992) 
presented slides of dermatologic cases for initial diagnoses 
and then several weeks later presented new slides that were 
similar or dissimilar to the original slides. The slides similar 
to the original slides were correctly diagnosed significantly 
more often than those dissimilar to the original slides. 
Exemplar similarity seems to have pronounced effects even 
after years of exposure to highly similar cases. 

Much of the work in automaticity and categorization has 
assumed that exemplar representations remain relatively 
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unchanged with experience, apart from changes in how 
dimensions are selectively attended (Kruschke, 1992; Nosof- 
sky, 1984, 1986). In contrast, Lesgold et al. (1988) demon- 
strated fairly dramatic changes in how X-ray images were 
perceived as a function of expertise. Significant features in 
chest films showing cancerous lung tumors were illustrated 
by physicians and medical students by outlining areas on the 
X-ray images. Little correspondence was observed between 
the features delineated by the expert physicians and the 
novice medical students. Not only must an expert learn what 
features are diagnostic, they must also learn what the 
relevant set of features are (see also Hock, Webb, & Cavedo, 
1987; Schyns, Goldstone, & Thibaut, 1995; Schyns & 
Murphy, 1991). 

In another domain, Biederman and Shiffrar (1987) studied 
the perceptual expertise of chick sexers. These people had 
spent upwards of 50 years classifying male and female 
genitalia of newborn chicks for the poultry industry. By one 
estimate, the chick sexer studied by Biederman and Shiffrar 
may have classified over 50 million chicks. Through inter- 
views with this expert, a fairly simple rule was discovered 
that could correctly classify over 80% of the chicks; 
however, numerous rare exceptions to this simple rule 
existed. Because of the economies of the poultry industry, 
the experts were required to classify 1,000 chicks per hr with 
over 98% accuracy, so the simple rule was inadequate. In 
fact, although the expert was able to communicate the 
simple rule in some form, it was not used to classify the 
chicks. Rather, in keeping with the present discussion, 
expert chick sexers seemed to rely on their vast memory for 
common and rare configurations of genitalia. 

Clearly, unlike chick sexing, medical diagnosis (as well as 
other highly skilled domains) is not purely a matter of 
perceptual expertise. Training in medical diagnosis consists 
of learning a great deal of highly structured domain-specific 
knowledge, often presented in the form of rules or lists of 
diagnostic criteria. Experts clearly have ready access to this 
structured knowledge when called upon to justify a given 
diagnosis or when asked to pass knowledge along to 
physicians in training. The main issue here is that the initial 
(automatic?) diagnosis may reflect the use of nonanalytic, 
seemingly unconscious, presumably memory-based pro- 
cesses. Just as the chess master may "see" the right move, 
the expert medical practitioner may "see" the right diagno- 
sis. Current research suggests that the role of such highly 
developed perceptual classification skills has been underap- 
preciated. 

Conclusion 

The present findings offer additional strong support for 
exemplar-based views of memory (Gillund & Shiffrin, 1984; 
Jacoby & Brooks, 1984), automaticity (Logan, 1988), and 
categorization (Estes, 1994; Medin & Schaffer, 1978; Nosof- 
sky, 1986). The EBRW provides a unified account of both 
perceptual categorization and automaticity. As stated by 
Newell (1990), 

a unified theory will unify our existing understanding of 
cognition. It will not be a brand-new theory that replaces 

current work at every turn. Rather, it will put together and 
synthesize what we know. On the other hand, it can't be just a 
pastiche, in which disparate formulations are strung together 
with some sort of conceptual baling wire. The parts must work 
together. (p. 16) 

The EBRW is not the all-encompassing theory of cognition 
envisioned by Newell--it does take steps in the right 
direction, however. It is not a brand-new theorywrather, it 
synthesizes and inherits the successes of the GCM of 
categorization (Nosofsky, 1984, 1986) and the instance 
theory of automaticity (Logan, 1988, 1990). The integration 
of these two underlying theories retains key elements of 
each, as evidenced by the fact that both are essentially 
special cases of the EBRW (see Nosofsky & Palmed, in 
press-b)---the parts do work together. In the spirit of 
Newell's maxim on unified theories of cognition, an aim of 
future work is to further expand the explanatory scope of 
EBRW. 

References 

Allen, S. W., Norman, G. R., & Brooks, L. R. (1992). Experimental 
studies of learning dermatologic diagnosis: The impact of 
examples. Teaching and Learning in Medicine, 4, 35-44. 

Anderson, J. R. (1982). Acquisition of a cognitive skill. Psychologi- 
cal Review, 89, 369-406. 

Anderson, J. R. (1987). Skill acquisition: Compilation of weak- 
method problem solutions. Psychological Review, 94, 192-210. 

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum. 
Anderson, J. R., & Fincham, J. M. (1994). Acquisition of proce- 

dural skills from examples. Journal of Experimental Psychol- 
ogy: Learning, Memory, and Cognition, 20, 1322-1340. 

Ashby, E G., Boynton, G., & Lee, W. W. (1994). Categorization 
response times with multidimensional stimuli. Perception & 
Psychophysics, 55, 11-27. 

