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We describe a stochastic accumulator model demonstrating that visual search 
performance can be understood as a gated feed-forward cascade from a salience map to 
multiple competing accumulators. The model quantitatively accounts for behavior and 
predicts neural dynamics of macaque monkeys performing visual search for a target 
stimulus among different numbers of distractors. The salience accumulated in the model 
is equated with the spike trains recorded from visually-responsive neurons in the frontal 
eye field. Accumulated variability in the firing rates of these neurons explains choice 
probabilities and the distributions of correct and error response times with search arrays 
of different set sizes if the accumulators are mutually inhibitory. The dynamics of the 
stochastic accumulators quantitatively predict the activity of presaccadic movement 
neurons that initiate eye movements if gating inhibition prevents accumulation before 
the representation of stimulus salience emerges. Adjustments in the level of gating 
inhibition can control tradeoffs in speed and accuracy that optimize visual search 
performance.  
 

Many models of visual search and attention assume a map that combines bottom-up and 
top-down salience (also referred to as priority) to guide shifts of attention and eye movements 
(Treisman and Gormican, 1988; Duncan and Humphreys, 1989; Bundesen et al., 2005; 
Navalpakkam and Itti, 2007; Wolfe, 2007). Visually-responsive neurons in frontal eye field 
(FEF), superior colliculus (SC) and posterior parietal cortex modulate their firing rate according 
to both physical conspicuity (bottom-up salience) and behavioral relevance (top-down salience; 
Schall and Hanes, 1993; Gottlieb et al. 1998; Bichot and Schall, 1999; Findlay and Walker, 
1999; Constantinidis & Steinmetz 2005; Ipata et al., 2006; Thomas and Paré, 2007; Balan et al., 
2008; Cohen et al., 2009; White and Munoz, 2011). However, it is poorly understood how 
neurons that encode salience are read out to guide saccades. Furthermore, no current model of 
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visual search accounts for full response time (RT) distributions of error and correct responses 
(Wolfe et al., 2010; Palmer et al., 2011). Alternative models that make very different predictions 
about underlying mechanisms can often explain mean correct RTs equally well, but predicting 
errors and full RT distributions imposes more stringent constraints that can often distinguish 
alternative models (Ratcliff and Smith, 2004). 

Stochastic accumulator models of perceptual decision making explain how a single stimulus 
guides selection of one response among alternative responses (Usher et al., 2002; McMillen 
and Holmes, 2006; Beck et al., 2008; Churchland et al., 2008; Furman and Wang, 2008; 
Ditterich, 2010; Leite and Ratcliff, 2010), but the natural world consists of many stimuli. FEF and 
SC movement neurons project to oculomotor brainstem nuclei and initiate a saccade when a 
fixed firing threshold is reached (Hanes and Schall, 1996; Hanes et al., 1998; Paré and Hanes, 
2003). The firing rate dynamics of movement neurons are well explained by stochastic 
accumulator models (Boucher et al., 2007; Ratcliff et al., 2007), but the source of inputs driving 
movement neurons to threshold is not known. Furthermore, neurally-plausible implementations 
of these models have never been generalized to decisions among multiple stimuli, as in visual 
search. 

We present the first neural model of visual search formulated as a multiple-accumulator 
decision process. We significantly extend a novel modeling technique that defines the source of 
inputs driving accumulators with the observed discharge rates from FEF visually-responsive 
neurons (Purcell et al., 2010). Our new work assumes that this dynamically-modulated 
representation of stimulus salience drives a network of multiple competing accumulators 
associated with alternative stimuli in a visual search display. The transformation from salience to 
saccades is controlled by a tonic gating inhibition. Unlike our earlier work developing and 
validating this modeling technique, our new model incorporates multiple accumulators and 
explains choice probabilities and full correct and error response time distributions as a function 
of set size during visual search. We identify the accumulators with FEF movement neurons that 
select and initiate saccades when threshold is reached. Accumulator dynamics correspond 
quantitatively to movement neuron dynamics. We show that gating and lateral inhibition are 
necessary by ruling out alternative models which do not include these mechanisms. We also 
show how the gating inhibition provides a novel mechanism to control tradeoffs in speed and 
accuracy. 
 

MATERIALS AND METHODS 
 
Behavior and physiology 

Behavioral and neurophysiological data were collected from two adult male macaques 
(Macaca radiata) trained to perform a visual search task in which the number of items in the 
display (set size) varied randomly across trials (Figure 1A, inset). Basic behavioral and 
physiological analyses of these data have been published previously (Woodman et al., 2008; 
Cohen et al., 2009; Heitz et al., 2010). Briefly, after fixating a central stimulus for ~600 ms, a 
stimulus array appeared containing a target (T or L) among one, three, or seven distractors 
(random 90o orientations of the other letter). The eccentricity of the array was always 10o. When 
the array contained two objects, they were always presented at opposite locations and when the 
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array contained four items they were always separated by an unfilled location. Thus, stimuli 
were spaced ~7.7o, 14o, 19o or 20o apart in the visual field. Target identity was varied across 
sessions. Monkeys were rewarded for making a single saccade to the location of the target 
within 2000ms and fixating it for 1000 ms. Search performance was qualitative similar across 
monkeys, therefore we data pooled across monkeys in addition to fitting to individual monkey 
data. 

Neurons were classified using a memory-guided saccade task. A single target (filled gray 
disk) was presented in isolation for 100 ms. Monkeys were trained to maintain fixation for 400-
800 ms after target onset. When the fixation spot disappeared, the monkey was rewarded for 
making a saccade to the remembered location of the target. Neurons with a consistent visual 
response <100 ms following target onset and persistent firing during the delay period were 
classified as visually-responsive neurons (59 neurons; monkey Q, 40 neurons; monkey S, 19 
neurons) and were used to derive input to the stochastic accumulators in the model. This 
included both visual neurons with no presaccadic discharge and visuomovement neurons with 
both visual and presaccadic discharge. We included both pure visual and visuomovement 
neurons as input to the model because previous work has shown that visuomovement neurons, 
like pure visual neurons, represent the salience of objects in their receptive field (Thompson et 
al., 1996; Cohen et al., 2009), but do not have activity sufficient to directly control saccade 
initiation (Ray et al., 2009). Neurons with a brisk pre-saccadic discharge, but little or no visual 
response, were classified as movement neurons (22 neurons; monkey Q, 15 neurons; monkey 
S, 7 neurons) and were compared qualitatively and quantitatively to model accumulator 
dynamics. 
 
Simulation methodology 
Neurophysiologically-derived representation of visual salience. Our model assumes that output 
from pools of visually-responsive neurons encoding stimulus salience converge on movement 
neurons that initiate saccades. Observed spike trains of visually-responsive neurons define the 
model input to stochastic accumulators that are identified with movement neurons. Here we 
describe how those observed spike trains are converted into model input on each simulated 
trial. In the next section we describe the architecture of the network of accumulators that 
integrate that model input over time to generate a saccade to a particular stimulus in the visual 
search array at a particular time. Predicted proportions of error and correct responses and their 
associated response time distributions are generated by simulating thousands of trials. 

