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Decision-making is explained by psychologists through stochastic
accumulator models and by neurophysiologists through the
activity of neurons believed to instantiate these models. We
investigated an overlooked scaling problem: How does a response
time (RT) that can be explained by a single model accumulator
arise from numerous, redundant accumulator neurons, each of
which individually appears to explain the variability of RT? We
explored this scaling problem by developing a unique ensemble
model of RT, called e pluribus unum, which embodies the well-
known dictum “out of many, one.” We used the e pluribus unum
model to analyze the RTs produced by ensembles of redundant,
idiosyncratic stochastic accumulators under various termination
mechanisms and accumulation rate correlations in computer sim-
ulations of ensembles of varying size. We found that predicted RT
distributions are largely invariant to ensemble size if the accumu-
lators share at least modestly correlated accumulation rates and RT
is not governed by the most extreme accumulators. Under these
regimes the termination times of individual accumulators was pre-
dictive of ensemble RT. We also found that the threshold mea-
sured on individual accumulators, corresponding to the firing
rate of neurons measured at RT, can be invariant with RT but is
equivalent to the specified model threshold only when the rate
correlation is very high.

computational model | mathematical psychology | diffusion model |
reaction time | neurophysiology

Response time (RT) is a core measure of human decision-
making in experimental psychology (1). The random varia-

tion of RT across otherwise identical trials has been a puzzle
since the mid-19th century. Since the 1960s, this variation of
RT—measured in a wide range of perceptual, cognitive, and
economic tasks (1–5)—has been explained through stochastic
accumulator models. These models assume that a response is gen-
erated when evidence accumulates at a certain rate (v) over time
to a threshold (θ) and that the stochastic variation of RTs arises
primarily from random fluctuations in accumulation rates (Fig. 1A).
Historically, these models were formulated and tested before data
on the underlying neural processes were available.
Subsequently, neurons exhibiting accumulating discharge rates

in various RT tasks have been found in sensory, sensorimotor,
and motor brain structures; in premotor circuits for limb and eye
movements it is known that the neurons with accumulating ac-
tivity are necessary and sufficient for initiating movements (6, 7).
Movements are initiated when the trial-averaged accumulating
spike rate of these neurons reaches a fixed activation level (6)
(ART) like a threshold, and the distribution of RTs is accounted
for by the stochastic variability in the rate of growth of neural
activity toward ART (Fig. 1B). This discovery inspired the conjec-
ture that individual neurons instantiate the evidence accumulation
process described by stochastic accumulator models (6). This
conjecture has stimulated extensive research replicating the orig-
inal observation and equating accumulator model parameters with
measures of neural dynamics assessed by spike rates (8–17), EEG
(18, 19), magnetoencephalography (MEG) (20), and functional
MRI (21–23) and simulated with neural network models (24–28).
However, this productive line of research has overlooked

a fundamental scaling problem. On the one hand, the behavior
of specific single neurons seems sufficient to account for the RT

of the whole brain. On the other hand, we know that ensembles
of tens of thousands of neurons are necessary to produce any
action (SI Text, How Many Neurons Produce a Movement?).
Hence, how can each individual accumulator neuron, recorded
in isolation, seem sufficient to initiate a movement by crossing
a unique threshold when no single accumulator neuron is nec-
essary for a movement to occur? In other words, how is the ac-
cumulating activity of numerous redundant and idiosyncratic
neurons in a large ensemble coordinated and combined to pro-
duce variable RTs that can be predicted by a model consisting of
just a single stochastic accumulator? This question has not been
addressed previously (SI Text, Extension of Previous Work).
This question is challenging to investigate empirically because

the limited number of spikes emitted by individual neurons pre-
cludes reliable assessment of single-trial dynamics, and simultaneous
measurement of numerous functionally homogeneous neurons
is not possible with current technology. Therefore, we performed
computer simulations of ensembles of stochastic accumulators.
We address four major issues. First, we investigate how RT

distributions can be explained both by a single accumulator
model and by the ensemble activity of many accumulators. Sec-
ond, we explore how RT distributions scale with the accumulator
ensemble size. Third, we investigate how the ART measured
across trials from an individual accumulator can be invariant with
RT even though RT is produced by a large ensemble of accu-
mulators with different growth rates. Fourth, we explore how the
measured ART from an individual accumulator relates to the
actual threshold of that accumulator (θ).
To address these issues, we developed a unique ensemble

model of RT, called e pluribus unum (EPU), which embodies the
well-known dictum “out of many, one.” Stochastic accumulator
models are typically designed to explain both RT and accuracy
obtained in choice tasks. However, our questions are specifically
centered on the basic variability of RT that is observed in
responses in any task. Thus, this model does not address accu-
racy, although we envision natural extensions of this approach
to racing or competing ensembles of accumulators embodied
by simple differential equations or in more complex spiking
network models.