Biederman, I., & Shiffrar, M. M. (1987). Sexing day-old chicks: A 
case study and expert systems analysis of a difficult perceptual- 
learning task. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 13, 640--645. 

Brooks, L, R. (1987). Decentralized control of categorization: The 
role of prior processing episodes. In U. Neisser (Ed.), Concepts 
and conceptual development: The ecological and intellectual 
factors in categorization (pp. 141-147). Cambridge, England: 
Cambridge University Press. 

Brooks, L. R., Norman, G. R., & Allen, S. W. (1991). Role of 
specific similarity in a medical diagnostic task. Journal of 
Experimental Psychology: General, 120, 278-287. 

Bundesen, C. (1990). A theory of visual attention. Psychological 
Review, 97, 523-547. 

Busemeyer, J. R., Dewey, G. I., &Medin, D. L. (1984). Evaluation 
of exemplar-based generalization and the abstraction of categori- 
cal information. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 10, 638-648. 

Carroll, J. D., & Wish, M. (1974). Models and methods for 
three-way multidimensional scaling. In D. H. Kxantz, R. C. 
Atkinson, R. D. Luce,& P. Suppes (Eds.), Contemporary 
developments in mathematical psychology (pp. 57-105). San 
Francisco: Freeman. 

Chase, W. G., & Simon, H. A. (1973). Perception in chess. 
Cognitive Psychology, 4, 55-81. 

Cohen, J. D., Dunbar, K., & McClelland, J. L. (1990). On the 
control of automatic processes: A parallel distributed processing 
account of the Stroop effect. PsychologicalReview, 97, 332-361. 



3 4 8  PALMEPa 

Colonius, H. (1995). The instance theory of automaticity: Why the 
Weibull? Psychological Review, 102, 744-750. 

Coughlin, L. D., & Patel, V. L. (1987). Processing of critical 
information by physicians and medical students. Journal of 
Medical Education, 62, 818-828. 

de Groot, A. D. (1965). Thought and choice in chess. The Hague: 
Mouton. 

Estes, W. K. (1994). Classification and cognition. Oxford, En- 
gland: Oxford University Press. 

Feustel, T. C., Shiffrin, R. M., & Salasoo, A. (1983). Episodic and 
lexical contributions to the repetition effect in word identifica- 
tion. Journal of Experimental Psychology: General, 112, 309- 
346. 

GiUund, G., & Shiffrin, R. M. (1984). A retrieval model for both 
recognition and recall. Psychological Review, 91, 1-67. 

Gobet, F., & Simon, H. A. (1996). Recall of rapidly presented 
random chess positions is a function of skill. Psychonomic 
Bulletin & Review, 3, 159--163. 

Groen, G. L., & Patel, V. L. (1988). The relationship between 
comprehension and reasoning in medical expertise. In M. T. H. 
Chi, R. Glaser, & M. J. Farr (Eds.), The nature of expertise (pp. 
287-310). Hillsdale, NJ: Erlbaum. 

Hintzman, D. L. (1986). "Schema abstraction" in a multiple-trace 
memory model. Psychological Review, 93, 411-428. 

Hintzrmm, D. L. (1988). Judgments of frequency and recognition 
memory in a multiple-trace memory model. Psychological 
Review, 95, 528-551. 

Hock, H. S., Webb, E., & Cavedo, L. C. (1987). Perceptual learning 
in visual category acquisition. Memory & Cognition, 15, 544- 
556. 

Homa, D. (1984). On the nature of categories. In G. H. Bower 
(Ed.), Psychology of learning and motivation (Vol. 18, pp. 
49-94). New York: Academic Press. 

Homa, D., & Chambliss, D. (1975). The relative contributions of 
common and distinctive information on the abstraction from 
ill-defined categories. Journal of Experimental Psychology: 
Human Learning and Memory, I, 351-359. 

Homa, D., & Cultice, J. (1984). Role of feedback, category size, 
and stimulus distortion on the acquisition and utilization of 
ill-defined categories. Journal of Experimental Psychology: 
Learning, Memory, and Cognition, 10, 83-94. 

Homa, D., Dunbar, S., & Nohre, L. (1991). Instance frequency, 
categorization, and the modulating effect of experience. Journal 
of Experimental Psychology: Learning, Memory, and Cognition, 
17, A.A.A. A.58. 

Homa, D., Sterling, S., & Trepel, L. (1981). Limitations of 
exemplar-based generalization and the abstraction of categorical 
information. Journal of Experimental Psychology: Human Learn- 
ing and Memory, 7, 418-439. 

Homa, D., & Vosburgh, R. (1976). Category breadth and the 
abstraction of prototypical information. Journal of Experimental 
Psychology: Human Learning and Memory, 2, 322-330. 

Jacoby, L. L., & Brooks, L. R. (1984). Nonanalytic cognition: 
Memory, perception, and concept learning. In G. H. Bower 
(Ed.), The psychology of learning and motivation (Vol. 18, pp. 
1-47). New York: Academic Press. 

Kalmeman, D., & Treisman, A. M. (1984). Changing views of 
attention and automaticity. In R. Parasuraman & R. Davies 
(Eds.), Varieties of attention (pp. 29-61). New York: Academic 
Press. 

