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. . . they took twenty-seven eight-by-ten color glossy photographs with circles 
and arrows and a paragraph on the back of each one explaining what each 
one was to be used as evidence against us.

—from Alice’s Restaurant, by Arlo Guthrie

6.1 

The late cognitive psychologist and memory theorist, Robert G. Crowder 
(MJT’s colleague for 6 years), was fond of saying “memory is perception.” What 
he meant was that memory is not a box in which things—objects, meanings, 
etc.—are stored. To Bob, memory was intrinsic to and a consequence of infor-
mation processing, whether it be perceptual, linguistic, or cognitive in nature. 
In this context, it seems natural that our chapter discusses both object percep-
tion and object memory. At the same time, we acknowledge that in classic 
information processing fl owcharts, as well as in the organization of most intro-
ductory textbooks, object perception precedes sensory or iconic memory 
(Chapter 2), which precedes short-term or working memory (Chapter 3), 
which precedes long-term memory (e.g., Atkinson & Shiffrin, 1968). By such 
accounts, visual perception is a modular, encapsulated input system, whereas 
memory is a cognitive box in which you put information (c.f., Fodor, 1983). 
But, as we shall see, contemporary research has demonstrated far closer links 
between object perception and object memory than anticipated by classic 
approaches to perception and cognition (Palmeri & Gauthier, 2004). Indeed, 
we are of the same mind as Bob: Drawing a clear demarcation between percep-
tion and memory is misguided.

Chapter 6

Visual Object Perception and 
Long-term Memory

Thomas J. Palmeri
Vanderbilt University

Michael J. Tarr
Brown University
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164 Visual Memory

We begin with a discussion of how objects are perceived and come to be 
represented over experience. And we describe the perceptual nature of the 
particular information stored in long-term memory (LTM) that allows us to 
recognize, identify, categorize, and perform perceptual skills on visual objects. 
These topics forge natural links to other chapters in this volume. To what extent 
do visual working memory and LTM have similar representational formats 
(Chapter 3)? How closely tied is visual working memory to visual LTM 
(Chapter 3)? What are the relationships between objects and scenes (Chapter 5)? 
What are the relationships between visual memory for objects and mental 
imagery (Chapter 9)?

Two themes weave their way throughout this chapter. One theme concerns 
the role of abstraction in perception and memory. Our everyday experience 
suggests that familiar objects can be recognized effortlessly under dramatically 
different viewing conditions, including changes in viewing position, object 
pose, and object confi guration. According to this intuition, vision abstracts an 
invariant object representation that is removed from the particulars of specifi c 
experiences with that object. Everyday experience also suggests that our con-
ceptual knowledge about objects is abstract. According to this intuition, 
although our experiences are specifi c, our knowledge is abstracted from those 
experiences. The ability to abstract from particular experiences is clear and is a 
hallmark of human perception and cognition. But this ability to abstract does 
not necessarily imply that object representations and object knowledge are 
themselves abstract in nature or that these abstractions are themselves amodal 
(Barsalou, 1999; Barsalou, Simmons, Barbey, & Wilson, 2003).

The second theme is how to carve up perception and memory into func-
tional systems. A basic modus operandi of cognitive science is to “carve things 
up at the joints” (c.f., Fodor, 1983). This issue emerges in discussions of how to 
parcelize working memory (Chapter 3). And, in the context of object percep-
tion and object memory, are there domain-specifi c, informationally encapsu-
lated subsystems for recognizing certain kinds of objects, remembering certain 
qualities about objects, or performing certain kinds of tasks on objects 
(Fig. 6–1)? These questions are particularly germane when interrelating theory 
and behavior with evidence from neurophysiology, functional brain imaging, 
and neuropsychological studies (Chapters 8 and 9).

6.2 VISUAL OBJECT PERCEPTION

How do we know that an object is the same object we have seen before? Or, at 
least, that it is of the same kind we have seen before? At fi rst pass, this appears 
to be a trivial problem. One of us (TJP) can remember a meeting many years 
ago with an Associate Dean soon after being hired to talk about future research 
plans. The Dean simply could not understand why studying how people recog-
nize objects could ever be a viable research problem. What could be simpler, he 
said. You just open your eyes and you see what’s there [or as Terry Pratchett 
said in Men at Arms (1993): “How? He recognized him, of course. That’s how 
you know who people are. You look at them and you say . . . that’s him. 
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That’s called re-cog-nit-ion.”]. That we all share such naïve intuitions belies the 
tremendous computational challenges facing our visual system with every 
glance of the world around us and ignores the fact that about one-half of our 
cortex is related to vision. The dynamic, ever-changing world conspires to 
present a dramatically different stimulus to our eyes even though the very same 
physical object may be present in front of us. Not only do we overcome such 
variation, but our perception of the world appears stable. Three-dimensional 

Figure 6–1. Phrenologists assumed that the mind was composed of numerous 
distinct innate faculties (secretiveness, benevolence, conjugality, self-esteem) and that 
each of these faculties had a unique location in the brain. Some contemporary accounts 
of brain organization localize function according to particular kinds of objects (faces, 
places, body parts) and particular kinds of memory (explicit memory, semantic memory, 
habits). Although some have rejected localization accounts entirely as a new form of 
phrenology (Uttal, 2001), we instead argue that localization of function should be 
characterized in terms of the representations and processes underlying the computational 
mechanisms of visual cognition.

Luck-Ch_06.indd   165Luck-Ch_06.indd   165 3/20/08   3:04:43 AM3/20/08   3:04:43 AM



166 Visual Memory

objects seem stable as we move around, as objects move around, and as the 
lighting changes (Fig. 6–2). But how does the visual system allow us to perceive 
this stability when the two-dimensional images falling on our retinae are chang-
ing so dramatically?

Answers to these questions are rooted in our visual memory for objects; that 
is, how they are represented with respect to such variation. This is true regard-
less of which form memory takes: I can ask you whether you saw this particular 
object recently (working memory), whether you have ever seen this object 
before (recognition memory), what category this object belongs to (classifi ca-
tion), or to do something with an object (procedural task). All of these tasks 
require you to compare a representation of the perceived input with a represen-
tation encoded in memory. Classic approaches to cognitive science have often 
assumed that this comparison is amodal, and some contemporary approaches 
assume signifi cant abstraction from any previous experience. Even so, under-
standing visual memory for objects requires understanding not only the repre-
sentations and processes underlying those memories, but also understanding 
the inputs to memory—the perceptual representations. At the same time, more 
contemporary theories of visual memory assume that this comparison—
the process of object recognition—is inherently perceptual. That is, visual 
memories for objects are part and parcel of the perception of those same 
objects, and object recognition is accomplished by comparing two perceptual 
representations.

Figure 6–2. This fi gure illustrates the dramatic variability in viewed images of the 
same object when subjected to rotation along various axes and changes in lighting 
direction.
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Under this view, the nature of the perceptual representations of objects 
created by the visual system place strong constraints on the nature of represen-
tations for objects in visual memory. Logically, memory representations 
abstracted from visual experience can be no less abstract than the visual repre-
sentations derived from those visual experiences. In other words, if high-level 
visual representations have normalized away many of the perceptual details of 
visual experience, then memory representations will be void of those percep-
tual details as well. Of course, the converse need not be true: If visual represen-
tations retain some details, then memory representations might still be more 
abstract, and need not refl ect those perceptual details. Such is the more stand-
ard view within both the cognitive and high-level vision communities 
(Biederman, 1987). In contrast, we propose that memory representations of 
objects do indeed retain perceptual details (see Chapter 5). And, in fact, many 
of those detailed memory representations are the very representations that 
underlie visual object perception itself.

6.3 THE PROBLEM

Very young children are fond of pointing to two similar objects and declaring 
“same thing!” So-called basic-level recognition involves categorizing visually 
similar yet distinct objects as members of the same class. Thus, one form of 
invariance requires our visual systems to perform a many-to-one mapping 
between individual exemplars and object categories. At the same time, indi-
vidual exemplars of three-dimensional objects rarely appear the same from one 
moment to the next. Variation in the two-dimensional images falling on our 
retinae arises from almost any change in viewing conditions, including changes 
in position, object pose, lighting, or object confi guration. We never really see 
the same object, or at least the same retinal image of an object, twice. This form 
of invariance requires our visual systems to perform a many-to-one mapping 
between individual views of objects and their unique identities.

Almost all solutions to the problem of vision begin by generally characteriz-
ing visual processing as a form of dimensionality reduction. The retinal repre-
sentation has extremely high dimensionality in that each of the 120 million or 
so photoreceptors can independently encode a different (albeit highly local) 
aspect of the visual scene. The visual system transforms this high-dimensional 
stimulus representation into a low-dimensional representation (at least relative 
to the dimensionality of the retinal stimulation) that is used to recognize or 
categorize objects. Different theories propose different solutions to the problem 
of creating a low-dimensional object representation. Theories differ rather 
markedly in the form of visual representation and, in particular, how great a 
dimensionality reduction is assumed. In turn, such assumptions themselves are 
based on the assumptions each theory makes about the goals of vision.

6.3.1 Structural-description Theories

One early and infl uential class of models assumed that the fundamental goal of 
vision was to reconstruct the three-dimensional structure of objects and their 
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spatial relationships (Marr & Nishihara, 1978). The appeal of such an approach 
is that many sources of variance are “partialed out” as a consequence of the 
reconstruction process. For example, different images arising from changes in 
lighting are mapped into a single shape, and different images arising from 
changes in viewpoint are mapped into a single three-dimensional object repre-
sentation. This same reconstruction process achieves theoretically optimal 
dimensionality reduction: mapping the high-dimensional image array arriving 
at our eyes into a low-dimensional scene composed of objects and surfaces. 
One of the most intuitive proposals for constructing such representations, 
originally put forth by Marr and Nishihara (1978) and elaborated by Biederman 
(1987), assumes that every given object can be described in terms of generic 
three-dimensional components (“primitives”) and their spatial relationships. 
The key idea is that the recovered three-dimensional structural description will 
be invariant over both class variation and viewing conditions, thereby directly 
addressing the twin challenges facing vision. That is, different views of an object 
and different exemplars within an object class will all map to the same confi gu-
ration of three-dimensional primitives. This approach assumes the primary 
goal of vision is basic-level recognition without respect to image characteristics 
arising from lighting, viewpoint, and other variables. In this context, structural-
description models—if achievable—are near-optimal.

