
Vol.:(0123456789)1 3

https://doi.org/10.1007/s42113-022-00143-4

ORIGINAL PAPER

Relating a Spiking Neural Network Model and the Diffusion Model 
of Decision-Making

Akash Umakantha1,2 · Braden A. Purcell3 · Thomas J. Palmeri4,5 

Accepted: 26 May 2022 
© Society for Mathematical Psychology 2022

Abstract
Many models of decision-making assume accumulation of evidence to threshold as a core mechanism to predict response 
probabilities and response times. A spiking neural network model (Wang, 2002) instantiates these mechanisms at the level 
of biophysically-plausible pools of neurons with excitatory and inhibitory connections and has numerous model parameters 
tuned by physiological measures. The diffusion model (Ratcliff, 1978) is a cognitive model that can be fitted to a range of 
behaviors and conditions. We investigated how parameters of the cognitive-level diffusion model relate to the parameters of a 
neural-level spiking model. In each simulated “experiment,” we generated “data” from the spiking neural network by factori-
ally combining a manipulation of choice difficulty (via the input to the spiking model) and a manipulation of one of the core 
parameters of the spiking model. We then fitted the diffusion model to these simulated data to observe how manipulation of 
each core spiking model parameter mapped on to fitted drift rate, response threshold, and non-decision time. Manipulations 
of parameters in the spiking model related to input sensitivity, threshold, and stimulus processing time mapped on to their 
conceptual analogues in the diffusion model, namely drift rate, threshold, and non-decision time. Manipulations of param-
eters in the spiking model with no direct analogue to the diffusion model, non-stimulus-specific background input, strength 
of recurrent excitation, and receptor conductances mapped on to threshold in the diffusion model. We discuss implications 
of these results for interpretations of fits of the diffusion model to behavioral data.
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Introduction

Developing a theoretical explanation of cognition or perception 
often begins by considering the classic three levels of analysis 
proposed by Marr (1982). The computational level asks what 
the system does and why, considering jointly the goals of the 
organism and the structure of the environment, as typified by 

Bayesian theories of the mind (e.g., Anderson, 1990; Oaksford 
& Chater, 2007; Tenenbaum et al., 2011). The algorithmic 
level asks how computations are implemented, what repre-
sentations and processes underlie cognition and perception, 
without necessarily being concerned with their biological 
realization in neural substrates, as typified by many cognitive 
models (e.g., Busemeyer, Townsend, Wang, & Eidels, 2015; 
Love, 2015; Sun, 2008). The implementation level asks how 
mechanisms are physically realized within the biological sub-
strate, namely neurons and their connections in the brain, as 
typified by traditional theoretical work in computational neu-
roscience (e.g., Carnvale & Hines, 2006; Dayan & Abbott, 
2005). Traditionally, theorists have worked within only one 
level of analysis, which reflected some combination of train-
ing and experience, a thoughtful decision regarding the most 
appropriate level of analysis for answering a particular ques-
tion, or a philosophical conviction that one level of analysis 
was the right level while others were unconstrained approxima-
tions. More than four decades after Marr’s insights, discussion, 
and debate continues about the relative usefulness of different 
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levels of analysis (e.g., Carandini, 2012; Frank, 2015; Jones 
& Love, 2011; Logan, Schall, & Palmeri, 2015; Love, 2015).

Rather than embrace one of Marr’s levels as the “right” 
level, some research attempts to build bridges between lev-
els (e.g., Frank, 2015; Ratcliff & Frank, 2012; Zandbelt 
et al., 2014). In this article, we specifically examine rela-
tions between two widely cited and influential models of 
decision-making: at the implementation level, a spiking 
neural network model of decision-making developed by 
Wang and colleagues (Wang, 2002; Wong & Wang, 2006), 
and at the algorithmic level, the more abstract cognitive dif-
fusion model1 (DDM) of Ratcliff and colleagues (Ratcliff, 
1978; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998). 
The two models share many conceptual similarities. They 
both explain behavior from decision-making tasks in which 
subjects must decide among alternative choices given some 
potentially noisy evidence,2 both solve this task by assuming 
that this evidence is accumulated over time to a response 
threshold, and both have been used to explain aspects of 
neural activity underlying these forms of decisions. How-
ever, the two models differ in scale, scope, and tractability 
in ways that confer each modeling framework with distinct 
advantages and disadvantages.

The diffusion model (Ratcliff & Rouder, 1998), in its most 
common form, assumes a single accumulator with upper 
and lower evidence thresholds for each of the two possible 
choice alternatives. The model has relatively few parameters 
and requires only seconds (or less) to simulate predictions 
and fitting parameters to observed data often takes minutes 
(or less). Despite having relatively few degrees of freedom, 
the model can capture much of the key variability observed 
in behavior across different subjects, species, tasks, and 
conditions (e.g., Ratcliff, 2006; Ratcliff & McKoon, 2008; 
Ratcliff & Smith, 2004; Ratcliff et al., 2010; see also Nosof-
sky & Palmeri, 1997, 2015). Moreover, the observation that 
certain neurons in the brain seem to instantiate an accumu-
lation of evidence like that assumed by the diffusion model 
(e.g., Hanes & Schall, 1996) has spawned growing theo-
retical research equating accumulator models with different 
measures of neural activity (Forstmann et al., 2016; Logan, 
Schall, & Palmeri, 2015; Palmeri, Logan & Schall, 2015; see 
also Palmeri et al., 2017; Turner et al., 2017). In some cases, 
the evidence accumulation process has been directly identi-
fied with the activity of individual neurons (e.g., Boucher 
et al., 2007; Mazurek et al., 2003; O’Connell, Shadlen, 

Wong-Lin, & Kelly, 2018; Purcell et al., 2010; Purcell et al., 
2012; Purcell & Palmeri, 2017; Ratcliff et al., 2003; Ratcliff 
et al., 2007; Smith & Ratcliff, 2004). In other cases, the cog-
nitive processes associated with diffusion model parameters 
have been linked to more global measures of neural activity 
including EEG (e.g., O’Connell et al., 2018; O'Connell et al., 
2012; Philiastides et al., 2006; Schurger et al., 2012) and 
functional MRI (e.g., Forstmann et al., 2008; Turner et al., 
2013, 2015; White et al., 2012). The tractability and suffi-
cient neural plausibility of abstract cognitive models like the 
diffusion model make them extremely powerful frameworks 
to understand normal behavior as well as illness, injury, and 
disease (e.g., Montague et al., 2012; Logan, Schall, & Palm-
eri, 2015; Wiecki et al., 2015).

The spiking neural network model (Wang, 2002) explains 
how decisions can be implemented in realistic neural cir-
cuits. In this model, parameters define the cellular and syn-
aptic mechanisms that govern the interactions among pools 
of neurons within a circuit. These models allow us to ask 
questions about how changes in network structure, synaptic 
mechanisms, and neural connectivity can ultimately impact 
neural responses and behavior. In doing so, the models pro-
vide a framework to understand how failures at the cellular 
level can be linked to behavioral deficits in healthy and 
clinical populations (Anticevic, Murray, & Barch, 2015; 
Rolls & Deco, 2011). However, the additional complexity 
of these models precludes direct fits to behavioral data. For 
example, the spiking neural network model that we used 
has 2000 simulated neurons, with each neuron defined by 
10 differential equations, with 4 million simulated connec-
tions between neurons, and a large number of parameters. 
A Python implementation of this model required a good 
part of a day running on an older laboratory workstation 
to simulate predictions for one set of experimental condi-
tions with a fixed set of parameters. Without any further 
optimization, it could well take months or more to fit a 
fully parameterized model to observed data, putting aside 
questions of whether different parameters are uniquely 
identifiable or not. And with the relatively large number of 
parameters of the spiking neural network model, it is not 
entirely clear which parameters might be allowed to vary 
and which might need to be fixed a priori across subjects 
and conditions.

Here we aim to link between the abstract diffusion model 
and the low-level spiking neural network model. If we can 
understand the relationships between the two, we may be 
able to take advantage of the strengths of both frameworks. 
For example, if we can identify mappings between diffusion 
model parameters and purported biological mechanisms 
instantiated by the spiking neural network model, then 
it may be possible to develop testable hypotheses about 
neural circuits based on diffusion model fits to behavior. 
Even if the mapping is not a perfect one-to-one match, we 

1 Variously called the diffusion decision modeling or drift diffusion 
model (DDM), the Ratcliff diffusion model, or most simply just the 
diffusion model (of decision-making).
2 With noise (variability) originating from sources that are internal, 
external, or both, with variability arising within a single decision 
(within-trial variability), across decisions (between-trial variability), 
or both.
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may still be able to identify a diffusion model parameter 
with a subset of potential biological mechanisms. This 
raises the possibility that a single cognitive mechanism, 
captured by a single diffusion model parameter, may have 
several potential neural implementations that are not 
necessarily consistent across experimental manipulations 
and subject populations.

To make this mapping, using an approach also used 
by Frank (2015; see also Ratcliff & Frank, 2012), we 
first simulated behavioral data using the spiking neural 
network model, treating the model like a single subject in 
a decision-making task. We systematically varied different 
biological mechanisms by systematically varying different 
parameters in the spiking neural network. Next, we fitted 
the diffusion model to the simulated data from simulated 
experimental conditions in much the same way that we 
would fit the diffusion model to actual observed human 
or non-human data in different experimental conditions. 
We then examined how the best-fitting diffusion model 
parameters systematically varied in response to the 
simulated behavioral changes introduced by having varied 
the underlying biophysical mechanisms in the spiking neural 
network model. A key advantage of this approach is that 
unlike fitting actual human or non-human behavior, we 
know the underlying “ground truth” biophysical mechanisms 
that were manipulated because we manipulated specific 
parameters in the spiking neural network model. In a sense, 
we asked how well we could reverse engineer parameters 
of the spiking neural network model based on fits of the 
diffusion model, which gives us insight into the potential of 
reverse engineering when it comes to fitting the diffusion 
model to behavioral data from real organisms with unknown 
neural mechanisms.