Klahr, D., & Wallace, J. (1976). Cognitive development: An 
information-processing view. Hilisdale, NJ: Erlbaum. 

Klapp, S. T., Boches, C. A., Trabert, M. L., & Logan, G. D. (1991). 
Automatizing alphabet arithmetic: II. Are there practice effects 

after automaticity is achieved? Journal of Experimental Psychol- 
ogy: Learning, Memory, and Cognition, 17, 196--209. 

Kruschke, J. K. (1992). ALCOVE: An exemplar-based connection- 
ist model of category learning. Psychological Review, 99, 22--44. 

LaBerge, D. (1962). A recruitment theory of simple behavior. 
Psychometrika, 27, 375-396. 

LaBerge, D., & Samuels, S. J. (1974). Toward a theory of automatic 
information processing in reading. Cognitive Psychology, 7, 
495-531. 

Lassaline, M. E., & Logan, G. D. (1993). Memory-based automatic- 
ity in the discrimination of visual numerosity. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 
19, 561-581. 

Lesgnld, A., Glaser, R., Rubinson, H., Klopfer, D., Feltovich, P., & 
Wang, Y. (1988). Expertise in a complex skill: Diagnosing X-ray 
picaLres. In M. T. H. Chi, R. (]laser, & M. J. Farr (Eds.), The 
nature of expertise (pp. 311-342). Hillsdale, NJ: Erlbanm. 

Lighffoot, N., & Shiffrin, R. M. (1992). On the unitization of novel, 
complex visual stimuli. Proceedings of the 14th annual confer- 
ence of the Cognitive Science Society (pp. 277-282). Hillsdale, 
NJ: Erlbaum. 

Link, S. W. (1975). The relative judgment theory of two choice 
response time. Journal of Mathematical Psychology, 12, 114- 
135. 

Link, S. W., & Heath, R. A. (1975). A sequential theory of 
psychological discrimination. Psychometrika, 40, 77-105. 

Logan, G. D. (1985). Skill and automaticity: Relations, implica- 
tions, and future directions. Canadian Journal of Psychology, 
39, 367-386. 

Logan, G. D. (1988). Toward an instance theory of automatization. 
Psychological Review, 95, 492-527. 

Logan, G. D. (1990). Repetition priming and automaticity: Com- 
mon underlying mechanisms. Cognitive Psychology, 22, 1-35. 

Logan, G. D. (1992). Shapes of reaction-time distributions and 
shapes of learning curves: A test of the instance theory of 
automaticity. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 18, 883-914. 

Logan, G. D. (1995). The Weibull distribution, the power law, and 
the instance theory of automaticity. Psychological Review, 102, 
751-756. 

Logan, G. D. (1996). The CODE theory of visual attention: An 
integration of space-based and object-based attention. Psychologi- 
cal Review, 103, 603-649. 

Logan, G. D., & Etherton, J. L. (1994). What is learned during 
automatization? The role of attention in constructing an instance. 
Journal of Experimental Psychology: Learning, Memory, and 
Cognition, 20, 1022-1050. 

Logan, G. D., & Klapp, S. T. (1991). Automatizing alphabet 
arithmetic: I. Is extended practice necessary to produce automa- 
ticity? Journal of Experimental Psychology: Learning, Memory, 
and Cognition, 17, 179-195. 

Luce, R. D. (1963). Detection and recognition. In R. D. Luce, R. R. 
Bush, E. Galanter (Eds.), Handbook of mathematicai psychology 
(pp. 103-190). New York: Wiley. 

Luce, R. D. (1986). Response times: Their role in inferring 
elementary mental organization. New York: Oxford University 
Press. 

Mandler, G., & Shebo, B. J. (1982). Subitizing: An analysis of its 
component processes. Journal of Experimental Psychology: 
General, 111, 1-22. 

Medin, D. L., & Schaffer, M. M. (1978). Context theory of 
classification learning. Psychological Review, 85, 207-238. 

Metcalfe-Eich, J. (1982). A composite holographic associative 
recall model. Psychological Review, 89, 627--661. 

Murdock, B. B. (1982). A theory for the storage and retrieval of 



AUTOMATICITY AND EXEMPLAR SIMILARITY 349 

item and associative information. Psychological Review, 89, 
609--626. 

Myles-Worsley, M., & Johnston, W. A. (1988). The influence of 
expertise on X-ray image processing. Journal of Experimental 
Psychology: Learning, Memory, and Cognition, 14, 553-557. 

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: 
Harvard University Press. 

Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill 
acquisition and the law of practice. In J. R. Anderson (Exl.), 
Cognitive skills and their acquisition (pp. 1-55). I-lillsdale, NJ: 
Erlbanm. 

Nosofsky, R. M. (1984). Choice, similarity, and the context theory 
of classification. Journal of Experimental Psychology: Learning, 
Memory, and Cognition, 10, 104-114. 

Nosofsky, R. M. (1986). Attention, similarity, and the identification- 
categorization relationship. Journal of Experimental Psychol- 
ogy: General, 115, 39-57. 

Nosofsky, R. M. (1991). Tests of an exemplar model for relating 
perceptual classification and recognition memory. Journal of 
Experimental Psychology: Human Perception and Performance, 
17, 3--27. 

