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Modeling Perceptual Expertise

Thomas J. Palmeri and Garrison W. Cottrell

To have one’s hunches about how a simple combination of processes will behave
repeated dashed by one’s own computer program is a humbling experience that
no experimental psychologist should miss. Surprises are likely when the model
has properties that are inherently difficult to understand, such as variability,
parallelism, and nonlinearity—all, undoubtedly, properties of the brain.

Hintzman, 1990

INTRODUCTION

In this chapter we delineate what we believe to be the important character-
istics of perceptual expertise that a complete model should try to capture,
motivate why computational models are important for any complete under-
standing of perceptual expertise, and then describe several models that have
been constructed to account for visual object processing, perceptual categor-
ization, and face processing. Models are evaluated in terms of their ability to
account for the phenomena of perceptual expertise. A challenge in devel-
oping a comprehensive computational model of perceptual expertise is that
the range of empirical phenomena, many of which are described in the
various chapters in this volume, are at the intersection of so many funda-
mental areas of perception and cognition. This implies that any complete
understanding of the various facets of perceptual expertise requires a theo-
retical coupling across a number of traditionally distinct areas of visual
perception and visual cognition.

Radiologists, ornithologists, birders, firefighters, and other specialists are
noted for their remarkable ability to rapidly recognize, categorize, and
identify objects and events in their domain of expertise. Understanding the
unique abilities of experts can certainly have important real-world implica-
tions for enhancing the development of expertise in the workplace. However,
we believe that understanding perceptual expertise has implications beyond
simply characterizing the behavior of individuals with idiosyncratic skills in
highly specialized domains (Palmeri et al., 2004). Mechanisms of perceptual
expertise may also explain some of the unique aspects of everyday domains
such as recognizing faces (Diamond & Carey, 1986; Gauthier & Tarr, 2002),
words (McCandliss, Cohen, & Dehaene, 2003), or letters (Wong & Gauthier,
2006). We view perceptual expertise as the logical end point of the normal
trajectory of learning, rather than an idiosyncratic skill. This allows us to
exploit studies of experts to understand the general principles and limits of
human learning and plasticity. Furthermore, viewing faces, words, and letters
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as domains of perceptual expertise may yield new insights into how abnormal
brain development or brain damage can lead to the perceptual and cognitive
deficits seen in autism, dyslexia, prosopagnosia, and other conditions, and
may lead to breakthroughs in education and treatment.

This theoretical view of perceptual expertise is mirrored in our
approach to developing computational models. A comprehensive computa-
tional theory of the development of perceptual expertise remains elusive.
However, viewing perceptual expertise as the end point of the trajectory of
normal learning suggests that we should ultimately look to various computa-
tional models from literatures such as object recognition, face recognition,
perceptual categorization, automaticity, and skill learning as theoretical
starting points. Indeed, we believe that the development of perceptual exper-
tise should be explored first within the context of extant models of normal
visual cognition. Of course, this is a hypothesis, not an axiom. We may
ultimately discover that specialized domains of expertise require specialized
domain-specific computational models. However, to this point, we have not
needed to make that assumption.

We begin by delineating what we believe to be the core phenomena of
perceptual expertise (largely taken from Palmeri et al., 2004) that a compre-
hensive model should account for. We then briefly review some general issues
in modeling, followed by consideration of models of object processing,
perceptual categorization, and face processing as models of perceptual exper-
tise. Of course, no model can account for all of the characteristics of percep-
tual expertise (although significant progress has been made). At the end of
the chapter, we will briefly discuss ways in which some of these models might
be theoretically integrated.

