AQ: 1

AQ:2

| tapraid5/zfv-xIm/zfv-xim/zfv00611/z/v2685d11z | xppws | S=1 | 9/26/11 | 5:18 | Art: 2011-2629 | |

Journal of Experimental Psychology:
Learning, Memory, and Cognition

© 2011 American Psychological Association
0278-7393/11/$12.00 DOI: 10.1037/a0025836

How Category Learning Affects Object Representations:

Not All Morphspaces Stretch Alike
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How does learning to categorize objects affect how people visually perceive them? Behavioral, neuro-
physiological, and neuroimaging studies have tested the degree to which category learning influences
object representations, with conflicting results. Some studies have found that objects become more
visually discriminable along dimensions relevant to previously learned categories, while others have
found no such effect. One critical factor we explore here lies in the structure of the morphspaces used
in different studies. Studies finding no increase in discriminability often use blended morphspaces, with
morphparents lying at corners of the space. By contrast, studies finding increases in discriminability use
factorial morphspaces, defined by separate morphlines forming axes of the space. Using the same 4
morphparents, we created both factorial and blended morphspaces matched in pairwise discriminability.
Category learning caused a selective increase in discriminability along the relevant dimension of the
factorial space, but not in the blended space, and led to the creation of functional dimensions in the
factorial space, but not in the blended space. These findings demonstrate that not all morphspaces stretch
alike: Only some morphspaces support enhanced discriminability to relevant object dimensions following
category learning. Our results have important implications for interpreting neuroimaging studies report-
ing little or no effect of category learning on object representations in the visual system: Those studies

may have been limited by their use of blended morphspaces.
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After people learn that objects belong to different categories, do
they then perceive those objects differently? Do different kinds of
category learning affect visual object perception differently?
Someone could learn to categorize mushrooms as edible or poi-
sonous or as native or invasive species. By some accounts, how
people categorize objects does not matter: Any experience with
mushrooms would facilitate visual perception of mushrooms in
exactly the same way (e.g., Op de Beeck & Baker, 2010; Riesen-
huber & Poggio, 1999). Other accounts suggest it does matter
(Gauthier & Tarr, 2002; Palmeri & Gauthier, 2004).

For example, category learning can selectively enhance the
ability to perceive differences along object dimensions, stretching
dimensions most relevant for categorization (Goldstone, 1994;
Gureckis & Goldstone, 2008). This selective stretching can apply
globally to the entire relevant dimension (Goldstone, 1994; Op de
Beeck, Wagemans, & Vogels, 2003) or locally to a restricted area
around the category boundary (Goldstone, Steyvers, & Larimer,

Jonathan R. Folstein, Isabel Gauthier, and Thomas J. Palmeri, Depart-
ment of Psychology, Vanderbilt University.

We thank Magen Speegle for assistance with data collection. This work
was funded by National Institutes of Health Grants 1 F32 EY019445-01, 5
T32 EY07135-14, and 2 ROl EYO13441-06A2 and by the Temporal
Dynamics of Learning Center, National Science Foundation Grant SBE-
0542013.

Correspondence concerning this article should be addressed to Jonathan
R. Folstein, Department of Psychology, Vanderbilt University, PMB
407817, 2301 Vanderbilt Place, Nashville, TN 37240-7817. E-mail:
jonathan.r.folstein @ gmail.com

1996; Notman, Sowden, & Ozgen, 2005; Ozgen & Davies, 2002;
but see Gureckis & Goldstone, 2008, for a different kind of local
stretching). Mushrooms not only belong to different categories but
look more different as a consequence of category learning.

In some cases, the object dimensions exist psychologically
before any category learning has occurred. Goldstone (1994), for
instance, trained subjects to categorize simple stimuli that varied
along the dimensions of size and brightness. While stretching of
the relevant size or brightness dimension was observed after cat-
egory learning, with differences along the category-relevant di-
mension more perceptually discriminable than differences along
the irrelevant dimension, it is clear that the psychological dimen-
sions of size and brightness existed long before the experiment. In
other cases, the dimensional structure of the objects is far less
apparent, and some have suggested that an important component of
category learning involves creating functional features that more
clearly distinguish objects from contrasting categories (e.g.,
Schyns, Goldstone, & Thibaut, 1998). Goldstone and Steyvers
(2001), for instance, showed that prior to category learning, a
space of morphed faces appeared to have little obvious dimen-
sional organization. After category learning, however, the space of
faces appeared to have acquired a set of orthogonal psychological
dimensions: one parallel to the learned category boundary and the
other perpendicular to the boundary. Therefore, a dimension that
becomes stretched through category learning may have existed
beforehand, but it may also be created during category learning
(Gureckis & Goldstone, 2008).

One inviting interpretation of this body of results is that the
visual system has enormous generative power and flexibility,
changing and adapting representations of objects to enhance
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learned category distinctions. However, other results do not sup-
port this view. Jiang et al. (2007), for instance, found that category
learning did little to alter perception of a space of morphed cars.
Unlike in Goldstone and colleagues’ studies (Goldstone, 1994;
Goldstone & Steyvers, 2001; Gureckis & Goldstone, 2008), cate-
gory learning resulted in equal increases in discriminability along
relevant morphlines that crossed the category boundary and irrel-
evant morphlines that did not. Object representations are not
stretched along category-relevant dimensions (Jiang et al., 2007).
In addition, Op de Beeck et al. (2003) only found stretching for
simple dimensions that were already psychologically separable
before the experiment and did not find evidence for any creation of
new dimensions as a consequence of category learning using more
complex objects defined by radial frequency components. These
results support a particular theoretical position that how people
categorize objects does not matter to how those objects are visually
represented (Op de Beeck & Baker, 2010; Riesenhuber & Poggio,
1999).

This debate plays out in neuroimaging and neurophysiological
studies. Findings have been mixed regarding the impact of cate-
gory learning on object representations in visual cortex. Some
studies have found enhanced neural tuning in visual cortex for
category-relevant compared to category-irrelevant dimensions
while subjects actively categorized objects (De Baene, Ons, Wage-
mans, & Vogels, 2008; Li, Ostwald, Giese, & Kourtzi, 2007;
Sigala & Logothetis, 2002). However, tuning along relevant object
dimensions has not been observed outside of active object catego-
rization. While category learning may generally sharpen overall
neural tuning for experienced objects, the response patterns of
visual neurons do not appear to depend on learned categories,
which may be represented in prefrontal cortex and other brain
areas instead (Gillebert, Op de Beeck, Panis, & Wagemans, 2009;
Jiang et al., 2007; Knoblich, Freedman, & Riesenhuber, 2002; van
der Linden, van Ruennout, & Idefrey, 2010).

So researchers are faced with mixed behavioral and neural
results regarding the apparent flexibility of the visual system in
representing objects from learned categories. One line of work
suggests stretching along relevant dimensions that already existed
or that were created as a consequence of category learning. The
other line of work suggests more static object representations that
are not tuned to learned categories per se. In this article, we
propose that different results may have been observed in different
studies because qualitatively different kinds of object spaces were
used. Our initial focus contrasts a set of studies by Goldstone (e.g.,
Goldstone, 1994; Gureckis & Goldstone, 2008) with those of Jiang
et al. (2007), but our results impact a far broader span of the
literature.