Beyond the popularization of the study of object recognition, Biederman’s 
contribution was to realize that structural-description models are far more 
likely to succeed if the mapping from images to primitives is precisely defi ned. 
Marr and Nishihara assumed an unrealized computational process that relied 
on dividing an object into parts, fi nding the major axis of each part, and, fi nally, 
deriving a cross-section capturing the three-dimensional appearance of a part 
with respect to its axis (although this is somewhat of an oversimplifi cation, it 
serves to illustrate the basic principles of their theory). For, example, a three-
dimensional cylinder might be described as a straight axis with a circular cross-
section. This method for describing object parts leaves a great deal to the 
imagination: How are axes found, and how is the cross-section derived? How 
well does this description generalize from one exemplar to another? How con-
sistent is this process over image variation? The concern is that, although the 
intent is dimensionality reduction, the actual mapping may be ineffi cient, with 
slight variations in axes or cross-sections leading to different representations.

To address such concerns, Biederman (1987) based his recognition-by-
components (RBC) theory on a small set of qualitative three-dimensional 
primitives known as “Geons” (Fig. 6–3). Two innovations are included in RBC. 
First, primitives are recovered by attending to confi gurations of “viewpoint 
invariant properties” in the two-dimensional image. For example, a brick (one 
type of Geon) might be inferred when one encounters two sets of three parallel 
lines, several L junctions, several arrow junctions, and a Y junction (Fig. 6–4). 
Notice that this description avoids quantitative specifi cs about object parts: 
Many different brick-like parts from many different viewpoints will exhibit this 
confi guration of image features and be reconstructed simply as a Geon brick in 
RBC’s vocabulary (Fig. 6–4). Second, the entire repertoire of Geons numbers 
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about 35 distinct primitives. Biederman’s thesis is that any basic-level, visually 
defi ned object category may be uniquely represented by a small subset of these 
primitives in a particular spatial confi guration. For example, a wide variety of 
birds are made up of roughly the same parts—head, body, wings, etc.—the 
assumption being that, across different birds (the exception being highly visually 
dissimilar birds such as penguins), the image projections of these parts will 
yield the same Geons in the same Geon confi guration, that is, a single visual 
representation for many different birds. Thus, RBC provides a more satisfying 

Figure 6–3. Recognition-by-components (Biederman, 1987; Hummel & Biederman, 
1992) assumes that a retinal image is initially described in terms of its edges. A variety 
of nonaccidental primitive features are extracted from this edge description, such as 
L junctions, Y junctions, and other properties. Combinations of various viewpoint 
invariant primitives signal the presence of one of the small number of geometric icons 
(Geons). Viewpoint invariant object recognition involves recognizing the particular 
combination and relative confi guration of the viewpoint-invariant Geon representations 
extracted from a complex object.
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(less fi lling) approach to structural-description models: The inferential percep-
tion mechanisms for reconstruction are well-specifi ed, and the mapping from 
high-to-low dimensionality is inherent in the end representation.

One of the most salient characteristics of structural-description models is 
their invariance over image variation. In particular, it is often assumed that 
changes in three-dimensional viewing position provide one of the strongest 
tests of theories of object recognition. Structural-description models, and RBC 
in particular, posit viewpoint invariance. That is, the same representation is 
derived, irrespective of prior experience, over a wide range of viewing condi-
tions (although with opaque objects different confi gurations of Geons may be 
visible across large changes in viewpoint). The behavioral implication of this is 
that recognition performance should be independent of the particular view-
point from which the object is seen (Biederman & Gerhardstein, 1993). This 
prediction is also consistent with our intuitions: Our recognition of familiar 
objects from unfamiliar viewpoints feels effortless.

At the same time, the prediction of viewpoint invariance seems at odds with 
the idea that we do remember a great deal of what we see, including the par-
ticular appearance of individual objects from specifi c vantage points. Indeed, a 
classic study in cognitive science demonstrated that our memories for objects 
are better at “canonical” viewpoints as compared to others (Palmer, Rosch, & 
Chase, 1981). If we have learned nothing over the past half century, it is that we 
should not always trust our conscious intuitions: What seems effortless may 
actually be an effortful, albeit unconscious, process. For the past 15 years or so, 
something of a cottage industry has arisen for testing these assumptions. More 
specifi cally, many different labs have attempted to devise psychophysical tests 
of the viewpoint-invariance assumption assessing, when, if ever, objects are 
recognized in a viewpoint-invariant manner (e.g., with equivalent error rates 

Figure 6–4. Illustration of various primitives that could be extracted from a three-
dimensional brick as seen from two different viewpoints, including L junctions, arrow 
junctions, and Y junctions. Adapted with permission from Riesenhuber, M. & Poggio, T. 
(1999). Hierarchical models of object recognition in cortex. Nature Neuroscience 
2: 1019–1025. Macmillan Publishers Ltd.

Luck-Ch_06.indd   170Luck-Ch_06.indd   170 3/20/08   3:04:46 AM3/20/08   3:04:46 AM



Visual Object Perception and Long-term Memory 171

and response times for both familiar and unfamiliar views of an object (Bülthoff 
& Edelman, 1992; Humphrey & Khan, 1992; Jolicoeur, 1985; Lawson & 
Humphreys, 1996; Poggio & Edelman, 1990; Tarr, 1995; Tarr et al., 1998; Tarr & 
Pinker, 1989). The conclusion is . . . it depends. Certainly, there are limited con-
ditions under which viewpoint invariance is achieved immediately (Biederman 
& Gerhardstein, 1993; Tarr & Bülthoff, 1998; Tarr, Kersten, & Bülthoff, 1998). 
However, the vast majority of the time, viewpoint invariance is only attainable 
with experience. More specifi cally, numerous studies have found that if observ-
ers learn to recognize novel objects from specifi c viewpoints, they are both 
faster and more accurate at recognizing these same objects from those familiar 
viewpoints relative to unfamiliar viewpoints (Bülthoff & Edelman, 1992; Tarr, 
1995; Tarr & Pinker, 1989). Recognition performance at unfamiliar viewpoints 
is systematically related to those views that are familiar, with observers taking 
progressively more time and being progressively less accurate as the distance 
between the unfamiliar and the familiar increases. Consequently, viewpoint 
invariance seems to be achieved by learning about the appearance of objects 
from multiple viewpoints, not by deriving structural descriptions. Human 
object recognition seems to rely on multiple views, where each view encodes the 
appearance of an object under specifi c viewing conditions, including view-
point, pose, confi guration, and lighting (Tarr, Kersten, & Bülthoff, 1998), and 
a collection of such views constitutes the long-term visual representation of 
a given object.

6.3.2 Image-based Theories

Over the past decade, image-based theories have become popular as an alterna-
tive to structural-description models. These theories are based in part on the 
already-mentioned empirical fi ndings regarding viewpoint invariance and in 
part on different assumptions regarding the goals of vision (Edelman, 1999; 
Shepard, 1994). Rather than assuming that we reconstruct the three-dimensional 
world, image-based approaches typically stress generalization from past to 
present experience (Shepard, 1994). Consider that we are highly unlikely to 
ever experience the same situation twice. Because similar objects often give rise 
to similar consequences, survival demands that we recognize these similarities 
(Shepard, 1987). One possible solution is for visual perception to create a faith-
ful representation of each object that preserves its shape and three-dimensional 
structure (Marr, 1982). Similar objects should have similar or, as in the case of 
RBC, identical, mental representations. But an alternative solution is to create 
representations that preserve the similarity structure between objects without 
necessarily representing three-dimensional object structure explicitly (Edelman, 
1997, 1999). As mentioned, image-based theories assume that objects are 
represented in terms of their similarity to collections of views that are instanti-
ated in memory. Physically similar objects in the world, viewed under similar 
conditions, will all be similar to the same sets of views, allowing for generaliza-
tion to occur, without any explicit representation of three-dimensional shape. 
At least for purposes of object recognition, representation of three-dimensional 
shape may not be necessary.
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Particularly in the context of a volume on visual memory, we cannot under-
state one fundamental difference between structural-description and image-
based theories. Structural-description theories assume a fi xed processing 
architecture and a fi xed set of primitives that construct object representations, 
irrespective of visual experience; particular confi gurations of primitives (say 
Geons) must be learned in order to categorize birds from dogs, but the primi-
tives themselves (say, Geons) are not shaped by experience. By contrast, image-
based theories assume that visual experience plays a signifi cant role in shaping 
our visual behavior throughout a lifetime. Stable object perception is achieved 
by deploying our astonishing capacities for remembering particular experi-
ences with particular objects under particular viewing conditions. We do 
encode a great deal of what we see as it originally appears. Object perception is 
visual memory.

But if we represent three-dimensional objects as collections of specifi c views, 
how do we manage to attain view invariance? One clue may be found in the 
systematic pattern of performance seen for the recognition of familiar objects 
in unfamiliar viewpoints. According to one view (Tarr & Pinker, 1989), this 
pattern is a consequence of mental rotation (Shepard & Metzler, 1971) or a 
continuous alignment process (Ullman, 1989) to transform unfamiliar view-
points to familiar views in visual memory, with familiar viewpoints being rec-
ognized without the need for any transformation. The strongest evidence 
favoring this interpretation is the nearly identical linear reaction time pattern 
across viewpoint obtained for the same objects in naming and left- and right-
handedness discrimination tasks (Tarr & Pinker, 1989). However, in an exam-
ple of how neuroimaging can inform us regarding cognitive processes, Gauthier 
et al. (2002) found that entirely different brain systems exhibited viewpoint-
dependent activity for recognition tasks and mental rotation tasks. Consistent 
with current thinking on the “division of labor” in the primate visual system 
(Goodale & Milner, 1992), the recognition of objects in unfamiliar viewpoints 
preferentially recruited the fusiform region along the ventral pathway, whereas 
handedness discriminations recruited the superior parietal lobe along the 
dorsal pathway (Gauthier et al., 2002). Thus, the computational mechanism 
underlying viewpoint-dependent recognition behavior seems to be based on 
“evidence accumulation” across neural subunits coding for different features of 
the object (e.g., Perret, Oram, & Ashbridge, 1998) and not, as suggested by Tarr 
and Pinker (1989), on the continuous transformation process of mental rota-
tion (assumed to be isomorphic with physical rotations).

