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Abstract

■ Visual object expertise correlates with neural selectivity in
the fusiform face area (FFA). Although behavioral studies sug-
gest that visual expertise is associated with increased use of
holistic and configural information, little is known about the
nature of the supporting neural representations. Using high-
resolution 7-T functional magnetic resonance imaging, we re-
corded the multivoxel activation patterns elicited by whole cars,
configurally disrupted cars, and car parts in individuals with a wide
range of car expertise. A probabilistic support vector machine
classifier was trained to differentiate activation patterns elicited
by whole car images from activation patterns elicited by mis-
configured car images. The classifier was then used to classify

new combined activation patterns that were created by averag-
ing activation patterns elicited by individually presented top
and bottom car parts. In line with the idea that the configura-
tion of parts is critical to expert visual perception, car expertise
was negatively associated with the probability of a combined
activation pattern being classified as a whole car in the right
anterior FFA, a region critical to vision for categories of expertise.
Thus, just as found for faces in normal observers, the neural rep-
resentation of cars in right anterior FFA is more holistic for car
experts than car novices, consistent with common mechanisms
of neural selectivity for faces and other objects of expertise in this
area. ■

INTRODUCTION

Expertise in identifying visually similar objects is asso-
ciated with category-selective responses in the fusiform
face area (FFA; e.g., Gauthier, Skudlarski, Gore, &Anderson,
2000). Correlations between behavioral performance in
visual tasks and FFA selectivity have been shown for
many categories, such as faces (Elbich & Scherf, 2017;
McGugin, Ryan, Tamber-Rosenau, & Gauthier, 2017), cars
(McGugin, Gatenby, Gore, & Gauthier, 2012), birds
(Gauthier et al., 2000), radiographs (Bilalić, Grottenthaler,
Nägele, & Lindig, 2016), and chess configurations (Bilalić,
Langner, Ulrich, & Grodd, 2011).1

Although visual expertise is often associated with
category-selective responses in FFA, category-selective
responses do not guarantee good performance with an
object category. For example, individuals with develop-
mental prosopagnosia, who by definition have seriously
impaired face recognition, have seemingly normal face-
selective responses in FFA (Avidan et al., 2014; Furl, Garrido,
Dolan, Driver, & Duchaine, 2011). Addressing this appar-
ent contradiction, a study using multivariate pattern analy-
sis (MVPA) revealed that the FFA response to faces in these
patients is not normal (Zhang, Liu, & Xu, 2015). In typical

individuals, the response pattern across FFA voxels can
distinguish between a normal face and a misconfigured
face, in which the top and bottom parts have been
switched. Interestingly, for individuals with developmental
prosopagnosia, this gross configural change does not
affect the response pattern in FFA (see also Schiltz, Dricot,
Goebel, & Rossion, 2010; Schiltz et al., 2006). This finding
is consistent with reports of abnormal configural and
holistic processing in individuals with prosopagnosia
(Liu & Behrmann, 2014; Marotta, McKeeff, & Behrmann,
2002) and suggests that the sensitivity of FFA response
patterns to configuration may predict expert performance
better than mere selectivity.

The question therefore arises: In a nonface domain of
expertise, would the response of the FFA depend on
configuration or would it be selective regardless of con-
figuration as it is for faces with prosopagnosic patients?
If responses to nonface objects in FFA arise for reasons
similar to the face responses, then they should be equally
dependent on configuration. Specifically, here, we pre-
dict that expertise with cars should be associated with
sensitivity to the configuration of car parts in FFA, whereas
car novices would show less such sensitivity; although
FFA representations may not have any sensitivity to
configuration in prosopagnosic patients, we would not
go as far as equating being a car novice to having a face
recognition impairment. There is some indication that
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perceptual expertise can increase configural processing.
Training with novel objects produces holistic processing,
demonstrated by a failure to selectively attend among
the available object parts despite task demands to do so,
effects that are sensitive to configuration (Chua, Richler,
& Gauthier, 2015; Wong, Palmeri, & Gauthier, 2009;
Gauthier & Tarr, 2002; Gauthier, Williams, Tarr, & Tanaka,
1998). Moreover, car experts process cars holistically only
when car parts are in a normal configuration (Bukach et al.,
2010; Gauthier, Curran, Curby, & Collins, 2003). Studies
have reported correlations between fusiform gyrus selec-
tivity for trained objects and holistic processing of these
objects in their trained configuration (Wong, Palmeri, &
Gauthier, 2009; Gauthier & Tarr, 2002). Yet, no direct
measurement of sensitivity to configuration in neural re-
sponses evoked by nonface objects in real-world expertise
has been conducted.

Here, we ask whether car expertise predicts how well
multivoxel response patterns in FFA discriminate con-
figural changes in car parts. We first sought to replicate
standard expertise effects, measuring car selectivity in
posterior and anterior FFA (FFA1 and FFA2, respectively),
occipital face area (OFA), and lateral occipital complex
(LO), expecting car expertise to correlate with car selec-
tivity. Note that, in previous work, car expertise has pre-
dicted selective responses to cars in both face-selective
and non-face-selective areas (McGugin, Gatenby, Gore,
& Gauthier, 2012; Harel, Gilaie-Dotan, Malach, & Bentin,
2010), but effects in many of these areas disappeared
with increased attentional and perceptual loads, leaving
a robust correlation between car expertise and neural se-
lectivity only in the right FFA2 (rFFA2; McGugin, Newton,
Gore, & Gauthier, 2014). Other studies found stronger
effects of experience or expertise in FFA2 (Golarai,
Liberman, & Grill-Spector, 2017; McGugin et al., 2017;
McGugin, Van Gulick, et al., 2014). Accordingly, we ex-
pect that most of our ROIs may show an effect of car
expertise (as measured here in a low-demand 1-back
task) but that the rFFA2 may be the main region that is
sensitive to configuration of car parts as a function of
car expertise.