Why does category learning affect object perception in some
cases (e.g., Goldstone, 1994; Gureckis & Goldstone, 2008) but not
others (e.g., Jiang et al., 2007)? The leftmost panels of Figure 1
(Panels a and d) show example object spaces used in those studies.
Both depict continuous shape spaces constructed by morphing four
parent objects. On the surface, the most obvious difference be-
tween the two spaces is the use of faces versus cars. While this
could be a potentially important difference, because faces are
objects of expertise (Tanaka, 2001) and have social relevance,
other properties could also be important. For example, Op de
Beeck et al. (2003) suggested that category learning enhances
perception of relevant dimensions when the space is defined by

perceptually separable dimensions, but not when those dimensions
are perceptually integral (Garner, 1974). Yet it is unclear why the
faces used by Goldstone et aly who found evidence for dimen-
sional stretching, would be more perceptually separable than the
cars used by Jiang et al. (2007), who did not. If anything, one
might expect the opposite, that faces are perceived in a more
integral fashion than cars, because faces are known to be processed
more holistically then most other objects (Farah, Wilson, Drain, &
Tanaka, 1998; Young, Hellawell, & Hay, 1987).!

Here, we test another explanation for why apparently similar
studies obtain qualitatively different results. We demonstrate that
the same (nonface) objects can produce dimensional stretching or
not depending on how morphspaces are created. In a nutshell,
while the two morphspaces illustrated in the leftmost panels of
Figure 1 seem to have remarkable similarity, with two axes defined
by four parents, they turn out to be qualitatively quite different, as
we discuss in the next section. Following a discursion into
morphspace creation, our first experiment contrasts the effects of
category learning on object perception for these two kinds of
morphspaces. Note that while Goldstone et aljused faces and Jiang
et al. (2007) used cars, our experiments always used cars generated
from the same four morphs parents for both morphspaces in both
experiments. Experiment 1 shows that category learning causes
stretching along relevant dimensions for one kind of
morphspace—the factorial space used by Goldstone et al.—but
not the other—the blended space used by Jiang et al. One expla-
nation for this result is that category learning creates a dimensional
structure for the factorial space, but not the blended space. Exper-
iment 2 shows that this is the case.

Morphing is a process by which multiple object images (par-
ents) are blended to create a continuum of intermediate object
images (morphs) and has emerged as an important stimulus gen-
eration tool for understanding perceptual categorization. First,
consider the morphspace shown in Figure 1a, used by Goldstone
and Steyvers (2001). As illustrated in Figure 1b, four parents
define the space. A morph between Parent A and Parent B defines
the x-axis of the space; a morph between Parent C and Parent D
defines the y-axis of the space. While these axes define the
morphspace, they may or may not correspond to the psychological
dimensions subjects use to represent the objects within the
morphspace, a point we address directly in Experiment 2. The full
space is populated with stimuli by morphing images factorially
along the x- and y-axes. As a result, we refer to spaces of this type
as factorial morphspaces. A key property of factorial morphspaces
is that they have a consistent structure throughout the space. Any
two stimuli in the space that differ along the x-axis but are equated
along the y-axis generally differ in the degree to which they are
physically similar to Parent A versus Parent B, regardless of where
they are located along the y-axis. Similarly, any two stimuli that

! Another way that studies that find or do not find dimensional stretching
differ is in the tasks performed by the subjects in the context of category
learning. Studies using blended spaces have sometimes used matching
tasks to train their subjects (Freedman et al., 2003; Jiang et al., 2007) rather
than tasks designed to associate categories with buttons or labels (Gold-
stone, 1994; Goldstone & Steyvers, 2001). Differences in the degree to
which different category learning tasks cause dimensional stretching is a
potentially interesting topic for future studies.
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Figure 1. The top row illustrates the factorial space used by Gureckis and Goldstone (2008) and Goldstone and

Steyvers (2001). Panel a shows an adaptation of the figure that appeared in Goldstone and Steyvers. Panel b
shows a more abstract version of the space. Panel ¢ shows that space positioned within the tetrahedral volume
defined by all possible morphs between four parents. The bottom row illustrates the blended object space used
by Jiang et al. (2007). Panel d shows the figure that appeared in that study. Panel e shows a more abstract version
of the space, with parents at each of the corners. Panel f shows that space more accurately as the full tetrahedral
volume. Panel a adapted from “The Sensitization and Differentiation of Dimensions During Category Learning,”
by R. L. Goldstone and M. Steyvers, 2001, Journal of Experimental Psychology: General, 130, p. 120. Copyright
2001 by the American Psychological Association. Panel d adapted from “Categorization Training Results in
Shape- and Category-Selective Human Neural Plasticity,” by X. Jiang, E. Bradley, R. A. Rini, T. Zeffiro, J

Vanmeter, and M. Riesenhuber, 2007, Neuron, 53, p. 892. Copyright 2007 by Elsevier.

differ along the y-axis but are equated along the x-axis are gener-
ally equal in their physical similarity to Parent A versus Parent B,
regardless of where they are located along the x-axis.

Now consider the morphspace shown in Figure 1d, used by
Jiang et al. (2007; see also Freedman et al., 2003; Gillebert et al.,
2009). On the surface, this morphspace looks structurally identical
to the dimensional morphspace discussed above. However, the
two-dimensional layout in the figure masks a fundamental struc-
tural difference. In this case, a unique parent occupies each corner
of the space (see Figures 1d and le). These parents occupy the
most extreme points in a three-dimensional tetrahedron, not a
two-dimensional plane. The morphlines depicted in Figures 1d and
le are merely the edges of that tetrahedron projected onto a plane.
The space used by Jiang et al. is populated with objects by
sampling from all possible blends of the four parents. In this way,
a given object’s position within the space represents the relative
morphing contribution from each of the four parents to the object.
Objects close to Parent A are blends of all four parents with a
dominant contribution from Parent A; objects lying on one of the

four outer walls of the pyramid are blends between three of the
parents with no contribution from the fourth parent on the corner
opposite that wall; objects lying on one of the edges of the pyramid
are blends between two parents with no contribution from the other
two. We refer to spaces of this type as blended morphspaces. A
key property of blended spaces is not that stimuli necessarily
occupy all regions of the tetrahedron but that the corners of the
blended space correspond to the morphparents at the vertices of the
tetrahedron. So, despite the striking similarity in how they are
typically depicted in Figures 1a and 1d, the blended space defines
a three-dimensional tetrahedron while the factorial space defines a
two-dimensional plane. In addition, the blended space and factorial
space differ significantly with respect to how the stimuli within the
spaces relate to the learned category boundary, as described next.