Model input was derived directly from the spike trains recorded from visually-responsive 
neurons following previously described methods (Figure 2; Purcell et al., 2010). For each 
simulated trial, we randomly sampled, with replacement, N spike trains from individual trials and 
generated a spike density function for each trial by convolving the spike trains with a function of 
the form ݕሺݐሻ ൌ ൫1 െ  ݁ି௧/ఛ೒൯  ൈ  ݁ି௧/ఛ೏,  which mimics the post synaptic influence of each spike 
(Thompson et al., 1996); the growth constant, τg, is 1 ms, and the decay constant, τd, is 20 ms. 
The pool size, N, was varied to identify the value which optimally predicted behavior (Table 1). 
Each spike density function was normalized to the maximum firing rate of the neuron, and all 
spike density functions in the sample were summed. The resulting spike density function is 
mathematically similar to a Poisson shot noise process (Smith, 2010). 
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Spike trains from all neurons were sorted according to the set size (2, 4, or 8) presented and 
response (correct or error) made when they were recorded. Trials in which the animal 
prematurely broke fixation were excluded (<1%). Spike trains recorded from a particular set size 
condition were used to generate behavioral and neural predictions for that set size. The 
observed choice probabilities for the set size being simulated determined the proportion of 
simulations that used spike trains sampled from correct or error trials. Thus, the spike trains that 
drive the model represent the responses of visually-responsive neurons recorded under the 
exact conditions being simulated. Simulations that used input from trials in which the animal 
erroneously looked to a distractor most often predicted erroneous responses due to the form of 
sampled input (Heitz et al., 2010), but we did not force this to be the case. Indeed, we present 
examples of models that fail to adequately predict error probabilities. 

Post-saccadic spikes cannot contribute to the saccade choice and must be excluded. 
However, simply eliminating those spikes would artificially increase noise as the simulation 
progressed because different trials terminate with different RTs. Instead, we extended each trial 
with firing rates generated according to a Poisson process with a mean rate determined by the 
spike rate 20 to 10 ms prior to the saccade. Practically, this prevented the parameter 
optimization routine from failing when certain parameter values could not produce any RT or 
choice. Ultimately, these extrapolated spikes contribute very little to simulations of well-fitting 
models because simulated trials ended within the observed RT range. 

The use of trial-by-trial spike trains recorded while animals performed the visual search task 
distinguishes our modeling approach from other stochastic accumulator models in several 
important ways: First, simulations began well before the presentation of the stimulus array and 
proceeded until the response was initiated (Figure 2B). Afferent delays were determined by 
visually-responsive neuron physiology and efferent delays were short and well-established 
quantities (Scudder et al., 2002), so no “non-decision time” parameter is necessary. Second, 
this approach takes into account the heterogeneous nature of neuronal response properties. 
Whereas many models assume highly simplified, prototypical, or idealized neural response 
function, our model is subject to the heterogeneity inherent in neuronal populations. Third, most 
models make specific assumptions about the mathematical form of the input to stochastic 
accumulators (e.g., Churchland et al., 2008; Furman and Wang, 2008; Smith and Ratcliff, 2009). 
Here, we make no a priori assumptions about the form, timing, and variability of inputs within 
and across trials and conditions; instead, the form, timing, and variability are given by the 
pattern of activity of visually-responsive neurons representing visual salience. Although this 
approach does not speak to the mechanisms that generate salience (e.g., Tsotsos et al., 1995; 
Itti & Koch, 2001), it provides strong constraints on the mechanism by which salience is used to 
generate a saccade. We see this as a crucial first step to constrain new models that explain how 
the neural representation of salience is generated. 
 
Stochastic accumulation of visual salience. The physiologically-defined inputs are pooled and 
integrated by a network of leaky, competing accumulators (Figure 2A). Trials in which a target 
was in the RF of a visually-responsive neuron were used as input to the accumulator unit 
encoding the location of the target. Trials in which distractors were in the RF of a visually-
responsive neuron were used as input to units encoding the locations of distractors. Trials when 
the target was near the RF edge were excluded. 
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The network always consisted of eight accumulator units regardless of the set size being 
simulated. For set sizes 2 and 4, input to an accumulator representing a location without a 
stimulus was defined by visually-responsive neuron firing rates on trials in which no stimulus 
appeared in the cell’s RF. Thus, the model requires no reconfiguration across set size 
conditions and can generalize naturally to situations with more than eight stimuli. We simulated 
neural activity from 300 ms before stimulus presentation until the initiation of the saccade. A 
simulated choice was made to the location represented by the first accumulator unit to reach a 
constant threshold (Figure 2B, bottom). Simulated saccade RT was defined as the time when 
the threshold was crossed plus a fixed ballistic time of 15 ms that accounts for the time 
necessary for brainstem processes that shift gaze (Scudder et al., 2002). 

Model parameters define for all accumulators the threshold (θ), leakage (k), gating inhibition 
(g), and lateral inhibition (βd). Lateral inhibition varied as a function of distance between 
locations, but was symmetrical between any two locations. Critically, no parameters varied 
across set size or with the choice of saccade target or distractor. Therefore, variability in search 
performance was directly determined by variability in the visually-responsive neuron 
representation of salience and how that representation impacts the dynamics of the stochastic 
accumulator network. Thus, the model assumes that set size effects can be understood as a 
consequence of changes in the salience representation that is integrated by stochastic 
accumulators. It is possible that models assuming architectural or parametric differences across 
set size could also predict the observed behavior, but this would be a far less parsimonious 
account. 

Each accumulator was governed by the following stochastic differential equation: 
 

dm୧ሺtሻ ൌ   ୢ୲
τ

ቂ൫ v୧ሺtሻ െ ∑ uୢv୧′ሺtሻ୧′ஷ୧ െ g൯
ା

െ ∑ βୢm୧′ሺtሻ୧′ஷ୧ െ k · m୧ሺtሻቃ  ൅  ටୢ୲
τ

ξ, (1) 

 
where mi is the mean activity of the accumulator unit representing location i and vi is the input 
from visually-responsive neurons representing the same location. As with other neural 
stochastic accumulator models (e.g., Usher and McClelland, 2001), we rectified mi to be greater 
than zero because firing rates cannot be negative. Interactions between units were determined 
by symmetrical feed-forward, ud, and lateral, βd, inhibition weights (Usher and McClelland, 
2001), where d indexes the distance between two stimuli in the array (Figure 2A, inset; 4 total 
values corresponding to approximately d = 7.7, 14, 19, and 20 degrees of visual angle 
separating the two stimuli). k is the leakage constant, g is the gating constant, and + denotes 
rectification above zero. The time constant was set to τ = 1 ms and the time-steps were set to dt 
= 5 ms for all simulations. All models included a modest amount of Gaussian noise intrinsic to 
the accumulator, ξ, with mean, μ = 0, and standard deviation, σ = 0.05; this variability is quite 
small relative to variability in the visual inputs. Initial model exploration showed that models 
explain search performance with σ = 0, but we include some intrinsic variability to allow for tonic 
neuronal drive when salience input falls below the level of the gate. We also found that models 
that assume tonic excitation (μ > 0) in addition to salience inputs can predict elevated baseline 
firing rates as observed in our movement neuron sample, but note that movement neurons with 
little or no tonic firing rate are commonly observed (e.g., Paré and Hanes, 2003). 
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Gating inhibition. Effective visual search performance requires that saccades are withheld until 
visually-responsive neurons have processed stimulus salience. The model solves this problem 
with a combination of gating and lateral inhibition. Computationally, g is a tonic inhibition applied 
to the salience input, which is rectified to be greater than zero after the inhibition is applied 
(Equation 1). Functionally, gating imposes a firing rate that must be exceeded before the inputs 
from visually-responsive neurons begin to influence the accumulators. All models assumed that 
gating is independent of set size and stimulus strength. We assumed a tonic inhibition for 
computational simplicity and because it could be easily implemented by neurons (see 
Neurophysiological Implementation in Discussion). The precise form of nonlinearity mediating 
the transformation from visually-responsive neurons to accumulator units is probably not critical, 
so long as accumulator units have little or no response until the inputs exceed some critical 
level. Alternative nonlinearities such as sigmoid or power functions may also work if the slope or 
acceleration is sufficiently steep (e.g., Simen and Cohen, 2009; Simen et al., 2006). 

Figure 2B illustrates how gating inhibition and lateral inhibition mediate the transformation of 
salience into response accumulator dynamics. Drive from visually-responsive neurons exists 
even before the search array appears, but no accumulation takes place because baseline input 
firing rates are below the gate. By 100 ms after array presentation, visually-responsive neuron 
firing rates exceed the gate, but top-down salience has not yet emerged. Salience for targets 
and distractors is equal and balanced; lateral competition holds the system at a temporary 
equilibrium. After 150 ms, salience for the target exceeds salience for distractors, which triggers 
a rise in the accumulator unit encoding the target location. Thus, gating and lateral inhibition 
explain how the selection of salient saccade targets by visually-responsive neurons is 
transformed into a competition for saccade execution in movement neurons. 
 
