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Modelling individual difference in visual categorization
Jianhong Shen and Thomas J. Palmeri

Department of Psychology, Vanderbilt University, Nashville, USA

ABSTRACT
Recent years has seen growing interest in understanding, characterizing, and explaining individual
differences in visual cognition. We focus here on individual differences in visual categorization.
Categorization is the fundamental visual ability to group different objects together as the same
kind of thing. Research on visual categorization and category learning has been significantly
informed by computational modelling, so our review will focus both on how formal models of
visual categorization have captured individual differences and how individual difference have
informed the development of formal models. We first examine the potential sources of
individual differences in leading models of visual categorization, providing a brief review of a
range of different models. We then describe several examples of how computational models
have captured individual differences in visual categorization. This review also provides a bit of an
historical perspective, starting with models that predicted no individual differences, to those that
captured group differences, to those that predict true individual differences, and to more recent
hierarchical approaches that can simultaneously capture both group and individual differences
in visual categorization. Via this selective review, we see how considerations of individual
differences can lead to important theoretical insights into how people visually categorize objects
in the world around them. We also consider new directions for work examining individual
differences in visual categorization.
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Categorization is a fundamental building block of
human visual cognition. We need to be able to recog-
nize objects in the world as kinds of things because we
rarely see the exact same object twice and things we
learn about one object should generalize to other
objects of the same kind. Kinds of things are called cat-
egories. Recognizing an object as a kind of thing is
called categorization. Once an object is categorized,
whatever knowledge we have about that category
can be used to make inferences and inform future
actions. Humans and animals need to categorize
friend from foe, edible from poisonous, and then act
accordingly (e.g., Goldstone, Kersten, & Carvalho,
2003; Murphy, 2002; Richler & Palmeri, 2014).
Without our ability to categorize, every visual experi-
ence would be a brand new experience, eliminating
the benefit of past experience and its successes and
failures as a guide to future understanding and
future action. Categorization is also a gateway to con-
ceptual knowledge, whereby we can combine an infi-
nite variety of possible thoughts into structured
groups, communicate via a set of common concepts,

and decrease the amount of information we need to
handle in each moment.

Cognitive psychologists and vision scientists often
aim to identify general mechanisms that underlie
human perception and cognition. Significant progress
has been made developing and testing theories that
embody general mechanisms to explain behaviour
on average. But anyone who has ever conducted a
behavioural experiment quickly realizes that people
vary tremendously in how they perform different
kinds of tasks. Individual differences in performance
can occur for many different reasons, ranging from
uncontrolled differences in experimental context, to
variation in past experience, to different levels of
motivation, to the selection of different visual and cog-
nitive strategies, to relatively stable individual differ-
ences in ability, however defined. We can treat all
this variability as a mere nuisance—noise or error var-
iance in the common parlance—or we can try to
characterize, understand, and explain how and why
people vary. While some research areas, like intelli-
gence (e.g., Conley, 1984; Gohm, 2003) and working
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memory (e.g., Engle, Kane, & Tuholski, 1999; Kane &
Engle, 2002; Lewandowsky, 2011; Unsworth & Engle,
2007), have a rich history of examining individual
differences, only relatively recently have researchers
in visual cognition begun to examine individual differ-
ences systematically (e.g., Duchaine & Nakayama,
2006; Gauthier et al., 2013; Lee & Webb, 2005;
McGugin, Richler, Herzmann, Speegle, & Gauthier,
2012; Vandekerckhove, 2014).

Why study individual differences? Theories of per-
ception and cognition in psychology, vision science,
and neuroscience are intended to be theories of indi-
vidual behaviour, quite unlike theories of group
behaviour in the social sciences, which often intend
to explain the aggregate. We need to understand
not only the average, but the causes of variability in
perception and cognition (Cronbach, 1975; Plomin &
Colledge, 2001); both general patterns and individual
differences in behaviour are basic characteristics of
human perception and cognition that our theories
must explain. Any viable theory must account not
only for aggregate behaviour, but also group differ-
ences and true individual subject differences, and
we can ultimately reject theories that offer no expla-
nation at all for individual behaviour. As we will see,
theories that make similar predictions about the
aggregate may make quite different predictions
when it comes to the individuals. Moreover, ignoring
individual differences in favour of group averages
can give rise to a misleading account of behaviour
because the act of averaging or aggregating can
produce results that are qualitatively different from
the behaviour of any individual within that aggregate
(e.g., Estes, 1956)

In this paper, we discuss and review work examin-
ing individual differences in visual object categoriz-
ation. Specifically, because research on visual
categorization has long had formal computational
modelling as a pivotal component of theory develop-
ment (Wills & Pothos, 2012), our discussions will centre
on how models of visual categorization have
addressed individual differences and have been
informed by individual differences. Numerous review
papers and books have provided a gallery of models
of categorization (e.g., Kruschke, 2005, 2008; Lee &
Vanpaemel, 2008; Pothos & Wills, 2011; Richler &
Palmeri, 2014; Wills & Pothos, 2012). Our goal is to
examine how these models address individual differ-
ences, not to chronicle the corpus of proposed

models, so our review will be selective in order to
highlight models most relevant to our discussion. Fur-
thermore, unlike many reviews that outline individual
categorization models independently from one
another, we chose instead to juxtapose the major
formal models by outlining their common com-
ponents and their critical differences in terms of how
objects are perceptually represented (Perceptual Rep-
resentation), how categories are represented (Category
Representation), and how decisions are made (Decision
Process).

We begin by describing the components of many
formal models of categorization and highlight how
those components might vary across individuals to
predict and explain individual differences in categoriz-
ation behaviour. We then provide a selective review
highlighting examples of how computational model-
ling has treated individual differences and how indi-
vidual differences have informed our theoretical
understanding of visual categorization.

Overview of visual categorization models

The models we will discuss all explain how we decide
that an object is a kind of thing. In a visual categoriz-
ation experiment with real objects, we can test people
on how well and how quickly they know that some
objects are planes, others are trains, and others are
automobiles. In a visual category learning experiment
with novel objects, people might first learn that
some objects are mogs, others are bliks, and others
are rabs, and we can later test them on how well
they apply that knowledge to learned objects or gen-
eralize to new objects (e.g., Richler & Palmeri, 2014).
Models instantiate hypotheses we have about the
mechanisms that underlie these categorization
decisions and we evaluate models by comparing
their predictions to observed categorization
behaviour.

Many categorization models decompose their
internal mechanisms into at least three key com-
ponents: the perceptual representation of an object,
internal representations of categories, and a decision
process that determines category membership based
on the available evidence from matching a perceptual
representation to internal category representations.
Each component—perceptual representation, category
representation, and decision process—can be specified
in different ways, and these differences can often be
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the focus of vigorous debate. Often, different visual
categorization models can be described as different
combinations of these components (Kruschke, 2005,
2008; Lee & Vanpaemel, 2008). For example, two com-
peting models might share the same assumptions
about perceptual representations (e.g., that objects
are represented along multiple psychological dimen-
sions) and decision processes (e.g., that decisions are
made according to the relative category evidence)
but differ in their assumptions about category rep-
resentations (e.g., that categories are represented in
terms of prototypes vs. exemplars) (e.g., Ross,
Deroche, & Palmeri, 2014; Shin & Nosofsky, 1992).

In what follows, we step through these three major
components, discuss various ways they are
implemented in different models, and discuss how
different specifications of each component might
incorporate individual differences. Much of our discus-
sion will focus on asymptotic models of object categ-
orization, but will include some discussion of models
of category learning as well (for one review, see
Kruschke, 2005). Because our focus is on the com-
ponents of models and how they can vary across indi-
viduals, we will not discuss in great detail all of the
various empirical and theoretical studies that purport
to support or falsify particular models in this article
(see Ashby & Maddox, 2005; Pothos & Wills, 2011;
Richler & Palmeri, 2014).