Consider how categories are defined in the two morphspaces.
We have depicted a vertical category boundary for both spaces in
Figure 1, but the nature of those boundaries is actually quite
different across the two. For the factorial space, the difference
between Category 1 and Category 2 lies in the relative contribution
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of Parent A or Parent B along morphline Axis x, regardless of the
relative contribution of Parent C or Parent D along morphline Axis
v. This opens up the possibility that category learning will encour-
age attention to the degree to which a given object resembles
Parent A versus Parent B, while the resemblance to Parent C
versus Parent D will be ignored. This could selectively enhance
visual representations of object variability along the x-axis, even
though this variability could be complex and difficult to verbalize.

This contrasts with the blended space where the categorical
distinction is more complex. The category boundary is defined by
the halfway point along the morphlines between Parents A and C,
Parents A and D, Parent B and C, and Parents B and D, and is
defined continuously within the tetrahedral space by the plane
depicted in Figure 1f. Whatever learned perceptual representations
help discriminate stimuli along the A-to-C morphline will be
completely different from those that help discriminate stimuli
along the B-to-D morphline. In contrast to the factorial space, in a
blended space there are multiple distinctions between stimuli in the
two categories that reflect variations along multiple directions.
Perhaps because so many distinctions are relevant to categoriza-
tion, little or no difference in perceptual discrimination along
purportedly relevant versus irrelevant directions in the blended
space is observed after category learning.

To our knowledge, this difference between factorial and blended
spaces has never been noted in the literature, perhaps because the
two spaces have been graphically depicted so similarly in pub-
lished studies (e.g., leftmost panels of Figure 1). Does this differ-
ence matter behaviorally? If it does, this has potentially important
implications in interpreting results on the neural substrates of
category learning, given the studies that have used blended spaces
and concluded that category learning has little systematic influence
on object representations in visual cortex (e.g., Freedman et al.,
2003; Gillebert et al., 2009; Jiang et al., 2007).

In the first experiment, we directly contrast changes in percep-
tual discrimination after category learning for stimuli constructed
from a factorial morphspace versus a blended morphspace. We
constructed subspaces of stimuli with a similar two-dimensional
structure and a similar category boundary, using the same parent
objects, but in one case the stimuli were defined within a factorial
morphspace while in the other case the stimuli were defined within
a blended morphspace (see Figure 2).

Experiment 1

Method

Stimuli.  Pilot studies using multidimensional scaling were
used to select four car images to be parents with approximately
equal similarity to each other from among 30 total images (se-
lected from a commercial collection of three-dimensional com-
puter models available online at www.doschdesign.com/products/
3d/Lo-Poly_Cars_V1-2.html). Once selected, these four parents
were further processed using Adobe Photoshop to remove unneces-
sary details that would have interfered with smooth morphing. The
parents are shown in Figures 2c and 2f as Parents A, B, C, and D.

The factorial and blended morphspaces were created from the
four parents using the approach described earlier. We first note that
the factorial space is actually a two-dimensional plane within the
three-dimensional tetrahedron defining the full blended space (see

Figures 1c and 2a). To compare category learning and its impact
on perceptual discrimination in the two different morphspaces, we
needed to equate the two spaces as much as possible while retain-
ing the key qualitative properties of each morphing method.
The twisted two-dimensional manifold within the full blended
space possesses key properties of the full blended space. First, a
unique parent resides at each corner of the space. Second, a
morphline between two parents defines each edge of the space;
these morphlines are a subset of those tested by Jiang et al. (2007).
Figure 2d shows the blended space used in Experiment 1—the
space is compressed slightly so that adjacent pairs within the space
are as discriminable as the pairs in the factorial space. From now
on, blended space refers to this twisted surface within the full
tetrahedron. Figures 2b and 2e show flattened schematics of the
factorial and blended spaces to illustrate the analogous arrange-
ment of the exemplars within the two spaces.

Separate sets of stimuli were created for category learning and
perceptual discrimination phases of the experiment, so that the
effects of category learning on perception would be tested on
transfer objects interspersed within the training space. We used an
8 X 8 object set for category learning (shown by filled circles in
Figures 2b and 2e) while a nonoverlapping 4 X 4 object set was
used in the perceptual discrimination task (shown as open squares
in Figures 2b and 2e).

Importantly, if we used the original parents at the corners of the
blended space, the average perceptual discriminability would be
greater than for the corresponding factorial space (independent of
any category learning). Therefore, extensive pilot testing was used
to select new corner locations for the blended space to better match
perceptual discriminability prior to category learning between the
two spaces (see Figure 2d).

The exact contribution of each parent to each morphed object in
the blended and factorial spaces is available from the authors or
online at catlab.psy.vanderbilt.edu.> Objects were produced using
gtkmorph (xmorph.sourceforge.net).

Procedure. The procedure implemented a 2 X 2 X 2 exper-
imental design with factors of space (factorial vs. blended), dis-
crimination epoch (pretraining vs. posttraining), and pair relevance
(relevant vs. irrelevant). Each subject was randomly assigned to
perform categorization and discrimination tasks on either the fac-
torial space or the blended space. In the first experimental session,
subjects performed a same-different perceptual discrimination
pretest on pairs of the 4 X 4 object set, followed immediately by
category learning with the 8 X 8 object set. In the second session,
subjects underwent additional category learning with the 8§ X 8
object set, followed immediately by a same—different perceptual
discrimination posttest on pairs of the 4 X 4 object set. The
sessions were conducted on 2 consecutive days, and each session
lasted approximately 2 hr.

Same-different perceptual discrimination task. In the per-
ceptual discrimination task, subjects judged whether sequentially
presented objects, pairs of identical or adjacent cars in the 4 X 4
grid, were the same or different (even if only slightly). Each trial
proceeded as follows: 700-ms fixation, 1,500-ms Car Image 1,

2 http://catlab.psy.vanderbilt.edu/wp-content/uploads/JEPLMCMan4 _
website_Final.pdf
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Figure 2.

Factorial and blended spaces used in Experiment 1. Panels a and d show the spaces positioned within

the full tetrahedron. The black dots at the grid intersections show the positions of the objects used in the category
learning task, and the open squares show the positions of the objects used in the discrimination task. Panels b
and e show the relative positions of the categorization and discrimination objects (closed circles and open
squares, respectively). In Panel b, the axes correspond to morphlines between parent cars. Points in the space are
blends between particular positions along each axis. In Panel e, all of the edges of the space correspond to
morphlines between parent cars, and blending is not factorial—rather, each morph is created based on its relative
proximity to each of the four corners. As a result, Panel e does not include axes. Panels ¢ and f show samples
from two spaces. The positions of the sample images were selected to maximize visual discriminability and the
ability to discern the properties of the two spaces, and do not correspond to the actual stimuli used in the

experiment, which were somewhat more compressed within the respective spaces.

300-ms black-and-white noise mask, 300-ms blank screen, Car
Image 2, which remained on screen until the subject responded
“same” or “different” or 5 s had elapsed. Intertrial interval was 1 s.
Each block consisted of 24 different trials and eight same trials in
a random order. All 16 possible same trials were presented every
two blocks. There was a total of 12 blocks (384 total discrimina-
tion trials per session). The different trials consisted of adjacent
pairs, cars that differed by a single horizontal or vertical position
in the space. There were 24 possible adjacent pairs, 12 of which
differed in the vertical direction and 12 of which differed in the
horizontal direction. Depending on the orientation of the catego-
rization boundary for a given subject, a pair was considered
relevant if the difference was perpendicular to the direction of the
category boundary or irrelevant if the difference was parallel to the
category boundary.