Nosofsky, R. M. (1992a). Exemplar-based approach to relating 
categorization, identification, and recognition. In E G. Ashby 
(Ed.), Multidimensional models of perception and cognition (pp. 
363-393). Hillsdale, NJ: Erlbaum. 

Nosofsky, R. M. (1992b). Exemplars, prototypes, and similarity 
rules. In A. Healy, S. Kosslyn, & R. Shiffrin (Eds.), Essays in 
honor of William K. Estes (Vol. 1, pp. 149-167). Hillsdaie, NJ: 
Erlbaum. 

Nosofsky, R. M. (1992e). Similarity scaling and cognitive process 
models. Annual Review of Psychology, 43, 25-53. 

Nosofsky, R. M., & Palmed, T. J. (in press-a). Comparing 
exemplar-retrieval and decision-bound models of speeded percep- 
tual classification. Perception & Psychophysics. 

Nosofsky, R. M., & Palmeri, T. J. (in press-b). An exemplar-based 
random walk model of speeded classification. Psychological 
Review. 

Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). 
Rule-plus-exception model of classification learning. Psychologi- 
cal Review, 101, 53-79. 

Omohundro, J., & Homa, D. (1981). Search for abstracted informa- 
tion. American Journal of Psychology, 94, 267-290. 

Palmed, T. J., & Nosofsky, R. M. (1995). Recognition memory for 
exceptions to the category rule. Journal of Experimental Psychol- 
ogy: Learning, Memory and Cognition, 21, 548-568. 

Pike, A. R. (1973). Response latency models for signal detection. 
Psychological Review, 80, 53-68. 

Posner, M. I., Goldsmith, R., & Welton, K. E., Jr. (1967). Perceived 
distance and the classification of distorted patterns. Journal of 
Experimental Psychology, 73, 28-38. 

Posner, M. I., & Keele, S. W. (1968). On the genesis of abstract 
ideas. Journal of Experimental Psychology, 77, 353-363. 

Posner, M. I., & Keele, S. W. (1970). Retention of abstract ideas. 
Journal of Experimental Psychology, 83, 304-308. 

Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive 
control. In R. L. Solso (Ed.), Information processing and 
cognition: The Loyola symposium (pp. 55-85). Hillsdale, NJ: 
Erlbanm. 

Ratcliff, R. (1978). A theory of memory retrieval. Psychological 
Review, 85, 59-108. 

Ratcliff, R., & Murdock, B. B., Jr. (1976). Retrieval processes in 
recognition memory. Psychological Review, 83, 190-214. 

Schneider, W. (1985). Toward a model of attention and the 

development of automatic processing. In M. I. Posner & O. S. 
Matin (Eds.), Attention and performance XI (pp. 475--492). 
Hillsdale, NJ: Erlbanm. 

Schneider, W., Dumais, S. T., & Shiffrin, R. M. (1984). Automatic 
and control processing and attention. In R. Parasuraman & R. 
Davies (Eds.), Varieties of attention (pp. 1-27). New York: 
Academic Press. 

Schneider, W., & Shiffrin, R. M. (1977). Controlled and automatic 
human information processing: I. Detection, search, and atten- 
tion. Psychological Review, 84, 1-66. 

Schyns, P. G., Goldstone, R. L., & Thibaut, J. -P. (1995). The 
development of features in object concepts. Indiana University 
Cognitive Science Technical Report No. 133, Bloomington: 
Indiana University. 

Schyns, P. G., & Murphy, G. L. (1991). The ontogeny of part 
representation in object concepts. In D. L. Medin (Ed.), The 
psychology of learning and motivation (Vol. 31, pp. 305-354). 
San Diego, CA: Academic Press. 

Shepard, R. N. (1957). Stimulus and response generalization: A 
stochastic model relating generalization to distance in psychologi- 
cal space. Psychometrika, 22, 325-345. 

Shepard, R. N. (1987, September). Toward a universal law of 
generalization for psychological science. Science, 237, 1317- 
1323. 

Shiffrin, R. M. (1988). Attention. In R. A. Atkinson, R. J. Hemstein, 
G. Lindzey, & R. D. Luce (Eds.), Stevens' handbook of 
experimental psychology (pp. 739-811). New York: Wiley. 

Shiffrin, R. M., Czerwinski, M., & Lightfoot, N. (1991). Automati- 
zation and training in visual search. American Journal of 
Psychology, 105, 271-315. 

Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic 
human information processing: II. Perceptual learning, auto- 
matic attending, and a general theory. Psychological Review, 84, 
127-190. 

Shin, H. J., & Nosofsky, R. M. (1992). Similarity-scaling studies of 
dot-pattern classification and recognition. Journal of Experimen- 
tal Psychology: General, 121, 278-304. 

Smith, E. E., &Medin, D. L. (1981). Categories and concepts. 
Cambridge, MA: Harvard University Press. 

Strayer, D. L., & Kramer, A. E (1990). An analysis of memory- 
based theories of automaticity. Journal of Experimental Psychol- 
ogy: Learning, Memory, and Cognition, 16, 291-304. 