View invariance might be achieved by generalizing according to the similar-
ity relationships between perceptual representations and stored views, without 
a need for any explicit image transformation (Poggio & Edelman, 1990; 
Riesenhuber & Poggio, 1999, 2002); see Figure 6–5 for one example. Indeed, the 
predictions of image-based models are consistent with the patterns of interpo-
lation between learned views and limited extrapolation beyond learned views 
seen experimentally (Bülthoff & Edelman, 1992; Edelman & Bülthoff, 1992). 
One of the appealing aspects of using similarity as a means to invariance is that 
the same mechanisms can account for how we generalize across both viewing 
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and category variation. Specifi cally, invariance over viewing conditions can be 
achieved by encoding multiple views of individual objects. Invariance over 
object shape can be achieved by encoding multiple views of multiple objects. 
Both statements distill down to a memory-based explanation in which we 
remember a great deal about what we see. Thus, given a suffi cient number of 
views per an object or class, viewpoint-invariant recognition is possible (Poggio 
& Edelman, 1990). Likewise, given a suffi cient number of exemplars per a 
category, object categorization, even for new exemplars, is possible, and entirely 
novel objects can be represented in a distributed fashion according to 
their similarity to a relatively small number of views of known objects 
(Edelman, 1999).

At the same time, this memory-based account seems to miss a fundamental 
fact about human vision: We are incredibly good at generalizing from a small 
number of examples. Thus, exposure to a single view of an object or a single 
exemplar of a category is often suffi cient to allow us to recognize that object 
across many different sources of variance, including identifying novel members 
of that category. Although some of this “heavy lifting” might be accomplished 
through view-based mechanisms, some forms of generalization also appear to 

Figure 6–5. Sketch of one image-based model of object recognition. A hierarchy of 
representational layers consisting of weighted sum and max integration rules achieves 
representations that are scale- and translation-invariant. Objects are ultimately 
represented according to their similarity to learned view-tuned representations. Adapted 
with permission from Riesenhuber & Poggio, 1999, 2000.
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require structural models (e.g., articulation; Barenholtz & Tarr, submitted). So, 
is the structural-description account right after all? In some sense yes.1 An 
image-based account relying on undifferentiated, template-like representations 
would have diffi culty generalizing across many types of image variation 
(Hummel, 1998). In contrast, structural-description models, including those 
proposed by Biederman and others, can readily generalize across both viewing 
conditions and members of a class. The caveat here is that this is true for any 
model relying on compositional structure, including models that use image-
based features (e.g., Zhang & Cottrell, 2005); that is, any model that includes 
spatial relations between reusable features or parts (Bienenstock & Geman, 
1995). Thus, the take-home message is not that structural-description models 
are right and image-based models are wrong (or vice versa), but, as discussed in 
the next section, elements of both approaches are likely be incorporated into a 
viable theory of object recognition (Barenholtz & Tarr, 2007). Structural-
description models teach us that parts or features and their spatial relations are 
important. Image-based models teach us that specifi c visual memories are 
important. In combination, we can think of long-term visual memories as col-
lections of spatially related image features that are matched to percepts on the 
basis of similarity within a low-dimensional (relative to images) image feature 
space (the nature of the features still being an open question). Dimensionality 
reduction is realized by moving from image pixels to image features and from 
a spatially undifferentiated image to spatial relations between features. At the 
same time, specifi city is preserved in the spatial relations between features 
encoding local properties of the image. By preserving meaningful similarity 
relationships, yet reducing overall dimensionality, this architecture enables 
generalization from small numbers of examples. In contrast, a qualitative struc-
tural-description model (e.g., RBC) ignores meaningful similarity relation-
ships by reducing dimensionality to the point at which many exemplars or 
many views are simply the same representation. Conversely, a template model 
breaks meaningful similarity relationships by preserving too much dimension-
ality to the point at which each exemplar or view is a different representation.

At this point, you might be asking, exactly how do you defi ne “meaningful 
similarity”? Consider that a single exemplar has a similarity relationship with 
other members of the same category (which is why categories arise in the fi rst 
place). Likewise, a single view has a similarity relationship with other views of 
the same object. These particular relationships are representationally meaning-
ful and should be present in visual memory. Moreover, they do important work 
in explaining why, before we have learned many exemplars or views, we are able 
to recognize new instances of a category with few exemplars or familiar objects 

1 Behavioral data on view specifi city (e.g., Tarr et al., 1998) speaks to the nature of 
the features used in object representations, for example, arguing for image-based 
features rather than Geons. However, these same data are agnostic as to whether 
features participate in structural descriptions or only exist in more template-like 
forms.
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in completely novel views. These generalization processes, unlike the invariance 
conferred by multiple instances in memory, take more time and produce more 
errors as the similarity between the known and the unknown increases. In sup-
port of such representational assumptions, it is well established that objects 
learned at one view are more poorly and more slowly recognized at new views 
(Tarr, 1995; Tarr & Pinker, 1990) and that individual object-selective neurons 
tend to preferentially respond to specifi c object views (Logothetis & Pauls, 
1995; Perrett et al., 1985). This sort of view-tuning may appear puzzling when 
considered at the single neuron level: If objects are represented by individual 
neurons tuned to specifi c views, how can any sort of invariance be achieved? 
The answer lies, of course, in considering populations of neurons as the actual 
neural code for objects. Individual neurons may code—from a familiar view-
point—the complex features or parts of which objects are composed; that is, 
instantiating the representational architecture outlined earlier.

Consistent with this approach, Perrett et al. (1998) proposed that recogni-
tion then takes the form of an accumulation of evidence across all neurons 
selective for some aspect of a given object—a variation on classic stochastic 
accumulation-of-evidence models (Nosofsky & Palmeri, 1997; Ratcliff, 1978; 
Ratcliff & Smith, 2004; Smith, 2000; Smith & Ratcliff, 2004). Such models are 
achieving new prominence in explaining the neural bases of perceptual deci-
sion making across a variety of domains (Boucher, Palmeri, Logan, & Schall, 
2006; Gold & Shadlen, 2001; Roitman & Shadlen, 2002; Schall, 2001, 2004). 
Critically, these models implement similarity relationships as a function of 
their pooled neural responses. For example, during recognition of a novel 
object view, the particular rate of accumulation will depend on the similarity 
between visible features in the present viewpoint and the view-specifi c features 
for which individual neurons are tuned (Perrett, Oram, & Ashbridge, 1998). 
Across a population of object-selective neurons, suffi cient neural evidence 
(summed neural activity) will accumulate more slowly when the current 
appearance of an object is dissimilar from its learned appearance (Fig. 6–6). 
In contrast, when an object’s appearance is close to a previously experienced 
view, evidence across the appropriate neural population will accumulate more 
rapidly. Thus, systematic behavioral changes in recognition performance with 
changes in viewpoint may be explained as a consequence of how similarity is 
computed between new object perceptual representations and their previously 
learned neural representations and how evidence is accumulated over time for 
a perceptual decision.

In these models, recognition amounts to reaching a threshold of suffi cient 
evidence across a neural population. Unfamiliar views of objects will require 
more time to reach threshold, but will be successfully recognized given some 
similarity between an input and known viewpoints. Unfamiliar exemplars 
within a familiar class can likewise be recognized given some similarity (Tarr & 
Gauthier, 1998) with known exemplars from within that class. Consistent with 
the idea that view and category generalization rely on common mechanisms, 
one behavioral implication is that familiarity with individual objects should 
facilitate the viewpoint-dependent recognition of other, visually similar objects, 
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as borne out by several studies (Edelman, 1995, 1999; Tarr & Gauthier, 1998). 
Whether the same mechanism can account for all forms of object invariance 
remains unknown, although it seems possible that confi guration and lighting 
variation present unique challenges that may require the inclusion of distinct 
forms of structural information (e.g., Bienenstock & Geman, 1995). Finally, as 
discussed later in this chapter, accumulation of evidence based on similarity to 
stored exemplars has also been proposed as a solution to the more general 
problem of categorization (Nosofsky & Palmeri, 1997). Thus, mechanisms based 
on similar (sic) computational principles seem to underlie many cognitive 
processes.

Figure 6–6. A broad class of models of perceptual decision making assume that 
evidence (y-axis) accumulates over time (x-axis). A response is made when an evidence 
threshold is reached (bottom panel). Response time is that time at which the threshold is 
reached (top panel). In the case of making a recognition or categorization decision, the 
rate of accumulation of evidence depends on the similarity between the perceived object 
and the stored memory representation of the object to be recognized or the class of objects 
to be categorized. Similarity can vary with either viewpoint or physical shape or both.
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6.3.3 Hybrid Theories

As discussed earlier, one of the key differences between structural-description 
and image-based theories is the compositional nature of object representations. 
Under the cartoon view of the world, structural descriptions represent objects 
in terms of viewpoint-independent three-dimensional parts and their spatial 
relations (Biederman, 1987), and views represent objects in terms of a holistic 
image of the entire object (Edelman, 1997). However, both intuition and 
empirical evidence (Garner, 1974; Stankiewicz, 2002; Tversky, 1977) suggest 
that we represent complex objects in a compositional manner— objects are 
decomposable into parts. Yet these same intuitions and other empirical 
evidence (Hayward & Tarr, 1997; Tarr, Williams, Hayward, & Gauthier, 1998) 
suggest that these parts are not simple three-dimensional volumes. Is there a 
way to marry the best qualities of image-based theories with the compositional 
representations of structural-description theories?

One recent approach proposed by Ullman, Vidal-Naquet, and Sali (2002) 
measured mutual information between features and basic-level categories to 
discover the image features that were most informative for classifi cation (see also 
Schyns & Rodet, 1997). They showed that features of “intermediate complexity” 
were best for basic-level classifi cation. For faces, these features included what 
we would generally call the “parts” of a face such as the eyes or the nose; for cars, 
these included “parts” such as a wheel or the drivers’ side window (Fig. 6–7). 