Perceptual representations

All models of object categorization assume that an
internal perceptual representation of a target object
is compared to stored representations of category
knowledge in order to decide which category that
object belongs to. Models traditionally referred to as
object recognition models often describe in great
detail the complex neural network that starts with
the retina and runs through the hierarchy of ventral
visual cortical areas; at the top of that hierarchy are
nodes of the network that make categorization
decisions (e.g., Riesenhuber & Poggio, 2000; Serre,
Oliva, & Poggio, 2007; Tong, Joyce, & Cottrell, 2005).
Much of the effort in developing these models
focuses on the transformations that take place from
the retinal image to high-level object representations
(how the object itself is mentally represented), with far
less discussion of alternative assumptions about cat-
egory representations (how its kind is mentally

represented) and decision making (how a specific
choice of its kind is made) (for further discussion, see
Palmeri & Cottrell, 2009; Palmeri & Gauthier, 2004).

That contrasts with most categorization models and
category learning models.1 Many of these models
simply assume that objects are represented as
vectors of features or dimensions without specifying
in much detail how those features or dimensions are
derived from the retinal image of an object. Instead,
the features or dimensions of an object’s perceptual
representation might be based on what features or
dimensions are explicitly manipulated by the exper-
imenter, they might simply reflect a statistical distri-
bution of within- and between-category feature
overlap (e.g., Hintzman, 1986; Nosofsky, 1988), or
they might be derived using techniques like multidi-
mensional scaling (e.g., Nosofsky, 1992; Shepard,
1980). Whereas the perceptual representation of an
object is the penultimate stage of processing in
some object recognition models, the perceptual rep-
resentation is the input stage of many categorization
models. That said, it is possible in principle to use
the perceptual representation created by an object
recognition model as the input to an object categoriz-
ation model (e.g., Mack & Palmeri, 2010; Ross et al.,
2014).

There is an interesting and rich history of debate
regarding featural versus dimensional representations
of objects and how similarities based on the presence
or absence of qualitative features or geometric dis-
tances in a continuous space defined by dimensions
are defined (Shepard, 1980; Tversky, 1977; Tversky &
Gati, 1982). Because many models have been formal-
ized assuming that objects are represented along
psychological dimensions (but see Lee & Navarro,
2002), that is where we focus here for illustration.
Object dimensions can be simple, like size and bright-
ness (e.g., Goldstone, 1994), more complex but local,
like object parts (e.g., Nosofsky, 1986; Sigala &
Logothetis, 2002), or more global properties of
object shape (e.g., Folstein, Gauthier, & Palmeri,
2012; Goldstone & Steyvers, 2001). Objects are often
represented as points in a multidimensional psycho-
logical space (Nosofsky, 1992).

The similarity between two objects is often defined
as being inversely proportional to their distance in
that space (e.g., Nosofsky, 1986; Shepard, 1987).
Some categorization models assume that the same
stimulus (X, Y) does not always produce the same
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percept (x, y) because sensory-perceptual processes
are inherently noisy (e.g., Ashby & Gott, 1988; Ashby
& Townsend, 1986), in a sense representing a stimulus
as a probability distribution or a sample from a prob-
ability distribution in multidimensional psychological
space rather than as a fixed point in that space.
Some categorization models assume that different
stimulus dimensions become available to the percei-
ver more quickly than others depending on their per-
ceptual salience (e.g., Lamberts, 2000).

To make things concrete, let us consider, for
example, a model like the Generalized Context
Model (GCM; Nosofsky, 1984, 1986; see also Kruschke,
1992; Lamberts, 2000; Nosofsky & Palmeri, 1997a).
Objects are represented as points in a multidimen-
sional psychological space. The distance dij between
representations of objects i and j is given by

dij =
∑M
m=1

wm|im − jm|
r[ ]1/r

, (1)

where m indexes the dimensions in psychological
space, M is the total number of dimensions, wm is
the weight given to dimension m, as described later,
and r specifies the distance metric. Similarity sij is
given by

sij = exp (− c · dij), (2)

where c is a sensitivity parameter that scales distances
in psychological space. Variants of these represen-
tational formalizations are used in a range of models,
including exemplar (Nosofsky, 1986), prototype (Smith
& Minda, 2000), and rule-based (Nosofsky & Palmeri,
1998) models of categorization.

In a model assuming no systematic individual
differences, all subjects would share the same psycho-
logical space (im, jm), with the same dimensional
weightings (wm) and sensitivity scalings (c) for com-
puting distances (dij) and similarities (sij) between rep-
resented objects. Alternatively, and perhaps more
likely, different subjects could differ in their psycho-
logical representations of objects. While it is theoreti-
cally possible that different subjects could have
entirely different multidimensional psychological
spaces, with different numbers and types of dimen-
sions and different relative positions of objects in
that space, it may be more likely that subjects differ
from one another quantitatively rather than qualitat-
ively; for example, subjects may share the same

relative positioning of objects in psychological space
but weight the dimensions differently when comput-
ing similarities (see Palmeri, Wong, & Gauthier, 2004).

Examples of potential individual differences in per-
ceptual representations are illustrated in Figure 1. For
example, some combination of learning and experi-
ence, or maturation and genetics, could cause some
subjects to have greater (or lesser) perceptual discri-
minability or lesser (or greater) perceptual noise in
object representations in psychological space. This
would be reflected by a relative expansion (or contrac-
tion) of psychological space for those subjects, for
example comparing subjects P1 and P2 in Figure 1.
In effect this relative expansion (or contraction) of per-
ceptual space makes distances between objects rela-
tively larger (or smaller), which in turn makes
similarities relatively smaller (or larger), which makes
perceptual confusions relatively lower (or higher).

In addition to expanding or contracting the entire
psychological space, different subjects could stretch
or shrink particular dimensions differently, for
example comparing subjects P3 and P4 in Figure 1.
This relative stretching or shrinking of particular dimen-
sions could reflect past experience with objects, for
example based on how diagnostic particular dimen-
sions have been for learned categorizations. Stretching
along a relevant dimension makes diagnostic distinc-
tions between objects larger, making objects that
vary along that dimension easier to categorize. Two
forms of stretching and shrinking have been con-
sidered (e.g., Folstein, Palmeri, Van Gulick, & Gauthier,
2015). One form of relative stretching along diagnostic
dimensions is top-down and flexible, weighting certain
dimensions more than others when computing simi-
larities in a particular categorization task, mathemat-
ically formalized in models like the GCM via the
dimension weight parameter (wm). Different categoriz-
ations might be based on different diagnostic dimen-
sions (e.g., Nosofsky, 1986, 1992), and different
subjects might weight those dimensions more or less
effectively. In addition to facilitating categorization in
a flexible manner, the relative stretching of object rep-
resentations along particular dimensions could reflect
long-lasting changes to how we perceive and represent
objects. Objects that vary along a dimension relevant to
previously learned categories can remain more percep-
tually discriminable in tasks that may not even require
categorization (e.g., Goldstone, 1994), with differences
along particular dimensions remaining more salient
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even when those dimensions are not diagnostic for the
current task (e.g., Folstein et al., 2012; Folstein, Palmeri,
& Gauthier, 2013; Viken, Treat, Nosofsky, McFall, &
Palmeri, 2002). Different subjects can stretch different
dimensions to different degrees, as reflected in the con-
trast between subject P3 and P4 in Figure 1.2

Category representations

Models differ considerably in what they assume about
category representations. Categorization is a form of
abstraction in that we treat different objects as kinds
of things, and perhaps the greatest source of debate
is whether such abstraction requires that category rep-
resentations themselves be abstract. On one extreme
are models that assume that categories are rep-
resented by abstract prototypes or rules and on the
other extreme are models that assume that categories
are represented by the specific exemplars that have
been experienced; we explain the differences
between these kinds of category representations
below. For illustration, here we consider only rep-
resentations on the extremes of the abstraction conti-
nuum and do not consider models that assume more
nuanced intermediate forms of abstraction (e.g.,
Anderson, 1991; Love, Medin, & Gureckis, 2004).