Alternative model architectures. We evaluated several different model architectures by fixing 
various subsets of the parameters in Equation 1 to zero and varying others to fit search 
performance. Different model architectures instantiate competing hypotheses about the 
processes that lead to the observed response. We compared models on their quality of fit to 
search performance (see Fits to visual search performance) and their ability to predict the time 
course of movement neuron activity (see Measures of movement neuron and accumulator 
dynamics). Models that failed to fit the observed pattern of behavior, that fit significantly worse 
than alternative model architectures, or that failed to predict movement neuron dynamics were 
rejected. This application of strong inference (Platt, 1964) allowed us systematically to eliminate 
several plausible neural architectures for using salience to make saccades. 

The best performing model architecture across all of our criteria was the gated competitive 
model (Figures 4-7; Figure 12). This model was defined by setting ud = 0 (no feed-forward 
inhibition) and included gating inhibition (g), leakage (k), and lateral inhibitory connections (βd) 
between units (8 free parameters). The term gated accumulator model refers to this particular 
architecture unless otherwise specified. 

We evaluated two alternative model architectures that did not assume competitive 
interactions. The gated race model (Figure 9A) was defined by setting ud = 0 and βd = 0; this 
model included gating inhibition and leakage, but no competition (4 total free parameters). The 
gated diffusion-like model (Figure 9B) was defined by setting βd = 0; this model included gating 
inhibition, leakage, and feed-forward, but not lateral, inhibitory connections (8 total free 
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parameters). We also evaluated a model with both diffusion-like and competitive interactions (12 
total free parameters), but the fit was not significantly improved relative to the gated competitive 
model. 

We evaluated two other model architectures without gating inhibition. The non-gated, non-
leaky model (Figure 9C) was defined by setting ud = 0, k = 0, and g = 0; this model included 
lateral inhibition, but integration of the salience occurred without loss (6 total free parameters). 
The non-gated, leaky model (Figure 9D; Figure 10) was defined by setting ud = 0 and g = 0, and 
included leaky integration and lateral inhibition, but no gating inhibition (7 total free parameters). 

 
Fits to visual search performance. We identified parameters values that best fit search 
performance. We simulated 5000 trials to generate RT distributions and response probabilities 
for each set size. All models were fit to behavioral data using a custom combination of a hybrid 
genetic algorithm (Goldberg, 1989) with a Simplex routine (Nelder and Mead, 1965) 
implemented in MATLAB (The MathWorks). Parameters were optimized to fit both pooled and 
individual monkey performance (Table 1). We used a Pearson χ2 statistic to quantify the 
discrepancies between the frequency of observed and predicted RTs falling within time bins 
defined by the 10th, 30th,50th, 70th and 90th percentiles (Van Zandt, 2000; Ratcliff and Tuerlinckx, 
2002). The χ2 statistic was summed across each set size condition and choice as follows: 
 

  χଶ ൌ ∑ ∑ n ∑ ሺO౟ିP౟ሻమ

P౟
୧୰ୱ .    (2) 

 
The summation over i indexes response time bins defined by the quantiles of the observed 
response time distribution corresponding to the cumulative probabilities of 0.1, 0.3, 0.5, 0.7, and 
0.9. Oi are the observed proportion of response times and Pi are the predicted proportion of 
response times within the bins. With these quantiles, the six Oi are 0.1, 0.2, 0.2, 0.2, 0.2, and 
0.1, respectively. Pi are the predicted proportion of response times falling within each bin. The 
probabilities are converted to frequencies by multiplying by the observed number of data points, 
n. The summation over r indexes responses (correct, error) and the summation over s indexes 
set size (2, 4, 8). We count the number of predicted responses falling within each response time 
distribution; therefore, minimizing this statistic simultaneously fits both the observed response 
probabilities and the response time distribution (Van Zandt, 2000). 

 We used a second statistic, the Akaike information criterion (AIC), a penalized maximum 
likelihood statistic, to test whether improvements in fit can be explained by increases in the 
number of free parameters (Bozdogan, 2000):    

 
ܥܫܣ    ൌ  ∑ ∑ െ2൫∑ ݊ כ ௜ܱlnሺ ௜ܲሻ௜ ൯ ൅  2 כ ௥௦,ܯ     (3) 

 
where Oi and Pi are the same as described above. M is the number of free parameters in the 
model.  

We used nonparametric bootstrapping to compare goodness of fit and gauge the reliability 
with which optimally-fitting parameters could be estimated (Efron and Tibshirani, 1993; 
Wichmann and Hill, 2001). We randomly sampled, with replacement, sets of responses (correct 
or error) and response times equivalent to the average number of trials in a session (2137 
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trials). We fit each model to sampled data 5000 times using different initial states and pseudo-
random number generator seeds to account for noise in the fit statistic and parameter 
estimates. Standard error and confidence intervals were determined directly from the resulting 
distributions of fit statistics and estimated parameters. Simulations were run in parallel on a 
high-performance computing cluster supported by the Vanderbilt Advanced Center for 
Computing for Research and Education (ACCRE). 
 
Measures of movement neuron and accumulator dynamics. Following Woodman et al. (2008), 
we analyzed four changes in movement neuron dynamics related to changes in RT across and 
within set size: baseline firing rate before search array presentation, onset of presaccadic firing 
rate increase, growth rate of this increase to threshold, and the presaccadic firing rate threshold 
immediately prior to a saccade. Trials in which a saccade was made to the neuron’s movement 
field were sorted by RT and binned into groups of ten to analyze the relationship of movement 
neuron dynamics to RT. A bin size of ten was selected because averaging eliminates some 
noise, but RT variability within a bin is small enough to avoid distortions due to averaging across 
trials with very different RTs. Only neurons that were recorded for at least 30 trials (3 bins) were 
included for a particular set size, which precluded an analysis of error trials.  

To calculate the onset of activation, we used a sliding-window algorithm (+/- 20 ms) that 
moved backward in 1-ms increments beginning 15 ms before the mean time of saccade 
initiation for the bin being analyzed. The onset of activation was determined to be the time when 
the following three criteria were met: (a) Activity no longer increased according to a Spearman 
correlation (α = 0.05) within the window around the current time, (b) activity at that time was 
lower than activity during the 20 ms preceding saccade onset, and (c) as the window was 
moved backward in time, the correlation remained nonsignificant for 20 ms. Results were 
qualitatively similar when the onset was computed as the time point when activity first exceeded 
two standard deviations above baseline. The growth rate was the slope coefficient of a least 
squares regression line fit to the activity from 100 ms to 15 ms presaccade. Baseline was 
computed as the average firing rate in the 200 ms prior to the appearance of the search array. 
Threshold was computed as the average activity level of a neuron in the interval 20 to 10 ms 
relative to saccade (Hanes and Schall, 1996). 

To allow commensurate statistical comparisons of models and neurophysiology, model 
dynamics were analyzed in the following way: (a) We simulated gated accumulator model 
trajectories using the best fitting parameters to search performance from the pooled data set, (b) 
we normalized and rescaled the model trajectories by the threshold firing rate observed in 
recorded movement neurons, (c) we generated one spike train for each trial according to a time 
inhomogeneous Poisson process with the rate given by the model activation trajectory for that 
trial, (d) we binned the simulated spike trains into groups of 10 trials according to the predicted 
RT and generated a spike density function from the predicted spikes exactly as was done for 
the actual spikes. This transformed a model prediction in terms of spikes per second into a 
single predicted spike train. These steps were repeated 500 times using numbers of simulated 
trials matched to actual numbers of trials recorded from individual movement neurons. 