Significance

The delay of responding to stimuli, known as response time
(RT), is randomly variable. Psychologists explain this variability
through models in which RT is dictated by the termination of
a single random accumulation process. Neurophysiologists ex-
plain this variability through the dynamics of neurons sampled
from very large networks. This paper explains how these rad-
ically different scales of explanation can both be correct.
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In single-accumulator models, RT critically depends on two
key parameters: the accumulation rate (v) and the threshold (θ).
Extrapolating these parameters to the ensemble case is not trivial
(Fig. 1C).
First, how are accumulation rates coordinated across the en-

semble? At one extreme, if all accumulators share identical dy-
namics, then the ensemble reduces to one accumulator (Fig. 1C,
Inset), yet perfect correlation is implausible (29). At the other
extreme, if all accumulators have uncorrelated dynamics, then
unrealistic RT variability would occur. Moreover, uncorrelated
dynamics would also be implausible from a biological perspec-
tive, given that ensembles receive common inputs, have recurrent
connections, and are modulated by common neurotransmitter
systems. We investigated this question by sampling correlated
accumulation rates, with rate correlation (rv) varying between 0.0
and 1.0. Though the range of rate correlations we simulated
exceeds the noise correlation found among neighboring neurons
(30, 31), they can arise naturally from redundancy in common
inputs, recurrent connectivity, and modulation by a common
source (32–34).
Second, how is ensemble activity combined to produce one

RT? At one extreme, if RT is specified by the time when the
fastest accumulator reaches threshold, the RT distribution will
shrink with ensemble size. At the other extreme, if RT is speci-
fied by the time when the slowest accumulator reaches threshold,
the RT distribution will expand with ensemble size. How large is
the region between these two extremes where the RT distribu-
tion remains stable with ensemble size? We investigated these
questions by assuming that each accumulator projects to a unit
that either tallies the proportion of accumulators having crossed
a threshold activation (a “polling” mechanism akin to quorum
sensing) (35) or monitors the average firing rate of the ensemble
(a “pooling” mechanism akin to the vector averaging that guides
movement dynamics in final common neural circuits that initiate
movements) (36, 37). When this unit tallies a critical proportion
of units hitting threshold (pN, polling) or reaches a threshold of
average activity (θtrigger, pooling), an overt response is triggered
that is measured as RT.

We determined how RT distributions and the dynamics of
individual accumulators were influenced by three ensemble
properties: the number of accumulators (1 ≤ n ≤ 1,000), the
correlation of accumulation rates across accumulators (0.0 ≤ rv ≤
1.0), and the termination rule of the accumulation process
(polling: 0% < pN ≤ 100%; and pooling: Σ Ai(t)/N ≥ θtrigger). We
explored two influential types of stochastic accumulator models,
one assuming within-trial as well as between-trial variability in
accumulation (diffusion model) (38) and one assuming only
between-trial variability (linear ballistic accumulator model) (39),
as well as four variants making additional assumptions. Con-
clusions based on simulation of these models agreed, so we
present the simple linear ballistic accumulator model here and
the diffusion model and other more complex models in SI Text,
Robustness of Findings.

Results
RT Distributions from One and Many Accumulators. We began by
identifying the conditions under which an individual accumulator
model (n = 1) and a large-ensemble accumulator model (n =
1,000) predict RT distributions with similar shapes, defined as
overlapping 95% confidence intervals over all five RT quintiles
(0.1, 0.3, 0.5, 0.7, 0.9). We observed that an individual accumu-
lator model and a large ensemble accumulator model predict RT
distributions with virtually indistinguishable shapes if accumu-
lation rates are at least moderately correlated (rv ≥ 0.6) with
intermediate termination rules. Much higher rate correlations
(rv ≥ 0.9) are necessary under extreme termination rules (Fig. 2).
Similar results were obtained under a pooling mechanism (Fig. 2,
rightmost column). Thus, RT distributions can be explained both
by an individual model accumulator and by accumulating activity
of large neuronal ensembles only if their activation dynamics are
moderately correlated and RT is not governed by extremely fast
or slow accumulators.