Category learning task. 1In the category learning task, sub-
jects learned to categorize cars in the 8 X 8 space carved in half
according to either a vertical or horizontal category boundary
(counterbalanced across subjects in both morphspace groups).

If a given subject learned to categorize according to a vertical
boundary, then horizontal pairs were deemed relevant in the
discrimination task; if a horizontal boundary was learned, ver-
tical pairs were deemed relevant. Subjects were instructed to
learn to categorize two novel brands of cars made by an
imaginary manufacturer as either “Cags” or “Mons.” Each trial
proceeded as follows: fixation 500 ms, car image 1,500 ms,
feedback 700 ms, intertrial interval 1,000 ms. Feedback con-
sisted of both the correct category name and whether the
subject’s response was correct or incorrect, 300 ms after the
response or 300 ms after stimulus offset, whichever was later.
All 64 cars in the 8 X 8 space were presented in each block, and
there were 12 blocks on each training day, for a total of 768
category learning trials per day.

Subjects.  Subjects were 24 Vanderbilt University (Nashville,
TN) students and members of the community, 13 of whom were
female, who were reimbursed $24 (average 22.4 years old, average
15.4 years of education). The study was approved by the local
institutional review board.
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Results a) Factorial Space b) Blended Space
Category learning.  Subjects were slightly more accurate in j 34
categorizing the factorial space than in categorizing the blended 6 6 [ Crosses middle OfSPace
space, factorial: 84.4%, blended: 75.9%, F(1, 22) = 6.65, MSE = N | [ Does not cross middle
007, p = .017, m? = .232, but the groups did not differ in reaction Ad' ] Ad',
time, reaction time: F(1, 22) < 1. 3 3
Same-different perceptual discrimination. Perceptual dis- 5 5
criminability (see Figure 3) improved more for the relevant than } I ] ﬁ—u_‘
irrelevant pairs in the factorial space but not for pairs in the 0 0
blended space, Relevance X Discrimination Epoch interaction: [ 1 !
F(1,22) = 5.90, MSE = 029, p = 024, 1> = 212; Relevance X ] Relevant  Inelevant 1] Relevant - Imelevant

Discrimination Epoch X Space interaction: F(1, 22) = 7.58,
MSE = .029, p = .012, 3> = .256. Planned comparisons of the
increase in discriminability (d') after category learning for relevant
compared to irrelevant pairs confirmed this impression. In the
factorial space, the increase in d’ after category learning was
greater for relevant pairs compared to irrelevant pairs, #(11) =
2.90, p = .014, Cohen’s d = .860, while, in the blended space, d’
increased equally for both relevant and irrelevant pairs, #(11) =
—0.36, p = .7, Cohen’s d = —.104.% Overall, subjects were better
at discriminating between adjacent object pairs after categorization
than before categorization, main effect of discrimination epoch:
F(1, 22) = 4.71, MSE = .129, p = .041, n* = .176. The initial
discriminabilities of pairs in the factorial and blended spaces were
equal, as revealed by an analysis of variance (ANOVA) on the
precategorization discrimination epoch alone with factors of space
and relevance; the main effect of space was not significant, F(1,22) =
0.067, MSE = .150, p = .798, 7> = .003, and the effects of relevance
and of Space X Relevance were also not significant, Relevance: F(1,
22) = 1.30, MSE = .052, p = .27, m*> = .056; Space X Relevance:
F(1,22) = 1.69, MSE = 052, p = 21, > = 071.

We found increases in discriminability for relevant pairs in the
factorial space, but not the blended space. We can also ask whether
this modulation was confined to the local region near the category
boundary or applied globally to the entire relevant direction in the
space. Figure 4 shows d’ for relevant and irrelevant pairs broken

a) Factorial Space b) Blended Space
11 11
9 A 9 1
[] Pre-training
s ] g [ Post-training
74 7
d 6 d Py
5 54
4 4
3 34
2 2
Relevant Irrelevant Relevant Irrelevant

Figure 3. Discrimination performance before and after training for object
pairs along the relevant dimension versus irrelevant dimension. Panel a
shows the factorial space, and Panel b shows the blended space. Error bars
are between-subjects standard errors.

Figure 4. Each bar shows the difference between discrimination perfor-
mance before and after training. Object pairs that cross the middle of the
space are compared to pairs that do not cross the middle of the space in the
relevant and irrelevant directions. A classical categorical perception effect
predicts a greater training effect for middle pairs than outer pairs in the
relevant but not the irrelevant directions. In fact, training appears to affect
middle pairs slightly more than outer pairs in all directions in both spaces.
Error bars are between-subjects standard errors.

down by whether or not they crossed the middle of the object
space. Relevant pairs crossed the category boundary, while the
nonrelevant pairs crossed the middle of the space in the irrelevant
direction. For both spaces, pairs that crossed the middle of the
space increased in discriminability more than those that did not,
regardless of relevance. In an ANOVA with factors of space,
relevance, discrimination epoch, and pair position (whether a
given pair spanned the center of the space), we found a main effect
of pair position, F(1, 22) = 7.75, MSE = .039, p = .011, nz =
.261, and a Pair Position X Discrimination Epoch interaction, F(1,
22) = 6.52, MSE = .037, p < .018, T]2 = .229. No interactions
between pair position and space or pair position and relevance
were significant (Fs < 1). Thus, discriminability effects specific to
the relevant dimension applied globally to the relevant dimension
and were not restricted to pairs that crossed the category boundary.
All interactions and main effects not involving pair position rep-
licated those in the previous analysis and are not reported here for
sake of brevity.

3 Categorization accuracy was somewhat lower in the blended space
than the factorial space, raising the possibility that the difference we
observed between groups could be related to something like participant
motivation. To investigate this, we removed the three participants in the
blended group with the lowest categorization accuracy and the three
participants in the factorial group with the highest categorization accuracy,
leaving nine participants in each group. When doing this, the difference in
accuracy between the two groups no longer approached significance,
factorial M = 82%, blended M = 80%, F(1, 16) = 0.545, MSE = .003,p =
47, m* = .033. Even when the groups were equated for categorization
accuracy, the critical interactions for the discrimination phase remained
significant, Diagnosticity X Epoch: F(1, 16) = 8.29, MSE = .024, p < .05;
Diagnosticity X Epoch X Space: F(1, 16) = 8.73, MSE = .024, p < .01,
m? = .353. Thus, the difference between the spaces in factorial modulation
results from the properties of the spaces and not random variability be-
tween participants.
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Discussion

Goldstone and colleagues observed that category learning
causes increases in perceptual discriminability along category-
relevant object dimensions (Goldstone, 1994; Goldstone &
Steyvers, 2001; Gureckis & Goldstone, 2008). Recent behavioral
and neural studies have suggested otherwise (Freedman et al.,
2003; Gillebert et al., 2009; Jiang et al., 2007; van der Linden et
al., 2010). We provide one explanation for these conflicting results
in terms of how the morphspaces of stimuli used in these studies
were constructed.