Strayer, D. L., & Kramer, A. E (1994a). Strategies and automatic- 
ity: I. Basic findings and conceptual framework. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 
20, 318-341. 

Strayer, D. L., & Kramer, A. E (1994b). Strategies and automatic- 
ity: II. Dynamic aspects of strategy adjustment. Journal of 
Experimental Psychology: Learning, Memory, and Cognition, 
20, 342-365. 

Townsend, J. T., & Ashby, E G. (1983). Stochastic modeling of 
elementary psychological processes. Cambridge, England: Cam- 
bridge University Press. 

Trick, L. M., & Pylyshyn, Z. W. (1993). What enumeration studies 
can show us about spatial attention: Evidence for limited 
capacity preattentive processing. Journal of Experimental Psy- 
chology: Human Perception and Performance, 19, 331-351. 

Trick, L. M., & Pylyshyn, Z. W. (1994). Why are small and large 
numbers enumerated differently? A limited-capacity preattentive 
stage in vision. Psychological Review, 101, 80-102. 

van Oeffelen, M. P., & Vos, P. G. (1982). A probabilistic model for 
the discrimination of visual number. Perception & Psychophys- 
ics, 32, 163-170. 

(Appendixes follow on next page) 



350 PAL~Pa 

Appendix A 

Observed Mean Response Times (in Milliseconds) and EBRW Predictions (in 
Parentheses) as a Function of Type (Moderate, Low, and Unrelated), 

Numerosity, and Session in Experiment 2 
Numerosity 

Session 6 7 8 9 10 11 

Moderate similarity 

1 1,218 (1,159) 1,608 (1,575) 2,077 (2,148) 2,871 (2,686) 2,966 (3,010) 2,886 (3,364) 
2 944 (1,044) 1,377 (1,537) 1,531 (1,751) 2,001 (2,129) 2,357 (2,302) 2,259 (2,413) 
3 912 (942) 1,017(1,338) 1,515(1,564) 1,275(1,643) 1,921 (1,696) 1,769(1,739) 
4 826 (969) 924 (1,164) 1,224 (1,322) 1,225 (1,449) 1,706 (1,466) 1,446 (1,460) 
5 785 (881) 888 (1,078) 1,083 (1,187) 1,112(1,249) 1,310(1,290) 1,263 (1,319) 
6 697 (813) 782 (1,066) 1,065 (1,056) 1,034 (1,127) 1,371 (1,188) 1,140 (1,133) 
7 712 (790) 766 (930) 961 (1,053) 1,087 (1,073) 1,364 (1,071) 1,065 (1,047) 
8 665 (762) 763 (910) 933 (981) 947 (960) 1,118 (1,035) 865 (1,009) 
9 665 (747) 718 (879) 958 (900) 936 (940) 1,042 (906) 843 (944) 

10 668 (696) 710 (786) 933 (860) 938 (872) 984 (885) 751 (858) 
11 663 (648) 708 (788) 920 (839) 898 (862) 966 (839) 753 (839) 
12 687 (655) 709 (759) 876 (801) 883 (823) 826 (821) 768 (786) 
13 622 (647) 702 (735) 880 (760) 833 (760) 804 (812) 728 (760) 
14 645 (616) 663 (688) 877 (771) 807 (749) 911 (753) 705 (741) 
15 621 (617) 644 (714) 767 (730) 762 (754) 725 (738) 690 (730) 
16 646 (594) 659 (702) 799 (707) 777 (715) 746 (739) 653 (740) 
17 621 (608) 652 (669) 769 (718) 768 (696) 729 (716) 707 (733) 
18 603 (596) 639 (669) 754 (688) 804 (680) 715 (683) 711 (680) 
19 624 (609) 640 (623) 732 (686) 736 (681) 693 (668) 669 (687) 
20 624 (552) 623 (616) 758 (663) 737 (664) 669 (681) 681 (699) 

Low similarity 

1 1,361 (1,152) 2,111 (1,682) 2,618 (2,317) 2,547 (2,779) 2,841 (3,228) 3,387 (3,632) 
2 1,098 (1,081) 1,820 (1,550) 2,121 (1,992) 2,395 (2,289) 2,588 (2,456) 2,998 (2,637) 
3 1,003 (1,079) 1,602 (1,429) 1,578 (1,719) 2,062 (1,917) 2,125 (2,014) 2,204 (2,157) 
4 903 (999) 1,468 (1,289) 1,357 (1,490) 1,897 (1,641) 1,793 (1,697) 2,003 (1,804) 
5 910 (916) 1,371 (1,159) 1,286(1,337) 1,495(1,454) 1,671 (1,455) 1,450(1,532) 
6 828 (861) 1,154 (1,115) 1,164 (1,195) 1,442 (1,299) 1,659 (1,295) 1,273 (1,332) 
7 762 (842) 973 (1,015) 1,058 (1,141) 1,454 (1,234) 1,447 (1,230) 1,151 (1,247) 
8 714 (845) 900 (968) 1,048(1,039) 1,234(1,119) 1,184(1,134) 942(1,151) 
9 717 (777) 862 (932) 994 (982) 1,188 (1,065) 1,212 (1,089) 999 (1,092) 