To test this hypothesis, we measured BOLD functional
magnetic resonance imaging (fMRI) activity patterns while
participants viewed images of intact cars, misconfigured
cars (location of the top and bottom parts exchanged),
and individually presented top and bottom car parts. To
assess whether car representations were sensitive to con-
figuration, we trained a support vector machine (SVM)
classifier to differentiate the multivoxel patterns elicited
by whole and configurally disrupted cars in each ROI. For
each participant, we asked the SVM to quantify the simi-
larity of a combined linear combination of the voxel
pattern elicited by separate top and bottom car parts to
either the pattern elicited by whole cars or the pattern elic-
ited by configurally disrupted cars. On the basis of prior
work (MacEvoy & Epstein, 2011), we used an equal combi-
nation of the patterns elicited by each part. We expect

that, in car novices, cars would be represented in a part-
based manner and so a combination of parts would be
roughly equally similar to whole cars and to misconfigured
cars. Prior work shows that expertise effects with cars are
reduced when the configuration of halves is disrupted
(e.g., Bukach et al., 2010; Gauthier et al., 2003). Accord-
ingly, we expect that car representations should become
increasingly sensitive to configuration as a function of car
expertise and that the combined pattern, which cannot
carry information about whole car configuration, should
look less like the patterns elicited by whole cars and con-
sequently more like the patterns elicited by misconfigured
cars.

METHODS

Participants

Thirty men with normal or corrected-to-normal vision
were recruited for this experiment, with two participants
excluded from further analyses for failure to comply with
instructions during behavioral testing (remaining par-
ticipants: M = 24.6 years old, SD = 5.5 years). A deliber-
ate effort was made to recruit participants with a broad
range of car expertise, although all our participants, even
novices, are expected to have some experience with car
models. This was effective in increasing variability espe-
cially at the high end of the spectrum of ability. In a
sample of 213 participants not recruited for expertise with
any category (Van Gulick, McGugin, & Gauthier, 2016),
the mean (standard deviation) for the VETcar (see de-
scription below) was 0.60 (0.14). The present sample has
a mean of 0.69 (0.21), with no participant falling 2 SDs
below the mean but six participants (20%) falling 2 SDs
above the mean. The sample size was based on an ex-
pected effect size of r = .5 for car expertise correlations
with FFA activity (McGugin, Van Gulick, et al., 2014),
which requires a sample size of 26 participants for 80%
power at an alpha of .05. Participants took part in the
study for monetary compensation, and written informed
consent was obtained in accordance with a protocol ap-
proved by the Vanderbilt institutional review board.

Behavioral Tests and Stimuli

All participants completed a sequential matching task
(e.g., Gauthier et al., 2000), a Vanderbilt Expertise Test
(VET) battery (McGugin, Van Gulick, et al., 2014; McGugin,
Richler, Herzmann, Speegle, & Gauthier, 2012), and the
Cambridge FaceMemory Test (CFMT;Duchaine&Nakayama,
2006).
The stimuli for the sequential matching task were im-

ages of birds, cars or planes. On each trial, participants
judged if two sequentially presented images showed
the same object (same make and model of car or airplane
or same species of bird) or not; images were always
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different. The first stimulus of each pair was displayed for
1000 msec, followed by a 500-msec mask. The second
stimulus was then displayed until a response was made
(up to a maximum of 5000 msec). Trials were blocked
by object category.
The VET battery included eight separate tests for

eight different categories: leaves, owls, butterflies, wad-
ing birds, mushrooms, cars, planes, and motorcycles
(see McGugin, Richler, et al., 2012, for details). For each
category, participants first studied a set of six images,
with each image showing a different species/model
from the test category. This was followed by 48 three-
alternative forced choice trials comprising a target im-
age of one of the six studied species/models and two foil
images of unstudied species/models from the test cate-
gory. For the first 12 trials of each block, the target im-
age was an exact match to one of the six studied images,
whereas for the remaining 36 trials, it was a new image
matching the identity of one of the six studied species/
models (new target/foil images were used for each test
trial).
In the CFMT (Russell, Duchaine, & Nakayama, 2009;

Duchaine & Nakayama, 2006), participants studied fron-
tal views of six target faces, followed by a short learning
phase in which the participants saw cartoon faces to
familiarize them with the task. Participants were then pre-
sented with 54 three-alternative forced choice test trials
containing one target face and two distractor faces. Match-
ing faces varied in lighting, pose, or both relative to their
studied presentation. In addition, the final 24 trials were
presented with faces embedded in Gaussian noise to
increase difficulty level.

Structural MRI and fMRI

Imaging was performed using a Philips Achieva 7-T
human MRI scanner located in the Vanderbilt University
Institute of Imaging Science. All scanning was performed
using a 32-channel SENSE parallel-imaging head coil.
Functional scanning used EPI protocols. All participants
completed a single scanning session consisting of a
structural scan, a standard-resolution localizer, a high-
resolution localizer, and six to eight high-resolution
experimental runs. We used the IView Bold analysis pack-
age provided by Philips to place the high-resolution slices
for each participant so that they included the FFA1 and
FFA2 identified during the standard-resolution scan.