We analyzed how each measurement accounted for variation in RT across and within set 
size. To determine how changes in each measure accounted for variation in RT across set size, 
we averaged each measure across bins and computed the slope of the average measure as a 
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function of set size. To determine how changes in each measure accounted for variation in RT 
within each set size, we computed the correlation coefficient between each measurement and 
the mean RT for all bins of trials. We report median measures of neural dynamics ± standard 
error of the median, which was obtained using a statistical bootstrap approach (1000 samples).  

It is critical to emphasize that all predicted accumulator dynamics were generated using 
parameters that were first optimized to fit search performance. No parameters were hand-tuned 
to match neural dynamics. Thus, the simulated model dynamics are true predictions and not 
optimized fits to physiology. As predictions, we focus on the general changes in response 
dynamics across and within conditions, as opposed to specific details that are likely to be 
idiosyncratic to particular neurons. 
 
ROC analysis. We assessed how reliably FEF neurons signaled the target location by 
computing the area under the receiver operating characteristic (ROC) curve from the distribution 
of trials in which the target appeared inside the receptive field of the neuron and trials in which 
the target appeared outside the receptive field (e.g., see Thompson et al. 1996). The ROC was 
computed by incrementing a criterion from 0 spikes/s to the maximum firing rate observed 
across all trials in steps of 1 spike/s.  For this analysis we measured the average area under the 
ROC curve from 100 to 200 ms after array presentation. 
 
Speed-accuracy tradeoff simulations. We explored how the gated competitive accumulator 
model could accomplish speed-accuracy tradeoffs by systematically varying two key parameters 
of the model. We computed the mean RT, percent correct, and expected reward rate while 
varying the gate or threshold parameters and fixing all other parameters at the values fitted to 
pooled performance data. Each simulation consisted of 700 trials of each set size corresponding 
approximately to the average number of trials in an actual recording session. Reward rate is 
defined by R = P/T, where P is the average proportion of correct choices across all set size 
conditions and T is the average trial duration (Gold and Shadlen, 2002; Lo and Wang, 2006). T 
was defined by T = ∑ ∑ ௦,௥൫ܴ݌ ௦ܶ,௥ ൅ ൯,௥௦ܫܶܫ  where p is the response proportion and RT is the 
average RT for each set size, s (2, 4, or 8), and response, r (correct or error). The intertrial 
interval, ITI, was 1 s as in the experiment protocol. Confidence intervals were computed from 
the distribution of reward rates obtained by simulating expected reward rate 1000 times for each 
set of parameters with randomly sampled inputs. 

RESULTS 
 
Visual search behavior and neurophysiology 
We modeled behavior and neurophysiology observed from macaque monkeys trained to 
perform an attentionally-demanding visual search task (Figure 1A), details of which have been 
previously published (Cohen et al., 2009; Heitz et al., 2010). Monkey behavior exhibited 
hallmarks of inefficient search as observed in humans. Percent correct declined (Figure 1A) and 
mean RTs increased (Figure 1B; Figure 1C) with increasing set size (Cohen et al., 2009). 
Monkeys also exhibited substantial variability in RTs within each set size (Figure 1B and Figure 
1C, insets). The variance of the distribution increases with set size and there is a systematic 
lengthening of the upper tail of the distribution, which is also observed in human search 
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performance (Ward and McClelland, 1989; Palmer et al., 2011). No current model of search 
explains full response time distributions (Wolfe et al., 2010) or the neural source of this 
variability. Our new model explains both the systematic and random variability in RT driven by 
single-unit physiology recorded during visual search. 

The first observation guiding our modeling is that visually-responsive neurons in FEF, SC, 
and lateral intraparietal area (LIP) appear to encode salience of potential saccade targets. All 
single-unit data in the present report were collected in FEF, but note that neurons with very 
similar response properties are observed in other oculomotor areas. Thus, although we used 
the discharge rate of visually-responsive FEF neurons as model input, we believe that similar 
results would be observed using discharge rates from visually-responsive SC or LIP neurons.  
During the visual search task, the firing rates of visually-responsive neurons increase following 
the onset of the search array and are maintained at a higher level if the target is within the cell’s 
RF (Figure 3A). The average time of target selection increases with set size and the average 
firing rate decreases with set size (Cohen et al., 2009). Decreases in the average firing rate with 
set size have also been reported in LIP (Balan et al., 2008). In addition, we found that visually-
responsive neurons signaled the location of the target less reliably as set size increased, as 
indicated by a decline in the average (±SE) area under the ROC curve (set size 2: 0.63 ± 0.05; 
set size 4: 0.55 ± 0.03; set size 8: 0.54 ± 0.03). All differences were significant (paired t-test, all 
p < 0.05). These changes may reflect the limited capacity of the visual system to simultaneously 
analyze all stimuli in the visual field, although we cannot make strong claims about the specific 
mechanisms responsible for this limitation. Importantly, the decrease in firing rate with set size 
is consistent with the identification of these neurons as encoding visual salience. A model that 
explains how salience is translated into a saccade command must explain how these firing rate 
dynamics are read out to initiate a saccade.  

The second observation guiding our modeling is that movement neurons in FEF and SC 
initiate saccades at a fixed firing rate threshold. Note that LIP has very few movement neurons 
without visual responses (e.g., Gottlieb and Goldberg 1999) and LIP neurons do not project 
directly to oculomotor brainstem nuclei, therefore we do not identify our model accumulator with 
LIP neurons.  Figure 3B illustrates the population response of FEF movement neurons during 
the T/L search task. In contrast to the visual neuron population, the firing rates of these neurons 
converge at a fixed firing rate threshold immediately prior to the saccade regardless of the set 
size and RT. This adds to converging evidence that presaccadic movement neurons initiate a 
saccade when a fixed firing rate threshold is reached (Hanes and Schall, 1996; Hanes et al., 
1998; Paré and Hanes, 2003). A model that explains how stimulus salience is translated into a 
saccade command must explain how presaccadic movement neurons are driven to threshold.  

Gated competitive accumulation explains search performance 
The gated accumulator model quantitatively accounts for all aspects of visual search 

performance. We optimized parameters to simultaneously fit the observed choice probabilities 
and RT distributions for both correct saccades to the target and error saccades to distractors 
(Table 1). Figure 4 compares observed search performance with simulated performance of the 
network. The model accounts for the increase in mean RT with set size (Figure 4A) because the 
average firing rate of visually-responsive neurons declines with set size (Figure 3A) and 
because neurons encoding competing locations are increasingly active due to the presence of 
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distractors in their RF. In other words, as set size increases, more locations become activated 
on the salience map. The model accounts for the decrease in percent correct with set size 
because increased activation at competing locations decreases the reliability with which the 
target can be discriminated and because visually-responsive neurons select distractors when 
the monkey makes an error (Thompson et al. 2005b; Heitz et al., 2010). Predicted errors are 
slow relative to correct responses because firing rates are lower, on average, on error trials. 
Thus, the properties of visually-responsive neurons coupled to a network of stochastic 
accumulators have exactly the properties necessary to explain the basic properties of search 
performance. Although we only manipulated set size here, we note past results showing that 
visually-responsive neuron firing rates decrease with target-distractor similarity as expected of a 
salience representation (Bichot & Schall, 1999; Ipata et al., 2006; White & Munoz, 2010). This is 
exactly the pattern of modulation that would be required for our model to predict the observed 
decreases in performance with increased target-distractor similarity, as we have demonstrated 
previously (Purcell et al., 2010). 

The model explains the basic changes in mean RT and accuracy during inefficient visual 
search, which must be true for any viable model of search, but a more rigorous evaluation of 
model performance is whether the model can predict full RT distributions. Figure 4 plots the 
observed and predicted RT distributions for correct (Figure 4C) and error (Figure 4D) trials for 
each set size condition. The model captures the increasing spread and the systematic 
lengthening of the upper tail of the distribution, which is characteristic of inefficient visual search 
in humans and our monkeys (Wolfe et al., 2010; Palmer et al., 2011). We verified that this was 
also true for individual monkeys (Figure 5). These results demonstrate that nearly all of the 
variability in search performance can be explained by a gated accumulation of the neural 
representation of stimulus salience. 