Figure 6–7. Image-based visual features of intermediate complexity maximize 
delivered information with respect to a basic-level category of objects. The fi gure shows 
examples of face fragments and car fragments. Adapted with permission from Ullman, 
Vidal-Naquet, & Sali, 2002. Zhang and Cottrell (2005) found somewhat larger and more 
complex image-based visual features for subordinate identifi cation. Adapted with 
permission from Ullman, S., Vidal-Naquet, M., and Sali, E. (2002). Visual features of 
intermediate complexity and their use in classifi cation. Nature Neuroscience, 5:682–687. 
Macmillan Publishers Ltd.
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For other classes, “parts” are likely to include a wide variety of features, includ-
ing, depending on the class, non–shape-based properties such as color or 
texture. Although there is as yet no direct evidence, it is tempting to speculate 
about the relationship of such “ad-hoc” features to the observed feature-
selective responses of neurons in TEO (K. Tanaka, 1996, 2002). What is intrigu-
ing is that selective responses for individual neurons are elicited by somewhat 
odd patterns that do not correspond to what we might typically think of as 
distinct object parts (Fig. 6–8). Indeed, they appear to be ad-hoc and of inter-
mediate complexity. This correspondence is less surprising if we consider that 
the features incorporated into the model proposed by Ullman et al. were found 
using an algorithm that operated on raw images without any intervention from 
a human teacher. These features emerged because they provided maximal 
information for the basic-level classifi cation of those images. It is also impor-
tant to emphasize that these are viewpoint-dependent image-based features, not 
anything like Geons or other volumetric primitives. Moreover, spatial relations 
between these parts are not explicitly encoded; rather, the local context is pre-
served for each image-based feature, and local features overlap, enabling an 
implicit representation of confi gural information.

To be clear, Ullman et al. (2002) proposed a solution to basic-level classifi ca-
tion (classifying an object as a face or a car), not to more subordinate-level 
classifi cation (classifying an object as Steve Luck or as a Porsche Boxster). 
Recently, Zhang and Cottrell (2005) extended the Ullman et al. approach to 
discover the image features possessing maximal informativeness for subordinate-
level classifi cation. What they found was that these image features were larger 

Figure 6–8. Some examples of ad hoc “features” that are preferred by certain cells in 
IT cortex of macaque monkeys. Adapted with permission from work by Keiji Tanaka 
and colleagues (e. g., K. Tanaka, 1996, 2002; see also http://www. brain. riken. go. jp/labs/
cbms/tanaka. html).
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and more complex than the features Ullman et al. reported for basic-level 
classifi cation. For example, for face individuation, these features included an 
eye and a nose, or an eye with part of the nose and mouth. Thus, it is possible 
that accounting for confi gural/holistic effects, particularly as seen in face and 
expert-level object recognition, requires assembling hierarchies of features, not 
simply relating them in a single level of spatial relations (Gauthier & Tarr, 2002; 
Maurer, Grand, & Mondloch, 2002). Note that these maximally informative 
“parts” were still not the entire faces themselves. Thus, this approach to image-
based representation is different from encoding complete views of objects for 
subordinate-level classifi cation (Edelman, 1999). Here, incomplete yet complex 
image-based features were not only suffi cient to successfully identify objects at 
the subordinate level, but provided the maximal information to support such 
classifi cation.

As alluded to earlier, hybrid theories suggest a compositional aspect to the 
representation of objects in terms of ad-hoc features (parts). They also refl ect 
the fact that we know more about objects than just their shape. We can remember 
an object’s color, position, orientation, or size, and can use such dimensions to 
determine an object’s identity or category if those dimensions prove diagnostic 
for those perceptual decisions (Kruschke, 1992; Naor-Raz, Tarr, & Kersten, 2003; 
Nosofsky, 1998). So, the perceptual representation of a complex object may 
consist of a collection of image-based parts, color, orientation, location, and other 
independent or semi-independent perceptual dimensions (Ashby & Townsend, 
1986) and their spatial relations. Such information is recruited for a given task 
based on the diffi culty of the discrimination at hand—that is, the degree to 
which particular features are stored or retrieved from working or long-term 
visual memory is modulated by task complexity, not object complexity per se.

Finally, many theories (and most experiments) of object recognition live in 
a world with just a single object at a time (but see Mozer, 1991; Mozer & Sitton, 
1998). This assumption is typically justifi ed by invoking early attentional proc-
esses that select one object for high-level visual processing (Treisman & Gelade, 
1980). Thus, the object perception problem is often reduced to the recognition 
of decontextualized, static objects. Yet, natural vision systems excel at dynamic 
scene recognition; that is, the invariant recognition of not only objects but their 
entire context as well as their actions. Indeed, it is probably not possible or 
desirable to completely separate the problems of object and scene recognition. 
All levels of object recognition seem contextualized. Recognizing an object part 
is dramatically facilitated by considering it in the context of the whole object 
(Tanaka & Farah, 1993). Scene recognition can be impossible without consid-
ering constituent objects (but see Oliva, 2005), and object recognition itself 
is more effective if the nature of the scene has been established (Hollingworth, 
in press, 2006; Hollingworth & Henderson, 2002). Similarly, object recognition 
is enhanced by the inclusion of diagnostic dynamic information (Johanson, 
1973; Vuong & Tarr, 2004). Thus, any architecture for object recognition and 
scene recognition should include dynamic information and processes that 
enable a compositional hierarchy of contexts to interact in a manner that aids 
interpretation.
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6.3.4 Category-specifi c Visual Object Perception?

Although the question of invariance has often dominated thinking on visual 
object perception, recent neuroimaging results have focused on the perception 
and recognition of particular classes of object. One of the challenges to the 
human visual system is discriminating between objects at different levels of 
specifi city, including, for some classes, individuals within a homogeneous set, 
the most salient example being face recognition. Following in the tradition of 
neuropsychology (Lissauer, 1890), the specifi c question addressed within this 
domain is often whether faces are “special” or not (Farah, Wilson, Drain, & 
Tanaka, 1998); that is, whether there exists a functional or neural module 
dedicated to face recognition. Although the form of this debate has varied, 
neuroimaging studies speak logically to the issue of neural modularity (Fodor, 
1983) in that neuroimaging methods necessarily produce spatially localized 
neural responses associated with specifi c tasks—patterns that look temptingly 
like neural modules (recall Fig. 6–1). Of course, it is sometimes diffi cult to pin 
down what one means by a “module.” Does module refer to an encapsulated 
cognitive function (which Fodor believed could only apply to perceptual 
systems, but others have extended to most cognitive abilities)? Or, does module 
refer to spatially localized brain regions that appear to subserve particular func-
tions (independently of how such regions may interact with other regions)? 
Across multiple literatures, use of the term module is fast and loose, sometimes 
even to the point of absurdity (e.g., Fisher, Aron, & Brown, 2006; Beauregard & 
Paquette, 2006). Even worse, within the neuroimaging literature, there has been 
a tendency to associate functional localization with functional specialization, as 
if a localized peak of neural activity is equivalent to a discrete module dedicated 
to accomplishing a singular task.

With regard to a putative functional/neural module for face recognition, a 
large body of data show distinct regions of the visual system that appear to 
respond preferentially to faces. Neuroimaging studies using both positron 
emission tomography (Sergent, Ohta, & MacDonald, 1992) and functional 
magnetic resonance imaging (fMRI; Kanwisher, McDermott, & Chun, 1997; 
Puce, Allison, Gore, & McCarthy, 1995) reveal a small region in the fusiform 
gyrus of the ventral-temporal lobe that is more active when we view faces as 
compared to other objects. One interpretation of this fi nding is that this brain 
area, dubbed the “fusiform face area” or FFA (Kanwisher, McDermott, & Chun, 
1997), is a face-specifi c neural module. That is, its function is to perceive or 
recognize faces and only faces. An alternative explanation is that this and other 
forms of putatively face-specifi c processing (e.g., Farah, 1990; Yin, 1969) are 
actually by-products of our extensive experience, which makes us face experts 
(Diamond & Carey, 1986). Thus, the recognition of individual faces exhibits 
qualities that should be true for any domain of visual expertise for a homoge-
neous object class. Faces are processed this way by because of their social 
importance, but not as a result of anything intrinsic to them as visual objects.

Gauthier and colleagues (Gauthier & Brown, 2004) have explored these 
competing accounts using several different approaches. Experts have been 

Luck-Ch_06.indd   180Luck-Ch_06.indd   180 3/20/08   3:04:51 AM3/20/08   3:04:51 AM



Visual Object Perception and Long-term Memory 181

created in the laboratory for novel objects called “Greebles” in order to measure 
the observed changes in behavioral (Gauthier & Tarr, 1997) and neural activity 
(Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999; Rossion et al., 2000) with 
expertise. Similar comparisons in both behavior and neural activity have been 
made between novices and real-world experts (Gauthier, Skudlarski, Gore, & 
Anderson, 2000; Righi & Tarr, 2004; Tanaka & Curran, 2001). Several fi ndings 
speak directly to the question “Are faces special?” First, Greeble experts, but not 
Greeble novices, show behavioral effects—notably confi gural processing—that 
are often taken as markers for specialized face processing (Gauthier & Tarr, 
1997; Gauthier, Williams, Tarr, & Tanaka, 1998). Second, Greeble experts, but 
not Greeble novices, show category-selectivity for Greebles in the right fusi-
form gyrus (Gauthier, Tarr, Anderson, Skudlarski, & Gore, 1999). Similarly, 
bird experts show category-selectivity for birds, but not cars, in the right fusi-
form, whereas car experts show category-selectivity for cars, but not birds 
(Gauthier, Skudlarski, Gore, & Anderson, 2000). Reinforcing the generality of 
this result, chess experts, but not chess novices, show category-selectivity in 
right fusiform for valid, but not invalid, chess game boards (Righi & Tarr, 2004). 
Third, across Greeble expertise training, subjects show a signifi cant positive 
correlation between a behavioral measure of holistic processing (sensitivity to 
the presence of the correct parts for that object) and neural activity in the right 
fusiform (Gauthier & Tarr, 2002). Similarly, bird and car experts show a signifi -
cant correlation between their relative expertise measured behaviorally (birds 
minus cars) and neural activity in the right fusiform (Gauthier, Skudlarski, 
Gore, & Anderson, 2000), and years of experience playing chess correlates 
signifi cantly with localized fusiform responses (Righi & Tarr, 2004). Fourth, the 
N170 potential (as measured by event-related potentials) shows face-like 
modulation in both Greeble (Rossion et al., 2000) and bird or dog experts 
(Tanaka & Curran, 2001).