As we will see, in some cases, we found a direct rela-
tionship between the spiking neural network model and the 
diffusion model. For example, manipulations of the neural 
threshold firing rate parameter of the spiking neural net-
work model largely mapped onto differences in the fitted 
diffusion model threshold parameter. But in other cases, we 
found less obvious or anticipated relationships. For example, 
manipulations of recurrent excitation in the spiking neural 
network model — the strength of connections between neu-
rons in a pool that code for the same choice — also mapped 
onto differences in the fitted threshold parameter of the dif-
fusion model. While there were some clear and meaning-
ful relationships between cognitive-level and neural-level 
models, there were also some complex and less intuitive 
relationships. These convergent and divergent mappings 
between models at different levels of analysis might influ-
ence both the interpretation of diffusion model parameters 
for explaining differences between groups and individuals 
and the understanding of the functional role of particular 
brain areas during decision-making tasks.

Overview of a Perceptual Decision-Making Task

Using the spiking neural network model (described in detail 
later) as our simulated “subject,” we simulated data from a 
two-alternative forced-choice perceptual decision-making 
experiment with six levels of difficulty, with stimulus condi-
tions ranging from those permitting chance performance to 
near-perfect performance. Differences in stimulus difficulty 
map on to differences in input to the spiking neural network 
model (and differences in drift rate for the diffusion model).

We modeled our simulations after the parameterizations 
of the spiking neural network model originally used 
by Wang (2002) to account for data from a motion-
discrimination task3 with primates (Wang, 2002). In this 
task (e.g., Britten et  al., 1992; Mazurek et  al., 2003), 
subjects (human or monkey) view an aperture containing 
a large number of dots. At each video frame, a proportion 
of dots are offset coherently from their original location to 
create apparent motion, while the remaining dots are placed 
randomly within the aperture. The dots move in one of two 
directions (e.g., leftward or rightward), and the subject’s 
task is to indicate the direction of motion (e.g., by an eye 
movement or keypress). We (as did Wang, 2002) consider 
the RT version of this task (e.g., Roitman & Shadlen, 
2002), where the subject responds when ready to make a 
decision following the onset of motion. The percentage 
of dots that are coherently offset determines the motion 
strength (expressed as percent coherence), which varies 
randomly across trials. Trials with higher motion strength 
are easy, producing high accuracy and fast responses; trials 
with lower motion strength are difficult, producing low 
accuracy and slow responses; trials with zero coherence 
have no correct response (rewarded randomly). Simulated 
accuracy and response times (RTs) from a random dot 
motion decision task are illustrated (and further explained) 
later in Fig. 3. Note that in some of the figures, we illustrate 
accuracy and mean RTs (e.g., Fig. 3A), though we always 
fitted full distributions of correct and error RTs (e.g., 
Fig. 3B).

Both the spiking neural network and the diffusion model 
explain decisions like this by accumulating noisy evidence 
over time. The stimulus (in this case, motion strength 
and direction) and fidelity of the sensory-perceptual 

3 While the spiking neural network model was applied to data from 
a motion discrimination task, the model does not instantiate motion-
detection circuits in extrastriate visual cortex, nor does it take a 
motion signal as input. Rather, different levels of motion coherence 
simply map onto different numeric levels of input to the spiking neu-
ral network model. We can think of the model as generically simulat-
ing choice decision-making across various levels of difficulty rather 
than specifically simulating performance in a motion discrimination 
task per se.
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representations are reflected in the input parameter in the 
spiking neural network and the drift rate parameter in the 
diffusion model. For the motion-discrimination task, these 
inputs are likely computed in brain areas associated with 
motion perception (e.g., Britten et al., 1992), but neither 
model specifies the exact computations by which these 
inputs are generated. By keeping the sensory and perceptual 
processing generic, the results can apply far more widely 
than dot motion coherence tasks, to other kinds of decision-
making tasks (e.g., Nosofsky & Palmeri, 2015; Ratcliff et al., 
2010; Richler & Palmeri, 2014). In addition, neither the 
spiking neural network nor the diffusion model specify the 
nature of the motor response, so the models can in principle 
apply equally to the initiation of saccadic eye movements, 
limb movements, or finger keypresses (Cisek et al., 2009; de 
Lafuente et al., 2015).

Dot motion coherence is a bottom-up stimulus manipula-
tion that affects accuracy and RTs. Following Wang (2002; 
Roitman & Shadlen, 2002), we simulated six levels of coher-
ence (0.0%, 3.2%, 6.4%, 12.8%, 25.6%, 51.2%), and these 
were instantiated as six levels of the input parameter to the 
spiking neural network model.

In addition to simulating six coherence (difficulty) lev-
els, in each “experiment,” we also simulated the effects of 
a second independent (or quasi-independent4) variable. For 
sake of simplicity, we assumed selective influence (e.g., 
Sternberg, 1998), whereby manipulation of this second 

independent variable affected the value of one and only one 
parameter in the spiking neural network. For example, differ-
ent levels of learning might influence the gain or sensitivity 
on the inputs to network, different levels of speed-accuracy 
tradeoff might influence the threshold level of pooled activ-
ity needed to initiate a choice response, and different levels 
of some brain disorder might affect the conductance of a 
particular neurotransmitter channel.

We simulated data from the spiking neural network model 
by crossing the first motion coherence (difficulty) independ-
ent variable that affects the input to the spiking model with 
the second independent (or quasi-independent) variable that 
affects one parameter of the spiking model and then fitted 
the diffusion model to that data, with a particular eye to what 
differences in diffusion model parameters were required to 
account for simulated manipulations of the spiking neural 
network parameter.

Diffusion Model

The diffusion model (Forstmann et al., 2016; Ratcliff, 
1978; Ratcliff & Rouder, 1998) is a member of a 
class of cognitive models that assume that decisions 
are made by an accumulation of evidence over time 
to a response threshold (e.g., see Ratcliff & Smith, 
2004). The basic elements of the diffusion model are 
illustrated in Fig. 1. In a common parameterization, 
evidence begins at a starting point (z) and accumulates 
toward the upper (a) or lower (0) response threshold. 
When one of the thresholds is reached, a response is 
made. In the case of a motion discrimination task, the 
upper a threshold might be associated with a rightward 

Fig. 1  The diffusion model assumes that RT is partitioned into (1) 
time for perceptual processing of sensory information  (Tp), (2) time 
for a decision stage assuming accumulation of evidence toward an 
upper or lower threshold for one of the two possible response alter-
natives, and (3) time for motor planning and execution  (Tm); the 
times for the first and last stages are summed as a single free param-
eter (Ter). The decision stage assumes evidence starting at a point (z) 

between the upper (0) and lower (a) response threshold, with a noisy 
accumulation over time determined by a drift rate (v) with variance 
s2. The diffusion model allows for variability across trials in starting 
point, non-decision time, and drift rate. Decision time is given by the 
time taken for accumulated evidence to hit one of the two thresholds, 
with choice given by which threshold is first hit

4 Quasi-independent in the sense that they could simulate differ-
ence between different subjects (for example, caused by differences 
in genetics, development, IQ, sex, age, experience, disease, damage, 
and whole host of other factors not manipulated by the experimenter).
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response and the lower 0 threshold associated with a 
leftward response.

Accumulation in the diffusion model is noisy. The 
rate of accumulation is called the drift rate (v) and its 
within-trial variability over accumulation is specified 
by a diffusion coefficient (s2), which is often fixed 
by convention. The drift rate is assumed to take on a 
different value in different stimulus conditions. In the 
case of the motion-discrimination task, drift rates have 
been shown to scale linearly with motion strength (e.g., 
Palmer et al., 2005; Mazurek, Ditterich, & Shadlen, 2003; 
Churchland et al., 2008). The specific scaling is dictated 
by a drift-rate sensitivity parameter (k) such that v = k · 
C, where C is the motion strength (proportion coherence), 
where k can be thought of as a gain control parameter 
that is modulated by learning or attention (e.g., Treue & 
Maunsell, 1999).

Both the time for sensory/perceptual encoding and the 
time for motor planning/response execution are captured by 
a non-decision time parameter (Ter). The RT on a given trial 
is determined by adding time to reach a decision threshold 
and the Ter.

In addition to the within-trial variability introduced by 
the noisy accumulation of evidence, applications of the dif-
fusion model often assume between-trial variability in drift 
rate (normally distributed with mean 0 standard deviation 
η), non-decision time variability (uniformly distributed with 
range st), and starting point variability (uniformly distributed 
with range sz). In typical applications of the diffusion model, 
the drift rate (v) varies over stimulus conditions, response 
threshold (a) varies over speed-accuracy stress conditions, 
and the relative starting point (whether z differs from a/2) 
varies over bias manipulation conditions; other parameters 
are often assumed to remain constant across conditions. 
Related models assume a discrete random walk instead of a 
continuous diffusion (e.g., Link, 1975; Nosofsky & Palmeri, 
1997, 2015) or eliminate within-trial variability and only 
preserve between-trial variability (e.g., Brown & Heathcote, 
2008), but generally account for behavioral data with con-
ceptually similar cognitive mechanisms (e.g., Donkin et al., 
2011).

When fitted to response probabilities and distributions 
of correct and error RTs (e.g., Ratcliff & Tuerlinckx, 
2002), the diffusion model captures most of the key prop-
erties of observed data, including the shape of correct and 
error RT distributions; how those distributions change 
over experimental conditions, fast errors and slow errors; 
and how behavior changes under different speed-accuracy 
stress instructions (e.g., Ratcliff & McKoon, 2008; Rat-
cliff & Rouder, 1998), as well as individual differences 
in decision-making (e.g., Ratcliff et al., 2006, 2010; Shen 
& Palmeri, 2016).