Gated competitive accumulation predicts dynamics of presaccadic movement activity 
We identify model accumulator units with movement neurons in FEF and SC. If this mapping 

is correct, then accumulator dynamics should correspond to movement neuron dynamics 
observed during visual search. Figure 6 (A-C) plots observed movement neuron spiking 
dynamics for slow, intermediate, and fast responses within each set size condition. The onset of 
neuronal modulations is later, on average, when the monkey responds slower whether within or 
across set size conditions (Woodman et al., 2008), but there is little change in the rate of growth 
across set size when aligned on saccade initiation; the apparent differences in rate of growth 
when aligned on array onset are merely a consequence of averaging across trials with different 
RTs. Consistent with a fixed response threshold, the presaccadic firing rate remains constant 
regardless of task difficulty or response speed. The onset of activation also increases within 
each set size condition and there is a slight decline in the rate of growth to threshold. 

Figure 6 (D-F) plots the average simulated trajectories sorted according to the same 
procedure as the movement neuron data. We simulated each set size condition 5000 times and 
generated spikes trains according to a Poisson process with a non-homogenous rate given by 
the simulated model trajectories (see Materials and Methods). The model qualitatively captures 
key physiological observations in the movement neurons. The time when the accumulated 
activation first modulates above baseline increases across and within set size. When aligned on 
saccade initiation, there is little or no change in the rate of growth across set size and only 
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marginal change in the rate of growth within set size. Finally, the model reaches a fixed 
threshold prior to the response by design. 

Following Woodman et al. (2008), we quantified four measures of neural dynamics to verify 
the correspondence between accumulators and movement neurons: delays in the onset of the 
presaccadic rise (onset), the average rate of rise (growth rate), the starting point (baseline), and 
the firing level at the time of saccade (threshold; see Materials and Methods). All simulations 
used parameters fitted to search performance (Table 1). Critically, no parameters were adjusted 
to generate predicted model dynamics. 

First, for the across set size assessment, we computed the average of each measure across 
RT groups and computed the least squares regression slope of that measure as a function of 
set size. Figure 7A-D shows the resulting slopes for a representative movement neuron. Only 
the onset of accumulation increases significantly with set size. Figure 7E-H shows the resulting 
slopes for the population of all movement neurons (bar histogram) and simulations of the gated 
competitive accumulator model (line histogram). Across the movement neuron population, the 
median slope of onset as a function of set size is significantly greater than zero (14.4 ± 2.5 
ms/item, Wilcoxon rank sum test, p < 0.001), but does not differ significantly from the median 
slope of model predictions (14.9 ms/item, p = 0.47). No other slope distribution was statistically 
different from zero or from model predictions (all p ¥ 0.05). Thus, the model predicts changes in 
neural dynamics with changes in set size that are comparable to observed movement neuron 
dynamics. 

Next, for the within set size assessment, we computed the correlation between each 
measure of neural dynamics and RT within each set size independently. Figure 8A-D illustrates 
the correlation between each measure of neural dynamics and RT bins from a representative 
neuron recorded during set size 4 trials. Only the onset of the presaccadic burst correlates 
significantly with response time (Figure 8A), although there is a small, but nonsignificant, 
decrease in the rate of growth (Figure 8B). Figure 8E-H plots the median observed correlation 
between each measure of neural dynamics and RT across the population of movement neurons 
for all set sizes. The median correlation is significantly greater than zero for the onset of the 
presaccadic burst (Figure 8E; Wilcoxon rank-sum test, set size 2: 0.67 ± 0.12; set size 4: 0.81 ± 
0.05; set size 8: 0.93 ± 0.02; all p < 0.01). We also observed a weak correlation between 
baseline and RT in set size two that was marginally significant (Figure 8G; set size 2: -0.24 ± 
0.07, p = 0.04), but no other measures of neural dynamics correlated significantly with RT (all p 
> 0.05). Importantly, the strength of correlation with RT was statistically indistinguishable 
between movement neurons and model predictions for most measures of neural dynamics (all p 
> 0.05). The only exceptions were the median correlation between baseline and RT for set size 
4 (data: 0.03; model: -0.29; p = 0.02) and between threshold and RT for set size 4 (data: 0.12; 
model: -0.17; p = 0.03) which differed slightly, but significantly from the data. However, the lack 
of a systematic relationship with set size suggests that this deviation can be attributed to noise. 
Thus, the model predicts the essential quantities seen in the neural dynamics using the same 
parameters that were optimized to fit search performance. 

Gating inhibition and lateral competition are necessary 
Using the logic of nested model testing, we determined which model elements are 

necessary to account for visual search performance and replicate movement neuron physiology. 
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First, we explored a gated race model architecture without competitive interactions (all βd = 0). 
This architecture qualitatively failed to predict the ordering of mean error RTs (Figure 9A). This 
architecture failed because it has no mechanism to suppress the initial visual responses that 
drive saccades to distractors. Quantitatively, this produced significantly elevated χ2 relative to 
the gated competitive model for both individual and pooled monkey data (p < 0.05, non-
parametric bootstrap, 5000 simulations; Figure 10). The difference was not statistically 
significant using AIC (all p > 0.05), but there are several reasons to believe that this additional 
complexity is warranted. First, the gated race model cannot predict the correct ordering of error 
RTs and therefore qualitatively fails to predict a key component of visual search performance. 
Second, the need for competition is supported by studies demonstrating that microstimulation of 
FEF can suppress firing rates in the opposite hemifield (Schlag et al., 1998) and the 
presentation of a visual distractor in the ipsilateral visual field reduces the firing rate of SC 
movement neurons (Dorris et al., 2007). Lastly, existing theoretical work has demonstrated 
some form of competitive interaction is necessary to optimize the rate of reward for a set 
amount of sensory evidence (Bogacz et al., 2006). Thus, some form of competitive interaction 
appears to be necessary. 

We next explored a diffusion-like gated accumulator model with feed-forward inhibition 
between model inputs but no competition between model units (all ud were allowed to vary, but 
all βd = 0). This architecture failed to predict both the ordering of error RTs and the observed 
percentages of correct responses (Figure 9B). We observed a significantly worse fit for this 
model than the gated competitive model for all data sets whether or not model complexity is 
taken into account (all P < 0.05; Figure 10). This model fails because some mechanism must 
suppress the initial visual responses to distractor locations, but feed-forward inhibition must 
necessarily be weak when the number of interacting accumulators is >2. If feed-forward 
inhibition is strong, then the inhibition from distractors will overwhelm excitation to the target 
location resulting in excessively long RTs (Usher and McClelland, 2001). These results appear 
to challenge the generality of a large class of drift diffusion models that require feed-forward 
inhibition for their neurophysiological implementation (Gold and Shadlen, 2001; Bogacz et al., 
2006; Ratcliff et al., 2007; Churchland et al., 2008; Ditterich, 2010; Purcell et al., 2010).  

To investigate the necessity of gating inhibition and leakage, we explored a non-gated, non-
leaky model architecture with lateral inhibition but no gate or leak. This architecture failed to 
quantitatively predict both correct and error RTs as well as the percentage of correct responses 
(Figure 9C). The fit was significantly worse than the gated competitive model even when taking 
into account differences in model complexity (Figure 10). It fails because tonic activity of 
visually-responsive neurons propagates directly to accumulators that initiate saccades before 
salience can be computed. Thus, some mechanism is needed to limit the rate of integration until 
an informative salience signal can be generated, and leakage or gating or both are viable 
mechanisms. 