THE CORE FEATURES OF PERCEPTUAL EXPERTISE

There are a number of behavioral and neural characteristics that distinguish
novices and experts, many of which are discussed in other chapters in this
volume. It goes without saying that experts know more than novices about
their domain of expertise. They can verbalize more properties, describe more
relationships, make more inferences, and so forth (e.g., Ericsson et al., 2006;
Kim & Ahn, 2002; Murphy & Wright, 1984; Johnson & Mervis, 1997). This is,
after all, what makes them experts. Our focus here is on behavioral and neural
changes in visual cognition that underlie perceptual expertise. Here we
provide a brief summary of some of the phenomena that any comprehensive
computational theory of the development of perceptual expertise must
ultimately account for:

• Novices often rely on explicitly verbalized category knowledge in the
form of rules or ideal cases that are acquired from reference manuals
or explicit instruction (e.g., Allen & Brooks, 1991) or that are created
through induction (e.g., Johansen & Palmeri, 2002). By contrast,
although experts have more verbal knowledge about a domain,
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expert categorization often seems removed from explicit and
conscious deliberation (e.g., Brooks, Norman, & Allen, 1991;
Sloman, 1996). What accounts for this shift from conscious
deliberation to more automatic decisions?

• Novices are slow and deliberate in their decisions, perhaps reflecting
their use of explicit rules and strategies. The development of
expertise is accompanied by a marked speedup in processing,
originally characterized by the power law of practice (Newell &
Rosenbloom, 1981; but see Heathcote, Brown & Mewhort, 2000;
Rickard, 1997; Palmeri, 1999). What causes this increase in the speed
of decisions with perceptual expertise?

• One important aspect of this speedup is the so-called ‘‘entry level
shift’’ (Jolicoeur, Gluck, & Kosslyn, 1984; Tanaka & Taylor,
1991). For novices, categorizations at the basic level (‘‘dog’’ or
‘‘bird’’) are faster than categorizations at either a superordinate
(‘‘animal’’ or ‘‘plant’’) or a subordinate level (‘‘robin’’ or
‘‘terrier’’). The fastest level of categorization is often described
as the entry-level into conceptual knowledge. For experts, there is
an entry-level shift whereby subordinate-level categorizations are
made as quickly as basic-level categorizations (Johnson & Mervis,
1997; Tanaka & Taylor, 1991). Does this shift reflect a qualitative
change in how expert categories are processed, or is it a
manifestation of a more continuous quantitative change in the
efficiency of processing over learning (Joyce & Cottrell, 2004;
Mack, Wong, Gauthier, Tanaka, & Palmeri, 2007; Tong et al.,
2008)?

• Novices and experts show different patterns of interference. Novices
are easily distracted whereas experts may be able to simultaneously
engage in other tasks while making expert decisions. Part of this
apparent lack of interference may be because experts no longer use
explicit verbalizable routines, so concurrent verbal activity does not
interfere with performance. But when experts engage in tasks that
tap the same representational resources used for other domains of
expertise, they suffer interference in ways unseen in novices
(Gauthier & Curby, 2005; Gauthier, Curran, Curby, & Collins,
2003; Rossion et al., 2004; see also Curby & Rossion, this volume).
What accounts for these different patterns of interference in experts
and novices?

• Novices can attend to part of a complex object while ignoring
irrelevant parts. By contrast, experts show interference from
irrelevant variation in an unattended part. For example, in a part-
matching task—adapted from work in the face recognition literature
(Young, Hellawell, & Hay, 1987)—subjects are asked to attend to the
top part of a whole object. After a brief delay, a second object is
shown with the irrelevant bottom either matching or mismatching
the bottom of the first object. When judging whether the top is the
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same or different, novices are unaffected by the irrelevant bottom,
whereas experts show facilitation when the irrelevant bottom would
lead to the same decision, and interference when the irrelevant
bottom would lead to a different decision (Cheung, Richler,
Palmeri, & Gauthier, 2008; Gauthier et al., 2003; Richler et al.,
2008). However, the direction of this interference depends upon
the objects of expertise—for example, Chinese readers do not
suffer this interference when viewing Chinese characters, while
novices do (Hsiao & Cottrell, 2008). What causes this nominal
processing cost associated with expertise, and what explains when
the expert will show this cost?