We used the same parent objects to create factorial (Gureckis &
Goldstone, 2008) and blended (Jiang et al., 2007) morphspaces and
investigated the effect of category learning on perceptual discrim-
inability within each space. For the factorial morphspace, there
was enhanced discriminability along the category-relevant dimen-
sion. This was not observed for the blended morphspace.
Morphspace structure must be taken into account when interpret-
ing effects of category learning on the representation of objects.
Not all morphspaces stretch alike.

The results of Experiment 1 suggest that there is something
about the structure of factorial spaces, but not blended spaces, that
allows selective increases in discriminability along relevant di-
mensions— but what? We address that question in the next exper-
iment.

Experiment 2

In Experiment 2, we investigated possible explanations for how
and why the factorial morphspace allows stretching along the
relevant dimension following category learning while the blended
space does not. Specifically, we assessed the extent to which
objects in each space are represented in terms of psychological
dimensions. In a space that has a dimensional structure, enhanced
perceptual discriminability following category learning can be
explained as stretching along the relevant psychological dimen-
sion. The fact that the factorial space is created by factorially
combining morphs across two independent morphline axes and the
observation that stretching along the relevant dimension was ob-
served suggest a dimensional structure for the factorial space.
Furthermore, the observation that category learning did not lead to
stretching in the relevant direction for the blended space suggests
that the psychological representations of objects in the space do
not correspond directly to the axes that define the space. Here, we
test these intuitions explicitly.

Following Goldstone and Steyvers (2001), our approach relies
on the assumption that if a space has a psychological dimensional
structure, then it should be easier to learn categories that vary
along a single dimension than categories that vary along two
dimensions (e.g., Gottwald & Garner, 1975). This is because
single-dimension categories benefit from stretching along the rel-
evant dimension (e.g., Kruschke, 1992, 1993; Nosofsky, 1986;
Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994). By
contrast, if the dimensions are completely arbitrary, there should
be no difference in how easy or hard it is to learn categories that
vary along one dimension versus two dimensions because the
dimensions are merely a fiction of how the space of objects is
created or displayed graphically (see Op de Beeck et al., 2003, for
a slightly different perspective).

Consider the two-dimensional space of objects illustrated in
Panel a of Figure 5. The x- and y-axes are defined by the way the
morphspace is created. If these axes correspond to psychological
dimensions that can be selectively stretched when relevant, as we
hypothesize for the factorial morphspace, then it should be rela-
tively easy to learn the categories illustrated in Panel b of Figure
5: The relevant x-axis corresponds to a psychological dimension
that can be stretched. By contrast, it should be relatively hard to
learn the categories illustrated in Panel ¢ of Figure 5 because both
dimensions are relevant: Stretching is not possible in the diagonal
direction.

By contrast, if the morph axes are completely arbitrary, with no
correspondence to psychological dimensions, as we hypothesize
for the blended morphspace, there should be no difference in
learning between the categories illustrated in Panels b and c of
Figure 5. The x- and y-axes have no special psychological status in
that the axes can be rotated by any degree, with every rotation an
equally valid description of the space of morphed objects. With no
psychological dimensions, nothing can be stretched.

Hopefully, it should be clear from this discussion that the
seemingly complicated tessellation of the object space into nested
octagons in Figure 5 has a purpose: This octagonal arrangement
allows us to rotate the category boundary by 45° or 90° yet
preserve the relative relationships of objects within and across the
two categories (Kruschke, 1993; see also Nosofsky, 1985;
Shepard, 1964). Contrast this with the square configuration used in
Experiment 1, Figure 2, which cannot be rotated by 45°.

Experiment 2 included two phases of category learning to test
two hypotheses about when, if ever, a dimensional structure might
emerge within a morphspace.

One explanation for the differences observed in Experiment 1 is
that the factorial morphspace has a dimensional structure that
exists prior to any category learning, with morph axes correspond-
ing to psychological dimensions, while the blended space does not.
According to this hypothesis, category learning in the factorial
morphspace would have simply caused stretching along a preex-
isting relevant dimension, thereby making relevant distinctions
more perceptually discriminable (Goldstone, 1994; Op de Beeck et
al.,, 2003). In Phase One of Experiment 2, the presence of a
preexisting dimensional structure in either space should be evi-
denced by easier learning of the orthogonal category boundary (see
Figure 5, Panel b) than of the diagonal category boundary (see
Figure 5, Panel c).

Another explanation for the differences observed Experiment 1
is that the factorial morphspace allows a dimensional structure to
be created during category learning, while the blended space does
not. By this account, category learning involves creating the right
dimensional structure for the object categories being learned
(Schyns et al., 1998). This would suggest that in Experiment 1, for
a dimension to be stretched, the dimension must first be created.
For example, Goldstone and colleagues (Gureckis & Goldstone,
2008; Goldstone & Steyvers, 2001; see also Austerweil & Grif-
fiths, 2010) found that after learning to categorize a morphspace of
faces, the faces were embedded in a dimensional structure consis-
tent with the learned categories, a dimensional structure that did
not exist prior to category learning. In Phase Two of Experiment
2, we use a procedure that can detect evidence of a learned
dimensional structure; we outline this procedure next.
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Figure 5. llustration of the design of Experiment 2. Dots show positions of the objects within the morphspaces
in Experiment 2 (see also Figure 6). See main text for explanations of each panel.

Imagine that after learning the category structure illustrated in
Panel d of Figure 5, the space of objects is defined by the relevant
and irrelevant dimensions illustrated. Now, for the Panel d struc-
ture, these dimensions correspond to x- and y-axes that defined the
original morphspace. Now consider the category structure illus-
trated in Panel e of Figure 5. Again, imagine that after learning, the

space of objects is defined by the relevant and irrelevant dimen-
sions illustrated. Of course, now the dimensions do not correspond
to the original x- and y-axes, but the relevant and irrelevant
dimensions are both psychologically real.

For both cases, now consider what happens when a new set of
categories must be learned using objects within the same space.
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Method
Stimuli. We used the same four parent morphs and morphing

Figure 5) of the original category boundary. Which rotation will be
easier to learn? If the relevant and irrelevant dimensions are
psychologically real as a result of Phase One of category learning,
then the 90° rotation category should be easier to learn than the 45°
rotation category. That is because the 90° rotation category relies
on the original dimensions, only switching which one is relevant.
By contrast, the 45° rotation creates a situation where both of the
original dimensions are relevant. Either both dimensions must be
used, which is less efficient than having a single relevant dimen-
sion, or a new dimensional structure must be learned, which is less
efficient than simply switching the relevant and irrelevant dimen-
sions. Either way, if Phase One category learning creates a dimen-
sional structure, then the 90° rotation category should be easier to
learn than the 45° rotation category.