Spiking Neural Network Model

Unlike cognitive models, neural models are developed 
at the implementation level of Marr’s hierarchy. Wang 
(2002) proposed a neural model of decision-making that 
was based on a model originally developed for working 
memory (Brunel & Wang, 2001) and applied it to the 
motion-discrimination task (which is why we illustrate 
using a motion discrimination task here). The model is 
comprised of a network of thousands of integrate-and-fire 
neurons that account for the synaptic events and changes 
in membrane potential that lead to spikes. The influence 
of spikes on the post-synaptic membrane potential is gov-
erned by a system of differential equations that mimic the 
current dynamics associated with specific ion channels. 
Synaptic weights determine the strength of connections 
between different neural pools. Following known biologi-
cal constraints, the influence of a single spike is relatively 
short lived (< 25 ms), but recurrent, excitatory connec-
tions within the network allow the model to integrate 
inputs over longer timescales (Wang, 1999), allowing for 
decision-making (as well as working memory under dif-
ferent parameterizations of the same model).

A number of considerations led us to choose the Wang 
(2002) spiking neural network model as our candidate neu-
ral-level model to compare with the cognitive-level DDM. 
Other neurally constrained models have articulated the net-
work of different brain areas implicated in various decision-
making tasks (e.g., Frank, 2006; Frank & Claus, 006) with 
neural elements somewhat more abstract than the particular 
integrate-and-fire neurons used by Wang (2002), and indeed 
the relationships between such models and the DDM have 
been examined (Ratcliff & Frank, 2012). The spiking neural 
model does not simulate all of the detailed processes by 
which spikes are generated, or any of the morphological 
properties of real neurons, so it is a more abstract model than 
how an even lower-level biophysical model might be real-
ized (one that would be even less computationally tractable 
for our purposes). Key was that we needed a neural-level 
model that captured neural mechanisms in ways not directly 
reflected in the cognitive-level DDM, but that also led to 
behavioral predictions of choice probability and response 
time. In addition, past work has often considered the spik-
ing neural network model of Wang (2002) to be in essence 
a neural implementation of an accumulation of evidence 
process (e.g., Wong & Wang, 2006; Wong et al., 2007), 
so investigating the mappings between the parameters of 
this specific neural model and those of the DDM seemed 
justified.

To simulate a two-alternative choice task, the model 
assumes that two choice-selective pools of excitatory 
pyramidal neurons compete to select a response (e.g., 
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rightward motion versus leftward motion); a pool of inhibi-
tory interneurons mediates competition between the choice-
selective pools and an additional pool of non-selective neu-
rons represents neurons that are not directly associated with 
the potential choices (Fig. 2). The combination of recur-
rent excitatory connections and inhibition-driven competi-
tion allows the model to generate attractor dynamics that 
reproduce observed decision-making behavior and neural 
responses (Wang, 2002).

All neural pools are driven by background inputs that take 
the form of spike trains with Poisson statistics governed by 
a mean rate. Following the onset of a stimulus and after a 
sensory encoding delay, choice-selective pools receive an 

additional input (increased rate) that depends on the exter-
nal stimulus. The input rate depends on the difficulty of the 
discrimination between the alternatives, which in our case 
is motion strength, as determined by motion coherence. 
Stronger motion strength corresponds to larger input to the 
pool associated with a correct choice and weaker input to the 
pool corresponding to an incorrect choice. As with the dif-
fusion model, input rates scale linearly with motion strength 
according to an input sensitivity parameter (see Appendix), 
reflecting the observed linear relationship between motion 
strength and direction-selective sensory neurons that are a 
likely input source (e.g., Britten et al., 1992). A choice is 
made when the pooled firing rates of one choice-selective 

Fig. 2  Spiking neural network model (Wang, 2002). A Illustration 
of the neural network architecture. Neurons are modeled with leaky 
integrate-and-fire dynamics and have three currents determined by 
AMPA, NMDA, and GABA receptor conductance values. Two sub-
sets of neurons in the excitatory pool are selective for the two pos-
sible choices in the task. These two choice-selective pools are exhibit 
strong recurrent connections (w+) to other neurons in the same pool 
and compete with the other choice-selective pool via an inhibitory 
pool of neurons. All neurons receive background input (µext). Upon 
stimulus presentation, the two choice-selective pools receive differ-

ential input (µ1and µ2) based on the stimulus condition (c) and input 
strength (µk). B Left: raster plot of spikes from the choice-selective 
pools, blue represents neurons voting for choice 1 and red represents 
neurons voting for choice 2. Right: pooled firing rates of the two 
choice-selective pools. A decision is made and the trial ends when the 
pooled firing rate of pool 1 or pool 2 reach the neural network thresh-
old (aNN = 15  Hz). On this example trial with coherence c = 25.6%, 
the pooled firing rate for choice 1 (blue) reached threshold 760  ms 
after stimulus onset
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pool reach a fixed firing rate threshold. The pool that reaches 
the firing rate threshold first determines the choice, and the 
time when the pooled activity reaches that threshold deter-
mines the RT. Most often, the pool that represents the cor-
rect choice and receives the larger input will be the first to 
reach threshold and determine the choice. But this is not 
always the case due to noise, especially for more difficult 
decisions, where the pool that represents the incorrect choice 
can be the first to reach threshold, which results in the model 
making errors.

Before delving into the details of the spiking neural net-
work model, we first provide a general overview of its bio-
logical mechanisms that we will explore. Because both the 
spiking neural model and the diffusion models assume a 
form of evidence accumulation to a threshold, we can use 
this conceptual connection to establish a priori hypotheses 
about relationships between the two. We anticipated that 
mechanisms that have similar effects on the evidence inte-
gration process should produce common behavioral predic-
tions and clear parameter mappings between the models. Of 
course, even though there might be a conceptual similarity 
— neural thresholds should act like diffusion thresholds, 
and neural input strength should act like diffusion drift rates 

— that does not guarantee that there will be a simple one-to-
one mapping between models. In particular, the spiking neu-
ral network has non-linear dynamics that are in certain ways 
quite different from the accumulation dynamics of the dif-
fusion model. In other cases, there is no obvious conceptual 
link between the parameters of the two models — recurrent 
excitation, synaptic weights, and ionic conductance values 
in the spiking neural model have no analogue in the diffu-
sion model — so those relationships are not immediately 
clear a priori.

Roadmap

We first describe the spiking neural network model, includ-
ing the parameters that we will explore and the procedures 
for simulating choices and RTs from the spiking model. 
We then briefly illustrate its predictions of behavior in 
the standard random dot motion task, replicating results 
previously presented by Wang (2002). We next describe 
the diffusion model and the procedures for fitting it to the 
simulated data from the spiking neural network model. We 
then describe the simulated experiments in which we sys-
tematically manipulated a single spiking neural network 

Fig. 3  Simulated “data” from 
the spiking neural network 
model (assuming the default 
parameters from Wang, 2002). 
A shows mean correct and error 
RT and P(Correct) as a function 
of motion coherence (x axis). B 
show correct and error (degen-
erate) cumulative RT distribu-
tions as a function of motion 
coherence (colored lines per the 
legend). Note that error RTs are 
not shown for the 25.6% and 
51.2% motion coherence condi-
tions because few errors were 
produced
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mechanism by varying one of its parameters and generated 
at each spiking neural model parameter level a new set of 
behavioral observations for each motion strength condi-
tion; for example, we simulated data for five different lev-
els of spiking neural network model threshold and at each 
threshold simulated six levels of dot motion coherence. We 
then describe fits of the diffusion model to each simulated 
5 × 6 factorial experiment, examining how manipulations 
of a particular spiking neural network model parameter 
mapped on to differences in the drift rate, threshold, and 
non-decision time parameters in the fitted diffusion model.

Simulation and Model Fitting Methods

Simulating the Spiking Neural Network Model

Network architecture We used a neural architecture 
designed for perceptual decision-making, with all default 
model parameters and other aspects of its architecture taken 
from Wang (2002). This spiking neural network model con-
sists of four neural pools (see Fig. 2). Two pools of 240 
choice-selective excitatory pyramidal neurons represent the 
alternative choices in the task (one pool for a decision that 
motion is rightward, one pool for a decision that motion is 
leftward). An additional pool of 1120 background excita-
tory neurons represents non-choice-selective neurons (i.e., 
neurons representing responses not relevant for the current 
task). A pool of 400 inhibitory interneurons implements 
competition between these pools.

Network Input All simulated neurons receive stochastic 
external background inputs as spike events sampled from 
a Poisson process with a mean spike rate of µext through-
out each simulated trial. Following Wang (2002), we used a 
default background input value of µext = 2400 Hz. In one of 
our simulated experiments, we systematically manipulated 
the amount of background input to the two choice-selective 
pools using µext = 2390, 2395, 2400 (default), 2405, and 
2410 Hz; below this range, recurrent dynamics were not 
strong enough to support long-term integration over time, 
and above this range, the model became unstable in the pre-
stimulus period leading to preemptive choices.

On each simulated trial, we allowed a 1-s pre-stimulus period 
for the network to reach a stable baseline state before stimu-
lus presentation. Then after a stimulus processing time (Ts),5 

additional stimulus-driven inputs were added to the inputs 
to the choice-selective pools, while the background and 
inhibitory pools continued to receive only background input 
(Fig. 2). Stimulus processing time was not explicitly included 
in the original Wang (2002) model, but we include it here both 
for biological plausibility and because this time is assumed to 
contribute to the non-decision time assumed by the diffusion 
model. To identify the relationship between diffusion model 
parameters and stimulus processing time in the spiking neural 
model, in our simulated experiments, we explored a range of 
Ts values: 0 (default), 50, 100, 150, and 200 ms (Figs. 3 and 4).