10 685 (747) 895 (895) 970 (976) 1,176(1,043)1,186 (997) 892(1,009) 
11 694 (760) 819 (907) 926 (933) 1,020 (969) 1,085 (950) 796 (969) 
12 673 (694) 850 (870) 928 (877) 994 (902) 1,055 (949) 890 (959) 
13 694 (687) 824 (837) 879 (864) 948 (888) 1,048 (872) 807 (880) 
14 660 (697) 821 (785) 912 (837) 899 (863) 923 (866) 798 (896) 
15 633 (678) 779 (780) 767 (842) 857 (832) 880 (843) 722 (876) 
16 625 (670) 735 (725) 747 (840) 829 (823) 872 (820) 741 (804) 
17 600 (643) 695 (760) 733 (788) 830 (790) 893 (811) 805 (770) 
18 596 (640) 697 (760) 773 (765) 812 (768) 857 (778) 711 (801) 
19 600 (632) 669 (705) 743 (752) 800 (750) 855 (766) 679 (747) 
20 597 (609) 693 (706) 717 (748) 751 (761) 806 (742) 673 (767) 

Unrelated 

I 1,495 (1,177) 2,024(1,743) 2,381 (2,347) 2,680(2,768) 3,002(3,192) 3,364(3,771) 
2 1,350 (1,107) 1,684 (1,575) 2,237 (1,972) 2,401 (2,387) 2,877 (2,627) 2,983 (2,798) 
3 1,236 (1,039) 1,552 (1,458) 1,791 (1,828) 1,927 (2,012) 2,414 (2,155) 2,593 (2,243) 
4 1,057 (987) 1,400 (1,335) 1,556 (1,549) 1,789 (1,689) 2,070 (1,914) 2,158 (1,826) 
5 1 ,036 (981) 1,268 (1,271) 1,256 (1,443) 1,582 (1,562) 1,632 (1,611) 1,687 (1,679) 
6 942 (953) 1,073 (1,157) 1,144 (1,319) 1,349 (1,405) 1,502 (1,430) 1,479 (1,498) 
7 844 (903) 1,030 (1,093) 1,104 (1,204) 1,335 (1,310) 1,482 (1,341) 1,470 (1,313) 
8 805 (825) 964(1,012) 1,017 (1,167) 1,100 (1,255) 1,267 (1,220) 1,191 (1,246) 
9 771 (800) 916 (994) 929 (1,075) 1,108 (1,175) 1,146 (1,194) 1,171 (1,216) 

10 809 (800) 959 (964) 922 (1,033) 1,088 (1,136) 1,187 (1,083) 1,094 (1,113) 
11 781 (780) 898 (884) 849 (1,054) 1,008 (1,043) 1,195 (1,075) 953 (1,032) 
12 728 (730) 893 (893) 940(1,000) 974 (997)1,028(1,005) 891 (994) 
13 702 (709) 860 (887) 851 (917) 994 (980) 985 (935) 843 (976) 
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Appendix A (continued) 
Numerosity 

Session 6 7 8 9 10 11 

14 692 (710) 876 (849) 881 (876) 967 (917) 874 (901) 829 (961) 
15 676 (732) 775 (847) 824 (851) 890 (906) 849 (905) 773 (914) 
16 638 (693) 794 (796) 827 (830) 919 (883) 807 (909) 796 (862) 
17 657 (688) 771 (764) 788 (815) 904 (847) 812 (835) 790 (857) 
18 654 (666) 737 (763) 794 (813) 886 (829) 803 (845) 764 (828) 
19 645 (667) 762 (742) 780 (822) 816 (817) 751 (813) 735 (855) 
20 650 (623) 723 (770) 799 (786) 852 (830) 748 (818) 730 (804) 

Note. EBRW = exemplar-based random walk. 
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Appendix B 

Exemplar-Based Random Walk (EBRW) Predictions and Power Analyses of Standard Deviations 
From Experiment 2 

Predictions of standard deviations were made by using the 
parameters that best fit the means (observed and predicted standard 
deviations are available from me). The correlation between the 
observed and predicted standard deviations was good (r = .807), 
especially given that the observed standard deviations are quite 
noisy and that no attempt was made to explicitly fit the observed 
standard deviations. As shown in Table B1, power law functions 
fitted the noisy observed d~ta fairly well (average robs = .821 
RMSEob8 = 118.06) and fitted the predictions quite well (average 
rp,ed = .971 RMSF-~ed = 46.16). 

Recall that instance theory predicts that the exponent of the 
power law functions will be the same for observed RT means and 
standard deviations (Logan, 1988, 1992). Simple inspection of 
Tables 5 and B 1 reveals that, in most cases, the exponent of the 

observed standard deviations is quite a bit smaller than the 
exponent of the observed means. For the most part, the exponents 
of the standard deviations are closer to those of the EBRW 
predicted standard deviations. As a more systematic comparison, 
constrained power law functions were fitted to the observed 
standard deviations by setting the exponent equal to that of the 
observed means or equal to that of the predicted standard devia- 
tions. Constrained fits were somewhat better with the EBRW 
standard deviation exponent (for moderate, average r = .839, 
RMSE = 106.82; for low, average r -- .801, RMSE = 131.12; for 
unrelated, average r = .789, RMSE = 127.34) than with the ob- 
served mean exponent (for moderate, average r = .806, 
RMSE = 118.5; for low, average r = .776 RMSE = 138.42; for 
unrelated, average r = .773, RMSE = 131.32). 