To investigate the necessity of gating inhibition, we explored a non-gated, leaky architecture 
with lateral inhibition and leakage, but no gating inhibition. This architecture accounted 
qualitatively for the basic pattern of search performance (Figure 9D). Although the fit appears 
qualititatively worse than the gated competitive model architecture, this difference was not 
statistically significant for both fit statistics and all data sets (Figure 10). We previously found the 
same result using a simplified two-accumulator model framework (Purcell et al., 2010). Thus, 
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leaky and gated models cannot be discriminated by behavioral data alone even in this more 
complex network that explains richer behavioral data. However, gated accumulation is 
necessary for the accumulators to replicate movement neuron dynamics.  Models that do not 
include gating predict a strong negative correlation between the baseline and RT that is not 
observed in the data. Figure 11 shows that this result replicates in a multiple-accumulator 
framework. Thus, gating inhibition is necessary to explain movement neuron physiology during 
visual search. 

Control of speed-accuracy tradeoff 
Most stochastic accumulator models assume that adjustments in speed and accuracy are 

controlled via adjustments in the height of the response threshold (Gold and Shadlen, 2002; 
Bogacz et al., 2006; Nakahara et al. 2006; Lo and Wang, 2006; Simen et al., 2006; Ratcliff and 
McKoon, 2008).  However, no current study has reported changes in threshold firing rate at the 
level of individual neurons, and in fact, recent neurophysiological evidence indicates that 
systematic adjustments of RT are accomplished through changes in the onset of accumulation 
(Pouget et al. 2011).  We found that the gated accumulator model produces a speed and 
accuracy tradeoff when either threshold or gating inhibition is varied. Rather than fit parameters 
to data as in the preceding section, we manipulated the level of the threshold or the gate while 
fixing all other parameters at values fitted to pooled search performance. When the threshold 
increases, the system is more likely to correctly locate and respond to the target, but requires 
more time to accumulate additional salience (Figure 12A, inset). When the gate increases, 
visual salience is processed to a higher resolution before it begins to drive saccade initiation 
(Figure 12B, inset; see Figure 2B). Thus, gating inhibition provides an alternative account for 
trade-offs between speed and accuracy during visual search.  

Mechanisms that trade speed for accuracy should optimize behavior. As one measure of 
optimization, we computed the expected reward rate as a function of threshold and gate. 
Consistent with previous studies, we found that varying threshold produced a non-monotonic 
change in the expected reward rate such that a range of threshold values maximized reward 
(Figure 12A).  However, we also found that systematically varying the level of the gate produced 
a non-monotonic change in reward rate (Figure 12B). Furthermore, the value of threshold and 
gate that best fit the monkey’s performance fell within the range of parameter values that 
maximized reward rate. This suggests that after extensive practice, the circuitry of the network 
responsible for visual search performance adapted precisely to optimize performance. 

Monkeys could strategically adjust their performance via adjustments in threshold or gating, 
but the alternative mechanisms are indistinguishable in terms of both maximal reward rate and 
robustness to parameter variation. However, the alternative mechanisms make clearly 
distinguishable predictions about how movement neuron dynamics should change when 
monkeys emphasize speed or accuracy. Increases in threshold will obviously increase the 
presaccadic firing rate of neurons (Figure 12C), whereas increases in gating will decrease the 
baseline and delay the beginning of accumulation of activity leading to the saccade (Figure 
12D). New data from tasks in which animals are explicitly cued to trade speed and accuracy can 
be incorporated into our modeling framework to discriminate these alternative mechanisms. 
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DISCUSSION 
We formalized and tested a model of visual search comprised of a network of gated, 

competing units that accumulate a dynamic salience representation. The model accounts for the 
probabilities and RTs of correct and error saccades and also replicates the dynamics of 
presaccadic movement neurons by identifying them with the process of accumulating salience. 
The model also provides a new perspective on the mechanism for speed-accuracy adjustments. 

 
A neurophysiologically-constrained account of visual search 

Visually responsive neurons in FEF, LIP, and SC have been identified as a 
neurophysiological salience map (Findlay and Walker, 1999; Thompson and Bichot, 2005; 
Fecteau and Munoz, 2006; Gottlieb, 2007; Bisley and Goldberg, 2010) because these neurons 
modulate their firing rate according to both physical properties of the stimuli in the display 
(Bichot and Schall, 1999; Ipata et al., 2006; White and Munoz, 2011), reflecting bottom-up 
salience, as well as variables which determine the significance of a stimulus such as its 
expected reward (Ding and Hikosaka, 2006) or stimulus history (Bichot et al., 1996; Bichot and 
Schall, 1999, 2002; Sato et al., 2003), reflecting top-down salience. This salience representation 
does not depend on response or effector (Thompson et al., 1997; Bisley and Goldberg, 2003; 
Sato and Schall 2003; Gottlieb et al., 2005; Thompson et al., 2005a; Murthy et al., 2009; White 
and Munoz, 2011).  

Rather than assuming some model of the salience map endowed with properties that might 
predict search performance, we used the salience representation provided by visually-
responsive neurons in FEF to investigate the mechanisms sufficient to translate the salience 
map into a saccade.  We found that gated integration with lateral inhibition is sufficient. This is 
the first model to explicitly link the neural representation of salience to a multiple-alternative 
stochastic accumulator network.  Some previous search models include stochastic 
accumulation, but these have only been formulated conceptually (Wolfe, 2007) or are not 
grounded in physiology (Ward and McClelland, 1989; Thornton and Gilden, 2007). We 
previously modeled correct search RTs using a simple two-unit accumulator network (Purcell et 
al., 2010).  This preliminary model accounted for systematic variation of RT with search 
efficiency, but the data set was insufficient to investigate error rates or set size effects; 
therefore, it was not a viable model of visual search. The substantial behavioral and 
neurophysiological data afforded by the data set modeled here impose substantially greater 
model constraint.  

We found that gating inhibition is necessary to limit the accumulator input until explicit visual 
salience is present. Many models assume a static salience representation (Palmer et al., 2000; 
Navalpakkam and Itti, 2007), but the neural representation of salience evolves dynamically over 
time (Figure 3A). In our model, saccade preparation cannot begin until the visual response 
exceeds the gate and an informative salience signal evolves (Figure 2B). This mechanism 
contrasts with all previous stochastic accumulator models that require the ad hoc assumption 
that accumulation is simply delayed by an arbitrary non-decision time parameter (e.g., Lo and 
Wang, 2006; Ratcliff et al., 2007; Churchland et al., 2008; Stanford et al., 2010). Other work has 
demonstrated that balanced excitation and inhibition can delay the onset of accumulation (e.g., 
Furman and Wang, 2008), but such a system can be susceptible to perturbations that can 
disrupt stability leading to premature threshold crossings. 



16 
 

 
Extending perceptual decision tasks to multiple stimuli 

Several frameworks have been proposed to explain perceptual decisions about individual 
stimuli and many include discrete or continuous networks of accumulators (Usher et al., 2002; 
Beck et al., 2008; Churchland et al., 2008; Furman and Wang, 2008; Ditterich, 2010; Leite and 
Ratcliff, 2010). Some of these models refer to how visually-responsive LIP and FEF neurons 
integrate the firing rates of neurons encoding visual features to categorize information from a 
single foveal stimulus (e.g., Roitman and Shadlen, 2002; Ding and Gold, 2011).  However, a 
general theory of perceptual decision making must explain more complex conditions involving 
multiple stimuli; not just multiple responses. These models identify the same visually-responsive 
neurons that encode salience with accumulators that signal the end of stimulus categorization 
when discharge rates reach a fixed threshold.  However, the dynamics of these neurons are 
markedly different during search tasks where one or more stimuli appear abruptly in the RF of 
the neuron and must be categorized and selected to guide response selection. The initial visual 
response often exceeds the presaccadic firing rate and these neurons do not reach a fixed 
threshold prior to saccade initiation (Figure 3A; Hanes et al., 1998; Brown et al., 2008). 
Therefore, we propose a new framework to account for neural dynamics and search 
performance. 