These and other fi ndings (e.g., Gauthier, Curby, Skudlarski, & Epstein, in 
press; Tarr & Gauthier, 2000) suggest that putatively face-specifi c effects may be 
obtained with nonface objects, but only when subjects are experts for the 
nonface-object domain. Thus, the answer to the question “Are faces special?” is 
yes and no. There is no doubt that faces are special in terms of their centrality 
to social interaction. On the one hand, it could be that this social importance 
necessitates built-in special-purpose brain circuits devoted to face recognition. 
But on the other hand, it could be that social importance has more indirect 
effects in that people develop expertise with faces from the repeated interac-
tions with faces and the demands for individual-level recognition of faces. 
Some data supporting the latter argument come from studies using both 
Greeble and extant experts in domains as diverse as cars, birds, and chess. Across 
these domains, we fi nd a pattern of behavioral and neural effects consistent 
with those seen for face recognition. In particular, category-selective activation 
in the fusiform gyrus has, of late, been taken as the hallmark of face specifi city. 
Gauthier, Tarr, and others see similar selectivity for many other object domains, 
particularly when subjects are experts. Of course, this analysis only addresses 
the question of spatial specialization: “Is a particular piece of neural real estate 
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dedicated to face processing?” (unlikely given current data) and raises the more 
meaningful question “What are the computational principles underlying 
processing in this brain region?” (we don’t know at present).

Recent arguments based on fi ner resolution imaging or other methods for 
assessing spatial overlap between selective regions in the fusiform for faces and 
nonface objects miss this point (see http://web.mit.edu/bcs/nklab/expertise.
shtml). From a theoretical perspective, even if convincing evidence existed that 
the microstructure of the brain regions recruited by faces and nonface objects 
of expertise were non- or partially overlapping, this would not demonstrate 
that these regions were functionally distinct. Indeed, good evidence already 
suggests that category-selective regions for different object categories are not 
functionally separable and that the representations of faces and different objects 
are both distributed and overlapping (Haxby et al., 2001). Moreover, adjacent, 
overlapping regions in visual cortex often show selective tuning for particular 
stimulus properties, but common underlying computational principles—one 
example being orientation columns in V1 (Kamitani & Tong, 2005). From an 
empirical point of view, the two studies addressing the question of overlap both 
used stimuli that were outside of the domain of expertise being tested, for 
example, antique cars shown to modern car experts (Grill-Spector, Knouf, & 
Kanwisher, 2004; Rhodes, Byatt, Michie, & Puce, 2004). Thus, it is unlikely that 
any strong effect of expertise could have ever been obtained under these condi-
tions, let alone evaluated in terms of its relationship to face processing.

6.4 VISUAL LONG-TERM MEMORY

What do we remember about objects, what do we know about objects, and what 
do we do with objects? According to classic cognitive theories, memory, knowl-
edge, and skills are abstract. Memory is poor because only the gist, particularly 
the semantic content, is retained. Knowledge is abstract because knowledge 
representations—abstract rules, schemas, or prototypes—are abstracted from 
experience (see Chapter 5 for a discussion of memory for gist in scene memory). 
Cognitive skills generalize (the sine qua non of skilled behavior is generaliza-
tion) because they are not tied to any specifi c instances of prior skilled action. 
But, alternatively, in much the same way that invariant visual object perception 
can arise from specifi c views of objects, abstract memory, knowledge, and skills 
can arise from specifi c perceptual experiences (Barsalou, 1999; Palmeri, Wong, 
& Gauthier, 2004). Much of visual perception is based on the context provided 
by visual memories. Much of visual cognition is similarly grounded.

Contemporary neuropsychological theories often posit different kinds of 
memory (with lots of circles and arrows)—declarative versus procedure, episodic 
versus semantic, perceptual versus habit, explicit versus implicit, and other 
such dichotomies—that are subserved by functionally independent systems 
(Fig. 6–9). As with the study of category-selectivity, neuropsychology and neu-
roimaging methods play naturally to this sort of (relatively simplistic) modular 
theorizing, providing evidence for system-specifi c, dedicated brain regions, 
each with a unique set of representational and processing assumptions. 
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Much in the same way that functional specialization in visual cortex may be 
explained by alternative organizational principles, functional specialization for 
visual memory and learning may be organized around the kinds of representa-
tions and processes recruited by particular tasks and not around the tasks them-
selves (Palmeri & Flanery, 2002; Roediger, Buckner, & McDermott, 1999).

6.5 VISUAL MEMORY FOR OBJECTS

Our everyday experience leads us to the conclusion that our visual memory 
seems quite poor. Rare cases of eidetic memory aside (Luria, 1987), most people 
feel that they have great diffi culty remembering visual details, even over relatively 
short periods of time. Supporting this intuition, some early experimental studies 
of long-term visual memory for objects and scenes suggested that people 
remember only the gist (e.g., Brewer & Treyens, 1981), but not the specifi c 
details (but see Shepard, 1967). This conclusion is reinforced by recent “change 
blindness” studies that suggest that we remember very little of what we see from 
one moment to the next (but see Hollingworth, in press; Rensink, O’Regan, & 
Clark, 1997; Simons & Rensink, 2005; see Chapter 5 of this volume for a detailed 
discussion of the change blindness literature and its theoretical implications). 

Figure 6–9. A well-known taxonomic hierarchy of long-term memory systems (from 
Squire, 2004). The taxonomy divides memory into conscious declarative (hippocampal-
dependent) memory and unconscious nondeclarative (nonhippocampal-dependent) 
memory. There is little debate that particular brain structures are especially important 
for particular kinds of memory. Debate centers around whether those brain structures 
are important because those structures are the systems responsible for particular kinds 
of memory tasks or because those structures carry out processing that is especially 
important for certain kinds of memory tasks under certain conditions. Adapted with 
permission from Squire, L. R., & Zola, S. M. (1996). Structure and function of declarative 
and nondeclarative memory systems. Proceedings of the National Academy of Sciences, 
USA. 93, 13515–13522.
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Such limitations are especially apparent in eyewitness testimony, in which 
witnesses are notoriously bad at recognizing or recalling visual details, and 
their visual memories for events can be signifi cantly infl uenced by nonvisual, 
interfering information (Loftus, 2004; Wells & Loftus, 2003; Wells & Olson, 
2003). These and related results have led some researchers to conclude that 
memory for objects and scenes is not perceptual, but instead refl ects a semantic 
recoding of perceptual information guided by abstract schematic knowledge 
(e.g., Fodor, 1975; Newell & Simon, 1972; see Barsalou, 1999). Indeed, the abil-
ity of people to form visual images has either been rejected outright or has been 
characterized as an epiphenomenon of cognitive processing in which images 
arise as a by-product of accessing inherently nonvisual memories (Anderson, 
1978; Pylyshyn, 1973, 1981).

Happily, the fi eld does lurch forward over time. Many contemporary 
memory models assume distinct episodic representations that can, in principle, 
retain detailed information about specifi c perceptual experiences (Hintzman, 
1986; Logan, 1988; Nosofsky, 1991). Why, then, does memory often seem so 
poor? And why do we seem to remember only the gist and not the details? After 
all, memory performance should be related to how well information is encoded, 
stored, retrieved, and used (see Chapter 5). In principle, the visual detail of 
visual memories is constrained at the upper limit by the visual details provided 
by the perceptual system. Clearly, if some of the visual information is not proc-
essed during a perceptual episode, then that information cannot be encoded 
into an enduring memory representation to be retrieved later. Both visual 
attention and eye movements can conspire to render part of an object or scene 
invisible or poorly visible and, hence, absent from memory (Rensink, O’Regan, 
& Clark, 1997; Simons, 1996; Simons & Rensink, 2005). In addition, some 
visual information may be normalized or explained away (Kersten, Mamassian, 
& Yuille, 2004) during visual processing, rendering those visual details for all 
intents and purposes invisible to the perceiver. If it’s not perceived, it can’t be 
remembered. If it’s perceived poorly, it can be remembered poorly at best.

At the same time, many theories of memory assume that some probability is 
associated with whether particular visual properties are encoded into memory, 
accurately or at all (Hintzman, 1986; Hintzman, 1988; Shiffrin & Steyvers, 
1997). Thus, failures to remember can also arise from failures to encode. The 
ability to remember visual details is also limited by how well the information is 
retained in memory. Although some theories have attributed memory failures 
to factors other than memory storage (Gillund & Shiffrin, 1984), many theories 
also assume that memory traces can change rather dramatically because 
of decay (Hintzman, 1986) or some form of consolidation (McClelland, 
McNaughton, & O’Reilly, 1995; Shiffrin & Steyvers, 1997) over time. At one 
extreme, individual memory traces remain highly distinct from one another 
(Gillund & Shiffrin, 1984; Hintzman, 1986; Raaijmakers & Shiffrin, 1981), and 
storage failures are due to memory decay. At the other extreme, all memories 
share largely the same representational substrate, which results in similar 
memory representations becoming physically and informationally indiscrimi-
nable from one another (e.g., McClelland & Rumelhart, 1985). In this case, 
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storage failures are due to interference from new memories. Both kinds of 
memory may exist, with the hippocampus and associated structures especially 
involved in distinct memories for particular visual episodes and cortical areas 
maintaining more generalized memories in a distributed fashion (e.g., O’Reilly 
& Norman, 2002).

Finally, failures of visual memory may also emerge due to failures of memory 
retrieval. Visual details may be visible, they may be successfully encoded into 
memory, and they may be retained in memory. But retrieval cues may be insuf-
fi cient to retrieve the relevant visual memory representations. Retrieval failure 
is probably one of the primary reasons for memory failure. Consider that fail-
ing to provide the right retrieval cues is a failure to reinstantiate the context 
with which the memories were fi rst encoded. Most explicit recognition or recall 
tasks do not ask subjects to report whether they have ever seen that object 
before. Rather, they typically require someone to say whether or not they saw a 
particular object during some initial encoding session—whether earlier that 
day, a week earlier, or a year earlier—while tested in the same context or a dif-
ferent context (Mensink & Raaijmakers, 1988; Shiffrin & Steyvers, 1997). Both 
external context cues (the room, the time, the experimenter, and the like) and 
internal context cues (associations with other studied items) are needed to 
discriminate old studied objects from new lures.

Apparent visual memory failures during retrieval can arise based on the way 
memory retrieval takes place. A large class of memory models assumes that 
explicitly recognizing an old object as one you have seen before could arise 
from retrieving a specifi c memory that matches the probe or from a global 
familiarity based on the match between a retrieval probe and all memory 
representations. According this view, we remember the gist not because it’s the 
gist that is stored, but rather because a probe cue retrieves a number of match-
ing memories that are combined together (Hintzman, 1988; Shiffrin & Steyvers, 
1997). That is, seemingly abstract memories are produced online during the act 
of memory retrieval (Barsalou, 1990, 1999) because what is retrieved is a blend 
of memories. What is common between these memories is what we would 
typically call the “gist”—those visual properties present across many instances 
stored in memory.