Structural Scan

Structural T1 scans were acquired using 249 0.7-mm
sagittal slices with a 352 × 351 matrix covering a field
of view of 246 × 246 mm, for a final isotropic resolution
of 0.7 mm. Structural scans used a repetition time (TR) of
4.761 msec, a flip angle of 7°, and an echo time (TE) of
2.1 msec.

Standard-resolution Functional Localizer

Standard-resolution functional scans covering nearly the
whole brain were acquired to define our functional ROIs.
These scans used a 3-D PRESTO sequence covering a
volume of 211 × 211 × 85 mm. Functional volumes were
reconstructed into 34 2.5-mm axial–oblique slices with a
96 × 96 matrix for a final in-plane resolution of 2.198 ×
2.198 mm. Standard-resolution scans used a volume ac-
quisition time of 2 sec, a TR of 15.16 msec, a flip angle
of 12°, and a TE of 20.06 msec. After preprocessing,
standard-resolution scans were resampled to an iso-
tropic resolution of 3 mm. Standard-resolution localizer
scans consisted of 256 volumes (512 sec). In addition to the
standard processing pipeline, un-resampled standard-
resolution functional localizer scans were analyzed in real
time using IView to aid in placement of high-resolution
slices (see below).

During the localizer, participants completed a 1-back
repetition task while viewing blocks of faces, objects,
body parts, and scrambled objects. Each block was
composed of 16 images from one of the four categories,
with eight blocks of each category (4 categories ×
8 blocks). Stimuli were drawn from a pool of grayscale
photographs of 36 male and female white adult faces;
36 images of common household objects; 206 body-part
images, including whole bodies (without heads) and
individual limbs, hands, and feet; and 40 scrambled
images, created by dividing a separate set of images of
airplanes into squares and scrambling their locations.
Each stimulus appeared on screen for 1 sec, and no
two consecutive stimuli were of the same size. Repeats
occurred one to two times per block, and participants
were instructed to press a button only for immediate
repetitions.

High-resolution Functional Localizer

High-resolution functional scans were acquired to verify
category selectivity and effects of expertise in functional
ROIs. These scans used EPI with 32 contiguous 1.5-mm
axial–oblique slices placed to cover regions initially local-
ized using the standard-resolution functional scans with
real-time analysis. Volume TR was 4 sec, flip angle was
65°, and TE was 25 msec. These scans were acquired with
a 148 × 145 matrix covering a field of view of 224 ×
224 mm and were reconstructed using a 160 × 160 matrix
for a final in-plane acquisition resolution of 1.4 × 1.4 mm.
After preprocessing, high-resolution scans were resampled
to an isotropic resolution of 1 mm. High-resolution locali-
zer scans consisted of 80 volumes (320 sec). Because of
the limited brain coverage necessitated by high-resolution
imaging and the individualized slice placement to target
ROIs identified in IView during the standard-resolution
localizer, high-resolution coverage varied across partici-
pants. For coverage to include the targeted ROIs, we
placed the slice stack such that it missed the anterior
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temporal poles, the occipital pole, and the frontal pole in
most participants.

During the high-resolution localizer, participants com-
pleted a 1-back repetition task while viewing blocks of
faces, objects, cars, and scrambled objects. Each block
was composed of 16 images from one of the four cate-
gories, with five blocks of each category (4 categories ×
5 blocks). Stimuli were drawn from a pool of 40 grayscale
photographs of white male faces as well as 70 car images.
The car images were from modern car models and did
not overlap with the images used in the experimental
task. The stimulus presentation and task instructions
were the same as in the standard-resolution localizer.

High-resolution Functional Experimental Task

Experimental task scans were acquired to test our pre-
dictions about configural sensitivity using multivoxel
pattern analysis. The slice placement and scanning
parameters were the same as for the high-resolution
functional localizer scans, except that each task scan con-
sisted of 50 volumes (200 sec). In each experimental run,
participants completed a motion detection task com-
prising eight blocks of 20 images. The images in each
block came from one of four conditions—whole car im-
ages, misconfigured car images, isolated top car-part
images, or isolated bottom car-part images—with two
blocks of each stimulus condition per run. Task blocks
were interleaved between 8-sec fixation blocks with each
run beginning and ending with fixation. Each task block
contained 20 images, each presented for 600 msec and
followed by a 200-msec blank interval. For the duration
of each run, participants were instructed to fixate on a
dot in the center of the screen. To engage their attention,
a randomly selected four images in each block moved
5 pixels to the left or to the right during stimulus pre-
sentation. Participants were asked to indicate the direc-
tion of these movements by a button press. For the
intact and configurally disrupted images, the movement
would occur on either the upper or lower part to en-
courage the participants to attend equally to both parts
of the images. All but three of the participants completed
eight blocks of the task, with two completing seven
blocks and one completing six blocks.

The car images were grayscale and showed a three-
quarter front view of a car facing to the right. Each car
image was divided into two parts, with a box surrounding
each part. The top part contained the roof and windows,
and the bottom part contained the wheels and most of
the body of the car. Each car image was used to create
one of the four stimulus types (see Figure 1): whole cars,
in which the top and bottom were presented in the cor-
rect configuration; misconfigured cars, in which the top
and bottom halves were switched; and isolated top and
bottom car halves. The sizes of the upper and lower
car parts on the screen were 1.9° × 14.5° and 2.9° ×
14.5°, respectively. The intact and misconfigured car im-

ages were simply the vertical combination of the two
parts (i.e., 4.8° × 14.5°). All images were presented
centered on a fixation dot located in the center of the
screen.
Because our goal was to predict decoding as a function

of car expertise rather than to decode location, we pre-
sented car parts at fovea rather than in their original
positions in whole images. We do not expect that the
positioning of these parts could drive SVM decoding
because the population receptive fields of voxels in FFA
have a median size of 3.4° when stimuli are attended
(Kay, Weiner, & Grill-Spector, 2015), and our parts were
displaced a maximum of 1.5°. In addition, the parts over-
lapped by 50% in their location across the whole and part
conditions, further suggesting that they should engage
largely overlapping cell populations. Finally, we focus
here on the relative effects across participants, not ex-
pected to interact with receptive field effects.