After the 1-s pre-stimulus period and stimulus process-
ing time Ts, stimulus inputs were presented to the choice-
selective neural pools (added to the background inputs µext) 
until the choice is made and the simulated trial ends. The 
mean spike rate of the stimulus inputs are governed by the 
equations:

where µ1 corresponds to the pool representing the one choice 
(say, leftward for a particular simulated trial), and µ2 cor-
responds to the other choice (say, rightward for a particu-
lar simulated trial). For simplicity, all simulations assume 
symmetry between leftward and rightward choices (the 
decision is not biased and parameters for the two pools are 
identical); so we will sometimes refer to pool 1 as the one 
associated with the correct choice and pool 2 with the incor-
rect choice (in the same way that for the diffusion model, 
we will sometimes refer to the upper threshold as the one 
associated with the correct choice and the lower threshold 
with the incorrect choice). The stimulus inputs have a fixed 
component, µ0, and scale linearly with motion strength in 
percent coherence, c (following Britten et al., 1992). The 
input sensitivity parameter, µk, determines how input scales 
with motion strength. Following Wang (2002), we used a 
default value of µ0 = 40 Hz and µk = 40 Hz. To identify the 
relationship between diffusion model parameters and input 
sensitivity, we explored the following range of µk values: 
20, 30, 40 (default), 50, and 60 Hz. These values produced 
a large range of simulated RTs and choice probabilities (see 
Fig. 5), while keeping the neural network within a region 
of network dynamics that allows for competition between 
the two pools and for a choice decision to emerge (Wong & 
Wang, 2006).
Neuron and Synaptic Dynamics Mathematical details of the 
neuronal and synaptic dynamics are provided in Appendix. 

!1 = !0 + !kc

!2 = !0 − !kc

5 Stimulus processing time (Ts) reflects both afferent conductance 
delays from the retinal stimulation and time needed to process the 
stimulus input to drive the appropriate choice-selective pools.
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Fig. 4  All panels show simu-
lated “data” from the spiking 
neural network model (assum-
ing default parameters from 
Wang, 2002) as symbols and 
diffusion model predictions are 
lines (simulated “data” are iden-
tical to those shown in Fig. 3). 
A and C show correct and 
error (degenerate) cumulative 
RT distributions as a function 
of motion coherence (colored 
lines per the legend). B and D 
show mean correct and error RT 
and P(Correct) as a function of 
motion coherence (horizontal 
axis). Simulated “data” in A 
and B are identical to simulated 
“data” in C and D. A and B 
show diffusion model predic-
tions for Ter-constrained version 
as lines. C and D show diffusion 
model predictions for the Ter-
unconstrained version as lines
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Fig. 5  Mapping between the manipulated spiking neural network 
parameters and fitted diffusion model parameters. Top two rows show 
mean RTs and proportion correct, where data points and error bars 
indicate spiking neural network simulated data and lines indicate fit-
ted diffusion model predictions (color coded by motion coherence 
following legend as in Figs.  3 and 4). Bottom three rows show the 
best-fitting diffusion model parameters (error bars indicate 95% boot-

strapped confidence intervals); median best-fitting parameters were 
used to generate diffusion model predictions of mean RTs and accu-
racy in the top two rows. This figure shows mappings between spik-
ing neural network parameters (input sensitivity, threshold firing rate, 
stimulus processing time) with a conceptual relationship to diffusion 
model parameters
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Each and every neuron in the network is modeled as a leaky 
integrate-and-fire neuron (e.g., Abbott, 1999). A differen-
tial equation defines the change in membrane potential over 
time. Once the membrane voltage crosses a threshold level, 
a discrete spike is generated, the voltage is reset to its resting 
potential, and it is prevented from spiking again during its 
refractory period. The spike generated by that neuron serves 
as a weighted input to other neurons it is connected to.

The change in membrane voltage over time is determined 
by the synaptic current that serves as the input to the neuron 
from the other neurons it is connected to. The spiking neu-
ral network assumes four types of currents: external AMPA 
(excitatory), recurrent AMPA (excitatory), recurrent NMDA 
(excitatory), and recurrent GABA (inhibitory). The precise 
dynamics of these synaptic currents is given by a series of 
equations specified in Appendix.

We systematically manipulated two classes of parameters 
in the spiking neural network model that affect the synaptic 
current dynamics:

One class of parameters we manipulated was the synap-
tic weights that control the strength of connections between 
neural pools. The spiking neural network is connected all-to-
all, meaning that any single neuron, j, is connected to every 
other neuron in the network with weight wj. The default syn-
aptic weight is wj = 1.000. Neurons representing the same 
choice (say, leftward) have stronger connections wj = w+, 
whereas neurons representing the opposite choice have 
weaker connections w– (see Appendix for details). Following 
Wang (2002), we used the default value w+ = 1.700. To iden-
tify the relationship between diffusion model parameters and 
recurrent synaptic weights, in our simulated experiments, 
we used w+ = 1.650, 1.675, 1.700 (default), 1.725, 1.750; 
beyond this range, the model failed to exhibit competitive 
dynamics necessary to generate a decision (Wong & Wang, 
2006).

The other class of parameters we manipulated was the 
conductance values (g) of three different receptor chan-
nels (recurrent AMPA, NMDA, and GABA). We used the 
following parameter ranges: grec,AMPA = 0.0450, 0.0475, 
0.0500 (default), 0.0525, and 0.0550 nS; gNMDA = 0.163, 
0.164 (default), 0.165, 0.166, and 0.167 nS; gGABA = 1.290, 
1.295, 1.300 (default), 1.305, and 1.310 nS. As with other 
choices of manipulated parameter values, these values were 
chosen because they allowed the model to exhibit appropri-
ate competitive dynamics of the network for it to exhibit 
decision-making behavior while also producing reasonable 
differences in RTs and accuracy.

Predicting Choice and RT After stimulus processing time 
(Ts), the stimulus inputs (µ1 and µ2) were presented to the 
network, and the two pools (rightward vs. leftward) com-
peted until the average firing rate of one pool reached a 
fixed threshold (aNN). Following Wang (2002), average 

pooled firing rates were calculated using a sliding window6 
of 50 ms with a step size of 5 ms, and a default threshold of 
aNN = 15 Hz was assumed. Because we assumed complete 
symmetry between rightward and leftward decisions, we 
define a correct trial as a trial in which the pool receiving 
the larger input µ1 reached threshold first and an error trial as 
one in which the pool receiving the smaller input µ2 reached 
threshold first. To explore the relationship between diffusion 
model parameters and spiking neural network model thresh-
old, we varied aNN in this range: 10.0, 12.5, 15.0 (default), 
17.5, 20.0 Hz.

Simulation Methods For each of the six motion strengths, 
we simulated 5000 trials of the spiking neural network 
and recorded each trial’s RT and choice (correct vs. error). 
Numeric simulations of the system of differential equations 
(Appendix) used timesteps of 0.02 ms. Figure 3 shows the 
mean correct and error RTs, choice probabilities, and full 
RT distributions (as degenerate7 cumulative distribution 
functions) produced by the neural network using the default 
parameters assumed in Wang (2002), which are the default 
parameters we used. The model reproduces key characteris-
tics of behavioral data in perceptual decision-making tasks. 
Consistent with experimental observations in humans and 
monkeys (Ratcliff & McKoon, 2008; Roitman & Shadlen, 
2002), the proportion of correct choices increases, and the 
mean RT decreases with increased motion strength (Table 1).

To generate each “simulated experiment,” we repeated 
this process while systematically varying one spiking neu-
ral network parameter at a time, keeping all others at their 
default values. In each simulated experiment, five different 
values of a given neural model parameter were used (as 
noted earlier), and we simulated the six motion strengths for 
each parameter setting. The range of parameter values was 
chosen to produce reasonable differences in accuracy and RT 
while also maintaining the competitive and attractor dynam-
ics of the model necessary for it to exhibit decision-making 
(Wong & Wang, 2006). In total, each simulated experiment 
contained 5000 trials at each of the six motion strengths for 
each of five spiking neural network model parameter values, 
for a total of 30,000 simulated trials.

In summary, simulated experiments were conducted vary-
ing the following spiking neural network model parameters: 
stimulus processing time (Ts), input sensitivity (µk), neural 
response threshold (aNN), background input (µext), recurrent 
synaptic weight (w+), and conductances for AMPA recur-
rent (grec,AMPA), NMDA (gNMDA), and GABA (gGABA) receptor 
channels.

6 Using a slightly larger or smaller window size did not qualitatively 
change model simulations.
7 So-called “degenerate” distributions asymptote at the rate of cor-
rect or error proportion in each condition, rather than asymptote at 1.
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Fitting the Diffusion Model

Overview We fitted the diffusion model to behavioral data 
(error and correct RT distributions and accuracy) simulated 
by the spiking neural network model. As described earlier, 
the key conceptual parameters of the diffusion model are 
the drift rate (v), threshold (a), and non-decision time (Ter). 
Like most applications of the diffusion model, we allowed 

subsets of these parameters to vary freely across differ-
ent experimental conditions, as described in detail below. 
Parameters that govern across-trial variability of parameters 
(sz, st, and η) allow the diffusion model to capture certain 
aspects of observed data (e.g., Boehm, et al., 2018), and like 
most applications, these parameters were assumed to be the 
same across different experimental conditions. Because the 
spiking neural network model assumed no bias, we fixed 
the starting point (z) halfway between the upper and lower 

Table 1  Fits to behavioral 
equations to quantify the effects 
of coherence on RTs and 
accuracy for the simulations 
using standard parameters from 
Wang (2002). In the equations, 
coh represents coherence and 
can take values of 0.000, 0.032, 
0.064, 0.128, 0.256, 0.512 
and acc represents accuracy. 
p values for all coefficients 
are smaller than 0.001. Larger 
coherence values resulted 
in smaller RTs (negative 
regression coefficient in the 
top table) and more correct 
responses (positive regression 
coefficient in the middle table)
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response threshold of the diffusion model. The standard 
deviation of within-trial variability, s, was fixed at 0.1 by 
convention (Ratcliff & Rouder, 1998).