RT Distributions Over a Range of Accumulator Ensemble Sizes.We also
investigated the invariance of RT distributions over a range
of ensemble sizes to determine whether RTs may be invariant
once some critical ensemble size is reached. Knowing that the
same RT distributions are predicted whether an ensemble has 10
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Fig. 1. Response times predicted by ensembles of redundant stochastic accumulators. (A) Stochastic accumulator models describe RT in terms of an accu-
mulation process (one trajectory per trial) that proceeds at a certain rate (v) to reach a fixed threshold (θ). Stochastic variation of RT arises from fluctuations of
v between (η) and within trials (ξ). It is common to consider one accumulator associated with each of multiple responses; we considered instead the case of
multiple accumulators associated with the same response (Inset). (B) RT can also be described by the time at which the evolving spike rates of certain neurons,
averaged across bins of trials with common RTs (one trajectory per RT bin, replotted from ref. 49), reach an activation level that is invariant with RT (ART).
These neurons have been argued to instantiate the process described by stochastic accumulator models. (C) Unless accumulators are perfectly correlated
(Inset), it is unclear (i) how an ensemble of accumulators makes the transition from evidence accumulation to response execution, (ii) under what termination
rules (pN) and accumulation rate correlations (rv) the dynamics of one accumulator (highlighted red) predicts RT distributions and the invariant relationship
between ART and RT, as observed empirically, and (iii) how ART relates to the unobserved threshold of an accumulator (θ).
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accumulators or 1,000 accumulators or more provides important
insights into the properties of ensemble dynamics. It may be that
ensembles need to be “large enough” but that the precise size
of the ensemble has little effect on the RT that the ensemble
generates.
Extending the analysis above, we investigated how RT dis-

tributions scale with accumulator ensemble size. We identified
conditions under which a small-ensemble model (n = 10) and an
intermediate-ensemble model (n = 100) predict RT distributions
with similar shapes as a large-ensemble model (n = 1,000). RT
distributions were invariant across ensembles with at least 10
accumulators if accumulation rates were at least modestly cor-
related (rv ≥ 0.3) and termination rules avoided the extremes
(10% ≤ pN ≤ 90%). RT distributions were invariant across larger
ensembles (n ≥ 100) with even lower rate correlations (rv ≥ 0.1).
Only if accumulation rates were uncorrelated (rv = 0.0) or ter-
mination rules were extreme (pN = first and pN = last) did RT
distributions vary dramatically in scale and shape with ensemble
size (Fig. 2). Similar findings were observed when RT was de-
termined by the pooling termination mechanism (Fig. 2, right-
most column) and with other accumulator model variants we
investigated (SI Text, Robustness of Findings).
Variability in RT remains remarkably constant across different

ensemble sizes over a large proportion of parameter space. Only
for uncorrelated accumulators and extreme termination rules
(pN = first or pN = last) does ensemble size affect RT variability,
a lack of invariance anticipated by extreme value statistics. By
analogy to the central limit theorem, we can perhaps anticipate
why median RT remains invariant with ensemble size. However,
there is no single mathematical property that might allow us to
anticipate why variability in RT is invariant with ensemble size
across correlated samples and intermediate termination rules, so

we need to rely on simulation. To begin with, we know that for
pN = first, variability decreases with ensemble size, and for pN =
last, variability increases with ensemble size. So at some point in
the range of termination rules we might expect an invariance of
variability with ensemble size. What is striking is that this in-
variance is observed across all of the intermediate termination
rules we investigated, not just a single value of termination rule.
Also, for small ensemble sizes, variability is largely dominated by
sampling variability across those few accumulators, and low
correlations between accumulator rates may have only a small
influence on the predicted variability from trial to trial. By
contrast, for large ensemble sizes, variability is largely dominated
by the between-trial variability introduced by the correlation
between accumulator rates. These counteracting effects of en-
semble size and correlation largely cancel each other out, pro-
ducing invariance in RT distributions over a range of model
parameters and model architectures (SI Text, Robustness of Findings)
that we did not anticipate.