• Experts generalize their knowledge. Experts can learn to categorize
and identify new objects more quickly than novices, and can
discriminate novel objects better than novices, at least so long as
the new objects are similar to other objects in their domain of
expertise (i.e., they vary systematically in the same way as other
learned objects; Gauthier & Tarr, 1997, 2002; Tanaka, Curran, &
Sheinberg, 2005).

• The ability of experts to generalize is also limited in specific ways
(Palmeri, 1997). Experience is often limited to particular
viewpoints. In much the same way that face recognition is
impaired by inversion, expert object recognition is impaired by
inversion as well (Diamond & Carey, 1986). For example, experts
are highly sensitive to changes in the configuration of features, but
only when objects are presented in a familiar orientation (Maurer,
LeGrand, & Mondloch, 2002; Mondloch, LeGrand, & Maurer, 2002;
Gauthier & Tarr, 1997). What does this limited generalization and
sensitivity to orientation or viewpoint imply about how experts
represent their perceptual knowledge?

• Finally, experts show different patterns of brain activity than
novices. For example, with fMRI it has been shown that the
fusiform face area (FFA) is not just involved in face recognition
but is activated by objects of expertise in real-world experts such
as birders (Gauthier, Skudlarski, Gore, & Anderson, 2000; Xu,
2005; but see Grill-Spector, Knouf, Kanwisher, 2004) and by
objects of expertise created in the lab (Gauthier & Tarr, 1997,
2002). Similarly, event-related potential (ERP) markers for face
recognition, such as the N170, which shows highest amplitude for
faces, also show higher amplitude when observing objects of
visual expertise over objects that are not (Tanaka & Curran,
2001; but see Scott, Tanaka, Sheinberg, & Curran, 2006). Why
are brain areas that are devoted to one domain of expertise, in
this case faces, recruited for another domain of expertise? What is
different about an expert domain such as letter perception, which
recruits different brain areas entirely (Gauthier, Tarr, et al., 2000;
Wong & Gauthier, 2006)?
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No single computational model can, at present, account for all of the
various behavioral aspects of the development of perceptual expertise. At the
same time, some models do speak to certain aspects of expertise, and a
comprehensive computational theory may be possible by combining com-
plementary models (or lessons learned from those models). This chapter
provides an overview of models from visual object processing, perceptual
categorization, and face recognition that we believe provide insights into the
mechanisms underlying the development of perceptual expertise. At the end
of the chapter, we sketch some possible avenues for theoretical integration
toward a comprehensive model of perceptual expertise. Ultimately, we need a
model that captures the long-term dynamics of learning throughout the
development of expertise, the short-term dynamics of novice and expert
decisions, and the dynamic interplay of the various brain structures that
are recruited at various stages of expertise and how those brain structures are
molded by experience.

SOME WHAT’S, WHY’S, AND HOW’S OF MODELING

First, what is a model? Definitions vary widely. For our purposes, we
define a model as a theory that has been formalized in terms of mathe-
matical equations or computer simulations. An advantage of formaliza-
tion beyond mere verbal description is that it forces the theorist to be
explicit about all components of the theory, allowing those theories to be
clearly articulated, rigorously evaluated, and potentially falsified (e.g.,
Hintzman, 1990). Intuitions about how components of a theory interact
are often overly simplistic or downright wrong. Thus, models often
generate new and novel predictions regarding empirical work that
would otherwise be unavailable.

There are many varieties of models (e.g., Luce, 1995). There are statistical
models of data, such as structural equation modeling, multidimensional
scaling, factor analysis, principal components analysis, or nonlinear regres-
sion. Statistical models can be applied to any data from any domain, at least
so long as those data abide by the assumptions underlying the valid use of
those models. As models of data, statistical models do not explain why the
data was observed. They analyze what was observed. There are normative
models, such as optimal control theory, Bayesian decision theory, and
expected utility theory. Normative models attempt to explain what should
be done in a particular situation based on various optimality considerations.
To the extent that individuals deviate from optimality, these models fail to
explain what people actually do, although often the real issue here is deter-
mining what the individual’s utilities are. There are artificial intelligence and
machine learning models for computer vision, face recognition, expert rea-
soning and problem solving, and spoken language recognition. These models
attempt to mirror the complex behavior of humans and may even make use
of what is known about the processes underlying human perception and
cognition, but ultimately they aim to see, hear, or reason as well as people, or
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even better than people, irrespective of whether the underlying mechanisms
bear any resemblance to human mental and neural processes.