To summarize, subjects in Experiment 2 learned two categori-
zations of the same morphspace of objects. Half of the subjects
learned objects from the factorial space, and half from the blended
space. In Phase One, we tested whether category learning is more
efficient for categories that vary along one of the axes defined in
the morphspace (orthogonal), than for categories that vary along
both axes (diagonal). Phase One let us test whether or not a
morphspace had a preexisting dimensional structure that maps
onto the morph axes. In Phase Two, we transferred subjects to a
new category whose boundary varied by either 90° or 45° from the
original boundary. If Phase One led subjects to create a dimen-
sional structure in the morphspace, we expected faster learning for
the 90° rotation category than the 45° rotation category.

a) Parent C

2 \
% ‘M} Parent D
/

Parent A

Parent B

C) Parent C

Parent B

techniques used in Experiment 1. The only difference was the x,y
locations of morphs sampled from each space. While Experiment
1 used a square grid, Experiment 2 instead used an octagonal
tessellation to allow for a fair comparison of 45° and 90° rotations
(see Figure 6). The blended space was scaled on the basis of pilot
testing to equate the difficulty of category learning as much as
possible with the factorial space. The exact coordinates of the
stimuli illustrated in Figure 6 are available from the authors or
online at catlab.psy.vanderbilt.edu.

Procedure.  Subjects were randomly assigned to categorize
the factorial or blended morphspace. Each subject learned to
categorize the assigned space according to two different category
boundaries in two phases of category learning.

In Phase One, subjects were randomly assigned to learn cate-
gories defined by either a boundary that was orthogonal to one of
the axes of the morphspace (Panel b of Figure 5) or by a boundary
that was diagonal to both of the axes of the morphspace (Panel ¢
of Figure 5). For the orthogonal condition, whether the boundary
was orthogonal to the x-axis or y-axis was counterbalanced across
subjects; analogously, for the diagonal condition, whether the
boundary had a positive or negative slope was counterbalanced
across subjects. Relating this to Experiment 1, for both the blended
and factorial spaces, in the orthogonal category learning condition
the category boundary was orthogonal to the relevant dimension,
while in the diagonal condition the category boundary was not. In
Experiment 2, comparing the efficiency of category learning in the

b)
Parent C o o
ST
:... . ..:
O
P .
..:..:I:..:..
Parent D b s
Parent A Parent B
d)
Parent A I Parent D
ST
:.. .. ...:
IS B
ool .-
:..:I:...
Parent B R Parent C

Figure 6. Positions of the objects in Experiment 2, shown superimposed on the factorial and blended
morphspaces within the tetrahedron (Panels a and c¢) and schematically on flat surfaces (Panels b and d).
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orthogonal versus diagonal category learning conditions allowed
us to assess whether the two spaces differ in their a priori dimen-
sional structure. The category learning instructions for Phase One
were identical to those used in Experiment 1.

In Phase Two, subjects were instructed that the cars had changed
manufacturers and that they would then have to learn to categorize
the cars in a new way. Subjects learned to categorize the same cars
according to a boundary that was rotated either 90° or 45° (ran-
domly assigned) from the original orientation used in Phase One.
The direction of the rotation was counterbalanced across subjects.
Examples of 90° and 45° rotations are shown in Figure 5.

Phase One took place over 2 consecutive days, with 792 cate-
gory learning trials, distributed over 11 training blocks, on the first
day and 792 additional trials on the second day. Phase Two was
conducted on the second day immediately following the end of
Phase One and consisted of 792 trials during which subjects were
trained on the new boundary. The sequence and timing of the
stimuli and feedback were identical to the category learning phase
of Experiment 1.

Subjects. A total of 64 members of the Vanderbilt University
community, 40 female, participated in Experiment 2. An additional
eight subjects were dropped due to technical problems or failure to
complete the entire experiment. Thirty-two subjects were trained
to categorize each space (factorial or blended), 16 of whom were
first trained to categorize their space according to a diagonal
boundary and 16 of whom were trained to categorize their space
according to an orthogonal boundary. For each of these groups of
16 in Phase Two, eight subjects were trained on a new boundary
rotated 45° relative to the original boundary while the remaining
eight subjects were trained on a new boundary rotated 90° relative
to the original boundary.

Results

Phase One: Orthogonal versus diagonal category learning.
Figure 7 displays the category learning curves for Phase One. To
investigate the effect of diagonal versus orthogonal category
boundaries on overall accuracy and reaction time, we first con-
ducted ANOVAs with factors of training block (22 total blocks),
boundary orientation (diagonal vs. orthogonal), and space (facto-
rial vs. blended), with violations of sphericity corrected using the
Huynh-Feldt method. Significant main effects of training block
showed that subjects became more accurate and responded more
quickly as training progressed, accuracy: F(21, 1260) = 34.1,
MSE = .009, p < .0005, 0> = .362; reaction time: F(21, 1260) =
7.5, MSE = .093, p < .0005, ~q2 = .111. In the remaining analyses,
the effects on reaction time were either not significant or mirrored
the effect of accuracy, so they are not considered further. There
was no overall difference in accuracy between orthogonal and
diagonal category boundaries, main effect of boundary orientation:
F(1, 60) = 1.56, MSE = .174, p = 217, n* = .025, nor did the
main effect of boundary orientation differ between the blended and
factorial spaces, Orientation X Space interaction: F(1, 60) =
0.019, MSE = 174, p = .892, > < .0005. There was also no
overall difference in learning rate between orthogonal and diago-
nal boundaries, Orientation X Block interaction: F(21, 1260) =
0.571, MSE = .009, p = .810, ¢ = .399, n* = .009, and the
difference in learning rate between boundary orientations did not
interact with space, Orientation X Space X Block interaction:

F(21, 1260) = 1.44, MSE = .009, p = .18, € = .399, 1> = .023.* Fnd

While there was no overall difference in accuracy between the two
spaces, main effect of space: F(1, 60) < 1, space did interact with
block, likely reflecting slightly higher accuracy for the blended
space in the first two training blocks, Space X Block interaction:
F(21, 1260) = 1.97, MSE = .009, p = .045, € = .399, * = .032.

In summary, we found little evidence for an advantage of
learning the orthogonal boundary over the diagonal boundary for
either space. Neither space appears to have a strong dimensional
structure prior to category learning, ruling out differences in pre-
existing dimensional structure between spaces as an account for
the differences observed in Experiment 1. We now turn to an
analysis of Phase Two to see if a dimensional structure could have
emerged in either space as a result of category learning.