To describe different formal models of categoriz-
ation in a common mechanistic language, we
assume that, for all models, an object representation
is compared to stored representations of different
possible categories and that the result of this compari-
son is the evidence that an object belongs to each of
possible categories. For the simple case of two cat-
egories, A and B, we use the notation EiA and EiB to
denote the evidence that object i belongs to Category
A or Category B, respectively. In the next section, we
describe how these evidences are used to make a cat-
egorization decision.

Classic research on categorization suggested that
natural categories have a graded structure character-
ized by notions of “family resemblance” (e.g., Rosch
& Mervis, 1975). It is easier, for example, to categorize
a robin as a bird than an ostrich as a bird because a
robin is more similar to the prototypical or average
bird, suggesting that the bird category is defined by
its prototype. Analogously, when trained on category
exemplars that are distortions of a prototype, during
transfer tests after learning, people categorize a pre-
viously unseen prototype on average as well as, and
sometimes better than, trained category exemplars,
suggesting that a prototype had been abstracted
from the experienced exemplars during learning
(e.g., Homa, Cross, Cornell, Goldman, & Shwartz,
1973; Posner & Keele, 1968). As the name implies, in
prototype models, each category is represented by
its own prototype (Smith & Minda, 1998), which is
often assumed to be the average of all the instances
of a category that have been experienced. The evi-
dence EiA that object i is a member of Category A is
simply given by similarity between the representation
of object i and the representation of the prototype PA:

EiA = sipA , (3)

where sipA is specified by Equations (1) and (2). As illus-
trated in Figure 2, one potential source of individual
differences is that different people form different pro-
totypes, perhaps because they have experienced
different category instances, or the quality of those
stored prototypes could vary as well because of indi-
vidual differences in learning mechanisms (see Proto-
types column in Figure 2).

Rather than assume abstraction, exemplar models
assume that a category is represented in terms of
visual memories for all of the particular instances
that have been experienced and those stored exem-
plars are activated according to their similarity to the

Figure 1. Illustration of some potential individual differences in perceptual representations. Each symbol represents an object as a point
in a two-dimensional psychological space; in this example, consider circle symbols as objects from one category and triangle symbols as
objects from another category. Different individuals can have relatively low overall perceptual discriminability (P1) or high overall per-
ceptual discriminability (P2); the space can be stretched along dimension 1 and shrunk along dimension 2 (P3), or vice-versa (P4).
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object to be categorized. The degree to which an
object is similar to exemplars from just a single cat-
egory determines howwell that object will be categor-
ized. Categorization behaviours that seem to suggest
abstraction, such as the prototype abstraction, are
well-predicted by exemplar models that assume no
abstraction (e.g., Hintzman, 1986; Palmeri & Nosofsky,
2001; Shin & Nosofsky, 1992).

Mathematically, for models like the GCM (Nosofsky,
1984, 1986), the evidence that object i is a member of
Category A (denoted CA), is given by the summed simi-
larity of that object to all previously stored exemplars
of that category:

EiA =
∑
j[CA

Njsij , (4)

where sij is specified by Equations (1) and (2); Nj is an
exemplar-strength parameter, which can reflect, for
example, the differential frequency with which an
individual has encountered particular exemplars.
Both the particular collection of stored exemplars
and the strength of those exemplars could vary
across individuals. In addition, the quality of exem-
plar memories could vary across individuals as
well. One way to mathematically instantiate this
idea is to allow different values of the sensitivity par-
ameter c in Equation (2) for different subjects (see
Exemplars column in Figure 2). In much the same
way that individuals can differ in the quality of
their perceptual representations, they can also
differ in the quality of the stored memory represen-
tations, as reflected by the steepness of the general-
ization gradients defined by the sensitivity
parameter (e.g., Nosofsky & Zaki, 1998; Palmeri &
Cottrell, 2009).

Prototype and exemplar models both assume that
categorization depends on similarity to stored cat-
egory representations. An alternative conception is
that categorization depends on boundaries that
carve perceptual space into response regions or
abstract rules that specify necessary and sufficient con-
ditions for category membership. Early accounts often
equated category learning with logical rule learning
(e.g., Bourne, 1970; Trabasso & Bower, 1968). These
early rule-based accounts were largely rejected in
favour of similarity-based accounts until the 1990s
when a series of models combining rules with other
forms of representation began to be proposed (e.g.,
Ashby, Alfonso-Reese, Turken, & Waldron, 1998;

Erickson & Kruschke, 1998; Nosofsky & Palmeri, 1998;
Nosofsky, Palmeri, & McKinley, 1994; Palmeri, 1997).

Rules can take on logical forms having a wide range
of complexity (e.g., Feldman, 2000). Consider first a
simple single-dimension rule, for example that dark
objects are in Category A and light objects are in Cat-
egory B. This simple rule carves psychological space
into response regions such that objects on one side
of the darkness–lightness boundary are an A regard-
less of the values along other dimensions. In its sim-
plest form, if object i falls in the A region defined by
the boundary, then EiA = 1 and EiB = 0; if it falls in the
B region, then EiA = 0 and EiB = 1. But as we will see
in the next section, the addition of decisional noise
can turn a deterministic categorization into one that
is more probabilistic.

It is natural to imagine that different individuals
might form different rules (see Rules column in
Figure 2). Indeed, the rule-plus-exception (RULEX)
model (Nosofsky, Gluck, Palmeri, McKinley, & Glau-
thier, 1994; Nosofsky & Palmeri, 1998) explicitly
assumes that different individuals can learn different
rules to ostensibly the same object categorization
problem because they select different dimensions to
evaluate as potential candidates, have different cri-
teria for accepting perfect versus imperfect rules, or
have different preferences for simple rules versus
more complex rules. Some people might learn to
form a rule along one dimension, others might learn
to form a rule along another dimension, and still
others might learn a conjunction of two other dimen-
sions. RULEX allows people to learn imperfect rules,
and assumes that they memorize to varying degrees
any exceptions to learned rules, hence the “EX” in
“RULEX”. As we will see in more detailed later, variabil-
ity in categorization across individuals according to
RULEX is assumed to reflect the idiosyncratic rules
and exceptions that different people learn when con-
fronted with the same categorization problem to
solve.

The idea that boundaries can be learned to divide
psychological space into response regions is general-
ized in so-called decision boundary models, as instan-
tiated with General Recognition Theory (GRT; Ashby &
Gott, 1988; Ashby & Townsend, 1986). These bound-
aries can correspond to rules along individual dimen-
sions (e.g., Ashby et al., 1998), but they can also carve
psychological space using various forms of linear or
nonlinear boundary to separate different categorization
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regions; decision boundaries can correspond to simple
rules along a single dimension that are easy to verbalize
or to quite complex multidimensional nonlinear dis-
criminations that are non-verbalizable. Decision bound-
aries for different individuals can differ qualitatively in
their type (linear vs. quadratic), quantitatively in their
locations, or some combination of both (e.g., Danileiko,
Lee, & Kalish, 2015) (see Decision Bounds column in
Figure 2).

Individual differences in category representation
can be a major source of individual differences in
visual categorization performance. Individuals can
differ within the same system of category represen-
tation. If everyone forms prototypes, where is the
location of their prototype? If everyone learns exem-
plars, what exemplars do they have stored in
memory and how well are they stored? And if every-
one forms rules, what kind of rules have they
formed? Alternatively, different individuals can form
different kinds of category representations. Some
might abstract a prototype, others might learn exem-
plars, and still others might create rules. And if people
create hybrid representations combining different
kinds of representations, then individuals can differ
in their particular combinations of representations.
For example, some might use both rules and exem-
plars, otherwise might use prototypes and exemplars.
Later in this article we will discuss example
approaches of considering individual differences in
category representations of these sorts.

Decision processes

Matching the perceptual representation of an object
with learned category representations yields evidence
that the object belongs to each possible category. The
decision process translates this collection of evidence
measures into a classification response, which can
predict, for example, theprobability of eachpossible cat-
egorization of the object and the response time tomake
a categorization decision. We will continue to illustrate
using a simple example of a decision between two poss-
ible categories, A and B, with evidence values EiA and EiB
that object i belongs to each category, but recognize
that all of these decision mechanisms can be extended
beyond the simple two-choice scenario.