Table B 1 
Measures of Goodness of Fit and Exponent Parameter C for Power Law Fits to Observed 
and Predicted Response Time Standard Deviations at Each Level of Numerosity for 
Patterns From Experiment 2 

Standard deviation type, Numerosity 
parameter, and measure 

of fit 6 7 8 9 10 11 

Moderate-similarity pattern 

Observed standard deviations 
C 0.619 0.443 0.180 0.149 0.123 0.165 
RMSE 55.99 67.44 82.16 78.59 175.48 156.53 
r .789 .867 .826 .901 .820 .891 

Predicted standard deviations 
C 0.183 0.184 0.236 0.225 0.230 0.264 
RMSE 28.72 35.74 27.84 37.55 47.04 62.92 
r .973 .974 .989 .985 .983 .976 

(table continues) 
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Table B1 (continued) 

Standard deviation type, Numerosity 
parameter, and measure 

of fit 6 7 8 9 10 11 

Low-similarity pattern 

Observed standard deviations 
C 0.343 0.128 0.113 0.105 0.093 0.129 
RMSE 47.63 106 . 54  119 .79  164 .40  156 .30  166.46 
r .901 .854 .820 .757 .715 .844 

Predicted standard deviations 
C 0.156 0.190 0.182 0.166 0.190 0.215 
RAISE 32.62 33.35 37.27 54.50 55.92 64.08 
r .958 .974 .977 .965 .973 .976 

Unrelated pattern 

Observed standard deviations 
C 0.184 0.163 0.154 0.103 0.075 0.114 
RMSE 58.25 60.48 82.53 124 . 20  220.70 201.69 
r .912 .898 .876 .745 .548 .813 

Predicted standard deviations 
C 0.159 0.183 0.171 0.158 0.162 0.194 
RMSE 32.19 31.29 40.28 62.44 77.90 70.03 
r .960 .976 .971 .953 .949 .971 

Note. C = the learning rate parameter that specifies the shape of the power law function. 

Appendix  C 

Observed Mean  Response  Times  (in Mill iseconds) and E B R W  Predictions (in 
Parentheses) as a Function of  Type (Friends or Enemies) ,  Numerosi ty,  and 

Session in Exper iment  3 

Numerosity 

Session 6 7 8 9 10 11 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Friends 

1,326 (1,349) 1,993 (1,762) 2,355 (2,167) 2,513 (2,449) 2,393 (2,722) 2,538 (2,855) 
1,178 (1,225) 1,486 (1,482) 2,021 (1,732) 1,887 (1,842) 1,739 (1,917) 1,822 (1,966) 
1,029 (1,093) 1,294 (1,329) 1,604 (1,414) 1,592 (1,514) 1,236 (1,506) 1,578 (1,564) 

961 (1,018) 1,146 (1,170) 1,285 (1,236) 1,451 (1,276) 993 (1,260) 1,286 (1,281) 
857 (956) 1,119 (1,068) 1,160 (1,131) 1,310 (1,120) 903 (1,107) 1,090 (1,131) 
819 (896) 1,145 (990) 1,065 (1,017) 1,247 (1,016) 869 (1,025) 1,039 (1,034) 
776 (857)1,023 (911)1,003 (940)1,114 (956) 796 (974) 935 (971) 
765 (825) 920 (885) 935 (898)1,077 (900) 751 (896) 842 (908) 
723 (781) 889 (842) 883 (852) 969 (844) 752 (858) 760 (861) 
697 (757) 860 (809) 890 (833) 905 (817) 728 (835) 769 (812) 
697 (738) 894 (791) 841 (792) 867 (800) 734 (795) 727 (800) 
707 (731) 857 (769) 849 (773) 839 (780) 709 (776) 723 (784) 
674 (712) 772 (756) 762 (766) 793 (750) 665 (748) 698 (750) 
691 (713) 789 (724) 755 (729) 761 (748) 669 (750) 696 (729) 
676 (691) 771 (731) 765 (721) 791 (735) 665 (731) 712 (726) 
660 (682) 792 (706) 749 (721) 764 (699) 647 (715) 679 (711) 
682 (671) 761 (696) 735 (696) 732 (712) 651 (699) 662 (695) 
649 (657) 712 (689) 754 (687) 734 (690) 627 (690) 660 (689) 
634 (669) 701 (663) 702 (682) 687 (677) 634 (678) 653 (679) 
620 (646) 692 (670) 693 (668) 676 (679) 612 (676) 640 (677) 
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Appendix C (continued) 
Numerosity 