Data Analyses

Behavioral Data

For each participant, d0 scores were calculated for each
category in the sequential matching task (bird, car, and
plane) and percent correct scores were calculated on
the CFMT and for each category on the VET (butterflies,
cars, leaves, motorcycles, mushrooms, owls, planes, and
wading birds). Aggregate car task scores were computed
as the mean of the z-transformed scores for cars on the
sequential matching task and VET. To obtain an aggre-
gate measure of car-specific expertise, we used the non-
vehicle categories of the matching task and VET (birds,
leaves, owls, butterflies, wading birds, and mushrooms)
as a baseline, computed nonvehicle aggregate scores,
and regressed them out of the car aggregate scores.2

We used only the nonvehicle categories to control for
general object recognition because, as in McGugin, Richler,

Figure 1. Example of car images used in the main experimental task.
Top left: whole car, top right: configurally disrupted car, bottom left:
top car part, and bottom right: bottom car part.
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et al. (2012), performance with cars was highly correlated
with performance on the other two vehicle categories
(planes and motorcycles); this is likely because of joint
experience and interest. For the sequential matching
task, performance on car trials was correlated with per-
formance on plane trials, r = .67, p = .0001, and for the
VET, performance on car trials was correlated with per-
formance on motorcycle trials, r = .63, p = .0003, and
marginally significant with performance on plane trials,
r = .37, p = .0542. In the remainder of this article, we
simply refer to residualized car aggregate scores as “car
expertise.”

Functional Data

The functional data were analyzed using BrainVoyager,
in-house MATLAB code written using the NeuroElf tool-
box (neuroelf.net), and LibSVM (Chang & Lin, 2011).
High-resolution T1 scans were used for registering the
functional scans and calculating Talairach warping param-
eters. Functional scan preprocessing in BrainVoyager in-
cluded slice acquisition time correction (high-resolution
EPI scans only), 3-D motion correction, linear trend re-
moval, and temporal high-pass filtering (three cycles per
run). The data from all high-resolution runs were inter-
polated to 1-mm isotropic space and warped to Talairach
space (Talairach & Tournoux, 1988). Standard- and high-
resolution localizer runs (used in the univariate analyses)
were spatially smoothed, which is considered optimal for
detection purposes (Worsley, Evans, Marrett, & Neelin, 1992),
with a 6-mm Gaussian kernel, but experimental task runs
(used in the multivariate analyses) were left unsmoothed.

Standard-resolution Functional Localizer

To identify FFA1, FFA2, OFA, and LO, we ran separate
general linear models for each participant, with regres-
sors for faces, body parts, objects, and scrambled objects,
on the standard-resolution localizer runs (Friston, Frith,

Turner, & Frackowiak, 1995). The individual-participant
centers of FFA1, FFA2, and OFA were defined by the
peaks of the contrast faces minus objects (t test, p < .05)
in middle fusiform (posterior: FFA1, anterior: FFA2) and
inferior occipital cortex, respectively. The center of LO
was defined by the peak activation of the contrast objects
minus scrambled objects in the lateral occipital cortex
(t test, p < .05). An additional “body parts minus objects”
contrast was used to help distinguish FFA1 and FFA2,
which are typically separated by a body-part-selective
area (Weiner & Grill-Spector, 2010). We aimed to create
ROIs that were equal in size (to yield comparable sensitiv-
ity for MVPA) and that were sufficiently large for MVPA
(Kriegeskorte, Goebel, & Bandettini, 2006). ROI size var-
ies slightly because voxels that were initially included in
more than one ROI were excluded from all ROIs, as were
voxels with a raw BOLD signal value of less than 20, which
excludes voxels that clearly fall outside the brain. To stan-
dardize the spatial extent of our ROIs across participants,
we defined ROIs as spheres (radius = 7.5 mm) centered
on the peak t value for each contrast. Talairach coor-
dinates, size, and number of individuals are reported in
Table 1. Final ROI size was not correlated with car exper-
tise (rs < .15, ps > .49).

High-resolution Functional Localizer

The high-resolution functional localizer runs were simi-
larly subjected to a general linear model analysis (with re-
gressors for face, car, object, and scrambled object
blocks) to extract parameter (beta) weights and measure
the relationship between car expertise and univariate
face and car selectivity in each individual participant ROI.