We first consider decision processes that only
predict response probabilities. A purely deterministic
decision favours category A whenever EiA is greater
than EiB. Allowing for possible response biases, cat-
egory membership is simply given by:

PiA = 1, if EiA + bA . EiB + bB, (5)

where bA and bB are the biases of responding with Cat-
egory A and B, respectively.

Alternatively, we can imagine that when EiA and EiB
are relatively close in value that the same object
might sometimes be classified as a member of Cat-
egory A, and other times as a member of Category B.
One well-known probabilistic decision mechanism,
harkening back to the classic Luce choice rule (Luce,

Figure 2. Illustration of various quantitative and qualitative individual differences in category representations. The four columns illus-
trate qualitative individual differences in types of category representations: exemplars, prototypes, rules, or decision bounds. The two
rows illustrate quantitative differences for individuals sharing the same qualitative category representation (e.g., different quality of
exemplar representations, different category prototypes, different kinds of rules or decision bounds).
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1963), gives the probability of classifying the object i as
a member of Category A by:

PiA = bAEiA
bAEiA + bBEiB

, (6)

where bA and bB are the bias of responding Category A
and B, respectively. Response biases present in both
deterministic and probabilistic decision processes are
a common source of individual differences in categor-
ization and a whole host of other cognitive
phenomena.

Deterministic and probabilistic decision processes
represent two ends of a continuum. Purely determinis-
tic decisions can become more probabilistic when
there is noise in the decision process:

PiA = 1, if EiA + bA . EiB + bB + 1, (7)

where 1 is from a normal distribution with a mean of 0
and a standard deviation of σ. And probabilistic
decisions can become more deterministic with a non-
linear rescaling of the Luce choice rule:

PiA = [bAEiA]
g

[bAEiA]
g + [bBEiB]

g , (8)

where g is a parameter that reflects the degree of deter-
minism in responding (Maddox & Ashby, 1993;
Nosofsky & Palmeri, 1997b; see Kruschke, 2008, for
other extensions); as g approaches infinity, purely
deterministic responding is predicted, and as g

approaches 1, probabilistic responding is predicted. In
both formalizations, individuals can differ from one
another in the amount of noise (Equation (7)) or relative
determinism (Equation (8)) in their decision process.

Decision processes that only predict response prob-
abilities ignore time. Time is not only an informative
component of categorization behaviour (e.g., Mack &
Palmeri, 2011, 2015) but also an important potential
source of individual differences, including factors like
well-known trade-offs between speed and accuracy
(e.g., Pew, 1969; Wickelgren, 1977). One popular
class of decision models that predict response times
and response probabilities are well-known sequential
sampling, also known as accumulation of evidence,
models (for a review of different classes of sequential
sampling models, see Ratcliff & Smith, 2004), including
diffusion (Ratcliff, 1978; Ratcliff & McKoon, 2008) and
random walk models (Nosofsky & Palmeri, 1997a;
Nosofsky & Stanton, 2005), and the linear ballistic
accumulator model (Brown & Heathcote, 2005, 2008).

Sequential sampling models assume that evidence
accumulates over time towards response thresholds
associated with alternative choices and that variability
in this accumulation of evidence over time is an impor-
tant source of variability in categorization response
time and response choices. As illustrated in Figure 3,
these models decompose response times into a non-
decision time associated with the time to perceive an
object (and the time to execute a motor response)
and a decision time associated with the accumulation
of evidence to a response threshold. The decision
process itself assumes a starting point for evidence,
which can be biased toward some responses over
other responses, an average rate of evidence accumu-
lation, which is often referred to as drift rate, and the
response threshold, which can be adjusted up or
down to control the trade-off between speed and accu-
racy. The variants of thesemodels assume some form of
variability within or between trials, which gives rise to
variability in predicted behaviour. The parameters of
such models have intuitive psychological interpret-
ations that have been validated empirically (e.g.,
Donkin, Brown, Heathcote, & Wagenmakers, 2011; Rat-
cliff & Rouder, 1998; Voss, Rothermund, & Voss, 2004)
and all can be potential sources of individual differ-
ences (as illustrated in Figure 3).

Sequential sampling models provide a generic
decision mechanism that can be incorporated into
models of a wide array of perceptual and cognitive
processes. Nosofsky and Palmeri (1997a; Palmeri,
1997) proposed the Exemplar-Based Random Walk
(EBRW) model of categorization that combined the
random walk sequential sampling architecture with
what is essentially a theory of the drift rate parameters.
In EBRW, accumulation rates driving a random walk
are built mathematically from assumptions embodied
in the GCM combined with key temporal components
borrowed from the instance theory of automaticity
(Logan, 1988). Specifically, the probability of taking a
step toward category A for stimulus i is defined as:

pi = EiA
EiA + EiB

. (9)

The speed with which steps are taken is based on
some additional temporal assumptions that go
beyond the scope of this article (see Nosofsky &
Palmeri, 1997a, 2015). This combination of GCM and
sequential sampling models created a model that
can explain a wide array of categorization behaviour,
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including predictions about variability in errors and
response times for individual objects and how these
changes with learning and experience (e.g., Mack &
Palmeri, 2011; Nosofsky & Palmeri, 2015).

Modelling individual differences in
categorization

We now turn to examining both how formal models of
visual categorization have captured individual differ-
ences and how individual difference have informed
the development of formal models. As we noted
before, our selection of examples will intentionally
provide a bit of an historical perspective, starting
with modelling approaches that ignore individual
differences, to those that capture group differences,
to those that predict individual differences, and to
more recent hierarchical approaches that aim to simul-
taneously capture both group and individual differ-
ences in visual categorization.

Accounting for average data

Not unlike most areas of psychology, a significant
amount of early research in categorization either
ignored individual differences or treated individual
differences as little more than uninteresting error

variance. That error variance is mitigated by averaging
subject data, highlighting the systematic variance
across conditions or across stimuli. When evaluating
computational models, those models are often
tested on how well they can account for particular
qualitative and quantitative aspects of this average
data.

Let us consider first the classic study by Shepard,
Hovland, and Jenkins (1961). The abstract stimulus
structure and category structures are illustrated in
Figure 4. There are three binary-valued dimensions,
for example shape, colour, and size, yielding eight
possible stimuli. When arranging these eight stimuli
into two categories with four items per category,
there are six possible category structure types, allow-
ing for rotation and reflection (see also Feldman,
2000). In Figure 4, the eight vertices of a cube rep-
resent the eight possible stimuli, with black vertices
representing members of one category and white ver-
tices representing members of the other category for
each of the six types. For Type I, only a single dimen-
sion is relevant; for Type II, two dimensions are rel-
evant, as part of a logical exclusive-or problem; for
Types III, IV, and V, all three dimensions are relevant
to varying degrees; and Type VI essentially requires a
unique identification of each item since all items are
adjacent to members of the opposite category. For

Figure 3. Illustration of potential individual differences in the decision process as instantiated by a stochastic accumulator model.
Within or across conditions, individuals can vary in their non-decisional time, drift rate, threshold, or bias. (A) individuals with
longer non-decisional time than the others (t); (B) individuals with higher drift rate than the others (d); (C) individuals with larger
threshold than others (a); (D) individuals who are more biased toward the upper boundary than others (b).
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each problem type, subjects were presented with
stimuli one at a time, tried to categorize each stimulus
as a member of one of the two categories, and
received corrective feedback after their response; the
ultimate goal was to try to learn to categorize all
eight stimuli correctly.

The key data are either the average number of
errors made when learning each problem type
(Shepard et al., 1961) or the average proportion of
errors for each type in each block of training
(Nosofsky, Gluck, et al., 1994). For stimuli composed
of separable dimensions, Type I is the easiest to
learn, followed by Type II, then by Types III, IV, and V
of roughly equally difficulty, and finally by Type VI
(see Nosofsky & Palmeri, 1996, for the case of stimuli
composed of integral dimensions). The qualitative
ordering of categorization problem difficulty and the
quantitative learning curves have been benchmark
data for evaluating categorization models (e.g.,
Kruschke, 1992; Love et al., 2004; Nosofsky, Palmeri,
et al., 1994).