Before fitting the diffusion model to simulated experiments and 
examining fits to manipulations of spiking neural network model 
parameters, we explored how well different parameterizations 
of the diffusion model fitted the simulated data from the basic 
motion discrimination task (before introducing manipulations of 
the second independent/quasi-independent variable). Drift rate is 
usually assumed to vary with stimulus difficulty (e.g., Nosofsky 
& Palmeri, 1997; Palmeri, 1997; Ratcliff & Rouder, 1998), so we 
expect that differences of drift rate v should fully explain behav-
ior as a function of motion strength. As described earlier, we 
assumed that vC = k · C, where C is the proportion motion coher-
ence and k is a gain parameter that scales motion strength onto 
drift rate. We confirmed that a model assuming that only drift rate 
varied linearly with motion strength, with all other parameters 
held constant across motion strength, could qualitatively explain 
key aspects of the simulated spiking neural network model data 
(Fig. 4A–); we also confirmed with nested model comparisons 
that fitted diffusion model threshold (a) remains relatively fixed 
at a constant value with motion strength.8

However, our initial model explorations revealed that the 
quantitative fit could be improved by allowing for some system-
atic differences in non-decision time (Ter) with stimulus strength 
as well (Table 2). We observed the same improvement when we 
fitted the same model to existing behavioral data from human 
subjects performing the motion-discrimination task (Purcell 
& Kiani, 2016), indicating that this may be a property of real 
data as well. To ensure that our results were not dependent on 
whether non-decision time was free to vary with motion strength 
(the model producing better fit) or whether non-decision time 
was fixed across motion strength (as commonly assumed in 
many studies), we fitted both versions of the model to all simu-
lated experiments. For the Ter-constrained model, Ter was fixed 

across motion strengths. For the Ter-unconstrained model, Ter 
varied linearly with motion strength as follows: Ter = T0 + Tcoh 
· c, where c is the motion strength (proportion coherence) and 
Tcoh is a free parameter. T0 is an intercept term (i.e., the non-
decision time at 0% motion strength). We report the results for 
both models in Fig. 4 and summarize the Ter-constrained model 
in Table 2. Ultimately, our qualitative results were identical for 
both sets of model assumptions. While Tcoh is useful for the best 
quantitative fitting of the diffusion model to simulated spiking 
network data at different motion strengths, for the rest of the 
study when we refer to Ter, we are precisely referring to T0.

In the main body of the manuscript, we fitted the diffusion 
model to simulated experiments, where we crossed the manip-
ulation of five levels of one specific spiking neural network 
model parameter with six levels of motion coherence. For 
these diffusion model fits, we continued to fit full correct and 
error RT distributions like those displayed in Fig. 4, but we 
show only mean correct RTs and accuracy in the later figures 
for sake of clarity. All diffusion model parameters were held 
fixed across simulated experiment conditions (levels of a spik-
ing neural network model parameter) except for the drift rate 
gain parameter (kv), threshold (a), and non-decision time (Ter).

Model Fitting Approach We generated diffusion model 
predictions of cumulative distribution functions for correct 
and error RTs using a combination of closed-form solutions 
and numerical methods described in Tuerlinckx (2004). We 
used a Bayesian information criterion (BIC; Schwarz, 1978) 
statistic built on quantile maximum likelihood estimation 
(QMLE; Heathcote et al., 2002) to estimate the best-fitting 
diffusion model parameters for each simulated experiment.9 
Log likelihood, ln(L), was computed as follows:

where i indexes RTs falling in bins determined by the 0.1, 
0.3, 0.5, 0.7, and 0.9 quantiles of the cumulative probabilities 

ln(L) =
∑

x

∑

m

∑

r

∑

i

Ni,r,m,xln(!i,r,m,x)

Table 2  Bayesian information criterion (BIC) and Chi-squared values 
for the Ter-constrained and Ter-unconstrained diffusion model fits to 
spiking neural network simulated data

BIC χ2

Ter-constrained 87,519 1,426
Ter-unconstrained 87,188 431

8 For drift rate, we compared the linear assumption described in the 
text with a more complex model assuming a separate free drift rate 
parameter for each motion coherence condition; for threshold, we 
compared the constant value assumption described in the text with 
a more complex model assuming a separate free threshold parame-
ter for each motion coherence condition. Nested model comparisons 
were conducted using the same BIC-based methods described later in 
this article.

9 This is a common approach to maximum likelihood parameter esti-
mation for models that predict response time (see Heathcote et  al., 
2002; Farrell & Lewandowsky, 2018 for details). Observed RT dis-
tributions are defined in terms of quantile bins, and model predictions 
are evaluated based on how well the predicted probabilities account 
for the observed frequencies with which responses fall into each RT 
bin. This essentially turns a continuous data space into a discrete data 
space using a multinomial distribution to link model predicted prob-
abilities to observed frequencies and amounts to evaluating a model 
based on its fit to the (defective) cumulative RT distribution func-
tions (see Van Zandt, 2000). While the diffusion model does predict 
probability density functions for RT, fitting the cumulative distribu-
tion function helps to mitigate against the overinfluence that outliers 
(overly fast or overly slow individual RTs) can have on likelihood 
using a pdf approach; for example, just a single observed RT from 
one trial out of thousands that falls below the minimum possible RT 
predicted by a set of diffusion model parameters can send the log 
likelihood to negative infinity using a pdf approach.
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of the RT distributions, r indexes trial outcomes (correct or 
error), m indexes motion strength, and x indexes the manipu-
lation of the spiking neural network parameter. Ni,m,r is the 
observed number of trials falling within a particular RT bin 
at a given trial outcome, motion strength, and condition, 
and !i,m,r is the corresponding diffusion model predicted 
probability of an RT falling within that bin. Note that ! is 
defined as the joint distribution over stimulus conditions 
and outcomes so it implicitly fits the choice probabilities 
(accuracy) for each condition as well as RT. BIC was then 
computed from

where M is the number of free parameters (16 for the Ter-
unconstrained model and 11 for the Ter-constrained model) 
and N is the total number trials across all conditions. We fit-
ted RT quantiles because they are robust to the influence of 
outliers, while still providing a good summary of the shape 
of the RT distribution (e.g., Heathcote et al., 2002; Ratcliff, 
1979; Van Zandt, 2000). For some simulated conditions (in 
particular, high motion coherence), the observed error rates 
were extremely low, and it was necessary to use alternative 
RT binning procedure to prevent these data from exerting 
an undue influence on the fitting process; specifically, if the 
error rate was less than 5%, we binned data using the median 
(two bins), and if it was less than 2%, we did not fit error 
RTs for that particular condition at all (zero bins); this is an 
approach we have used in past work (e.g., Boucher et al., 
2007; Servant et al., 2019). For all fits, BIC was minimized 
using a hill-climbing SIMPLEX method (Nelder & Mead, 
1965) implemented in MATLAB (MathWorks). We also 
used a bootstrapping procedure (Wagenmakers et al., 2004) 
with 1000 starting points to obtain confidence intervals of 
the best-fitting diffusion model parameters.

To draw conclusions about the relationship between dif-
fusion model and spiking neural network model parameters, 
we used a nested model testing approach (e.g., see Farrell 
& Lewandowsky, 2018). First, we fitted an unrestricted (all-
free) version of the diffusion model where particular key 
parameters of interest (threshold a, non-decision time Ter, 
and drift rate gain kv) were allowed to vary freely across 
conditions where a particular spiking neural network param-
eter was manipulated. Second, we fitted restricted versions 
of diffusion models where a key parameter (a, Ter, or kv) was 
fixed across those conditions. The best-fit BIC values of the 
four models (all free, a-fixed, Ter-fixed, and kv-fixed) were 
compared to determine which diffusion model parameter 
needed to be free to adequately fit the simulated neural spik-
ing model data well. If the BIC of a fixed model (a-fixed, 
Ter-fixed, or kv-fixed) was smaller than or reasonably close 
to the BIC of the all-free model, then differences in that 
diffusion model parameter were not necessary to explain 

BIC = −2!"(L) +Mln(N)

the simulated behavioral changes caused by differences in 
the spiking neural model parameter. If the BIC of the fixed 
model was somewhat larger than that of the “all free” model, 
then that diffusion parameter had a weak mapping to the 
spiking neural network parameter. If it was much larger, then 
the diffusion parameter had a strong mapping to the spiking 
neural network parameter.10

Modeling Results

We begin by describing manipulations of spiking neural 
network model parameters that we expected to have an 
intuitive mapping onto diffusion model parameters — spe-
cifically, those arguably most likely to correspond to drift 
rate, threshold, and non-decision time. We then move to 
describing manipulations of spiking neural model param-
eters that do not have any clear a priori mapping onto 
diffusion model parameters.
Input Sensitivity (µk) Input sensitivity (µk) in the spiking 
neural network model can be seen as representing the effi-
ciency of stimulus processing and encoding. Mathematically, 
in our simulations, µk multiplicatively scales the inputs to the 
spiking model (as a function of motion strength), thereby 
acting as a gain parameter on the inputs to the network.11 
Because µk scales the input to the neural model as a function 
of motion coherence (difficulty), we expected differences in 
this neural parameter to map onto differences in drift rate 
gain (kv), which scales the drift rate of the diffusion model 
as a function motion coherence (difficulty).