According to this framework, visual neurons in FEF, SC, and LIP have already integrated 
and reweighted sensory inputs according to task demands before being input to the 
accumulator network. This interpretation is consistent with cognitive models of perceptual 
decision making in which perceptual processing precedes the start of the accumulation process 
to determine the degree of support for a particular response (Nosofsky and Palmeri, 1997; 
Logan, 2002). This interpretation also highlights the distinct role of different populations of 
neurons in decision making. While the decision that a stimulus belongs to a particular category 
could be identified with selection of the target location by visually-responsive neurons in FEF, 
SC, and LIP, the decision to act requires additional processing by movement-related neurons 
(Schall, 2001). Our model formalizes this distinction. 
 
Strategic adjustments in speed and accuracy 

Threshold adjustments seem to provide a simple and intuitive account of speed-accuracy 
tradeoffs.  However, we found that variation of gating inhibition can produce equivalent speed-
accuracy tradeoffs by either promoting or delaying the accumulation of salience as has been 
observed in another study (Pouget et al. 2011).  This model predicts that changes in gating 
inhibition will produce a qualitatively different pattern of movement neuron dynamics than 
changes in threshold when tested during speed-accuracy tradeoffs.  This also suggests that a 
neuron which implements the gating inhibition will modulate its firing rate inversely with speed-
stress. 

Other recent models have indicated that speed-accuracy tradeoffs can be implemented by a 
time-varying multiplicative gain or “urgency” signal applied to the inputs to stochastic 
accumulators (Churchland et al., 2008; Cisek et al., 2009). Increasing noise and variance are 
intrinsic properties of our neurophysiologically-derived model input (Figure 2B). Our model 
predicts that this could take place via changes in the firing rates of visually-responsive neurons 
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without assuming an explicit multiplicative gain parameter. Altogether, our model makes clear 
predictions to discriminate alternative accounts of the neural basis of speed-accuracy tradeoffs.  

 
Neurophysiological implications 

FEF, SC, and LIP neurons have anatomical connectivity to perform the functions proposed 
by our model. These areas receive inputs from diverse regions of extrastriate visual cortex and 
prefrontal areas to compute stimulus salience (e.g., Blatt et al., 1990; Lui et al., 1995; Schall et 
al., 1995). Neurons representing visual salience reside in both supragranular and infragranular 
layers of FEF (Thompson et al., 1996) and intermediate layers of SC (White & Munoz, 2011). 
Movement neurons reside in layer 5 of FEF and the intermediate layers of SC and project to 
oculomotor brainstem nuclei that control saccade initiation (Moschovakis et al., 1988; Segraves, 
1992). Visually-responsive LIP neurons could drive SC and FEF movement neurons to 
threshold via known projections (Blatt et al., 1990; Paré and Wurtz, 2001).  The constant 
presaccadic firing rate observed in FEF and SC movement neurons may correspond to the fixed 
degree of excitation necessary to tip the balance from gaze-holding to gaze-shifting via 
excitation of long-lead burst neurons and inhibition of omnipause neurons (Munoz et al., 2000; 
Scudder et al., 2002).  

Our model assumes that a gating mechanism intervenes between visually-responsive and 
movement neurons. Gating inhibition is a simple operation that can be realized through several 
different neural mechanisms. First, gating could be implemented by inhibitory interneurons 
within FEF and SC that can adjust the level of excitation necessary to initiate spiking in 
individual neurons (Somogyi, 1977; Markram et al., 2004). Simple neural networks that balance 
interneuron inhibition with self-excitation exhibit bistable dynamics that limit integration until 
inputs exceed a critical level (e.g., Simen and Cohen, 2009).  Second, gating could be mediated 
by FEF and SC fixation neurons, which fire tonically during fixation but cease firing prior to a 
saccade at a time coinciding with the onset of movement neuron firing across conditions (Munoz 
and Wurtz, 1993; Everling et al., 1998; Hanes et al., 1998).  Finally, gating inhibition could also 
be implemented via basal ganglia circuitry as posited by other models (Brown et al., 2004; 
Frank, 2006). FEF neurons project to the caudate nucleus which sends inhibitory projections to 
the substantia nigra pars reticulate (SNpr; Hikosaka, 2000). SNpr neurons cease firing around 
the time of target selection during search (Basso and Wurtz, 2002). SNpr sends direct 
projections to SC and also to the mediodorsal (MD) and ventroanterio (VA) nuclei (Parent and 
Hazrati, 1995); thalamic nuclei with saccade-related responses (Tanaka, 2007) and reciprocal 
connections with FEF (Huerta et al., 1986). 
 
Conclusions 

We showed that a feed-forward cascade of salience into a network of multiple competing 
stochastic accumulators can account for visual search performance and replicate the dynamics 
of presaccadic movement neurons activity.  By forgoing the details of spike generation in 
exchange for the ability to relate specific network mechanisms to comprehensive behavioral 
data, this approach allowed us to reject plausible model architectures and identify key 
mechanisms necessary and sufficient to explain how the brain decides among multiple stimuli. 
We can further test our model’s premise of a feed-forward visual-to-motor cascade by using 
visually-responsive neuron physiology recorded in the context of additional tasks as model input 
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to our framework.  Factorial manipulations of search efficiency and set size, variations in 
stimulus-response mapping, and tasks in which animals are cued to trade speed for accuracy 
will provided critical tests of the basic model assumptions. 
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Figure Legends 
Figure 1. Visual search task and behavior. After fixating for a variable delay, an array of stimuli 
was presented, one of which was the target (e.g., L) and the rest were distractors of random 90o 
orientations (e.g., T). Monkeys were required to make a single saccade to the target for reward. 
When the array contained two objects, they were always presented at opposite locations and 
when the array contained four items, each was separated by an unfilled location. All stimuli were 
presented at 10o eccentricity. Target identity varied across sessions. Set size varied randomly 
across trials. A-C, Mean ± SEM percent correct (A), correct (B) and error (C) response times for 
set size 2 (blue), 4 (green), and 8 (red). Insets show search array illustration (A), correct (B), 
and error (C) response time distributions. Data are pooled across subjects. See Figure 5 for 
individual subject data. 
 
Figure 2. A, Gated competitive accumulator model architecture. Spike trains generated by 
visually-responsive neurons during visual search (left) were pooled to generate a dynamic input 
function to each accumulator unit (vi). Input from visually-responsive neurons is integrated by 
eight accumulator units (mi) to a fixed threshold. Parameters that determine threshold (θ), 
leakage (k), gating inhibition (g), and lateral inhibitory connections (βd) were optimized to fit 
performance. Only 2 of 7 distractor units are illustrated. Leakage is illustrated for only the target 
unit, but was of equal value for all units. Lateral inhibition varied by distance, d, where d denotes 
the approximate degrees of visual angle between two stimuli (top), but was symmetrical 
between all units. B, Example simulated trial. The distribution of visual inputs when the target 
(thick, vT) or a distractor (thin, vD) were in the receptive field of the neuron varies dynamically 
over time as determined by visually-response neuron physiology (top). Sampled visual inputs 
(middle) drive accumulator units (bottom) that initiate saccades to the location of the target 
(thick, mT) or a distractor (thin, mD). Inputs for this example were generated from spike trains 
recorded during set size 8. Only one of seven distractor units is shown. Predicted RT is the time 
when the threshold, θ (gray), is reached plus 15ms for the eyes to move. The level of gating 
inhibition, g (magenta), was fit to performance. Accumulation begins only after the gate is 
exceeded and the salience of the target salience of the distractors unit due to lateral inhibition 
(i.e., target selection time). 
 
Figure 3. Frontal eye field physiology during visual search. A,B, Normalized population firing 
rates for FEF visual (A) and movement (B) neurons during visual search with set size 2 (blue), 4 
(green), and 8 (red). Spike density functions were generated from trials in which the target 
(thick) or a distractor (thin) was inside the RF of the neuron. Spike density functions are aligned 
on the stimulus array presentation (left) and saccade (right). Stimulus-aligned spike density 
functions end at the median RT. 
 