Session 6 7 8 9 10 11 

Enemies 

1 1,332 (1,335) 1,859 (1,797) 2,299 (2,188) 2,694 (2,522) 2,706 (2,787) 2,749 (3,049) 
2 1,222 (1,236) 1,664 (1,577) 1,796 (1,791) 1,949 (2,011) 2,244 (2,092) 2,215 (2,164) 
3 1,044 (1,132) 1,397 (1,401) 1,596 (1,546) 1,755 (1,636) 1,889 (1,710) 1,957 (1,668) 
4 942 (1,062) 1,278 (1,264) 1,425 (1,360) 1,583 (1,408) 1,577 (1,466) 1,428 (1,440) 
5 915 (1,011) 1,215 (1,174) 1,363 (1,238) 1,350 (1,283) 1,327 (1,280) 1,328 (1,267) 
6 890 (961) 1,173 (1,074) 1,335 (1,188) 1,272 (1,154) 1,144 (1,156) 1,099 (1,225) 
7 830 (930) 1,043 (1,041) 1,203 (1,079) 1,144 (1,080) 954 (1,095) 986 (1,105) 
8 806 (900) 1,049 (999) 1,182 (1,024) 1,117 (1,038) 973 (1,033) 925 (1,023) 
9 781 (880) 971 (931) 1,112 (989) 1,065 (989) 845 (990) 882 (998) 

10 778 (841) 972 (910) 1,134 (973) 1,034 (950) 829 (945) 867 (966) 
11 750 (828) 923 (918)1,047 (910) 968 (914) 826 (938) 809 (914) 
12 790 (810) 954 (868)1,055 (884) 960 (902) 814 (896) 852 (894) 
13 725 (783) 886 (856) 971 (882) 873 (895) 824 (880) 793 (877) 
14 733 (798) 829 (834) 921 (853) 869 (865) 761 (854) 779 (885) 
15 784 (776) 866 (818) 939 (830) 837 (827) 774 (832) 817 (861) 
16 726 (763) 874 (826) 895 (838) 845 (827) 762 (826) 767 (828) 
17 706 (770) 849 (786) 880 (820) 810 (813) 760 (827) 785 (824) 
18 692 (752) 809 (789) 863 (809) 769 (813) 722 (803) 773 (794) 
19 699 (732) 761 (779) 808 (794) 758 (804) 696 (772) 713 (797) 
20 689 (739) 768 (773) 815 (784) 759 (782) 694 (784) 727 (791) 

Note. EBRW = exemplar-based random walk. 
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Appendix D 

Exemplar-Based Random Walk (EBRW) Predictions and Power Analyses of Standard Deviations 
From Experiment 3 

Predictions of standard deviations were made using the param- 
eters that best fit the means (observed and predicted standard 
deviations are available from me). The correlation between the 
observed and predicted standard deviations was quite impressive 
(r = .878). As shown in Table D1, power law functions were fitted 
to the standard deviations of the observed and predicted RTs. Both 
the observed (average rob~ = .899, RMSEobs = 106.04) and pre- 
dicted (average rp,~d = .971, RMSEpr~d = 31.33) RTs were well in 
accord with the power law. 

Assessing the strong power law prediction of instance theory 
requires comparing the power law exponent of the observed 
standard deviations to that of the observed means and to that of the 
EBRW predicted standard deviations. Simple inspection of Tables 
6 and D1 does not reveal an advantage for either comparison. As a 

more systematic analysis, constrained power law functions were 
fitted to the observed standard deviations by setting the exponent 
equal to the exponent of the observed means or the exponent of the 
EBRW predicted standard deviations. Constrained fits were slightly 
better with the EBRW exponent (for friends, average r = .926, 
R M S E  = 95.15; for enemies, average r = .851, R M S E  = 121.18) 
than with observed mean exponent (for friends, average r = .920, 
R M S E  = 100.14; for enemies, average r = .838, R M S E  = 127.59). 
Again, although these results may question the strong instance 
theory predictions, the findings were not overwhelming. Given the 
inherent problems in obtaining clean standard deviation data, it 
may prove difficult to systematically test the standard deviation 
power law predictions. 

(Appendix  cont inues  on next  page)  
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Table D1 
Measures of Goodness of Fit and Exponent Parameter C for Power Law Fits to Observed 
and Predicted Response Hme Standard Deviations at Each Level of Numerosity for 
Friends and Enemies From Experiment 3 

Standard deviation type, Numerosity 
parameter, and measure 

of fit 6 7 8 9 10 11 

Friends 

Observed standard deviations 
C 0.378 0.780 0.145 0.197 0.505 0.375 
RMSE 56.42 64.39 126.54 85.27 1 0 9 . 8 1  105.52 
r .934 .943 .885 .955 .936 .950 

Predicted standard deviations 
C 0.175 0.156 0.192 0.218 0,299 0.375 
RMSE 14.23 27.85 32.38 37.11 34.84 38.43 
r .980 .959 .972 .976 .986 .988 

Enemies 

Observed standard deviations 
C 0.150 0.149 0.151 0.178 0.203 0.223 
RMSE 48.66 84.00 147.36 98.76 174.42 171.35 
r .900 .860 .682 .913 .857 .899 

Predicted standard deviations 
C 0.150 0.149 0.151 0.178 0.203 0.279 
RMSE 12.27 22.55 35.83 39.28 46.02 35.13 
r .972 .954 .948 .963 .971 .988 

Note. C = the learning rate parameter that specifies the shape of the power law function. 
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