Phase Two: 90° versus 45° category learning. To test
whether category learning caused dimensions to emerge, we com-
pared accuracy during Phase Two of category learning when
boundaries were rotated either 90° or 45° from the original bound-

*To increase the sensitivity of our analysis, we also conducted separate
exploratory two-way Orientation X Block ANOVAs on each space to
search for evidence of differences between diagonal and orthogonal bound-
aries. In the factorial space, the main effect of block was again significant,
F(21, 630) > 20, but there was no difference in accuracy between orthog-
onal and diagonal boundaries, F(1, 30) = 0.56, MSE = .191, p = .46, nz =
.018, nor was there a significant difference in learning rate, Orientation X
Block interaction: F(21, 630) = 0.776, MSE = .013, p = .614, ¢ = .35,
m? = .025. To further maximize sensitivity to effects involving block, we
subsequently performed a trend analysis with block as an ordered factor,
breaking down the effect of block into orthogonal trends with one degree
of freedom each. Neither the linear nor the quadratic trends were signifi-
cant for the Block X Orientation interaction, linear: F(1, 30) = 1.40,
MSE = .022, p = .25, m* = .045; quadratic: F(1, 30) < 1. In the blended
space, there was also no difference in accuracy between the two boundary
orientations, main effect of boundary orientation: F(1, 30) = 1.063,
MSE = .157, p = .31, m> = .034, nor was there any significant difference
between the learning rates in these conditions, Orientation X Block inter-
action: F(21, 630) = 1.37, MSE = .006, p = 1.96, n*> = .044. Finally, the
effect of boundary orientation did not interact with the linear or quadratic
trends of block, linear: F(1, 30) = 1.30, MSE = .012, p = .26, nz = .041;
quadratic: F(1, 30) = 1.03, MSE = .006, p = .32. ’T]2 = .033. Visual
inspection of Figure 8 suggests that, for the blended space, the orthogonal
boundary appears to have a slight accuracy advantage late in learning, after
Block 8. By contrast, for the factorial space, the orthogonal boundary
appears to have a slight accuracy advantage early in learning, from Blocks
1 through 5. We therefore performed a completely post hoc analysis of
these epochs in isolation for the two spaces. In each space, two ANOVAs
were performed with factors of block and boundary orientation. In one
ANOVA, block had five levels, corresponding to Blocks 1-5 (early), while
the other ANOVA had 15 levels of block, corresponding to Blocks 8-22
(late). Again, no analyses reached significance. For brevity, we report only
the main effects of boundary orientation in each space, Blocks 1-5 factorial
space: F(1, 30) = 1.5, MSE = .065, p = .23, n2 = .048; blended space:
F(1, 30) < 1; Blocks 822 factorial space: F(1, 30) < 1; blended space:
F(1,30) =1.6, MSE = .111, p = .21, nz = .051. Even though all of these
analyses suggest that the spaces have little dimensional structure prior to
category learning, we acknowledge that these null results could be due to
a lack of power. The most important point to take away from these analyses
is not the complete absence of dimensional structure in either space but
rather that the spaces do not differ in the degree to which they might
possess dimensional structure. Thus, differences in a priori dimensional
structure cannot account for the results of Experiment 1.
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ary. This comparison is complicated by a difference between the
90° and 45° rotation conditions, namely, that more objects change
categories in the 90° than the 45° rotation condition, as shown in
Figure 8. To compensate for this difference, we analyzed only the
subset of exemplars in each space that changed categories in the
two conditions and that were matched in distance from the new
category boundary. These critical exemplars for the example con-
ditions shown in Figure 5 are shown as darker dots.

Figure 9 shows the learning curves for the critical exemplars, for
category boundaries rotated by 90° or 45°. In the factorial space,
learning appears faster after the 90° than 45° rotation, while there
is little apparent difference in the blended space. We first analyzed
accuracy in both spaces with an omnibus ANOVA with factors of
training block (11 total blocks), boundary rotation (45° vs. 90°),
and space (factorial vs. blended). A significant main effect of
block showed that subjects learned over time, F(10, 600) = 7.40,
MSE = .022, p < .0005, ¢ = .775, n2 = .110. The only other
significant effect was a three-way interaction between block,

90 degree rotation

45 degree rotation

Figure 8. More exemplars change categories in the 90° rotation condition
than in the 45° rotation condition. Exemplars that change categories are
shown as darker dots.

space, and boundary rotation, suggesting that the effect of bound-
ary rotation on learning rate differed between the two spaces, F(10,
600) = 2.50, MSE = .022, p = .013, & = .775, n> = .040.

To follow up on this significant interaction, we performed
separate ANOVAs within each space with factors of block and
boundary rotation. In the factorial space, learning rate was signif-
icantly slower for the 45° rotation than the 90° rotation (see
Figure 9a), Rotation X Block interaction: F(10, 300) = 2.34,
MSE = .028, p = .026, € = .68, 1]2 = .072. In contrast, the
learning rate did not vary significantly with boundary rotation in
the blended space (see Figure 9b), Rotation X Block interaction:
F(10,300) = 1.38, MSE = .017, p = .197,£ = .92, m* = .044. The
main effect of rotation was not significant in either space, Fs(1,
30) < 1, and the main effect of block was significant in both
spaces, factorial: F(10, 300) = 3.26, MSE = .028, p = .003, € =
.69, m? = .098; blended: F(10, 300) = 5.15, MSE = 017, p <
0005, € = .92, m* = .15.

Discussion

Experiment 2 asked whether the factorial and blended
morphspaces contained a psychological dimensional structure, ei-
ther prior to any category learning or as a result of category
learning. Specifically, if the factorial morphspace contains a di-
mensional structure, with morph axes corresponding to psycholog-
ical dimension, but the blended morphspace does not, that would
help explain why stretching along the relevant dimension was
observed in Experiment 1 for the factorial space but not the
blended space. Increases in perceptual discriminability along
category-relevant dimensions may only be possible when a dimen-
sional structure exists.
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In Phase One of Experiment 2, neither space showed a signifi-
cant advantage for learning the orthogonal categories, defined
along only one of the morph axes, compared to the diagonal
categories, defined along both morph axes. This suggests that in
both spaces, the particular axes that defined the morph spaces were
not more psychologically real than a pair of diagonal dimensions.

In Phase Two of Experiment 2, we observed an advantage when
subjects learned a second category when the new category bound-
ary was defined by a 90° rotation compared to a 45° rotation for
the factorial morphspace but not for the blended morphspace.
Following Goldstone and colleagues (Goldstone & Steyvers, 2001;
Gureckis & Goldstone, 2008), this implies that Phase One category
learning created a dimensional structure within the factorial
morphspace, but not the blended morphspace. With a dimensional
structure in the factorial morphspace, stretching along a relevant
dimension is possible, leading to the enhanced perceptual discrim-
inability following category learning observed in Experiment 1.

General Discussion

There have been conflicting results regarding the effect of
category learning on visual representations. Some studies have
found increased discriminability and sharper neural tuning for
features along relevant dimensions while other studies have found
no difference. For instance, after learning to categorize a contin-
uous morphspace of novel cars, Jiang et al. (2007) found no
difference in perceptual discriminability along a category-relevant
versus category-irrelevant dimension. This contrasts with other
behavioral work showing enhanced perceptual discriminability
along relevant dimensions after learning to categorize simple
shapes varying in size and brightness (Goldstone, 1994), colors
varying in brightness and saturation (Goldstone & Steyvers, 2001),
and unfamiliar faces varying across a continuous morphspace

(Gureckis & Goldstone, 2008). One explanation for the conflicting
behavioral results is that different studies used different techniques
for creating morph spaces.