We simulated the spiking neural network at five levels 
of µk: 20, 30, 40 (default), 50, and 60 Hz. Simulated RTs 
decreased and accuracy increased as a function of input sen-
sitivity. As expected, we see a direct one-to-one mapping 
between µk in the spiking neural network model and k in the 
diffusion model (Fig. 5, Table 3). Larger values of µk in the 
spiking model results in shorter RTs and higher accuracy 
with a corresponding increase in kv in the fitted diffusion 

10 We chose to compare the fit of the unrestricted (all-free) model 
with the fit of each restricted (one-fixed) model to mirror a common 
model comparison approach whereby adding a parameter constraint 
(in this case fixing the value of one free parameter across conditions) 
allows the modeler to ask whether flexibility in that parameter is 
necessary to maintain an adequate fit to the observed data (in other 
words, does the added parameter constraint “break” the model, pro-
ducing a significantly worse fit; for example, see Farrell and Lewan-
dowsky, 2018).
11 The spiking neural network model itself does not provide a the-
ory of the inputs or the gain parameter, in much the same way that 
the diffusion model does not provide a theory of the drift rates (e.g., 
Nosofsky & Palmeri, 1997, 2015).
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model. Interestingly, we find that no other parameter that we 
vary in the spiking neural network maps to diffusion drift 
rate, suggesting that this result is a true one-to-one mapping 
(for the set of parameters manipulated).

Threshold Firing Rate  (aNN) The spiking neural network 
makes a decision when the firing rate for one of its two 
direction-selective neuronal pools crosses its threshold firing 
rate (aNN). We suspected a direct mapping between aNN and 
diffusion threshold because the two are analogous — they 
both determine the threshold on accumulated activity for 
when a decision is made.

We simulate the spiking neural network at five levels of aNN: 
10, 12.5, 15 (default), 17.5, and 20 Hz. Simulated RTs increased 
and accuracy increased for larger threshold firing rates. We see that 
there is mapping between threshold firing rate and diffusion model 
threshold — as the value of aNN increases, the fitted diffusion model 
threshold increases as well (Fig. 5, Table 3). However, a surprisingly 
large proportion of the systematic differences in the simulated data 
is also captured by differences in the non-decision time parameter 
(Ter). In fact, fixing non-decision time resulted in worse fits than did 
fixing threshold (Table 3), suggesting that non-decision time maps 
more strongly to aNN than does threshold.

This complex mapping of aNN makes some sense when 
considering the spiking neural network as an attractor net-
work with two fixed points (one where pool 1 wins, and 
another when pool 2 wins). Although aNN is the criteria 
for when the behavioral response is initiated, the neural 
network is essentially “committed to a choice” at an ear-
lier point in time because of its competitive dynamics. 
The point at which the mean firing rates of the two pools 
diverge is when the network diverges to an attractor state 
and “makes” a choice. After this point, the period of com-
petition is essentially over, and the network is unlikely to 
leave the attractor state and “change its mind.” In many 
cases, pooled firing rates diverge (i.e., the choice is made) 

well before aNN is crossed. In this way, further increas-
ing aNN has little effect on the accuracy of responses, but 
does cause longer RTs. Analogously, increases in diffu-
sion model Ter account for longer RTs, without any effect 
on accuracy. On the other hand, changing diffusion model 
threshold (a) impacts both RTs and accuracy.

Stimulus Processing Time  (Ts) Stimulus processing time (Ts) in the 
spiking neural network model encapsulates biophysical conductance 
delays and the time needed for upstream neurons to process incom-
ing stimulus information. This sensory-perceptual processing time 
in the diffusion model is a component with the non-decision time 
parameter (Ter). As such, we expected Ts to map to diffusion Ter.

We simulated the spiking neural network at five levels of Ts: 
0 (default), 50, 100, 150, and 200 ms. Figure 5 shows that RTs 
become longer, accuracy remains constant, and fitted diffusion 
model non-decision time increases with increasing Ts, as predicted 
(Table 3). Because Ts and Ter are the most closely related param-
eters between the spiking neural network and diffusion model, this 
experimental result serves as a simple and intuitive validation of 
our cross-fit methodology. Note though that even when stimulus 
processing time in the spiking neural network is set to 0, the diffu-
sion model fits say that there is a significant amount of nondeci-
sion time; this difference is likely because the nonlinear dynamics 
intrinsic to the spiking neural network model cause the two pools 
of neurons associated with the two choices to remained at baseline, 
locked in competition with one another for quite a while, which 
“looks like” additional nondecision time from the perspective of 
the diffusion model fitting data stimulated by that process.

Background Input (µext) While all simulated neurons receive 
background input (µext) in the spiking neural network 
model, we only manipulated the level of background input 
for the two pools associated with the correct and incorrect 
response (both manipulated up or down in the same way). 

Table 3  Nested model comparisons (Ter-constrained). We tested 
which diffusion model parameters needed to vary to capture changes 
in a given spiking neural network parameter (rows). Values in the first 
column are BIC when all diffusion model parameters (threshold a, 
non-decision time Ter, or drift rate gain kv) were allowed to vary as we 
manipulated a spiking network parameter (indicated by labels on the 
left). Subsequent columns show the difference in BIC when either a, 
Ter, or kv were held fixed as network parameters changed versus when 

they all allowed to vary. A small or negative value in these columns 
indicates that the corresponding “fixed” diffusion model parameter 
was not necessary to explain differences in behavior for the corre-
sponding spiking neural parameter. A large positive value in the final 
three columns indicates that the corresponding diffusion parameter 
had a strong mapping to the corresponding spiking neural network 
parameter

Free model Fix a-free Fix Ter-free Fix kv-free

Input sensitivity
Threshold
Background input
Stim. processing time
Recurrent excitation
AMPA conductance
NMDA conductance
GABA conductance

437,590
437,994
441,697
438,918
441,833
440,382
440,862
440,212

265
2,607
11,080
42
11,830
12,436
16,355
10,541

1,075
3,910
5,232
10,648
636
4,841
5,774
4,938

 12,872
−150
 −445
90
 −506
 −469
 −373
 −380
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Physiologically, µext represents the afferent inputs from a 
variety of sources when there is no stimulus present; for 
example, background input might reflect the internal state 
of the subject prior to the stimulus onset. An increase in 
background input (µext) makes choice-selective pools have 
an increased baseline firing rate before stimulus onset, mean-
ing that they are both closer to their response thresholds, 
and there is greater variability in their firing rates because 
a larger Poisson spike rate comes with larger spiking 
variability.

We expected that increased µext would present behaviorally 
in simulations as shorter RTs and decreased response accuracy. 
Based on this anticipated speed-accuracy tradeoff, we expected 
that µext in the spiking neural network model may map on to dif-
fusion threshold (a). Note that while manipulations of baseline 
(starting point) in a (linear integrator) model like the diffusion 
model (more precisely in multi-accumulator variants like the 
dual diffusion model, e.g., Ratcliff et al., 2007) are identifiable 
with manipulations of threshold, the inherent nonlinearities in 
the spiking neural network model do not guarantee that manipu-
lations of background input (µext) in the spiking neural network 
model will map uniquely onto manipulations of threshold in 
the diffusion model.

We simulated the spiking neural network at five levels of 
background input µext: 2390, 2395, 2400 (default), 2405, and 
2410 Hz; here, we only manipulated µext in the choice-selective 
pools, with non-choice neurons and inhibitory neurons continu-
ing to receive µext = 2400 Hz. Simulations (Fig. 6) produced 
decreased RT and accuracy with increased levels of background 
input. In fits of the diffusion model, manipulated background 
input in the spiking neural network mapped very strongly on to 
diffusion threshold and somewhat strongly on to non-decision 
time (Table 3).

We also conducted simulations in which we varied µext to all 
neurons in the spiking neural network (not shown). In this case, 
mean RTs were shorter, but, somewhat surprisingly, accuracy 
was unaffected, even at very large values of µext (e.g., 3000 Hz). 
In fits of the diffusion model, this resulted in a strong mapping 
on to diffusion non-decision time but no mapping at all on to 
threshold. Manipulating the balance between excitation and 
inhibition in the spiking neural network, which can be done 
by selectively manipulating the background input to choice-
relevant pools only, may be necessary for the model to simulate 
the kind of speed-accuracy tradeoff reflected by differences in 
the threshold parameter in the diffusion model.

Strength of Recurrent Excitation Within Choice-Selective 
Pools (w+) The w+ parameter in the spiking neural network 
model is the strength of connections between neurons within 
a pool selective for the same choice. In a real brain, w+ could 
increase through long-term potentiation and the formation of 
new synapses and could decrease with synaptic pruning and 

certain forms of neural degeneration. For example, Wang 
et al. (2011) suggested that age-related working memory 
declines might be associated with molecular mechanisms 
(e.g., cAMP signaling) that could cause a decrease in such 
recurrent excitation.

There is no obvious, a priori, intuitive mapping between the 
w+ parameter in the spiking neural network model and a param-
eter in the diffusion model. On one hand, w+ can be thought of as 
controlling how quickly firing rates rise as a form of multiplica-
tive self-excitation, perhaps analogous to the rate of accumulation 
of evidence (i.e., drift rate) in the diffusion model. On the other 
hand, Wong and Wang (2006) reported that an increase in w+ 
in the spiking neural network model could cause faster and less 
accurate decisions, a characteristic of speed-accuracy tradeoff, 
captured by threshold (a) in the diffusion model.