6.5.1 Explicit Versus Implicit Visual Memory

If contemporary memory research has taught us one thing, it is that memory is 
far more than explicitly recognizing or recalling past experiences. With our 
every action, we reveal memory through our performance. Perhaps the most 
well-known experimental example of this is perceptual repetition priming. 
People are faster and more accurate at identifying a visual object they have seen 
before. Repetition priming is highly specifi c to perceptual details (e.g., see 
Schacter, Chiu, & Ochsner, 1993), it has been reported for delays of over a year 
in the absence of explicit recollection (Cave, 1997; Kolers, 1976), and it is 
normal in individuals with explicit memory defi cits (e.g., Squire, 1992). Such 
results have led researchers to divide memory into functionally independent 
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memory systems for explicit memory and implicit memory (Schacter & 
Tulving, 1994). For example, Tulving and Schacter (1990) proposed “Perceptual 
Representation Systems” that stored perceptual memories to support repetition 
priming. Primarily based on reports of various neuropsychological dissocia-
tions between memory tasks, the number of functionally independent memory 
systems has ballooned to include separate systems for episodic memory, 
semantic memory, habit learning, perceptual learning, conditioning, and 
host of other memory tasks (Schacter, 2000; Squire & Zola, 1996; Squire, 
2004).

The multiple memory systems approach delineates the many different 
independent memory systems, often tying such systems to particular brain 
structures, and providing, perhaps, some rationale for why evolution could 
have favored these particular divisions and not others. However, specifi c versions 
of this approach typically omit much discussion regarding the specifi c mecha-
nisms underlying the myriad component memory systems. How are memories 
encoded, how are they represented, and what processes can be brought to bear 
on them?

Interestingly, many of these weaknesses parallel those seen in modularist 
approaches to visual object recognition (Palmeri & Gauthier, 2004). For exam-
ple, much in the same way that modularist approaches to visual perception 
assign independent systems to particular kinds of objects, multiple memory 
systems approaches assign independent systems to particular kinds of tasks 
without explaining how they accomplish said tasks. The hippocampus is 
for explicit declarative memory used to recognize or recall specifi c visual 
experiences. The basal ganglia is for learning skills that might associate an 
object with a well-learned response. Bits of visual cortex are for perceptual 
learning that leads to priming. Although at fi rst approximations these asser-
tions are indisputable based on the neuropsychological and brain imaging 
evidence, saying that the hippocampus is a necessary neural substrate for 
explicit declarative memory is different from saying that it creates explicit 
declarative memories and explicit declarative memories only (Squire, Stark, & 
Clark, 2004). Indeed, the hippocampus appears to be involved more generally 
in creating confi gural representations (Chun & Phelps, 1999; Cohen & 
Eichenbaum, 1993; Meeter, Myers, & Gluck, 2005) or consolidating memories 
in cortical representations (O’Reilly & Rudy, 2001). That is, its role in conscious 
declarative memory may be a useful by-product of its more general role in 
binding together cues from multiple modalities into a single representation. 
The importance of representations created by the hippocampus is clearly meas-
ured in explicit declarative memory tasks, such as recall or recognition. Thus, 
explicit declarative memory defi cits are most conspicuous in amnesics with 
hippocampal damage. At the same time, the role of the hippocampus can also 
be gauged by performance in appropriately designed implicit memory tasks 
(see Chapter 7). Based on such evidence, contemporary theories of memory 
associate specifi c representations and process roles to a network of interde-
pendent memory systems, rather than assuming separable systems that are tied 
to particular tasks (e.g., see Meeter, Myers, & Gluck, 2005).
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Returning to perceptual repetition priming as an important example of 
implicit visual memory, what are some alternative explanations for enhanced 
object recognition as a result of prior perceptual experience? Tulving and 
Schacter (1990) proposed that priming was mediated by a perceptual represen-
tation system independent of the memory system that supports explicit 
declarative memory. Previous experiences are stored in this memory module in 
order to prime later experiences. Why? Priming has some adaptive value, so we 
should store perceptual memories for the purposes of enhancing perceptual 
performance at later encounters. Alternative theories do not place such a clear 
demarcation between memories underlying priming and memories used for 
other purposes. For example, Rouder, Ratcliff, and McKoon (2000) proposed 
that priming effects are a by-product of how view-based memories are used 
during normal object recognition. In their model, priming is caused by a bias 
to interpret perceptual information as supporting familiar objects, as opposed to 
unfamiliar objects. They instantiated this hypothesis by simply adding biases to 
Poggio and Edelman’s (1990) simple view-based model of object recognition. 
The added biases simply refl ect the learned likelihood of seeing a given object 
again, thereby causing known objects to be identifi ed more quickly when 
they are seen again later. Adding this simple psychological mechanism accounts 
for perceptual priming without the need to posit any additional implicit 
memory system above and beyond the use of object representations already 
incorporated into almost all models of object recognition. Again, memory is 
perception.

Some more standard memory theories also posit that perceptual priming 
and other forms of implicit memory are a normal by-product of memory. 
In these models, a contrast is often drawn between the visual features of repre-
sented objects and the features associated with its context. That is, explicit 
memory tasks are contextualized judgments about whether a given object 
appeared at a particular location at a specifi c time, not whether that object has 
ever been seen before (Gillund & Shiffrin, 1984; Hintzman, 1988). Loss of this 
contextual information, or a failure to encode such information due to brain 
damage, would result in failures of explicit memory with preserved implicit 
memory. Moreover, a subset of these theories have hypothesized that, over 
time, memory traces can become decontextualized through memory consoli-
dation (Shiffrin & Steyvers, 1997). Put another way, they are not transferred to 
a different memory store, but become dissociated from the context under which 
they were learned as a natural product of how memory storage works.

Consistent with a more integrated approach, a number of computational 
memory models make no clear demarcation between memories for general 
semantic knowledge, memories for particular experiences, and implicit memo-
ries. At the core, the same visual memories are used to recall, recognize, catego-
rize, identify, or do things with objects (Logan, 2002; Nosofsky, 1992). For 
example, repetition priming may rely on the same memories that underlie 
cognitive skills (Logan, 1990). At fi rst blush, single-system memory models of 
this sort may seem rather out of touch with contemporary cognitive neuro-
science research on memory, in which the desiderata seems to be as many 
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distinct systems as possible. Yet, a recent fMRI study supports the view that 
important aspects of perceptual priming and skill learning may share similar 
neural loci. Specifi cally, Dobbins et al. (Dobbins, Schnyer, Verfaellie, & Schacter, 
2004) contrasted a perceptual locus for repetition priming with a high-level 
response learning locus for repetition priming. They found that prefrontal 
cortical activity tracked repetition priming behavior, not activity in visual 
cortex. Thus, as suggested by Rouder et al. (2000), repetition priming effects 
may not refl ect the creation of new perceptual representations, or even the 
short-term tuning of perceptual representations, but may instead refl ect a bias 
to do things with objects that we did with them before, and to do so more 
quickly (Logan, 1990).

Perceptual Categorization and Visual Knowledge of Objects

As discussed earlier, one hallmark of visual cognition is generalization. Even 
very young children seem to know when two visually similar but different 
objects are members of the same category. One solution to the problem of gen-
eralizing from specifi c experiences is to create knowledge representations that 
are themselves abstract generalizations. According to early theories, conceptual 
knowledge is organized into abstract semantic networks or conceptual hierar-
chies (Anderson, 1976; Collins & Quillian, 1969) that link one kind of thing 
with another kind of thing through propositional structures. Knowledge is 
stored effi ciently, so that object properties that are true of a superordinate 
category of objects are only stored at the most general level (and are inherited 
as needed). Only properties that are unique to subordinate categories or 
specifi c individuals are encoded at lower levels of the conceptual hierarchy 
(Smith, Shoben, & Rips, 1974). In this way, what we know about objects is 
abstracted away from our perceptual experiences. As such, objects are catego-
rized as different kinds of things using abstract logical rules (Ashby, Alfonso-
Reese, Turken, & Waldron, 1998; Bruner, Goodnow, & Austin, 1956; Johansen 
& Palmeri, 2002; Nosofsky, Palmeri, & McKinley, 1994) or by comparing an 
object with an abstract prototype or schema (Lakoff, 1987; Minda & Smith, 
2001; Posner & Keele, 1968; Rosch, 1975). That is, class invariance is achieved 
through representations that are invariant over members of that class.

A sharp distinction between memory for specifi c visual experiences and 
abstract visual knowledge is also manifest in the classic distinction between 
semantic and episodic memory (see Squire & Schacter, 2002; Tulving, 1985, 
1993). Some memory researchers have argued that good computational reasons 
exist for keeping specifi c memories separate from abstract knowledge. After all, 
if all we have are specifi c memories for particular objects, how could we ever 
know anything general that was true about members of a class? And, if all we 
have is general knowledge, how could we ever know anything about specifi c 
objects?

This approach is generally similar to Biederman’s (1987) theory in that 
RBC proposes that both view and class invariance are achieved by constructing 
representations—prototypes—that are themselves invariant over views and 
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class exemplars. Interestingly, in the same way that theorists have argued that 
we do not have need for view- and/or class-invariant object representations to 
attain view and class invariant object recognition (Bülthoff & Edelman, 1992; 
Poggio & Edelman, 1990; Tarr & Pinker, 1989), we may not need class-invariant 
category representations to achieve a basic-level classifi cation over object 
categories (Palmeri, 1999; see Palmeri & Gauthier, 2004).

To be clear, visual memories for specifi c experiences with objects can 
support both the recognition of particular objects and general knowledge about 
classes of objects. Direct abstraction is not needed. What matters is how specifi c 
exemplar memories are used relative to one another. As noted earlier, explicit 
recollection is typically a contextualized decision. Did you see this object on 
that occasion? Explicit recognition uses memory retrieval cues that contain 
both information about the object and its context. Explicit recall uses retrieval 
cues with context alone. Thus, any inability to reinstantiate the original context, 
to encode the context, or a loss of information about the context in memory 
will lead to degradation of explicit memory. In contrast, questions about visual 
knowledge are decontextualized. An object is a member of a particular category 
across most, if not all, contexts. And, an object is associated with other objects, 
has particular properties or elicits certain behaviors across many different 
contexts. Thus, explicit memory for objects requires the integrity of particular 
visual memories, whereas classifi cation of objects or general knowledge of 
objects, including object recognition, can utilize a panoply of visual memories 
across a variety of visual contexts.