High-resolution Experimental Task

The data from the experimental task runs were analyzed
using a linear probabilistic SVM trained and tested on
the multivoxel activation patterns within each ROI (Chang

Table 1. ROI Descriptions (Mean Talairach Coordinates, Number of Participants with a Given ROI, and ROI Mean Size,
Corresponding to the Number of 1-mm Isotropic High-resolution Voxels)

ROI x (SD) y (SD) z (SD) N ROI Size (SD)

Left FFA1 −39.0 (5.8) −62.8 (8.2) −21.0 (4.8) 20 1665 (302)

Left FFA2 −40.4 (5.7) −45.4 (6.2) −23.0 (5.7) 22 1668 (345)

Left OFA −39.5 (6.6) −81.6 (6.4) −19.1 (4.1) 17 1513 (463)

Left LO −45.6 (7.1) −76.0 (8.5) −14.3 (8.8) 24 1792 (0)

rFFA1 38.1 (6.4) −66.0 (9.9) −17.1 (4.0) 21 1555 (378)

rFFA2 38.6 (4.1) −46.4 (5.6) −22.6 (3.5) 21 1738 (229)

Right OFA 34.4 (5.4) −84.0 (6.9) −16.3 (4.3) 21 1623 (269)

Right LO 44.6 (5.5) −75.8 (6.7) −13.4 (7.3) 27 1792 (0)
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& Lin, 2011). For each ROI, the pattern of BOLD activation
across voxels at each time point was extracted and
z scored. For each 16-sec block (i.e., four TRs), a mean
activation pattern was computed for the 16-sec period
beginning 4 sec after block onset and ending 20 sec after
block onset (i.e., offset forward in time by one TR). We first
trained and then tested an SVM to estimate the probability
that a given activation pattern belonged to a whole car
block versus a misconfigured car block, using leave-one-
block-out cross-validation to ensure independence of
training and test data. That is, the SVM yielded a single
probability for each test pattern representing the evidence
that the pattern belonged to a whole car block. Note that,
because the choice of target category is not important
(i.e., a .8 probability that a test pattern belonged to a whole
car block implies a .2 probability that it belonged to a
misconfigured car block), we combined the SVM proba-
bilities for whole and misconfigured car-pattern classifi-
cations by taking 1 minus the classification probability on
misconfigured car-pattern test trials and calculating the
mean probability correct (Table 4). Next, we sought to
investigate if the combined activation patterns (averaged
top- and bottom-only activation patterns) were equally
similar to activation patterns elicited by whole and mis-
configured cars (consistent with parts-based representa-
tion) or were more similar to activation patterns elicited
by whole cars than misconfigured cars (consistent with
holistic representation). Thus, we trained the probabilistic
SVM using the full set of activation patterns from whole
and configurally disrupted car blocks and tested it on com-
bined activation patterns, using the probability estimates
as an index of similarity. Combined activation patterns
were created by exhaustively pairing the 16 activation pat-
terns from the top and bottom car-part blocks and com-
puting the mean activation in each voxel.

RESULTS

Univariate Analyses: Expertise Effects in
Car Selectivity

First, we sought to replicate prior work demonstrating
expertise effects in ventral occipito-temporal cortex
(McGugin, Newton, et al., 2014; McGugin, Van Gulick,
et al., 2014; McGugin, Gatenby, et al., 2012; Xu, 2005;
Gauthier et al., 2000). To maximize our power, given that
several studies have reported expertise effects in these
ROIs and because we have a clear directional prediction,
we report one-tailed tests for positive correlations. We do
not correct for multiple comparisons and invite readers to
treat r values as estimates of effect size. In the ROIs defined
in the standard-resolution localizer, we measured the uni-
variate response to cars (beta weights) relative to the aver-
age for the noncar conditions (faces, scrambled objects,
objects) in the high-resolution localizer. Because most
fMRI studies of car expertise have subtracted neural activity
for noncar conditions from the neural response to cars, we

report correlations of car expertise with a subtracted score.
Because partialing out activity for noncars from the re-
sponse to cars is arguably a better approach (so that the
noncar variance does not contribute to the correlation with
behavior), we also report partial correlations between car
expertise and car residuals (neural activity for cars, regres-
sing out neural activity for noncars). The two methods are
generally consistent and show significant or near-significant
car expertise effects in most areas, with the exception of
left OFA and right FFA1 (rFFA1; see Table 2). Because we
also collected CFMT scores, we report similar analyses for
faces, relating CFMT performance to either neural activity
for faces either subtracting the three nonface conditions or
partialing them out. As in other work (McGugin et al.,
2017), face recognition behavior does not show robust
correlations with neural selectivity for faces in most ROIs.
This may be due to the greater variation in both behavior
and neural activity for cars than faces in our sample of

Table 2. Univariate Expertise Effects

A. Pearson Correlations with Car Expertise

ROI Cars–Noncars Car Residuals

Left FFA1 .40 (.04) .41 (.04)

Left FFA2 .33 (.06) .34 (.06)

Left OFA .11 (.35) .13 (.32)

Left LO .49 (.01) .60 (.001)

rFFA1 .01 (.49) .22 (.19)

rFFA2 .43 (.03) .42 (.03)

Right OFA .55 (.005) .55 (.005)

Right LO .36 (.03) .32 (.05)

B. Pearson Correlations with CFMT

ROI Faces–Nonfaces Face Residuals

Left FFA1 −.14 (NA) −0.12 (NA)

Left FFA2 .34 (.06) .31 (.08)

Left OFA .20 (.22) .18 (.24)

Left LO .14 (.26) .03 (.44)

rFFA1 −.24 (NA) −.24 (NA)

rFFA2 .24 (.15) .22 (.16)

Right OFA .29 (.10) .22 (.16)

Right LO −.31 (NA) −.20 (NA)

(A) Correlations between behavioral expertise for cars and neural
selectivity for cars using a subtraction and a regression method to con-
trol for response to noncar conditions. One-tailed p values for positive
relations are shown in parentheses. (B) Correlations between behav-
ioral expertise for cars and neural selectivity for cars using a subtraction
and a regression method to control for response to noncar conditions.
For comparison, we show one-tailed p values for positive relations in
parentheses. NA = not applicable.
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participants recruited to vary in car expertise (e.g., coeffi-
cient of variation for CFMT: 17.7%, for VET-car: 30.4%;
for beta weights for faces in rFFA2: 82%, for beta weights
for cars in rFFA2: 132%).