Invariance of ART with RT. We then investigated how the trial-
averaged ART from an individual accumulator can be invariant
with RT even though RT is produced by a large ensemble of
accumulators. Most accumulator models are based on thresholds
that are invariant across RT (40–42), and multiple laboratories
have observed invariant thresholds of neural discharge rate (6–
17). However, the ART of an individual accumulator participat-
ing in the ensemble is not guaranteed to reach the same value on
each trial because of the stochastic nature of its accumulation
process—on some trials it has reached θ and contributes to the
measured RT, but on other trials it has not yet reached θ and so
does not contribute (Fig. 1C). Though it is trivially true for
a single accumulator that ART will be invariant with RT, it is
unknown whether large ensembles of accumulators with in-
termediate termination rules and accumulation rate correlations
reproduce the invariance of ART with RT that is regularly
measured in neurophysiology.
Just like a neurophysiology experiment would randomly sam-

ple one neuron in some brain region, we randomly selected one
accumulator in the ensemble and measured ART for that accu-
mulator on each simulated trial. We then quantified how the
slope of the linear regression of ART over RT varied for ensembles
of 10, 100, and 1,000 accumulators (Fig. 3), mimicking the ap-
proach used in neurophysiological analyses. For small ensembles
(n = 10), ART was invariant over RT under intermediate termi-
nation rules (10% ≤ pN ≤ 90%) and moderate rate correlations
(rv ≥ 0.4). With many accumulators (n = 1,000), the invariance of
ART with RT was only violated for the earliest termination rule
(pN = first) and low accumulation rate correlations (rv ≤ 0.3).
Under a pooling mechanism, the invariance of ART with RT was
never violated. Thus, the invariance of ART with RT emerges
from the dynamics of individual accumulators operating in large
ensembles, even though the dynamics of no single accumulator
uniquely determine RT.

Relationship Between ART and θ. Finally, we explored how the ART
measured from an individual accumulator relates to the actual
threshold of that accumulator (θ). In the neurophysiology liter-
ature, it is commonly assumed that the ART of an individual
neuron represents a threshold like that in stochastic accumulator
models. However, because ART is a trial-averaged measure and
the true threshold of a neuron (θ) is unknown, we do not know
how closely the value of ART approximates the value of θ.
As expected, with n = 1, ART was constant with RT and

identical across trials, and the measured ART equaled the
model parameter θ. However, in ensembles operating under in-
termediate termination rules (10% < pN < 90%) ART varied sig-
nificantly between trials (Fig. 4). Thus, individual accumulators
acting in ensembles do not reach the same activation level at RT
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Fig. 2. Predicted RT distributions as a function of ensemble size (N), ter-
mination rule (pN), and accumulation rate correlation (rv). Each panel shows
the 0.1, 0.3, 0.5, 0.7, and 0.9 RT quantiles on a log-log scale (the x axis ranges
from 100 to 103; the y axis ranges from 102 to 103) as a function of N, pN, and
rv vary across columns and rows, respectively. We identified conditions (pN

and rv) under which RT distributions were (i) invariant over the entire in-
terval of N (i.e., 1,1,000; white panels], (ii) invariant with N over the interval
(10,1,000; light gray panels), (iii) invariant with N over the interval (100,1,000;
medium gray panels), and (iv) not invariant with N (dark gray panels).
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on each trial, meaning that measured ART is not necessarily
equivalent to the threshold specified by the model (θ) for any
given accumulator. Analogous nonequivalence was observed for
pooling mechanisms. We further observed that the termination
rule determined how closely ART approximated θ. Under early
termination rules (pN < 50%), average ART was less than θ. Under
late termination rules (pN > 50%), average ART was greater than
θ. Under the median termination rule (pN = 50%), average
ART equaled θ; this entails that the relationship between ART
and θ cannot be determined without knowledge of the termination
rule. The accumulation rate correlation determined the magni-
tude of variability in ART. The more homogeneous the accumu-
lators, the smaller the variability in ART and the closer the
agreement with θ, which implies that the degree of stochastic
variation in ART is indicative of the homogeneity of the accumu-
lation process in the ensemble. Together, though these findings

demonstrate unanticipated complexity in the relationship between
ART measured in an individual accumulator and the true θ that
defines its dynamics, in conditions under which one accumulator
resembles many, the average ART measured from neurons is a fair
proxy of the relation of θ to RT.