We measured the effect of category learning on perceptual discrim-
ination of pairs of car images that differed along either the relevant or
irrelevant direction sampled from factorial morphspaces (e.g., Gold-
stone & Steyvers, 2001) or from blended morphspaces (e.g., Jiang et
al., 2007). In the factorial space, but not the blended space, category
learning resulted in increased discriminability along the relevant di-
mension. These findings highlight a potentially critical factor in the
methodology of experiments testing for effects of category learning
on object representations, one that has not been acknowledged up to
now. These results may help explain why some studies have obtained
selective increases in discriminability along relevant dimensions fol-
lowing category learning (Goldstone & Steyvers, 2001; Gureckis &
Goldstone, 2008): They used factorial spaces. Other studies have not
observed increases in discriminability specific to the relevant dimen-
sion (Gillebert et al., 2009; Jiang et al., 2007): They used blended
spaces.

Our findings with the factorial space are broadly consistent with
those of Gureckis and Goldstone (2008) in that we observed an
increase in discriminability specific to the relevant dimension.’
Our findings are also consistent with Goldstone and Steyvers
(2001) in that category learning caused the development of a
dimensional structure. However, the development of a dimensional
structure was not omnipresent (Op de Beeck et al., 2003) since we
observed it for the factorial but not the blended morphspace. This
appears to support a middle ground between a view that dimen-

3 Like Gureckis and Goldstone (2008), we also observed increases in
discriminability overall for pairs that crossed the middle of the space in
both the relevant and irrelevant directions.
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sional stretching can only be observed with simple, separable
object dimensions and a view that the visual system can impose a
dimensional structure on any complex shape space (Goldstone &
Steyvers, 2001; Hockema, Blair, & Goldstone, 2005).°

Overall, it is clear that learning to categorize objects generated
by blended versus factorial morphing methods results in different
visual representations, even after only two 1-hr training sessions. It
is possible that following more extensive training, other qualitative
differences could emerge besides the dimensional relevance effect
we observed. In particular, categorical perception—a sharpening
of representations near the boundary only along the relevant di-
mension—might be observed in behavior (and brain activity) after
sufficient amounts of training with a factorial morphspace. Prior
work suggests that this would not be obtained in a blended
morphspace (Freedman et al., 2003; Gillebert et al., 2009; Jiang et
al., 2007).

Our results not only put previous behavioral results under a new
light but also impact the understanding of how objects are repre-
sented in the brain and how category learning affects those object
representations. For example, Jiang et al. (2007) trained subjects to
categorize objects from a space of morphed cars and measured
functional magnetic resonance imaging (fMRI) adaptation to pairs
of cars before and after training. Greater release from adaptation
after training would indicate increased separability between neural
populations representing similar cars. However, in object-sensitive
areas of visual cortex, Jiang et al. found as much adaptation for
pairs of cars in different categories as for pairs of cars within the
same category, suggesting no enhancement in neural representa-
tions around the category boundary. Using analogous methods,
Gillebert et al. (2009) and van der Linden et al. (2010) also found
no evidence for systematic changes in neural discriminability in
object-sensitive regions of visual cortex as a result of category
learning. Overall, such findings are consistent with a view that
visual areas represent objects but categories are represented in
other brain areas (e.g., Freedman & Miller, 2008; Seger & Miller,
2010; Serre, Oliva, & Poggio, 2007). While object representations
in visual cortex could develop overall sharper tuning with experi-
ence, by this view, these experience-dependent changes are insen-
sitive to the type of experience, such as whether particular object
dimensions are relevant or irrelevant to previously learned cate-
gories.

Importantly, studies reporting no evidence for category-related
effects on object representations in the visual system also did not
report commensurate behavioral evidence for changes in percep-
tual discriminability. Either no behavioral measures were made or
those behavioral measures returned null results. It seems a mistake
to interpret those null results as a universal characterization of how
category learning affects object representations. Indeed, we argue
that no behavioral effects were observed because those studies
used blended morphspaces.

When objects have some kind of dimensional structure,
category-related changes in perceptual discriminability are ob-
served. Category-related changes in neural sensitivity in visual
cortex are, too. For example, De Baene et al. (2008) trained
monkeys to categorize a stimulus space defined by curvature and
aspect ratio and found clear increases in neural sensitivity to the
relevant dimension in IT (see also Sigala & Logothetis, 2002). The
same study also found increases in similarity in neural responses to
objects in the same category compared to objects in different

categories. However, in these experiments, monkeys were only
tested during a categorization task, leaving the question open as to
whether selective attention during category learning altered neural
sensitivity dynamically rather than in a stable, task-independent
fashion (Gauthier & Palmeri, 2002).

We recently trained subjects to categorize objects from the same
factorial space used in Experiment 1 and then measured fMRI
adaptation to sequentially presented pairs of objects differing
along a relevant or irrelevant dimension during a match-to-location
task that did not require any categorization. Our design was similar
to that of Jiang et al. (2007) but used a factorial morphspace rather
than a blended morphspace. Consistent with the behavioral results
observed in the current article, we found that pairs of objects
differing along the relevant dimension showed less fMRI adapta-
tion than irrelevant pairs in object-sensitive areas of ventral tem-
poral cortex (Folstein, Palmeri, & Gauthier, XX%2). Because we
used a match-to-location task, we can conclude that the effect was
not dependent on active categorization. Category learning system-
atically affects object representations in visual cortex in more ways
than simply through a global sharpening of object representations.

Clearly, changes in behavioral and neural sensitivity to objects
must be examined in the context of the specific stimulus properties
used to test for those changes. Op de Beeck et al. (2003) suggested
that increased sensitivity along a dimension relevant for categori-
zation will only be found for relatively separable dimensions, such
as the curvature and aspect ratio used by De Baene et al. (2008),
the distinct object parts used by Sigala and Logothetis (2002), or
the shape and motion used by Li et al. (2007). Unlike these simple
objects, recent studies using complex multidimensional morphed
objects (Freedman et al., 2003; Jiang et al., 2007; Op de Beeck et
al., 2003) have concluded that effects of category learning on
visual object representations do not depend on category relevance.
Our results suggest that any effect of category learning on percep-
tion of complex objects defined within morphspaces is highly
dependent on the structure of those morphspaces. Category learn-
ing can selectively enhance object representations along relevant
dimensions in a continuous shape space, at least when the shape
space is defined factorially.

® Our findings could be relevant to other theoretical distinctions as well,
such as the distinction between rule-based and information-integration-
based category learning. For instance, one might speculate that differenti-
ation of the factorial space allows a kind of rule-based categorization to
take place, which in turn leads to perceptual learning specific to the
relevant dimension (Ashby, Alfonso-Reese, Turken, & Waldron, 1998).
The blended space, apparently resistant to differentiation, might allow only
information integration. Of course single-system perspectives can also
account for this phenomenon (Palmeri & Gauthier, 2004). Differentiation
of the factorial space could allow the selective attention parameter to
weight the diagnostic dimension more heavily, stretching psychological
space and resulting in further perceptual learning along the relevant di-
mension. Failure to differentiate the blended space could result in equal
weighting for all features.
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