Note that for the Shepard, Hovland, and Jenkins
category structure, models are not only evaluated on
how well they account for learning and performance
averaged across subjects, they are also typically evalu-
ated on how well they account for problem difficulty
averaged across items (but see Nosofsky, Gluck,

et al., 1994). Individual subject effects and individual
item effects are often companion pieces in traditional
discussions in the individual differences literature,
especially in the area of psychometrics (Wilson,
2004). While early work in categorization modelling
largely ignore individual differences, a significant
body of work has focused on predictions of item
effects: how easy or difficult it is to learn particular
members of categories, what kinds of errors are
made categorizing particular items, and how learned
categorizations are generalized to particular untrained
transfer items.

Consider, for example, a classic experiment from
Medin and Schaffer (1978), which has been replicated
many times (e.g., Johansen & Palmeri, 2002; Love et al.,
2004; Mack, Preston, & Love, 2013; Medin, Altom, &
Murphy, 1984; Nosofsky, 2000; Nosofsky, Palmeri,
et al., 1994; Palmeri & Nosofsky, 1995; Rehder &
Hoffman, 2005; Smith & Minda, 2000). The abstract cat-
egory structure from their most widely replicated
Experiment 2 is shown in Table 1. Stimuli vary on
four binary-valued dimensions, yielding 16 possible
stimuli. Many variants of stimulus dimensions have
been used over the years; in Medin and Schaffer, the
dimensions were form (triangle or circle), size (large
or small), colour (red or green), and number (one or
two objects). Five stimuli (A1–A5) are assigned to

Figure 4. Illustration of six types of categorization structures tested by Shepard et al. (1961; see also Nosofsky, Gluck, et al., 1994). The
eight vertices of each cube represent abstractly the eight possible stimuli constructed from three binary-valued stimulus dimensions.
Vertices depicted by black circles are those assigned to on category and vertices depicted by light squares are those assigned to the
other category.
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Category A; four (B1–B4) are assigned to Category B;
the remaining seven (T1–T7) are so-called transfer
stimuli that subjects did not learn but on which they
were tested after training. Subjects first learn to cat-
egorize the nine training stimuli (A1–A5 and B1–B4),
shown one at a time, into Category A or Category B
with feedback over several training blocks. After train-
ing, subjects complete a transfer task in which all 16
stimuli are presented, including both the nine training
stimuli and the seven transfer stimuli, with no feed-
back. The classification probabilities P(A) for each
stimulus during transfer are averaged across all sub-
jects. Observed data from one replication of this
classic study is shown in Figure 5 (from Nosofsky,
Palmeri, et al., 1994).

The Medin and Schaffer (1978) category structure
was originally designed specifically to contrast predic-
tions of exemplar and prototype models by examining
errors categorizing particular items. Specifically, a pro-
totype model predicts that A2 would be more difficult
to learn than A1 because A2 is less similar to the Cat-
egory A modal prototype than A1; in contrast, an
exemplar model predicts that A2 would be easier to
learn than A1 because A2 is relatively similar to
other exemplars of Category A and dissimilar to exem-
plars of Category B, whereas A1 is similar to exemplars
of category B.3 Since then, predicting categorization of
all training and transfer items, not just A1 and A2, in
this classic structure and its empirical variants has

been a benchmark result for evaluating categorization
models (e.g., Johansen & Palmeri, 2002; Mack et al.,
2013; Love et al., 2004; Nosofsky, Palmeri, et al.,
1994; Rehder & Hoffman, 2005; Smith & Minda,
2000). Models are fitted to the averaged data,
finding parameters that minimize the discrepancy
between predicted and observed classification prob-
abilities (e.g., Lewandowsky & Farrell, 2011). As illus-
trated in Figure 5, models assuming very different
kinds of category representations—in this case exem-
plars for the context model and rules plus exceptions
for the RULEX model—can produce similar accounts
of the average data (for details, see Nosofsky,
Palmeri, et al., 1994). As we will see later, considering
individual differences in categorization may help
tease apart how people learn categories defined by
this category structure in ways that are masked
when considering only average performance data.

Accounting for group differences

A step towards considering individual differences is
considering group differences. Groups can differ
because of brain damage, disease, age, experience,
and many other factors. From a theoretical perspec-
tive, computational models can be used to account
for and explain those group differences. Moreover,
the presence of those group differences can provide
potentially challenging test of the mechanistic
assumptions underlying computational models.

Table 1. Category structure from Experiment 2 of Medin and
Schaffer (1978).

Stimulus

Dimension

1 2 3 4

Category A
A1 1 1 1 2
A2 1 2 1 2
A3 1 2 1 1
A4 1 1 2 1
A5 2 1 1 1

Category B
B1 1 1 2 2
B2 2 1 1 2
B3 2 2 2 1
B4 2 2 2 2

Transfer
T1 1 2 2 1
T2 1 2 2 2
T3 1 1 1 1
T4 2 2 1 2
T5 2 1 2 1
T6 2 2 1 1
T7 2 1 2 2

Entries are the value of each stimulus along each of the four binary-valued
dimensions. A1–A5 refer to the five stimuli assigned to category A. B1–
B4 refer to the four stimuli assigned to category B. T1–T7 refer to the
seven stimuli that were not learned but tested in the transfer phase.

Figure 5. Fits of an exemplar model (the context model of Medin
& Schaffer, 1978) and the RULEX (rule-plus-exception) model
(Nosofsky, Palmeri, et al., 1994) to the averaged transfer data
from a replication and extension of Medin and Schaffer (1978);
from Experiment 1 of Nosofsky, Palmeri, et al. (1994).
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For example, Nosofsky and Zaki (1998) investigated
whether an exemplar model could explain the
observed dissociation between categorization and
recognition observed when comparing groups with
amnesia to control groups, as reported by Knowlton
and Squire (1993). Using a variant of the classic dot
pattern task of Posner and Keele (1968), Knowlton
and Squire either exposed people to distortions of a
prototype dot pattern and later asked them to classify
new dot patterns in a categorization task, or they
exposed people to a collection of random dot patterns
and later asked them to judge dot patterns as new or
old in a recognition memory task. Not surprisingly,
given their memory impairments, Knowlton and
Squire observed that individuals with amnesia per-
formed significantly worse than controls at recog-
nition memory. What was noteworthy was that they
observed no significant difference between the
groups at categorization. This dissociation between
recognition and categorization was interpreted by
Knowlton and Squire (1993) as support for multiple
memory systems, a hippocampal system responsible
for explicit recognition memory, which is damaged
in amnesia, and another implicit category learning
system, which is preserved.

By contrast, exemplar models assume that the same
exemplar memories are used to recognize objects as
old or new and to categorize objects as different
kinds. Knowlton and Squire cited their observed dis-
sociation as evidence that appears to falsify exemplar
models outright. They claimed that a theory that
assumes a single memory system supporting recog-
nition and categorization, like the exemplar model,
cannot account for a dissociation between recognition
and categorization resulting from brain damage.

To formally test this claim, Nosofsky and Zaki (1998)
generated predictions for two simulated groups of
subjects: one with poor exemplar memory represen-
tations, simulating the group of individuals with
amnesia; and one with normal exemplar memory rep-
resentations, simulating the control group. These
memory differences were instantiated by a single par-
ameter that was allowed to vary between groups.
Recall that the sensitivity parameter, c, in Equation
(2) controls the scaling between distance in psycho-
logical space and similarity. When c is high, small
differences in distance translate into large differences
in similarity, but when c is low, large differences in dis-
tance are needed to generate comparable differences

in similarity. As a consequence, relatively poorer
memory representations can be simulated with rela-
tively smaller values of c, making items that are far
apart in terms of distance seem similar or confusable
psychologically. Instantiating group differences with
this single parameter difference, Nosofsky and Zaki
showed that the exemplar model can indeed predict
large significant differences in old–new recognition
memory accompanied by only small nonsignificant
difference in categorization (see also Palmeri &
Flanery, 2002). The recognition task requires fine dis-
tinctions between old and new items, causing per-
formance to be significantly impacted by poorer
memory representations, whereas the categorization
task requires broad generalization to experienced
exemplars, causing performance to be relatively unaf-
fected by poorer memory representations. A single
memory-system exemplar model simulating memory
differences between groups via a single parameter
difference was capable of explaining the observed
neuropsychological dissociation.