Univariate Analysis: Sensitivity to Configuration

The mean univariate responses to whole cars and mis-
configured car images in each ROI are shown in Table 3.
Note that misconfigured cars still have easily recognizable
features within each half (although misconfigured, they
are not scrambled). Only a subset of the ROIs where
car expertise predicted neural activity for cars showed
significantly greater responses for whole cars than for
misconfigured cars: the left FFA2, rFFA2, and right LO.
These effects may represent a nonspecific reduction of
activity for misconfigured objects as they were generally

not related to car expertise, except in the right LO, where
the response to whole cars (partialing out the response
to misconfigured cars) was moderately associated with
car expertise (r = .43). Because these analyses were
exploratory, we only report confidence intervals around
effect sizes.

Multivariate Analyses: Configural Sensitivity

Our primary goal was to investigate whether the FFA
would show patterns of responses to car parts that were
more similar to the response to misconfigured cars than
the response to whole cars, as a function of car expertise.
To this end, we first trained a probabilistic SVM (McGugin,
Newton, et al., 2014; Chang & Lin, 2011) to distinguish
activation patterns elicited by configurally intact whole
car images from those elicited by misconfigured car

Table 3. Main Task Univariate BOLD Responses (with Standard Error), the Effect Size and p Value for Their Difference
(Two-tailed Paired t Test), and the Correlation of the Response to Whole Cars with Car Expertise, Partialing out the Response to
Misconfigured Cars

Whole Cars Misconfigured Cars

Cohen’s dz p
Partial Corr. with
Car Exp (95% CI)Mean (SE) Mean (SE)

lFFA1 0.70 (0.09) 0.60 (0.09) .27 .22 .05 (−.40, .48)

lFFA2 0.20 (0.06) 0.05 (0.07) .50 .02 .00 (−.42, .42)

lOFA 1.21 (0.16) 1.21 (0.14) .00 .99 .07 (−.42, .53)

lLO 0.92 (0.09) 0.92 (0.07) .00 .97 .26 (−.16, .60)

rFFA1 1.15 (0.09) 1.10 (0.08) .14 .52 .14 (−.31, .54)

rFFA2 0.49 (0.05) 0.36 (0.04) .60 .01 .20 (−.25, .58)

rOFA 1.66 (0.10) 1.50 (0.07) .47 .05 .03 (−.52, .56)

rLO 1.37 (0.07) 1.21 (0.05) .52 .01 .43 (.06, .70)

Table 4. Main Task Classification Probabilities and Correlations with Car Expertise

Whole vs. Misconfigured Voxel Patterns Classification of Combined Voxel Patterns

Probability Correct Correlation with Car Expertise Classified as Whole Correlation with Car Expertise

Mean (SE) r (95% CI) Mean (SE) r (95% CI) p

lFFA1 0.62 (0.03) −.02 (−.46, .43) 0.52 (0.02) .18 (−.29, .58) .54

lFFA2 0.59 (0.02) −.06 (−.47, .37) 0.50 (0.01) .04 (−.39, .45) .89

lOFA 0.64 (0.02) .29 (−.22, .68) 0.51 (0.02) .32 (−.19, .69) .23

lLO 0.60 (0.02) .14 (−.28, .51) 0.53 (0.01) .00 (−.40, .40) .99

rFFA1 0.63 (0.02) .38 (−.06, .70) 0.52 (0.02) −.08 (−.49, .36) .78

rFFA2 0.62 (0.02) .39 (−.05, .70) 0.49 (0.01) .57 (.18, .85) .01

rOFA 0.67 (0.02) .43 (.00, .73) 0.51 (0.02) .10 (−.35, .51) .73

rLO 0.62 (0.02) .27 (−.12, .59) 0.49 (0.01) .20 (−.19, .54) .22

Ross et al. 979



images. Testing the classifier with leave-one-block-out
cross-validation revealed above-chance ( p < .05) classifi-
cation in all ROIs (Table 4). Just as for the corresponding
univariate analysis, we did not have predictions for which
ROIs should be better able to classify whole versus mis-
configured cars, a fairly easy categorization that all ROIs
can perform on average. Because these analyses were ex-
ploratory, we only report confidence intervals around effect
sizes. Effect sizes were relatively large in the right OFA,
rFFA1, and rFFA2.

To test our main hypothesis, we then used the classi-
fier to classify combined patterns (linear combinations of
the voxel patterns elicited by top and bottom car parts
when presented in isolation). If car expertise is related
to sensitivity to configural information, then we would
expect that, in participants with greater expertise, the
classifier would tend to classify the pattern of activity elic-
ited by the combined patterns as more similar to miscon-
figured cars and less similar to whole cars. The predicted
correlation between expertise and classification of com-
bined patterns as misconfigured was significant in rFFA2
(Table 4, Figure 2).