Two key properties of these memory models are: (a) retrieval is similarity-
based, and (b) decisions are based on the retrieval of multiple visual memory 
traces. Additionally, LTM is probed with a retrieval cue tailored to the particu-
lar memory task. For example, the retrieval cue for a recognition memory task 
would include features of the object and features of the context, whereas the 
retrieval cue for a categorization task could often include features of the object 
only. Memory traces are activated according to the similarity between the 
retrieval cue and the trace (Gillund & Shiffrin, 1984; Hintzman, 1986; Nosofsky, 
1992). Using a process of decisional selective attention, matches or mismatches 
of certain visual features may be weighed more heavily if they are particularly 
diagnostic for the decision being made (Kruschke, 1992; Lamberts, 1998, 2000; 
Logan, 2002; Nosofsky, 1984, 1986). Because retrieval is similarity-based, objects 
that have never been seen before can be falsely recognized as previously seen 
objects during recognition if they are similar to studied objects (Nosofsky, 1991). 
Similarly, objects that are prototypical will be quickly and accurately categorized 
as category members because they are similar to many other category examples, 
whether or not they have been studied before (Busemeyer, Dewey, & Medin, 
1984; Hintzman, 1986; Shin & Nosofsky, 1992). Of course, the decision rules 
underlying categorization and recognition decisions are different. Recognition is 
an absolute judgment of whether an object is suffi ciently similar to objects that 
have been studied before. If so, the object is recognized as old. Categorization is 
a relative judgment about an object’s similarity to known categories. As such, 
although recognition and categorization may depend on the same underlying 
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memories, recognition and categorization judgments need not be tightly 
correlated (Nosofsky, 1992). Thus, your ability or inability to recognize a 
familiar object does not predict whether you will be able to categorize it 
correctly. Critically, this stochastic independence between recognition and 
categorization does not imply that these two processes are based on different 
memory systems, rather it is equally probable that they are simply based on 
different decisions rules.

One challenge to this unifi ed approach comes from reported neuropsycho-
logical dissociations between recognition and categorization (Squire & Zola, 
1996). Specifi cally, amnesics can learn novel visual categories but are impaired 
(Knowlton & Squire, 1993) or at chance (Squire & Knowlton, 1995) at recogni-
tion. At fi rst blush, this seems like clear evidence in support of functionally 
independent memory systems for visual recognition memory and visual cate-
gorization. However, simply by assuming that amnesics have poorly discrimi-
nated memories relative to normal controls, perhaps because of failures of the 
damaged hippocampus to create new confi gural representations or to consoli-
date memories into cortical areas, models assuming the same memories for 
categorization and recognition predict the observed dissociation a priori 
(Kinder & Shanks, 2001; Nosofsky & Zaki, 1998; Palmeri & Flanery, 2002). To 
elaborate, most categorization tasks require broad generalization from learned 
examples to test examples, whereas recognition requires fi ne discrimination 
between old and new test items. Recognition is infl uenced signifi cantly more by 
degradation than categorization (Palmeri & Flanery, 2002). On top of this, 
many of the perceptual categorization tasks that have been used in the 
neuropsychological literature may not rely on long-term memories for trained 
category exemplars whatsoever. Specifi cally, a number of the categorization 
tests that have been used to assess long-term category memory can be per-
formed just as well whether people have studied category exemplars or not 
(Palmeri & Flanery, 1999; Zaki & Nosofsky, 2001, 2004). When these methodo-
logical fl aws are addressed, individuals with memory impairments may indeed 
learn novel categories less well than normal controls (Zaki, Nosofsky, Jessup, & 
Unversagt, 2003). Although it is possible that visual memories supporting 
recognition and visual memories supporting categorization are functionally 
independent of one another, a more computationally tractable solution is 
that the same visual memory representations underlie a variety of memory 
tasks, with the information requirements of the particular task modulating 
performance.

6.5.3 Levels of Categorization

Objects can be categorized at multiple levels of abstraction, from identifying 
unique individuals by name to grouping together dissimilar objects as the same 
kind of thing. Discriminating between highly similar objects for purposes 
of identifi cation and generalizing across many different objects for purposes 
of categorization appear to be competing goals that require different kinds of 
visual representations (Biederman, 1987; Logothetis & Sheinberg, 1996; 
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Marr, 1982). In fact, some structural-description theories (e.g., Biederman, 
1987) view basic-level classifi cation as a primary goal of visual perception. 
In such theories, the structural descriptions for different members of the same 
basic-level category are the same. At the same time, visual memories of a 
qualitatively different sort are needed in order to discriminate similar objects 
for purposes of identifi cation or more subordinate levels of classifi cation 
(Biederman, 1987). Such is the logic often used in arguing for dissociations 
between face and nonface object recognition (e.g., Farah, Wilson, Drain, & 
Tanaka, 1998).

Along similar lines, evidence from speeded perceptual categorization tasks 
have been used as evidence that basic-level classifi cation is a stage of processing 
that precedes more subordinate or superordinate classifi cation because basic-
level classifi cation is signifi cantly faster (Grill-Spector & Kanwisher, N., 2003; 
Jolicoeur, Gluck, & Kosslyn, 1984). Typically, the fastest categorization task is 
basic-level categorization and is termed the “entry level” (Jolicoeur, Gluck, & 
Kosslyn, 1984) into conceptual knowledge. However, the entry level for a given 
individual can vary greatly with experience (Johnson & Mervis, 1997; Tanaka & 
Taylor, 1991). At the same time, fastest does not mean fi rst (Palmeri, Wong, & 
Gauthier, 2004). In fact, a number of computational models of object recogni-
tion and perceptual categorization make no clear demarcation between identi-
fying unique objects and categorizing objects as members of a class (Nosofsky, 
1992; Riesenhuber & Poggio, 1999, 2000; Tjan, 2001). Specifi cally, identifi cation 
and categorization are both evidence-based perceptual decisions. Identifi cation 
may require more perceptual processing (Lamberts, 2000), but prior categori-
zation is not necessary. Thus, the same visual memories that support invariance 
across changes in the image, for example, as generated by rotations in depth, 
also support access to objects at multiple levels of categorization, for example, 
recognition memory, identifi cation, and categorization (Edelman, 1999). What 
varies is not our memories, but how such memories are used to make percep-
tual decisions that change from one task to another (Palmeri & Gauthier, 2004) 
(Fig. 6–10).

It should be emphasized that invariant performance can emerge from 
memory representations that do not themselves embody that invariance. For 
instance, viewpoint-invariant object recognition is enabled by comparing 
percepts with views in memory. Class-invariant object recognition is enabled 
by comparing an object with category exemplars in memory. Beyond the point 
at which abstract memory representations are not needed, it behooves us to 
spell out the mechanisms by which said invariances are achieved. For example, 
do we remember all views of objects we encounter, or is generalization good 
enough to allow encoding of only salient (Tarr & Kriegman, 2001) or frequently 
experienced views (Blanz, Tarr, & Bülthoff, 1999; Palmer, Rosch, & Chase, 
1981)? Similarly, are all exemplars of all categories encoded, or are there “key” 
exemplars that help to delineate a given category? Although precise estimates of 
the capacity of visual memory are impossible, a surprising amount of detailed 
perceptual information may be encoded into visual memory (Hollingworth, 
2004, 2005; Standing, 1973). And such memories may persist and infl uence 
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behavior for a long time period. One might argue that there is adaptive signifi -
cance for the ability to encode a large amount of information in memory. This 
allows abstraction on-the-fl y rather than requiring a prescient gatekeeper to 
decide what information might be necessary for survival at some later point in 
time (Barsalou, 1990). Along the same lines, instance-based models of object 
recognition and categorization have often been mathematically formalized, 
assuming that every view or every exemplar is stored in visual memory (Logan, 
1988; Nosofsky, 1992). However, as discussed earlier, a more sparse encoding 
of views and exemplars that provides a nearly full but incomplete covering of 
the space of experienced instances supports recognition and categorization 
across changes in the image and exemplars within an object class (e.g., Bülthoff 
& Edelman, 1992; Rosseel, 2002). Moreover, detailed visual memories of 
specifi c perceptual experiences may support tasks beyond visual recognition 

Figure 6–10. This illustration summarizes some of the elements of a class of image-
based/instance-based/exemplar-based models of object recognition and perceptual 
categorization. Starting with the retinal image, a hierarchy of steps from low-level visual 
processing, to representations in terms of image-based parts (Ullman, Vidal-Naquet, & 
Sali, 2002), to representations of views and instances of objects (Riesenhuber & Poggio, 
2000). The same representations of views and instances can be associated with perceptual 
decisions like a basic-level category (car or face), subordinate-level category (Honda 
Civic), or identity (Gordon Gee). An important component of many models is that 
selective attention can highlight aspects of a perceptual representation that are particularly 
diagnostic for a decision (e. g., Ahissar & Hochstein, 2004; Kruschke, 1992).
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and categorization. In particular, abstract conceptual knowledge that may 
appear amodal and abstracted from actual experience may in fact be grounded 
in perceptual knowledge (Barsalou, 1999; Martin, Ungerleider, & Haxby, 2000). 
In much the same way that abstractions of visual properties may be created 
on-the-fl y, abstract conceptual properties may be “revealed” by mental simula-
tions of perceptual knowledge (Barsalou, 1990).

Other isomorphisms seem to exist between visual and conceptual memories. 
For instance, in much the same way that evidence may differentially accumu-
late over time when recognizing particular views of an object (Perrett, Oram, & 
Ashbridge, 1998), evidence may differentially accumulate over time when 
categorizing different exemplars of a category. Nosofsky and Palmeri (1997) 
proposed a model of speeded categorization that combined representational 
elements of exemplar-based models of categorization and memory (Nosofsky, 
1992), temporal assumptions of an instance-based model of automaticity 
(Logan, 1988), and stochastic evidence accumulation from random-walk 
models of perceptual decisions (Link, 1975; Luce, 1986; Ratcliff, 1978; Ratcliff 
& Rouder, 1998). In such models, the rate of accumulation depends on the 
similarity between the object to be categorized and the specifi c category exem-
plars in memory (Fig. 6–6). An object similar to many exemplars of a single 
category will be classifi ed quickly and accurately. An object dissimilar to 
category exemplars will be classifi ed more slowly, but perhaps accurately if 
only relatively similar to a single category. But an object similar to exemplars of 
different categories will be classifi ed slowly and inaccurately because of the 
contradictory evidence.