Our focus is on process models of cognition and perception. They attempt
to explain how and why people think, remember, and perceive the way they
do. They formally instantiate hypotheses about the mechanisms that lead to
observed behavior and are often grounded in neurally inspired computa-
tional mechanisms. The somewhat counterintuitive goal of these models is to
make the same errors people make, to be slow when people are slow and fast
when people are fast, and to be able to mimic the effects of brain damage and
mental illness. While process models have different goals than statistical
models, normative models, and artificial intelligence models, the initial
development of a process model may be closely related to those models.
For example, it could be possible to develop a process model that mechan-
istically instantiates Bayesian decision theory and then see if this model
accounts for human behavior, or an existing process model that accounts
well for human behavior may end up being related mathematically to
Bayesian decision theory years after the model was first developed (e.g.,
Myung, 1994). Sometimes whole classes of models may be unknowingly
related; it took many years for the field to fully realize the intimate relation-
ship between neural networks and statistical models (e.g., Bishop, 1995).

So why model?

Models Rush in Where Theories Fear to Tread

Theories are relatively high-level verbal descriptions of the processes under-
lying behavior. As such, they are often vague about specific mechanisms,
which can make it difficult to make a priori predictions based upon them.
However, using machine learning or statistical techniques, one can often
create a working model of the process involved, even in cases where there is no
theory. These can then be examined in order to gain insights into how the
process might work. For example, an early class of face processing models was
built from ‘‘eigenfaces’’ extracted using principal components analysis1, a
well-known statistical analysis technique (O’Toole, Abdi, Deffenbacher, &
Valentin, 1993; Turk & Pentland, 1991). Figure 7.8 shows some eigenfaces,
which served as the features for the model. These whole-face templates are

1
Eigenfaces are whole-face templates that arise from finding the directions of maximum variance

in a data set of faces. In particular, they encode the strongest covariances between the pixels in a

set of faces. More formally, they are the principal eigenvectors of the covariance matrix of the

data. For example, in a data set of male and female faces, the first principal component, or the

first eigenface, will often correspond to the distinction between male and female. In a data set of

Asian and Caucasian faces, the first principal component may correspond to the difference

between Asians and Caucasians. It is interesting to note here that neural network models

developed around the same time are formally equivalent to these eigenface models (Cottrell &

Metcalfe, 1991; Fleming & Cottrell, 1990; Furl, Phillips, & O’Toole, 2002; Golomb, Lawrence, &

Sejnowski, 1991).
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clearly holistic features. Each face is represented by its correlation with the
eigenfaces, giving a vector of numbers that can be matched with a set of
stored representations with labels (e.g., identity or emotion). The label of the
closest stored face is the label chosen by the model. The original face can be
reconstructed as a weighted sum of these eigenfaces. In other words, faces are
a point in this high-dimensional eigenspace (the number of dimensions
corresponds to the number of eigenfaces used). In this sense, they are one
of the first computational instantiations of Valentine’s ‘‘face space’’ account
of face processing (Valentine, 1991), and provide insights into how a face
space might arise, and how holistic effects can be accounted for (more on
this later).

Models Can Make Counterintuitive Predictions

Our opening quote by Hintzman (1990) makes this point well. Hintzman’s
own work showed that behavior that seems to clearly indicate some form of
abstraction from specific experiences could actually emerge from a simple
learning mechanism with no abstractions in the model whatsoever, just
memory for specific experiences (Hintzman, 1986; see also Medin &
Schaffer, 1978; McClelland & Rumelhart, 1985; Nosofsky, 1984) (more on
this later, too). The behavioral abstraction of the model arose from the
mechanism that accessed and used specific memories. Thus, models can be
intuition pumps for alternative conceptualizations of hypothetical mechan-
isms and how they might work.