DISCUSSION

For the first time, we demonstrate an association between
object expertise and configural information represented
by multivoxel BOLD activation patterns in rFFA2. As a
function of car expertise, representations in this region ex-
hibit sensitivity to configuration—a hallmark of holistic

representation—as shown by a classifier’s tendency to
judge a combined pattern of car parts as less car-like. These
findings help to link previous fMRI work demonstrating an
increase in univariate BOLD selectivity for objects of ex-
pertise with behavioral studies that suggest that experts
make greater use of configural information than novices
(Chua et al., 2015; Bukach et al., 2010; Wong, Palmeri, &
Gauthier, 2009; Wong, Palmeri, Rogers, Gore, & Gauthier,
2009; Gauthier & Tarr, 2002).
In addition, we replicated the previously reported

increase in univariate BOLD selectivity to cars relative to
other objects in several face-selective areas. As we found
previously (McGugin, Newton, et al., 2014; McGugin, Van
Gulick, et al., 2014), these effects are distributed among
several face-selective regions as well as non-face-selective
areas (LO). We demonstrated previously that, of these re-
gions, the rFFA2 is most robust in its relation to experience
with cars (McGugin, Van Gulick, et al., 2014) and with faces
(McGugin et al., 2017), showing an effect of expertise
even under manipulations that abolish the effects in other
ROIs. The FFA2 is closer than the FFA1 to an area reported
by Nestor, Plaut, and Behrmann (2011), which is not face-
selective but codes for face identity, and to even more
anterior areas such as the perirhinal cortex, which are im-
portant to the representations of complex conjunctions of
features (O’Neil, Barkley, & Köhler, 2013). These regions,
especially in the right hemisphere, emerge as a network
that is important in the creation of more abstract represen-
tations of faces, objects, or scenes (Barense, Henson, Lee,
& Graham, 2010).
Consistent with our results, a number of recent studies

suggested that univariate BOLD selectivity, the original
index of selectivity for faces and a standard measure in
fMRI studies of expertise, may be too liberal an index
of neural selectivity to relate to behavior. For example,
univariate BOLD activation to faces is not always suffi-
cient to differentiate patients with developmental proso-
pagnosia (DP)—a group defined by their below-average
face expertise—from controls (Zhang et al., 2015; Avidan
et al., 2014; Furl et al., 2011). In other cases, the corre-
lation between behavioral face expertise and univariate
BOLD activation has been inconsistent (e.g., Jiang et al.,
2013; Pierce, Haist, Sedaghat, & Courchesne, 2004),
although as we have discussed, this may sometimes be
a function of limited variability in face expertise. In con-
trast, multivariate measures have shown promise in relat-
ing behavioral measures to neural representations in FFA,
even in cases where there was no relationship between
univariate BOLD activation and expertise (e.g., Zhang
et al., 2015; McGugin, Van Gulick, et al., 2014; Jiang et al.,
2013).
It is not yet clear why MVPA measures should index

expertise effects more reliably than univariate BOLD acti-
vation. In some cases, it may be that MVPA simply provides
a more sensitive measure ( Jiang et al., 2013). In other
cases, the results are more qualitatively different (e.g.,
Zhang et al., 2015; McGugin, Van Gulick, et al., 2014),

Figure 2. Similarity of combined voxel patterns to the voxel patterns
elicited by configurally disrupted cars correlated with car expertise.
Combined patterns were linear combinations of the voxel patterns
elicited by top and bottom car parts when presented in isolation. A
probabilistic SVM classifier was trained to discriminate voxel patterns
elicited by configurally intact car images from the voxel patterns elicited
by configurally disrupted car images (top and bottom halves switched)
and tested on combined patterns.
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suggesting that there may be substantial heterogeneity of
responses across voxels within an ROI (although this vari-
ability may not necessarily indicate a multidimensional
code; Davis et al., 2014). The approach that we took here
was specifically intended to measure the amount of con-
figural information present in the multivoxel pattern of
activity extracted from each of our ROIs. A similar measure
has been used in the face recognition literature to differ-
entiate patients with DP and controls even in the absence
of any differences in univariate BOLD activation (Zhang
et al., 2015), in line with behavioral evidence that patients
with DP have deficits in configural processing relative to
controls (Liu & Behrmann, 2014; Marotta et al., 2002).
We should emphasize, again, that car novices are in many
ways not comparable with prosopagnosic patients: The
contrast between car novices and car experts is more likely
quantitative (and indeed we treat expertise as a contin-
uum), whereas there are more striking differences between
patients with DP and controls. For instance, congenital
prosopagnosia is considered a disconnection syndrome
(Avidan et al., 2014), whereas experts in a domain would
not be expected to have qualitatively different connectivity
between areas compared with novices, Nonetheless, our
expectation that the FFA’s sensitivity to car configuration
as measured via MVPA may be a more stringent test of
car expertise is based on these neuropsychological find-
ings, which suggest a general framework in which to
understand brain–behavioral relations for patients and
controls, for both faces and objects. In addition, our oper-
ationalization of a configural representation has a good
face validity as it directly relates to behavioral studies that
have used similar stimuli and found behavioral effects of
expertise (Chua et al., 2015; Bukach et al., 2010; Wong,
Palmeri, & Gauthier, 2009; Wong, Palmeri, Rogers, et al.,
2009; Gauthier & Tarr, 2002).
In addition to testing the standard correlation between

car selectivity and expertise and our main prediction for
the combined representations of car parts, we also con-
ducted exploratory analyses of whether car expertise pre-
dicted the univariate activity for whole cars (controlling
for the response to scrambled cars) and the classifier’s
ability to decode whole from scrambled faces. We had
no clear predictions for these comparisons because they
rely on contrasts that should be easily processed even by
novices, but we note that, in addition to showing signif-
icant or near-significant effects in the FFA, these analyses
revealed expertise effects in early areas (the right OFA for
MVPA and the right LO for the univariate effect). Although
these effects could be due to feedback projections from
FFA, prior work suggests that the right OFA is the first
area differentiating faces from objects and that it is im-
portant in representing parts (Pitcher, Walsh, Yovel, &
Duchaine, 2007). It may play a similar role for other cate-
gories of expertise, and some work suggests that the rep-
resentation of parts changes in expertise (Chua et al.,
2015). Finally, although it may seem surprising that the
domain-general area LOC shows an effect of car exper-