Discussion
Before carrying out these simulations, we thought that different
combinations of ensemble size, accumulation rate correlation,
and termination rule might produce markedly different qualita-
tive behavior. Instead, we observed that the RT distributions
predicted by large ensembles of redundant accumulators were
invariant with ensemble size, except in the conditions of extreme
termination rules and low accumulation rate correlations. These
results did not depend on the particular form of the accumulator,
variation in parameters such as leakage or within-trial noise
magnitude, and consistency of v and θ across accumulators (SI
Text, Robustness of Findings).
These findings complement previous models of decision-

making by incorporating stochastic variability across multiple
redundant accumulators and specifying constraints on the degree
of consensus necessary for robust performance across variation
in ensemble size. The rate correlations we found exceed the
noise correlation found among neighboring neurons (30, 31) but
can arise naturally from redundancy in common inputs, recurrent
connectivity, and modulation by a common source (32–34, 43).
Consensus through correlation of accumulation rates also pre-
vents extreme neural activity from governing behavior.
These findings also provide clarification and caution about the

conjecture that the activation level reached by particular neurons
before RT (ART) corresponds conceptually and quantitatively to
the threshold parameter of accumulator models (θtrigger). This
linking proposition cannot be taken for granted (44), and the
current demonstration that mapping model parameters onto
measures of individual accumulators depends on unobserved
statistical properties of the ensemble in which these accumu-
lators operate. However, the EPU model demonstrates the ne-
cessity of obtaining multielectrode recordings to assess correlations
in neural accumulation rates. These recordings should be made
from homogeneous ensembles of neurons at different sensori-
motor levels, but most importantly in neurons projecting to
brainstem and spinal circuits that innervate motor neurons; this
can provide key insights into termination rules and variability of
ART across trials. These observations are crucial to validating the
mapping of model parameters onto neural measures. However,
the robustness of the relationships between RT distributions and
ensemble size may reveal how measurements at different scales
(single neurons, multiunit activity, local field potentials, EEG,
MEG, fMRI) can appear to relate so well to the parameters of
accumulator models.
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To summarize, the random variation of RT has been explained
through models of a stochastic accumulation process and through
measures from individual neurons that appear to correspond to
that process. This juxtaposition entails a previously unaddressed
scaling problem—how can the activity of a multitude of re-
dundant neurons map onto a single model accumulator? We now
show how coordinated stochastic accumulation among many
redundant accumulators can produce realistic RT distributions
and accumulator dynamics regardless of the number of accu-
mulators over a wide range of ensemble parameters, requiring
only modest accumulation rate correlations and prohibiting the
fastest or slowest accumulators from governing performance.
Under this design principle, the dynamics of individual accu-
mulators predict the behavior of the ensemble. In future work,
these scaling properties can be explored in two complementary
approaches. First, the EPU model can be extended to more
complex models explaining performance in choice and stopping
tasks (SI Text, Future Model Extensions). Second, as technologies
develop to map the activity of large ensembles of neurons in the
brain (45), it will become more tractable to monitor the activity
of ensembles of neurons in circuits instantiating accumulation
and threshold mechanisms (SI Text, Neural Threshold Mecha-
nisms), providing an opportunity to verify the predictions of
our simulations.

Materials and Methods
EPU Model. Embodying the well-known dictum “out of many, one,” we
simulated ensembles of N stochastic accumulators (2) to understand how
one RT is produced from that ensemble. With bold letters used to represent
N-dimensional vectors, the ensemble of accumulators is governed by the
following stochastic differential equation

dAðtÞ= ðv − k ·AðtÞÞdt
τ
+

ffiffiffiffiffi
dt
τ

r
ξ: [1]

Eq. 1 implies that the change in activation dA at every time step dt depends
on the accumulation rate v driving the accumulators toward threshold θ,
the leakage constant k pushing activation back to baseline as it becomes
larger, and Gaussian random noise ξ. The linear ballistic accumulator model
presented in Results assumed no leakage and no within-trial Gaussian
random noise, but we do consider models with these characteristics in SI
Text, Robustness of Findings.

We sampled v from an N-dimensional multivariate lognormal distribu-
tion, v ∼ lnN ðμv ,ΣvÞ, where μv is a vector of identical location parameters
(μv) and Σv is the covariance matrix. This covariance matrix was computed as

Σv = rv · σv , [2]

where rv is the accumulation rate correlation matrix with off-diagonal
elements equal to rv, and σv is the scale parameter of the lognormal
distribution.

We sampled v from a multivariate log-normal distribution for three
reasons. First, the lognormal distribution takes positive values only and is
therefore a natural choice for modeling accumulation rates of movement
neurons that increase firing rate before a movement (46). Second, log-
normal race models with similar parameter values (see below) can account
for the shape of RT distributions (47). Third, the multivariate log-normal and
multivariate normal are the only distributions for sampling correlated ran-
dom variables with simple analytic solutions. In additional simulations, we
demonstrate that the type of sampling distribution does not change find-
ings qualitatively (SI Text, Robustness of Findings).