The parameters of computational models are often
key engines for explaining individual and group differ-
ences. The core model components regarding how
objects and categories are represented, how simi-
larities and evidence are computed, and how evidence
is accumulated to make a particular categorization at a
particular time are commonly assumed to be the same
across groups (or individuals within a group). What
varies between groups (or individuals) is how those
representations and processes are parameterized. As
one example, differences between experts and
novices can be explained in part by the quality of
their visual percepts and visual memories (e.g.,
Palmeri et al., 2004; Palmeri & Cottrell, 2009). As
another example, differences between individuals at
risk for bulimia and thosewho are not can be explained
in part by howmuch theyweight body size dimensions
in their categorizations (e.g., Viken et al., 2002).

Using computational models to account for group
differences has limitations. Within a group, individual
differences are averaged together, so accounting for
group differences has many of the same limitations
as accounting for average data. In addition, whether
an empirical study or a computational modelling
effort, dichotomizing potentially continuous individual
differences—amnesic versus control, expert versus
novice, bulimic versus control—potentially misses
critical structure present in the fine-grained data—a
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continuum of memory impairment, a continuum of
expertise, a continuum of eating disorder. Whether
the relationship between the continuum and model
mechanisms are linear, exponential, or other form of
function is lost when we aggregate individual differ-
ences into two or more groups (e.g., Vandekerckhove,
2014).

Accounting for individual subject performance

At least since the classic work of Estes (1956), there
have long been cautions about analysing and model-
ling data aggregated across individual subjects. Estes
considered the case of learning curves. Imagine that
all individual subject learning curves follow a step
function that rises from chance to perfect perform-
ance in an instant, but they do so at different time
points. In this sense, every subject exhibits all-or-
none learning, but “get it” at different times. Aver-
aging over these individual step functions will result
in an average learning curve will misleadingly show
a gradual, continuous rise rather than all-or-none
learning. Estes said that any given mean learning
curve could have “arisen from any of an infinite
variety of populations of individual curve” (Estes,
1956, p. 134), with averaging especially problematic
when the averaged data does not faithfully reflect
individual behavioural patterns (Estes, 1956; Estes &
Maddox, 2005).

Nosofsky and Palmeri et al. (1994) demonstrated
how considering individual subject behaviour can
help to distinguish different models of categorization
that are indistinguishable based on averaged data.
They first showed that the rule-based RULEX model
and the exemplar-based context model could both
account equally well for a replication of the classic
Medin and Schaffer (1978) experiment when fitted
to average subject categorization of old training
items and new transfer items (see Figure 5).

They next distinguished the two models based on
how they accounted for individual subject behaviour.
Rather than simply fit the models to the average prob-
ability of classifying individual stimuli as members of
Category A or Category B (Figure 5), they fitted the
models to the generalization patterns individual sub-
jects exhibited when tested on the new transfer
items (Figure 6), as described next.

Consider the category structure shown in Table 1.
Imagine that during the category learning phase, an

individual notices that information along the first
stimulus dimension is partially diagnostic and forms
a simple, yet imperfect, rule along that dimension. If
stimulus dimension one corresponds to size, and
value 1 corresponds to small and value 2 corresponds
to large, then small stimuli are put into category A and
large stimuli are put into category B. In the following
transfer phase, when that subject applies that
learned rule to the seven transfer stimuli (that they
have not seen before) they would categorize T1–T3
(the small stimuli) in Category A and T4–T7 (the
large stimuli) in Category B by a simple application
of that rule. We can represent this as the generalization
pattern AAABBBB. Now imagine that during the cat-
egory learning phase, another individual notices that
information along the third dimension is partially diag-
nostic and forms a rule along that dimension. If stimu-
lus dimension three corresponds to colour, and value
1 corresponds to red and value 2 corresponds to
green, then red stimuli are put into category A and
green stimuli are put into category B. When applying
this rule during the transfer phase, they would show
the generalization pattern BBAABAB, categorizing
the red transfer stimuli as A’s and the green transfer
stimuli as B’s. Nosofsky et al. tested over 200 subjects
and for each individual subject they tallied the gener-
alization pattern they exhibited during the transfer
phase to create a distribution of generalization pat-
terns across all subjects; Palmeri and Nosofsky (1995)
replicated this experiment with additional training
trials. To simplify the illustration of the distribution of
generalization patterns from these two studies,
Figure 6 leaves out T3 (which is nearly always categor-
ized as a member of Category A) and T7 (which is
nearly always categorized as a member of Category
B) from the generalization patterns; hence AAABBBB
becomes AABBB and BBAABAB becomes BBABA.

Whereas the rule-based RULEX model and the
exemplar-based context model made similar predic-
tion regarding average categorization, they made
different predictions regarding the distributions of
generalization patterns—in other words, they made
different predictions at the individual subjects level.
Subjects showed prominent rule-based generaliz-
ation, as predicted by RULEX (Nosofsky, Palmeri,
et al., 1994; see also Nosofsky, Clark, & Shin, 1989), as
shown in the left panel of Figure 6. When Palmeri
and Nosofsky (1995) followed up with more training,
they observed a relative increase in the proportion
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of ABBA generalizations, as shown in the right panel of
Figure 6, which turned out to be the modal generaliz-
ation predicted by exemplar models (see also Ander-
son & Betz, 2001; Johansen & Palmeri, 2002;
Raijmakers, Schmittmann, & Visser, 2014).

Ashby, Maddox, and Lee (1994) also investigated
the potential dangers of testing categorization
models based on their fits to averaged data. They
used both real and simulated data for identification,
a special case of categorization in which each stimulus
defines its own category. The similarity-choice model
(Luce, 1959), a theoretical precursor to the generalized
context model (Nosofsky, 1984), generally provided far
better fits to averaged data than to individual subject
data. In one case, they simulated data from the identi-
fication version of the decision-bound model, in which
each stimulus forms its own category (Ashby & Gott,
1988; Ashby & Lee, 1991; Ashby & Townsend, 1986).
Perhaps not surprisingly, the decision-bound model
provided a better account of individual subject data
than the similarity-choice model since the data were

simulated from the former model. If there were no
averaging artefact, then whether fitting individual
subject data or averaged data, the decision-bound
model should be recovered as the true model since
that is the model that generated the data. However,
when fitted to averaged data, the similarity-choice
model provided better fits than the decision-bound
model that actually generated the data. Testing
models based on fits to averaged data can lead to
erroneous conclusions about the underlying mental
processes.

Individual subject analyses can provide more accu-
rate information regarding categorization processes
than group analysis since the structure within
average data may not faithfully reflect that within indi-
vidual subject data. An obvious cost of individual
subject analyses is significantly less statistical power.
Parameter estimation does not benefit from the
noise reduction provided by aggregation. Generally,
fitting models to individual subject data requires an
adequate number of observations from each subject

Figure 6. Distributions of generalization patterns from Experiment 1 of Nosofsky, Palmeri, et al., 1994 and Experiment 1 of Palmeri and
Nosofsky (1995); both are replications and extensions of Experiment 2 of Medin and Schaffer (1978). Each of the 32 generalization pat-
terns is one of the possible ways that a subject could classify the five critical transfer items (T1, T2, T4, T5, and T6, respectively) from the
category structure shown in Table 1; for example, pattern AABBB denotes classifying T1–T2 as members of category A and T4–T6 as
members of category B. White bars highlight the two prominent rule-based generalization patterns. The hatched bar highlights the
prominent exemplar-based generalization pattern. Adapted from Johansen & Palmeri (2002). Copyright 2002 by Academic Press.
Reprinted with permission.
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and will likely be outperformed by fitting to group
data if insufficient data are obtained (Brown & Heath-
cote, 2003; Cohen, Sanborn, & Shiffrin, 2008; Lee &
Webb, 2005; Pitt, Myung, & Zhang, 2002). With too
little data, inferences based on individual subject ana-
lyses can be so noisy and unreliable that averaging
seems an acceptable trade-off, despite the possible
distortions (Cohen et al., 2008; Lee & Webb, 2005).
The Nosofsky and Palmeri et al. (1994) work described
at the outset of this section provides something akin
to an intermediate step between individual subject
fitting and group fitting; the distributions of generaliz-
ation patterns across the individuals in the group were
fitted, not each individual subject’s data or the group
data. A more formalized means of fitting group and
individual subject data involves hierarchical model-
ling, as described next.