tise, this could also represent tuning with experience
of mechanisms that are engaged regardless of expertise.
Indeed, this area, rFFA2, and the left FFA2 showed a larger
response to whole than misconfigured cars in all partici-
pants, consistent with these regions with known sensi-
tivity to scrambling (Grill-Spector, Kushnir, Hender, &
Malach, 2000). An interesting and speculative possibility
is that the univariate measure is more sensitive than the
MVPA to attentional effects, with greater attention increas-
ing the BOLD activation. In support of this suggestion,
McGugin, Van Gulick, et al. (2014) reported that correla-
tions between car expertise and mean BOLD selectivity
were abolished within FFA and OFA when attention was
directed toward a different object (a butterfly), whereas
correlations between car expertise and the information
content of multivoxel patterns were not affected by re-
directing attention (McGugin, Van Gulick, et al., 2014).
Indeed, although behavioral expertise typically requires
considerable experience, there is evidence that online
task demands can increase the univariate BOLD response
to nonexpert object categories (Haist, Lee, & Stiles, 2010)
and faces from an artificially created in-group (Van Bavel,
Packer, & Cunningham, 2011).

In the approach we used here, one consideration is
how the response to individual parts should be combined
in our combined representations. We used an equal com-
bination of the patterns elicited by a particular part com-
bination, as has been used in some previous work (e.g.,
MacEvoy & Epstein, 2011). Our results did not depend
on this choice, as we found a similar pattern of results
when top and bottom parts were weighted 25/75 or 75/25.
Baeck, Wagemans, and de Beeck (2013) compared dif-
ferent methods and found that the response to a pair of
objects was best predicted by a weighted average of the
responses to each object in the pair with a larger weight
for the object that elicits a maximal response on its own,
although the average response was nearly as effective.
Interestingly, when the task required attending to a mean-
ingful configuration between the two objects, the best-
weighted average favored the preferred object even more.
Although the interaction of task with weighting was not
quite significant in Baeck et al., their results suggest that
two objects in a pair are weighted differently when their
configuration is attended. This raises an interesting inter-
pretation of our expertise effects. Different parts of the
same object are meaningfully related, and one theory
suggests that attention to diagnostic parts is the change
in expertise that can account for holistic effects (Chua
et al., 2015). Although all our participants were asked to
perform the same task, car experts may be processing cars
at the subordinate level regardless of instructions, whereas
novices may not (Gauthier, Tarr, Anderson, Skudlarski, &
Gore, 1999; Tanaka & Taylor, 1991). Thus, although the
results may suggest a different kind of representation in
experts, they could also reflect that experts attend to all
parts of an object of expertise. However, if this were the
case, the correlation between expertise and our configural
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measure ought to reverse when the top and bottom parts
were weighted more or less, which we did not observe.

Limitations

This study has several limitations: One is that we only
tested men, so as not to confound expertise and gender.
Another is that the limited field of view of high-resolution
imaging and the greater field inhomogeneities at 7 T
limited the number of face-selective ROIs (for instance,
we did not look at face-selective areas in the anterior
temporal lobe or early visual cortex). For the same rea-
sons, we do not address issues of connectivity among
areas of the face-selective network and the rest of the
brain (e.g., Wang et al., 2016).

Although we had enough power to detect moderate
effects of expertise, our confidence intervals on these
effects are relatively large. Indeed, because we deliber-
ately recruited participants who varied in car expertise,
our design would not be ideal to characterize the effect
size in the normal population. In addition, because of the
difficulty of achieving sufficient power to test differences
between correlations of these magnitudes, we should be
cautious to draw strong conclusions in comparing across
ROIs. For similar reasons, it is not possible to make a
strong claim about the multivariate effects being limited
to FFA2, but it is still interesting to note that, although
the distinction between FFA1 and FFA2 is a relatively
new trend in the literature (see Weiner & Grill-Spector,
2010; Pinsk et al., 2009), there is already some emerging
evidence that the correlation between univariate BOLD
activation and expertise may be more prominent in FFA2
than in FFA1 (McGugin, Newton, et al., 2014; McGugin,
Van Gulick, et al., 2014; McGugin, Gatenby, et al., 2012).

Conclusions

Overall, our results provide further evidence for qualita-
tive changes in object representations in the FFA, espe-
cially the rFFA2, as a result of expertise. In addition, they
build on behavioral studies associating expertise with an
increase in holistic/configural processing recognition
(Chua et al., 2015; Bukach et al., 2010; Wong, Palmeri, &
Gauthier, 2009; Wong, Palmeri, Rogers, et al., 2009;
Gauthier & Tarr, 2002), demonstrating that a similar neural
measure also differentiates between car experts and car
novices.
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Notes

1. Where expertise effects have not been observed (e.g., Harel
et al., 2010; Grill-Spector, Knouf, & Kanwisher, 2004), proposed
mediating factors include the specificity of the stimuli (e.g.,
modern car experts tested with antique cars; Bukach, Phillips,
& Gauthier, 2010; Bukach, Gauthier, & Tarr, 2006) and compe-
tition between categories of expertise and attentional factors
(e.g., McGugin, Van Gulick, Tamber-Rosenau, Ross, & Gauthier,
2014; Harel et al., 2010).
2. Two participants had very low scores on one of the eight
VET categories (z scores of −2.5 and −3). For these partici-
pants, we omitted these categories when calculating the non-
vehicle aggregate; however, the choice to omit these categories
did not change any of the reported findings.
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