6.5.4 Perceptual Expertise

Radiologists, ornithologists, fi refi ghters, and other specialists are noted for 
their remarkable abilities at categorizing, identifying, and recognizing objects 
within their domain of expertise (Palmeri, Wong, & Gauthier, 2004). But 
understanding perceptual expertise is more than characterizing the behavior of 
individuals with idiosyncratic skills in highly specialized domains. Perceptual 
expertise may also explain some of the unique aspects of recognizing faces 
(Diamond & Carey, 1986; Gauthier & Tarr, 2002), words (McCandliss, Cohen, 
& Dehaene, 2003), and letters (McCandliss, Cohen, & Dehaene, 2003). The 
development of perceptual expertise involves a complex interplay of changes in 
visual perception, visual memory, visual categorization, and visual skills. 
Indeed, viewing perceptual expertise as the end-point of the normal learning 
trajectory, rather than an idiosyncratic skill, allows us to exploit studies of 
perceptual experts to understand the general principles as well as the limits of 
visual perception, memory, and learning.

Experts are fast (Tanaka & Taylor, 1991). They make fi ne perceptual 
discriminations and precise identifi cations with speeds that can astonish the 
novice observer. Experts also perceive differently within their domain of 
expertise (e.g., see Gauthier, Curran, Curby, & Collins, 2003; Goldstone, 2003; 
Myles-Worsley, Johnston, & Simons, 1988; Snowden, Davies, & Roling, 2000); 
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that is, “holistically” and more effi ciently extracting discriminating informa-
tion. What makes experts so fast? And what makes them apparently perceive 
objects in their domain so differently from novices? Have they developed qual-
itatively different ways of processing information? Have they created new ways 
of representing information? Or, have they discovered optimal ways of using 
the representations they had as novices (Gauthier, Tarr, Anderson, Skudlarski, 
& Gore, 1999; Joyce & Cottrell, 2004; Palmeri, Wong, & Gauthier, 2004)?

As discussed in the previous section, novices categorize objects fastest at a 
basic (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976) or entry level 
(Jolicoeur, Gluck, & Kosslyn, 1984). Expertise has been characterized as estab-
lishing a new entry level, such that objects are categorized as quickly at more 
subordinate levels (Johnson & Mervis, 1997; Tanaka & Taylor, 1991). But what 
does it mean to establish a new entry level? It could mean creating a new special-
purpose module or perceptual routine (Jolicoeur, Gluck, & Kosslyn, 1984) for 
expert categorization at these subordinate levels. Positing the creation of such a 
module would indeed account for the automaticity, domain-specifi city, and 
attentional infl exibility seen with perceptual experts, and it would link the 
development of perceptual expertise in novel domains with the purported 
modularity in domains such as face and letter recognition. Of course, this 
account begs questions of how a new module might be created, how this module 
might operate, and whether such a module is computationally necessary at all 
(Riesenhuber & Poggio, 1999, 2000; Tarr & Cheng, 2003). We have instead 
approached an understanding of the development of perceptual expertise by 
viewing it as the end-point of normal learning that underlies recognizing, 
categorizing, and remembering objects (Gauthier & Tarr, 2002; Joyce & Cottrell, 
2004; Palmeri, Wong, & Gauthier, 2004), attempting to characterize the devel-
opment of perceptual expertise within theories of normal object recognition, 
categorization, and memory.

An important step in becoming a perceptual expert is learning what aspects 
of an object class are relevant for a perceptual identifi cation. This learning can 
get a head start when someone is given an explicit rule (Noelle & Cottrell, 
1996). Such rules specify which features are important, explicitly guiding 
dimensional selective attention (Johansen & Palmeri, 2002), as well as how to 
combine this information to make a decision. Even when explicit rules are not 
provided, observers induce simple rules on their own (Ashby, Queller, & 
Berretty, 1999; Nosofsky & Palmeri, 1998; Nosofsky, Palmeri, & McKinley, 1994; 
Waldron & Ashby, 2001). But of course, in some domains, verbal labels cannot 
adequately convey the diagnostic perceptual qualities for the novice, making 
any explicit instruction a futile enterprise.

Moreover, the use of explicit rules does not seem to characterize expert 
behavior (Brooks, Norman, & Allen, 1991). Experts may or may not be able to 
articulate explicit rules to a novice—although in some cases they may simply 
“know” what things are and may be entirely unaware of whether there might 
exist a simple rule (Biederman & Shiffrar, 1987)—but they do not seem to use 
these rules, especially for making their rapid initial perceptual identifi cations. 
Perceptual experts make decisions automatically and implicitly. Taking the 
instance theory of automaticity as a theoretical starting point (Logan, 1988), we 
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argue that this automaticity is largely grounded in the vast perceptual memo-
ries experts have acquired (Palmeri, 1997; Palmeri, Wong, & Gauthier, 2004). 
Experts are fast because memory retrieval is fast. Experts decisions are auto-
matic because memory retrieval is automatic. Experts make diffi cult perceptual 
discriminations easily because they have performed similar perceptual discrim-
inations before. Experts show relatively limited generalization because memory 
retrieval is based on perceptual similarity (Gauthier & Tarr, 1997; Palmeri, 
1997; Tanaka, Curran, & Sheinberg, 2005). The development of expertise often 
entails a shift from rules to visual memories because memory retrieval becomes 
more effi cient than rule use as perceptual memories are strengthened over 
learning (Johansen & Palmeri, 2002; Palmeri, 1997, 2001; Rickard, 1997).

These perceptual memories should not be confused with simple templates 
for several reasons. First, retrieval is similarity-based, allowing generalization to 
novel objects (Poggio & Bizzi, 2004; Shepard, 1987). Second, decisions are not 
based on retrieving a single perceptual memory, but on retrieving an ensemble 
of similar perceptual memories (Gauthier & Palmeri, 2002; Poggio & Bizzi, 
2004). Third, retrieval of these perceptual memories is not based on raw simi-
larity, but selective attention mechanisms serve to weight diagnostic dimen-
sions over nondiagnostic dimensions in determining similarity (Kruschke, 
1992; Lamberts, 1998; Nosofsky, 1984, 1986).

As stated earlier, initial stages of learning involve fi guring out which parts of 
objects are more important than others for making perceptual identifi cation 
and categorizations. Although this learning can get a boost from an explicit 
rule that might be supplied (Medin & Smith, 1981; Palmeri & Nosofsky, 1995), 
more fi ne-tuned learning involves more implicit trial-to-trial adjustment of 
selective attention to particular dimensions (Gauthier & Palmeri, 2002; 
Kruschke, 1992; Lee & Navarro, 2002; Nosofsky, Gluck, Palmeri, McKinley, & 
et al., 1994; Nosofsky & Kruschke, 1992). Indeed, learning to selectively attend 
to the right representations may characterize a signifi cant amount of percep-
tual expertise and perceptual learning (Dosher & Lu, 1999; Petrov, Dosher, & 
Lu, 2005). Ahissar and Hochstein (2004) argued that “what typically limits 
naïve performance is the accessibility of task-relevant information rather than 
the absence of such information within neuronal representations.” According 
to their theory, this selection process works from the top down, so that easy-
to-learn problems are those that require selecting relatively high-level represen-
tations whereas diffi cult problems require selecting low-level representations. 
In this context, many classic category-learning problems are easy tasks (in that 
they can be learned in a few hundred training trials) because they require learn-
ing to selectively attend to highly salient parts or dimensions of an object. By 
contrast, many perceptual learning problems are hard tasks (in that they require 
many days of training) because they may require learning to selectively attend 
to visual processing channels early in the visual stream (Petrov, Dosher, & Lu). 
Although, selective attention mechanisms have been given a short shrift in 
some discussions of perceptual expertise and perceptual learning (Schyns, 
Goldstone, & Thibaut, 1998), they likely play a critical role, especially during 
initial learning (see also de Beeck, Wagemans, & Vogels, 2003; Palmeri, 1998; 
Petrov, Dosher, & Lu, 2005).
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That said, the development of perceptual expertise requires creating new 
representations as well as selecting from existing representations. Of course, 
forming perceptual memories is creating new representations. The initial 
creation of these exemplar memories may be mediated by hippocampal areas 
thought to be involved in creating novel confi gural representations (Gluck, 
Meeter, & Myers, 2003; Meeter, Myers, & Gluck, 2005; O’Reilly & Norman, 
2002). At the same time, exemplar memories may be insuffi cient to explain all 
of the perceptual effects manifest in perceptual experts (Palmeri & Gauthier, 
2004; Palmeri, Wong, & Gauthier, 2004). Instead, an important aspect of the 
development of perceptual expertise may also involve the creation of new 
image-based part representations (Zhang & Cottrell, 2005). These image-based 
parts can support the perception, categorization, and memory for learned 
objects, but can also effi ciently support perception and memory for new objects 
(Gauthier & Tarr, 2002). But creating a perceptual expert can take a long time 
(Gauthier, Williams, Tarr, & Tanaka, 1998). To the extent that this lower-level 
learning involves cortical updating, this learning will be far slower than the 
kind of rapid memory formation seen for particular exemplars. Mirroring the 
top-down progression for selective attention posited by Ahissar and Hochstein 
(2004), the creation of new representations likely takes place in a top-down 
manner, with exemplar memories being formed rapidly but image-based part 
memories taking more time. A critical aspect of learning probably involves 
creating the right perceptual building blocks, but arguably creating those build-
ing blocks may require a great deal of training (but cf. Schyns, Goldstone, & 
Thibaut, 1998).

6.6 CONCLUSION

Our goal in this chapter was to review and synthesize recent thinking in two 
domains: visual object perception and visual memory. For whatever reasons, as 
with much of the larger discipline of cognitive science, there has been a tendency 
toward compartmentalization. It is almost as if the fi eld’s conceptualization of 
the mind and brain as a collection of modular processing systems is refl ected in 
how the fi eld itself has become organized. Unfortunately, such divisions are 
often more matters of convenience (both in creating theory and in choosing 
our domains of study). As such, it is important to consider how nominally 
separable processes relate to one another. In the case of memory and object 
perception, this examination is more than cursory. We argue that memory and 
perception are intimately related and in essence two sides of the same coin. 
That is, memory arises as a consequence of object perception and, conversely, 
object recognition tasks are effectively memorial processes.
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