We simulated the spiking neural network at five levels of 
w+: 1.650, 1.675, 1.700 (default), 1.725, and 1.750. As w+ 
increased, both mean RTs and accuracy decreased (Fig. 6). 
When fitting the diffusion model to this simulated data, a very 
strong mapping on to diffusion threshold and a strong map-
ping on to non-decision time were observed (Fig. 6, Table 3). 
w+ is another parameter of the spiking neural network that 
implements a speed-accuracy tradeoff. We confirmed that that 
baseline firing rate (and firing rate variability) were unaffected 
by manipulations of w+. In the spiking neural network model, 
a change in the balance of excitation and inhibition (in this 
case, a change in excitation caused by a change in recurrent 
inputs) can be a neural mechanism of speed-accuracy tradeoff.

Conductance of Receptors on Excitatory and Inhibitory Neu-
rons The currents that mediate recurrent excitatory connec-
tions in the network are implemented by AMPA and NMDA 
receptors. Physiologically, AMPA and NMDA conductance 
may be manipulated via neuromodulators. For example, 
dopaminergic neuromodulation through D1 receptors cat-
alyze the potentiation of NMDA receptors (Cepeda et al., 
1993). Conductance can also be altered pharmacologically 
via local or systemic injections of agonists or antagonists. 
For example, in response time tasks, small doses of the 
NMDA-antagonist ketamine injected into awake-behaving 
primates have been shown to increase both accuracy and RTs 
during visual search (Shen et al., 2010).

While there is no a priori, intuitive mapping between 
these conductance parameters of the spiking neural network 
and parameters of the diffusion model, we expected both to 
have similar behavioral effects and thereby map on to the 
same diffusion model parameters because they both mediate 
the strength of recurrent excitatory connections (their main 
difference is their time constants).

Here, we varied NMDA conductance at five levels 
(gNMDA = 0.163, 0.164, 0.165 (default), 0.166, and 0.167 nS) 
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and AMPA conductance at five levels (grec,AMPA = 0.0450, 
0.0475, 0.0500 (default), 0.0525, and 0.0550 nS). As we 
expected, manipulations of both parameters had similar 
results. Increases in the conductance caused RTs and accu-
racy to decrease. When fitting the diffusion model to these 
simulated data, manipulation of these conductance param-
eters both mapped on to threshold and non-decision time 
in the diffusion model (Fig. 6, Table 3). This is yet another 
speed-accuracy tradeoff caused by a change in the balance 
between excitation and inhibition (in this case, an increase 
in excitation).

The inhibitory currents (gGABA) in the spiking neural 
network are implemented by GABA receptors that mediate 
feedback inhibition. In a real brain, neuromodulation or psy-
chopharmacological manipulations are possible ways that 
GABA conductance could be manipulated.

We simulated the spiking neuron network model manipu-
lating GABA conductance values (gGABA = 1.29, 1.295, 1.3 
(default), 1.305, and 1.31 nS). Increasing GABA conduct-
ance results in slower RTs and more accurate decisions. 
GABA conductance implements a speed-accuracy tradeoff. 
When fitting the diffusion, manipulations of GABA conduct-
ance mapped on to diffusion model threshold and non-deci-
sion time parameters (Fig. 6, Table 3). In this case, manipu-
lations of GABA conductance caused changes in baseline 
firing rate, which we observed earlier as another neural 
manifestation of a speed-accuracy tradeoff (see also Brunel 
& Wang, 2001, for effects of decreasing NMDA:GABA ratio 
on activity in the spiking neural network).

In other simulations (not shown), we manipulated the 
conductance values of inhibitory neurons and found the con-
verse effects. Increasing AMPA and NMDA conductance 

Fig. 6  This figure shows mappings between spiking neural network 
parameters with no obvious a priori conceptual relationship to diffu-
sion model parameters. Format is the same as Fig. 5. Top two rows 
show mean RTs and proportion correct, where data points and error 
bars indicate spiking neural network simulated data and lines indi-

cate fitted diffusion model predictions. Bottom three rows show the 
best-fitting diffusion model parameters (error bars indicate 95% confi-
dence intervals); median best-fitting parameters were used to generate 
diffusion model predictions of mean RTs and accuracy in the top two 
rows
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on inhibitory neurons caused slower RTs and more accurate 
decisions, and increasing GABA conductance on inhibitory 
neurons (i.e., inhibiting the inhibitory neurons) caused faster 
RTs and less accurate decisions. When fitting the diffusion 
model, manipulations of these spiking neural network inhib-
itory conductance parameters mapped to diffusion model 
a and Ter parameters, but in the opposite direction of the 
mapping of their excitatory counterparts. Again, the bal-
ance between excitation and inhibition in the spiking neu-
ral network model can instantiate speed-accuracy tradeoffs 
reflected by modulation of threshold and non-decision time 
in the diffusion model.

Discussion

Numerous successful models of decision-making assume 
an accumulation of evidence to threshold as a core mecha-
nism for predicting observed response probabilities and 
distributions of response times. The well-known diffusion 
model (Ratcliff, 1978; Ratcliff & Rouder, 1998) is a rela-
tively abstract cognitive model with its drift rate parameter 
representing the mean strength of evidence driving noisy 
accumulation over time from a starting point to an upper 
or a lower absorbing boundary associated with each of 
two choice alternatives, with the distance between the two 
boundaries a threshold parameter representing some speed-
accuracy tradeoff, with response time given by the time at 
which one of the boundaries is first hit plus a non-decision 
time parameter representing the time for perception and 
motor response. A spiking neural network model (Wang, 
2002) instantiates accumulation of evidence at the level 
of biophysically plausible pools of many neurons having 
various excitatory and inhibitory connections with a large 
number of model parameters, many of which are informed 
by neurophysiological measures.

We asked how parameters of the diffusion model at the 
cognitive level relate to parameters of the spiking neural net-
work model at the biophysical implementation level. To do 
so, we simulated the spiking neural network model to gener-
ate data (response probabilities and distributions of response 
times) that were then fitted by the diffusion model. Certain 
individual parameters in the spiking neural network model 
were systematically manipulated, producing simulated data 
in a form much like one might observe in a behavior experi-
ment with manipulated independent (or quasi-independent) 
variables. Having the known levels of parameters of the 
spiking neural network model and associated best-fitting 
parameters of the diffusion model allowed us to relate model 
mechanisms across levels of abstraction. We focused on ask-
ing whether parametric differences across simulated condi-
tions produced by the spiking neural network model were 

accounted for by differences in the drift rate, threshold, or 
non-decision time parameters in the diffusion model.

In summary, manipulations of parameters in the spiking 
neural network model related to input sensitivity, threshold, 
and stimulus processing time mapped on to their conceptual 
analogues in the diffusion model, namely differences in fit-
ted drift rate, threshold, and non-decision time parameters, 
respectively. Manipulations of parameters in the spiking 
neural network model with no direct analogue to the dif-
fusion model, including non-stimulus-specific background 
input, strength of recurrent excitation, and various receptor 
conductances, all mapped on to differences in fitted thresh-
old in the diffusion model. Manipulations these parameters 
likely affect the nonlinear growth of neural activity to thresh-
old in the spiking neural network model in ways that lead 
to behaviors analogous to that produced by manipulating 
the level of threshold; this is in some ways analogous to the 
relationship between non-homogenous drift rate and collaps-
ing bounds in an accumulator model (e.g., see Cisek et al., 
2009; Hawkins et al., 2015).

Our work complements work investigating speed-accu-
racy tradeoffs in the spiking neural network model. Lo, 
Wang, and Wang (2015) also showed that increasing non-
stimulus-specific input to pools of neurons representing the 
two choice alternatives could trade speed for accuracy and 
investigated how that non-specific signal might impact the 
dynamics of the system. We show that other manipulations 
of spiking neural network parameters (in addition to thresh-
old and baseline input) can produce a speed-accuracy trade-
off. Moreover, we showed that these manipulations map onto 
differences in fitted diffusion model threshold.

Under the assumption that diffusion model mechanisms 
are an appropriate model of cognitive mechanisms, differ-
ences in fitted threshold in diffusion model fits are often 
interpreted in terms of potential neural processes that modu-
late some combination of baseline firing rates or threshold 
firing rates (e.g., Bogacz et al., 2009; Forstmann et al., 2016; 
Heitz, 2014; Servant et al., 2019; but see Heitz & Schall, 
2012). Differences in fitted diffusion model threshold have 
been observed under different speed-accuracy instructions 
given to participants (e.g., Ratcliff, 2006; Ratcliff & Rouder, 
1998; Wagenmakers et al., 2008) as well as between dif-
ferent age groups of participants (e.g., Ratcliff et al., 2006, 
2010). While these differences in diffusion model threshold 
could indeed be caused by modulation of the same neural 
threshold, like the threshold in the spiking neural network 
model, they could also be caused by different underlying 
neural processes. For example, perhaps task modulation 
by speed-accuracy instruction could be caused by modula-
tion of a neural threshold whereas age-related differences 
could be caused by differences in the strength of recurrent 
excitation or level of neuromodulation. Both are revealed as 
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diffusion model threshold in model fits but are quite differ-
ent neural processes. Of course, any lack of identifiability 
in underlying neural processes based on differences in dif-
fusion model threshold is founded on an assumption that the 
spiking neural network model is an appropriate model of the 
underlying neural dynamics of brain mechanisms involved 
in decision-making.

It is interesting to note that when fitting data simulated 
by manipulating parameters in the spiking neural network, 
we observed that fitted diffusion model threshold and non-
decision time tended to change together. Indeed, fits of the 
diffusion model to performance by different age groups of 
participants often find that higher diffusion model thresholds 
are accompanied by longer diffusion model non-decision 
times (e.g., Ratcliff et al., 2006, 2010).