We assumed identical accumulation distributions (mean = 1 and SD = 1)
and thresholds (θ = 100 units) across accumulators; this seems to contrast
with the idiosyncrasy of neurons, but much of this idiosyncrasy is eliminated
in the analysis of neurophysiological data through normalization of spike
density functions. Moreover, additional simulations demonstrate that varying

accumulation rate distributions and thresholds across accumulators did not
alter our findings qualitatively (SI Text, Robustness of Findings).

Following the stochastic accumulator literature (1, 3), RT was modeled as
the sum of the duration of three processing stages: (i) a stimulus-encoding
stage with fixed duration (TE = 100 ms), during which activation level of all N
accumulators was equal to zero, A(0) = 0; (ii) an accumulation stage with
variable duration (TA), during which A increased with rate v toward θ until
the termination rule was met (see Introduction); and (iii ) a response-
execution stage with fixed duration (TR = 15 ms), during which A con-
tinued to increase. TE and TR were set in accordance with values measured
empirically (48) and used in previous neurally constrained stochastic accu-
mulator models (49). If the accumulation process had not met the termi-
nation rule within 100 s, it was aborted and no RT was logged. This cutoff
time was chosen so that an RT was obtained in >90% of all simulated trials
under all combinations of ensemble size, accumulation rate correlation, and
termination rule.

Monte Carlo Simulations. Simulations were performed in MATLAB (Math-
Works Inc., version 7.13), running in parallel on the high-performance
computer cluster at the Vanderbilt Advanced Center for Computing for
Research and Education.

We manipulated three key parameters: ensemble size (N), accumulation
rate correlation (rv), and termination rule (pN). We varied the ensemble size
across 20 levels (1 ≤ n ≤ 1,000, in increments of 10 between 10 and 100
accumulators and in increments of 100 between 100 and 1,000 accumu-
lators), the accumulation rate correlation across 11 levels (0.0 ≤ rv ≤ 1.0 in
increments of 0.1), and the termination rule across 12 levels (polling mech-
anism, 0% < pN ≤ 100%, in 10% increments; pooling mechanism, Σ Ai(t)/N ≥
θtrigger), yielding a total of 2,640 RT models. Although neuronal ensembles
constitute many more accumulators, we did not go beyond 1,000 due to
limitations of computational time and resources. In some versions of the
models we investigated ensemble sizes of 5,000–10,000 and found the same
results. Moreover, previous work has demonstrated that intrinsic noise cor-
relations among neurons entail upper limits on pool size (50).

For each combination of those three key parameters, a simulation con-
sisted of 1,000 Monte Carlo repetitions of 500 trials. On each trial, we sim-
ulated N correlated, redundant accumulation processes. When a critical
proportion of these accumulators reached threshold (pN, polling mechanism)
or when the average activity across all accumulators reached threshold
(Σ Ai(t)/N ≥ θtrigger, pooling mechanism), a response was made that was
measured as RT. Analogous to a neurophysiology experiment, we measured
ART as the mean activation level 10–20 ms before RT in a single accumulator
that was randomly selected from the ensemble once per session.

For each set of 500 trials, we computed a number of descriptive statistics.
To characterize the distributions of RT and ART, we computed five quantiles
(0.1, 0.3, 0.5, 0.7, and 0.9). To describe the relationship between ART and RT,
we sorted trials by RT, binned them into groups of 10, and computed the
linear regression slope of the relationship between ART and RT. The 1,000
Monte Carlo repetitions enabled us to compute 95% confidence intervals on
the descriptive statistics by estimating the 2.5th and 97.5th percentile of the
distribution across the 1,000 repetitions.

To determine the conditions underwhich RT distributions can be explained
by 1 and 1,000 accumulators, we identified accumulation rate correlations
and termination rules producing overlapping confidence intervals for each
RT quintile. To determine how RT distributions scale with ensemble size,
we repeated the same analysis for the n = 10 vs. n = 1,000 and n = 100 vs. n =
1,000 comparisons. To determine conditions under which ART was invariant
with RT, we identified accumulation rate correlations and termination rules
that produce regression slope confidence intervals including zero, separately
for n = 10, n = 100, and n = 1,000.
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