Figure 4. Gated competitive accumulator model fits to pooled search performance. A, Mean 
observed (circles) and predicted (lines) correct (solid) and error (dashed) response times for set 
size 2 (blue), 4 (green), and 8 (red). B, Mean observed and predicted percent correct. C,D, 
Observed cumulative response time distribution quantiles (circles) and predicted response time 
distributions (lines) for correct (C) and error (D) responses. 
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Figure 5. Gated competitive accumulator model fits to individual monkey search performance. 
A,B, Observed correct response time quantiles and predicted response time distributions for 
monkey Q (A) and monkey S (B). Insets show observed and predicted percent correct. C,D, 
Observed error response time quantiles and predicted response time distributions for monkey Q 
(C) and monkey S (D). Conventions as in Figure 4. 
 
Figure 6. Movement neuron and gated accumulator dynamics. A-C, Spike density functions for 
FEF movement neurons conditionalized on set size (A – 2, B – 4, C – 8) and response time 
(dark – fast, intermediate – medium, light – slow). Fast, medium, and slow SDFs were 
generated from ten trials sampled at the 20th, 40th, and 80th RT percentile, respectively, to 
avoid averaging distortions. D-F, Simulated neural dynamics from the best fitting parameters of 
the gated accumulator model to the pooled data set (Table 1). 
 
Figure 7. Quantification of movement neuron and gated competitive accumulator model 
dynamics across set size. A-D, onset of the presaccadic burst (A), growth rate of firing rate rise 
to threshold (B), baseline firing rate (C), and presaccadic firing rate threshold (D) as a function 
of set size for a representative neuron (see Materials and Methods for details). Black line 
illustrates the slope of each measure of neural dynamics as a function of set. The insets 
illustrate the idealized expected dynamics if a given measure accounts for variability in set size. 
E-H, Population of slopes of each measure of neural dynamics as a function of set size for FEF 
movement neurons (open gray bars; 22 neurons) and simulated model dynamics (black lines; 
500 simulations). Asterisks denote significant that the distribution of movement neuron slopes is 
significantly different from zero (Wilcoxon rank-sum test; *** for p < 0.001). 
 
Figure 8. Quantification of movement neuron and gated competitive accumulator model 
dynamics across response time bins within each set size. A-D, onset of the presaccadic burst 
(A), growth rate of firing rate rise to threshold (B), baseline firing rate (C), and presaccadic firing 
rate threshold (D) as a function of RT bins for a representative neuron (see Materials and 
Methods for details). Only set size 4 is shown for simplicity. Lines illustrate the least squares 
regression line fit to the data. Red lines indicate significant Pearson correlation coefficients (p < 
0.05). E-H, median correlation between each measure of neural dynamics and response time 
for observed movement neurons (circles) and simulated model dynamics (lines). Error bars 
indicate standard error of the median for observed data (bootstrap, 1000 samples). Asterisks 
indicate median correlations that significantly differed from zero (Wilcoxon rank-sum test; * for p 
< 0.05; ** for p < 0.01; *** for p < 0.001).  
 
Figure 9. Rejection of alternatives to gated competitive accumulation. A-D, mean correct and 
error response times (left) and percent correct (right) for observed data and model predictions 
from alternative architectures. Poor performance of a gated independent race architecture (A, βd 
= 0, ud = 0), gated diffusion-like architecture (B, βd = 0, ud is fit), non-gated, non-leaky 
architecture (C, k = 0, g = 0) and non-gated, leaky architecture (D, g = 0). Conventions as in 
Figure 4.  
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Figure 10. Fit summary for alternative model architectures fit to pooled (A), monkey Q (B), and 
monkey S (C) search performance data. Values are median χ2 (left) or AIC (right) ± 95% 
confidence interval (Non-parametric bootstrap; 5000 simulations). 
 
Figure 11. Models with no gate fail to predict observed movement neuron dynamics. Observed 
(brackets) and predicted (points) median correlation between response time and four measures 
of neural dynamics for set size 2 (A), 4 (B), and 8 (C). Brackets and error bars are 95% 
confidence intervals around the observed and predicted median correlation, respectively 
(bootstrap, 1000 simulations). Red arrows highlight the key difference between the predicted 
and observed baseline correlation with RT (see also Purcell et al., 2010). 
 
Figure 12. Threshold and gating inhibition can explain speed-accuracy tradeoffs. A,B, Mean 
expected reward rate as a function of the threshold (A) and gate (B) values when other 
parameters are fixed at the values which best fit the pooled search performance. Insets show 
simulated mean percent correct (black) and RT (gray) corresponding to the parameter values 
used to simulated the reward rates in A and B. Each point is calculated by a simulated session 
with 700 trials per set size, which approximates the average number of trials recorded per 
session. Error bars are 95% confidence intervals around the mean which may be asymmetric 
due to skewed distributions (bootstrap, 1000 simulations). The red points show expected reward 
rate using parameters which best fit the animal’s performance. C,D, Gated accumulator 
dynamics for threshold (C) and gate (D) spanning a range of reward rates. Each trajectory 
reflects the average of 1000 simulated trajectories for a given set of parameters. As threshold 
increases, the accumulation begins at the same time, but reaches progressively higher levels. 
As gate increases, baseline activity decreases and accumulation begins rising later. 
 
Table 1. Best fitting parameter values and fit statistics (χ2 and AIC) for all model architectures 
and data sets. N: number of spike trains sampled from visually-responsive neurons to generate 
salience input for all conditions. θ: threshold. k: leakage constant. g: gate constant. βd : lateral 
inhibition weights between two units spaced i degrees of visual angle apart. ud : feed-forward 
inhibition weights between two units spaced i degrees of visual angle apart. Bold values indicate 
the best fitting model (minimum χ2). Dashes indicate that parameters were fixed to zero for a 
given architecture. 
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Table 1. Best fitting parameter values and fit statistic for all model architectures and data sets.

Data set/Architecture χ2 AIC N θ k g β7.7 β14 β19 β20 u 7.7 u 14 u 19 u 20

Pooled

Gated race 623 6583 130 1.337 0.430 0.427 - - - - - - - -

Gated diffusion-like 265 6398 40 2.658 0.001 0.511 - - - - 0.039 0.050 0.041 0.050

Gated competitive 123 6199 108 11.605 0.017 0.330 0.048 0.038 0.024 0.024 - - - -

Non-gated, non-leaky 234 6583 550 60.302 - - 0.003 0.004 0.003 0.002 - - - -

Non-gated, leaky 165 6237 80 17.707 0.022 - 0.004 0.022 0.006 0.013 - - - -

Monkey Q

Gated race 403 6543 66 3.373 0.018 0.599 - - - - - - - -

Gated diffusion-like 244 6624 66 3.298 0.001 0.520 - - - - 0.048 0.028 0.041 0.047

Gated competitive 106 6497 134 13.607 0.014 0.330 0.050 0.034 0.018 0.021 - - - -

Non-gated, non-leaky 331 6917 450 60.238 - - 0.004 0.004 0.004 0.004 - - - -

Non-gated, leaky 159 6434 100 17.573 0.027 - 0.031 0.027 0.014 0.012 - - - -

Monkey S

Gated race 631 6193 50 1.095 0.519 0.500 - - - - - - - -

Gated diffusion-like 351 6120 45 1.001 0.424 0.377 - - - - 0.040 0.050 0.007 0.050

Gated competitive 157 6006 70 9.816 0.028 0.269 0.004 0.047 0.000 0.025 - - - -

Non-gated, non-leaky 324 6411 500 55.363 - - 0.003 0.005 0.003 0.004 - - - -

Non-gated, leaky 181 6021 70 14.018 0.027 - 0.008 0.030 0.008 0.020 - - - -
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