Cross-fitting studies have been informative in relating 
alternative models at the same level of abstraction. For 
example, Donkin et al. (2011) simulated data from the dif-
fusion model and fitted that data with the linear ballistic 
accumulator (LBA) model (Brown & Heathcote, 2008) and 
simulated data from the LBA and fitted that data with the 
diffusion model; both are accumulation of evidence mod-
els, but differ in certain assumptions about the nature of 
variability within and across trials. Overall, they observed 
a close correspondence between the associated drift rate, 
threshold, and non-decision time parameters that are core 
to both models. Data simulated by explicit manipulations 
of threshold (or drift rate, or non-decision time) in the dif-
fusion model were accounted for by differences in thresh-
old (or drift rate, or non-decision time) in the LBA, and 
vice versa. The identifiability of parameters was not entirely 
unique, however. For example, manipulations of threshold 
to produce simulated data with the LBA were accounted for 
by differences not only in threshold in the diffusion model, 
but also by (monotonic) differences in drift rate and (non-
monotonic) differences in non-decision time in the LBA. 
Manipulations of threshold to produce simulated data with 
the diffusion model were accounted for by differences not 
only in the threshold in the LBA, but also by (monotonic) 
differences in non-decision time. While it would be ideal to 
do cross-fitting in both directions as in Donkin et al. (2011), 
because of the computational complexity of the spiking neu-
ral network model, we could only generate simulated data 
from the spiking neural network model and fit using the dif-
fusion model, not the other way around.

Our work is certainly not the first to try to relate pro-
cesses at the level of spiking neurons involved in decision-
making with cognitive-level accumulation of evidence mod-
els. Perhaps the first was the seminal work of Hanes and 
Schall (1996) who showed that the measured dynamics of 
movement-related neurons in Frontal Eye Field (FEF) dur-
ing saccade decision-making can be explained as variable 

accumulation of evidence to a fixed threshold, much like the 
dynamics assumed by the diffusion model. Years of research 
since involving both neurophysiological work and computa-
tional modeling supported and significantly expanded this 
view (e.g., see Gold & Shadlen, 2007; Logan et al., 2015; 
Palmeri et al., 2015; Schall, 2001, 2004; Shadlen & New-
some, 2001; Smith & Ratcliff, 2004).

While we took the approach simulating data from the 
neural model and fitting using the cognitive model, other 
work has aimed to mathematically simplify the neural model 
into a form more akin to a cognitive model. Wong and Wang 
(2006) used a mean-field approach to progressively simply 
mathematically the spiking neural network model with thou-
sands of integrate-and-fire neurons and dozens of param-
eters to a far more simplified model with two choice-state 
variables and far fewer parameters. The resulting model 
was similar in form (though different in details concerning 
its dynamics and parameterization) to the leaky competing 
accumulator (LCA) model of Usher and McClelland (2001), 
which itself can be related to a diffusion model under certain 
parameter regimes (Bogacz et al., 2006). Our work com-
plements that of Wong and Wang (2006). They showed a 
mathematical relationship between the spiking neural net-
work model and an abstract cognitive cousin. We outlined 
relationships between manipulations of parameters of the 
spiking neural network and those of the more abstract dif-
fusion model.

For both its tractability and (sufficient) neural plausibil-
ity, to understand normal behavior as well as illness, injury, 
and disease, abstract cognitive models like the diffusion 
model may be the “just right” level for making significant 
theoretical progress (e.g., Montague et al., 2012; Logan, 
Schall, & Palmeri, 2015; Wiecki et al., 2015). Indeed, some 
have even suggested that any link between low-level neu-
ral circuit models and behavior may be “a bridge too far” 
(Carandini, 2012). When it comes to understanding how 
differences in cognitive-level mechanisms, processes, and 
parameters relate to the underlying neural mechanisms, 
especially those at the level of individual neurons, it can be 
useful to investigate how theoretical cognitive-level mecha-
nisms map on to measured neural-level dynamics (e.g., Cox 
et al., in press; Purcell et al., 2010, 2012; Servant et al., 
2019). It can also be useful to investigate how properties of 
abstract cognitive models generalize to models that instan-
tiate cognitive mechanisms within large ensembles akin to 
those at work within the brain (e.g., Cox, Lilburn, Logan, 
Schall, & Palmeri, under revision; Zandbelt et al., 2014). 
And as we have demonstrated here, it can also be produc-
tive to investigate these relationships by mapping from 
cognitive-level mechanisms, processes, and parameters to 
those instantiated by neural-level models like the spiking 
neural network model.
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Appendix Spiking Neural Network Model 
Dynamics

Neuron and synapse models. Each neuron in the spiking net-
work is modeled as a leaky integrate-and-fire neuron (e.g., 
Abbott, 1999) with a membrane potential V(t) defined by a 
differential equation

where Cm is the membrane capacitance, gL is the leakage 
conductance, VL is the resting potential, and Isyn(t) is the syn-
aptic current. When the membrane potential V(t) of a neuron 
reaches a threshold potential Vth = -50 mV, the neuron gen-
erates a spike and is reset to Vr = − 55 mV for a refractory 
period of Tref. For excitatory neurons, Cm = 0.5 nF, gL = 25 
nS, VL = -70 mV, and Tref = 2 ms; for inhibitory neurons, 
Cm = 0.2 nF, gL = 20 nS, VL = -70 mV, and Tref = 1 ms. We 
fixed these parameters at values that replicate known bio-
physical properties of cortical neurons (as per Wang, 2002).

The total synaptic current Isyn(t) is the sum of external 
input currents and excitatory and inhibitory currents from 
recurrent network connections. There are four types of cur-
rents at the synaptic connections: external AMPA, recurrent 
AMPA, recurrent NMDA, and recurrent GABA. Therefore, 
the equation for total synaptic current Isyn(t) is:

The individual receptor currents are given by:

where VE = 0 and VI = − 70 mV are the reversal potentials 
and  [Mg2+] = 1 mM is the extracellular magnesium concen-
tration. The sums are over all excitatory connections Ce or 
all inhibitory connections Ci. We fixed these parameters at 
values that replicate known biophysical properties of cortical 
neurons (as per Wang, 2002).

The g variables are conductance values of the receptor 
channels. All default conductance values were chosen to 
match known biophysical measurements (Wang, 2002). For 

Cm

dV(t)

dt
= −gL

(

V(t) − VL

)

− Isyn(t)

Isyn(t) = Iext,AMPA(t) + Irec,AMPA(t) + INMDA(t) + IGABA(t)

Iext,AMPA(t) = gext,AMPA

(

V(t) − VE

)

sext,AMPA(t)

Irec,AMPA(t) = grec,AMPA

(

V(t) − VE

)

Ce
∑

j=1

wjsj,AMPA(t)

Irec,NMDA(t) =
gNMDA

(

V(t) − VE

)

1 + [Mg2+]e−0.062V(t)∕3.57

Ce
∑

j=1

wjsj,NMDA(t)

Irec,GABA(t) = gGABA
(

V(t) − VI

)

Ci
∑

j=1

sj,GABA(t)

excitatory neurons gext,AMPA = 2.100 nS, grec,AMPA = 0.050 nS, 
gNMDA = 0.165 nS, and gGABA = 1.300 nS. For inhibitory neu-
rons gext,AMPA = 1.620 nS, grec,AMPA = 0.040 nS, gNMDA = 0.130, 
and gGABA = 1.000 nS. To explore the relationship between dif-
fusion model parameters and conductance values, in simulated 
experiments, we used the following ranges: grec,AMPA = 0.045, 
0.0475, 0.050 (default), 0.0525, and 0.055 nS; gNMDA = 0.163, 
0.164, 0.165 (default), 0.166, and 0.167 nS; and gGABA = 1.290, 
1.295, 1.300 (default), 1.305, and 1.310 nS. As with other 
choices of manipulated parameter values, these values were 
chosen because they allowed the model to exhibit appropriate 
competitive dynamics while also producing reasonable differ-
ences in predicted behavior.

The w variables are synaptic weights that control the 
strength of connections between neural pools. The network 
is connected all-to-all, meaning that a single neuron, j, 
is connected to every other neuron in the network with 
weight wj. The synaptic weights were structured with a 
“Hebbian rule” with stronger connections between neurons 
representing the same choice (wj = w+) and weaker con-
nections between neurons representing opposite choices 
(wj = w–). All other connections assume wj = 1. Follow-
ing Wang (2002), we used the default value w+ = 1.7 and 
w– was determined by the Eq. 1 – f(w+ – 1)/(1 – f). f is 
the proportion of excitatory neurons in the spiking neu-
ral network that belong to a choice-selective subpool (in 
our case, f = 240/1600 = 0.15). To identify the relationship 
between diffusion model parameters and synaptic weights, 
we explored the following ranges: w+ = 1.650, 1.675, 
1.700 (default), 1.725, and 1.750. Beyond these ranges, 
the model failed to exhibit competitive dynamics (Wong 
& Wang, 2006).

The s variables are gating variables and represent the 
fraction of receptor channels that are open at a given time. 
These parameters control the receptor dynamics and are 
presumed to be a fixed biophysical property of the cells. 
They are governed by the following equations:

where τAMPA = 2 ms is the decay time and the sum is over 
the presynaptic spikes from neuron j. For external AMPA 
currents, the sum is over Poisson spike trains generated with 
means specified by the parameters μext, μ1, and μ2 that are 
independent for each cell. For NMDA receptors:

dsj,AMPA(t)

dt
=
∑

k

!(t − tk
j
) −

sj,AMPA(t)

τAMPA

dsj,NMDA(t)

dt
= !xj(t)(1 − sj,NMDA(t)) −

sj,NMDA(t)

τNMDA,decay

dxj(t)

dt
=
∑

k

!(t − tk
j
) −

xj(t)

τNMDA,rise
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where τNMDA,decay = 100 ms and α = 0.5/ms. The rise time 
dynamics of NMDA receptors is modeled by xj, where 
τNMDA,rise = 2 ms. Finally, for GABA:

where τGABA = 100 ms.
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