Hierarchical modelling

Modelling group averages can fail to recognize mean-
ingful individual differences in the population, while
modelling individual subject data may lack sufficient
power to detect important patterns between individ-
uals or even allow quantitative model fitting to indi-
vidual subject data of any sort.4 A solution to this
dilemma is to model both group and individual differ-
ences simultaneously using what is called a hierarchi-
cal modelling approach (e.g., Gelman & Hill, 2006;
Lee & Webb, 2005; Rouder, Lu, Speckman, Sun, &
Jiang, 2005). In hierarchical modelling, individuals are
assumed to be samples from a certain population or
group, with model parameters defining both the
group and individuals sampled from the group. In its
most general form, quantitative individual differences
can be captured by the parameter differences within a
group, while qualitative group differences can be
described by parameter differences between groups
(Lee, 2011; Shiffrin, Lee, Kim, & Wagenmakers, 2008).
While fitting individuals and groups simultaneously
might appear little more than a complication of an
already complicated modelling problem, in practice
the techniques used for hierarchical modelling actu-
ally allow both individual and group parameters to
be modelled more precisely because information at
multiple levels is shared (Kreft & de Leeuw, 1998;
Lee, 2011; Shiffrin et al., 2008).

In a lot of traditional cognitive model parameter
estimation, whether fitting group data or individual

data, best-fitting parameters are those that maximize
or minimize some objective function, such as likeli-
hood or χ2, that quantifies the deviation between
observed data and model predictions (e.g., Lewan-
dowsky & Farrell, 2011). While maximum likelihood
can be used to fit certain classes of linear hierarchical
models and hierarchical variants of other classical stat-
istical models (e.g., Gelman & Hill, 2006), hierarchical
cognitive models quickly become too computationally
challenging or entirely intractable to use such tra-
ditional model fitting methods. A Bayesian modelling
framework provides a natural alternative, with a coher-
ent and principled means for statistical inference (see
Gelman, Carlin, Stern, & Rubin, 2014; Kruschke, 2010)
and enabling modelling of flexible and complex cog-
nitive phenomena at the group and individual differ-
ences level (Lee & Wagenmakers, 2014). The vector
of model parameters, θ, can be estimated from the
observed data, D, by a conceptually straightforward
application of Bayes’ rule: p(θ | D) = p(D | θ) p(θ) / p
(D); a conceptually straightforward causal chaining of
conditional probabilities, often called a graphical
model (e.g., Griffiths, Kemp, & Tenenbaum, 2008),
allows a complex hierarchy of group and individual
subject parameters to be specified. In practice, the sol-
ution to a multivariate, hierarchical Bayesian specifica-
tion of a cognitive model requires computationally
intensive Monte Carlo techniques that have only
been possible to implement on computer hardware
that have become available in the past few years,
hence the recent explosion of interest in Bayesian
modelling approaches. The combination of hierarchi-
cal cognitive modelling with a Bayesian framework is
called Bayesian hierarchical cognitive modelling.

Consider first a Bayesian hierarchical version of the
diffusion model (e.g., Vandekerckhove, Tuerlinckx, &
Lee, 2011) or of the linear ballistic accumulator model
(e.g., Annis, Miller, & Palmeri, in press) of perceptual
decision making. Recall that these models explain varia-
bility in response times and response probabilities via a
combination of drift rate, response threshold, starting
point, non-decision time (for debates regarding varia-
bility in these parameters, see Heathcote, Wagen-
makers, & Brown, 2014; Jones & Dzhafarov, 2014;
Smith, Ratcliff, & McKoon, 2014). While it is possible in
principle to simply fit the diffusion model to individual
subject data, the model requires fits to full correct and
error response time distributions, which requires a rela-
tively large number of observations per subject per
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condition. Sometimes large data sets are impossible to
obtain, for example in online experiments (e.g., Shen,
Mack, & Palmeri, 2014). Bayesian hierarchical
approaches specify group-level parameters for the
drift rate, response threshold, and so forth, and
assume that individual subject parameters are
random samples from those distributions. This
imposed hierarchy helps constrain individual subject
parameter estimates, even in the face of inadequate
or missing data (e.g., Gelman & Hill, 2006).

The simplest individual differences model specified
within a Bayesian hierarchy is one that assumes a
single multivariate distribution of model parameters
for a single group, with individual subject parameters
sampled from that group. A more complex version
might allow certain model parameters to vary systema-
tically with a person or item covariate, or even single-
trial covariates from neural data such as EEG measures
(Nunez, Vandekerckhove, & Srinivasan, in press). It is cer-
tainly possible to fit a model like the diffusion model or
LBA to each individual subject separately and then, say,
correlate their parameter estimates with some other
subject factor, like intelligence or age (e.g., Ratcliff,
Thapar, & McKoon, 2006; Ratcliff, Thapar, & McKoon,
2011). Simultaneously fitting all subjects at the same
time in a hierarchical manner allows direct statistical
tests of explanatory models of the parameter differ-
ences between individual subjects in a far more statisti-
cally powerful manner. For example, we have recently
tested how perceptual decision making that underlies
categorization and memory changes with real-world
expertise, specifying explanatory models of drift rate
and other accumulator model parameters with
equations that include a (potential) covariate for individ-
ual subject domain expertise (Annis & Palmeri, 2016;
Shen, Annis, & Palmeri, 2016). In our case, rather than
estimate drift rate on an individual subject basis and
correlate that parameter with expertise—which
cannot be done because we are testing online subjects
with few observations per condition, making individual
subject fitting largely impossible—we test directly var-
iants of accumulator models that incorporate expertise
in an explanatory model of the accumulator model
parameters.

Multiple qualitative groups can also be specified
within a Bayesian hierarchical framework. For
example, Bartlema, Lee, Wetzels, and Vanpaemel
(2014) used hierarchical modelling to investigate
how individuals differ in their distribution of selective

attention to the dimensions of stimuli as a conse-
quence of category learning in a set of data originally
reported by Kruschke (1993). Subjects learned the cat-
egory structure shown in the top panel of Figure 7.
Stimuli were “boxcars” that varied in the position of
a bar in the box and the height of the box, as illus-
trated. The dashed line in Figure 7 illustrates the
boundary separating stimuli into Category A and B.
Both dimensions are relevant to the categorization,
and when the GCM (Nosofsky, 1986) was fitted to
average categorization data, best-fitting parameters
revealed that attention weights were applied to both
the position and height dimensions.

Bartlema et al. (2014) instead considered the possi-
bility that different latent groups of subjects might
show qualitatively different patterns of dimensional
weighting (also described as dimensional selective
attention). Rather than assuming that everyone
attended to (weighted) both dimensions equally,
subjects might attend to only one of the dimensions
(attend position group or attend height group), or not
attend to (weight) any dimension and simply guessed
(contaminant group); in addition to these qualitative
groups, there could also be quantitative differences in
parameters between subjects within each group. A
mixture component with three latent groups was
added to the Bayesian hierarchical analysis, which
identified a latent group membership for each
subject. The results showed that, indeed, subjects
appeared to fall within one of three latent groups.
Themiddle panel of Figure 7 shows the groupmember-
ship probability (y axis) as a function of subject number
(x axis). The bottom panel of Figure 7 illustrates the
different behavioural patterns shown by subjects in
the different groups. Thus a mixture-model Bayesian
hierarchical analysis can provide a unique picture of
categorization behaviour of groups of subjects within
the population—a pattern that would be completely
missed by fitting average categorization data collapsed
across subjects.

Groups of subjects can also differ qualitatively in the
kinds of category representations they learn and use.
Theoretical work often asks whether an exemplar
model or a prototype model provide a better account
of categorization (e.g., Palmeri & Nosofsky, 2001; Shin
& Nosofsky, 1992). Bartlema et al. (2014) considered
instead the possibility that some subjects might learn
exemplars and other might form prototypes. Subjects
learned a category structure based on Nosofsky
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(1989), which is shown in the top panel of Figure 8. The
eight training stimuli are labelled in Figure 8 with their
category membership (A or B) and a unique number;
the remaining eight stimuli were only used during
the transfer test. In fits to average categorization data,
the exemplar model showed an advantage over the
prototype model. Using a Bayesian hierarchical
approach, allowing for each subject’s data to match
the result of prediction by either exemplar- or proto-
type-learning, a more interesting story emerged, with
both prototype and exemplar learners present in the
collection of subjects. The middle panel of Figure 8
showed the estimated group membership of each
subject (exemplar or prototype). The bottom panel
showed the characteristic behavioural pattern of proto-
type and exemplar learners. In this hierarchical
approach, individual subjects are allowed to be part
of qualitatively different groups and to differ

quantitatively from one another within a group, captur-
ing nuances of individual differences in categorization
not possible using non-hierarchical approaches.

Discussion

In this article, we showed how considering individual
differences has grown to become important for theor-
etical research on visual categorization. We outlined
key components of computational models of categor-
ization, illustrating how individual differences might
emerge from variability in perceptual input represen-
tations, category representations, and decision pro-
cesses. Our semi-historical review outlined a
progression of approaches, from fitting average data,
to fitting group data, to considering individual differ-
ences in various ways, including current emerging
approaches using Bayesian hierarchical modelling. In

Figure 7. Top: The category structure that participants learned. The eight stimuli varied along two dimensions: the height of the box
and the position of the bar within the box. The stimuli below and above the diagonal line are assigned to category A and B, respectively.
Middle: The posterior mean of the membership probability (attending to height, attending to position, contaminant) of each partici-
pant. Bottom: Modal behavioural patterns of the three different groups. Above each stimulus, the red and yellow bars represent the
averaged frequencies of the stimuli being classified into A (yellow) and category B (red) by members of the group. Adapted from Bar-
tlema et al. (2014). Copyright 2014 by Elsevier. Reprinted with permission.

276 J. SHEN AND T. J. PALMERI



addition to simply extending current models to incor-
porate individual differences, we discussed how con-
sidering individual differences can be key to
unravelling the underlying representations and pro-
cesses instantiated within computational models.

Why study individual differences in categorization?
With respect to testing predictions of computational
models, it has been well documented at least since
Estes (1956) that inferences based on averaged
group data can be misleading. A model, and more
generally a theory, may be able to capture well pat-
terns of data averaged across subjects. But if few, if

any, of those subjects actually exhibits the qualitative
pattern of data exhibited by the group average, then
the model is accounting for a statistical fiction, not
accounting for actual human behaviour. Models of
cognitive and perception are ultimately intended to
be models of individuals, not models of group
averages.

At a surface level, we can ask whether there are
individual differences in a cognitive process like categ-
orization and then try to describe them if there are
any. Given a finite number of observations per
subject, there must be individual differences observed

Figure 8. Top: The category structure, based on Nosofsky (1989). The stimuli varied along two dimensions: the angle of the bar and the
size of the half circle. The eight training stimuli were numbered 1–8, along with their category assignment A or B. Middle: The posterior
mean of the membership probability (prototype or exemplar) of each participant. Bottom: Behavioural patterns of the three different
groups. Above each stimulus, the red and yellow bars represent the averaged frequencies of the stimuli being classified into A (yellow)
and category B (red) by members of the group. Adapted from Bartlema et al. (2014). Copyright 2014 by Elsevier. Reprinted with
permission.
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simply because of mere statistical noise. Beyond that,
in just about any behavioural task, there are bound to
be individual differences because of differences in
motivation and attentiveness. We are generally inter-
ested in explaining and understanding systematic
individual differences, answering the question of
why people differ from one another.

In some respects, the way we have considered indi-
vidual differences in the present article may appear
different from traditional work on individual differ-
ences. A baseline approach might be to measure
behaviour in one task and try to understand individual
differences in that task by correlating performance
with another measured factor like general intelligence
(e.g., Craig & Lewandowsky, 2012; Kane & Engle, 2002;
Little & McDaniel, 2015; Unsworth & Engle, 2007). This
approach is well illustrated in the domain of categor-
ization, for example, in Lewandowsky, Yang, Newell,
and Kalish (2012). They had subjects learn rule-based
and so-called information-integration categorization
problems (Ashby & Maddox, 2005) and asked
whether measured working memory capacity (Lewan-
dowsky, Oberauer, Yang, & Ecker, 2010; Oberauer, Süß,
Schulze, Wilhelm, & Wittmann, 2000) differentially pre-
dicted learning of the two types of categorization pro-
blems. They used structural equation modelling (e.g.,
Tomarken & Waller, 2005) to attempt to explain varia-
bility in category learning in the two types of categor-
ization problems via variability in working memory
capacity.

In a traditional approach to individual differences,
the most reasonable way to explain why people
differ in some primary task is to correlate their per-
formance in that task with another measure like intel-
ligence, age, working memory capacity, and so forth.
With computational models, performance is decom-
posed into component processes, often characterized
by the value of a model parameter that reflects some
latent characteristic of a given individual subject. That
could be response threshold in a decision process, a
dimensional selective attention weight that stretches
perceptual representations, or scaling of perceptual
space than expands perceptual and memory discri-
minability. The question “why do people differ” in a
given task is answered by how they vary in the com-
ponent processes in a model that give rise to
performance.

Of course, the values of model parameters for indi-
vidual subjects, or the states induced within a model

by those parameters (e.g., Mack et al., 2013), could
also be correlated (or analysed via a more sophisticated
approach like structural equation modelling) with other
individual subject measure as well. For example, indi-
vidual subject parameters like the drift rate or response
threshold in a decision model can be related to subject
parameters like intelligence and age (Ratcliff et al., 2011;
Ratcliff, Thapar, & McKoon, 2010). These parameters can
also be related to individual subject brain measures to
understand how variability neural mechanisms give rise
to variability in human performance (e.g., Nunez, Srini-
vasan, & Vandekerckhove, 2015; Turner et al., 2013;
Turner, Forstmann, Love, Palmeri, & Van Maanen, in
press; Turner, Van Maanen, & Forstmann, 2015).

Individual differences are important to consider not
only for the field of visual categorization, but also for
cognitive science in general. By including individual
differences in formal models of cognition, we can
avoid being misled by aggregated data. Moreover,
considering individual differences moves of closer to
understanding the continuum of human ability, per-
formance, and potential.

Notes

1. We do not suggest that object recognition models and
categorization models are mutually exclusive. Rather,
this is a distinction between alternative theoretical
approaches to understanding how objects are recog-
nized and categorized (see Palmeri & Gauthier, 2004,
for details). In principle, a complete model could and
should have a detailed description of how a retinal
image is transformed to an object representation, how
object categories are represented, and how categoriz-
ation decisions are made; alternative models and alterna-
tive modeling approaches differ widely in how much of
that spectrum they span.

2. More complex forms of local weighting and stretching
are also possible (see Aha & Goldstone, 1992).

3. Note that the relative ease of A2 over A1 in the replica-
tion shown in Figure 5 is more modest than that seen
in other replications (see Nosofsky, 2000).

4. Of course, there are situations where individual subjects
are tested for many sessions, obtaining hundreds, if not
thousands of data points per person. Here we are consid-
ering situations where for practical, ethical, or theoretical
reasons it is not possible to test individuals over many
hours, many days, or many weeks.
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