Models Can Be Manipulated in Ways People

(and Animals) Cannot

A computational model allows the modeler to explore ‘‘what if’’ questions
that cannot be easily explored with humans and that would be difficult or
impossible to explore, even with animal models. By performing these experi-
ments that may go beyond the parameters that are reasonable for the human
brain or beyond real-world experience, one can begin to see why things are
the way they are. For example, with models we can explore systematically the
effects of manipulations such as variations in cortical architecture (e.g.,
hemispheric vs. ‘‘monolithic’’ brain models, Shillcock & Monaghan, 2001),
variations in processing resources (e.g., variations in number of hidden,
Plaut et al., 1996), variations in the environment (e.g., What if our parents
were cans, cups, or books instead of humans? i.e., Is there something special
about face expertise versus visual expertise in general? Joyce & Cottrell, 2004;
Sugimoto & Cottrell, 2001; Tong et al., 2008), or variations in brain damage
within the very same ‘‘brain’’ (e.g., Hinton & Shallice, 1991; Plaut et al., 1996;
Plunkett & Juola, 1999).

Models allow us to explore the effects of a far denser space of potential
brain lesions and brain damage than possible with our limited neuropsycho-
logical samples. Extremely rare disorders seen in single cases may be attribu-
table to the tails of a distribution of cases seen in an extremely large sample of
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possible cases (e.g., Thomas & de Wet, 1998). Or extreme cases may corre-
spond to behaviorally distinct regimes. For example, Plunkett and Juola
(1999) showed by lesioning their model of past tense formation that one
could get behavior that appeared as if ‘‘the rule system’’ was broken, and
other behavior that appeared as if ‘‘the rote memory system’’ was broken,
even though their model had neither of these components. Such behavioral
dissociations and double dissociations are often interpreted as evidence for
modules that map directly onto the particular behaviors that are preserved or
damaged. However, while modular accounts certainly do predict dissocia-
tions and double dissociations, models (combined with simple logic) show
that the arrow of implication only goes in one direction: observing dissocia-
tions and double dissociations does not imply a modular organization
(Palmeri & Flanery, 2002; Palmeri & Gauthier, 2004; Plaut, 1995;
Plunkett & Juola, 1999; Thomas & de Wet, 1999). Only by having an explicit
computational model is it possible to explore how brain damage might affect
behavior by breaking the model in various ways (e.g., Dailey & Cottrell,
1999), providing a more comprehensive theoretical account of the deleter-
ious effects of brain damage and mental illness on behavior (e.g., Treat
et al., 2007).

Models Can Be Analyzed in Ways People (and Animals) Cannot

For example, in neurocomputational models, one can perform single-cell
recordings from ‘‘birth’’ to ‘‘death’’ and fully map out the receptive and
projective fields of every unit in the network. We can selectively ablate and
restore parts of the network, even down to the single-unit level, to assess their
contribution to processing. We can measure responses at different layers of
processing to find the best match to human data (e.g., which level accounts
for a particular judgment: perceptual processing, object representation, or
categorization, Dailey et al., 2002). In general, with any model, we can
analyze the interactions between components at a level of detail unavailable
in biological preparations.

In this way, models can also generate new theories, in that they may allow
the theorist to see formal relations between different aspects of behavior that
might not be obvious at first blush (e.g., Logan, 2004). We also remark here
that models that are formalized to account for data from one domain can
often be extended to apply to data from other domains. Indeed, one might
argue that such generalization is the hallmark of a ‘‘good’’ model. As we will
see in this chapter, some models of face and object processing can be
extended to perceptual expertise more generally (e.g., Joyce & Cottrell,
2004). Models of categorization, identification, and automaticity have also
been combined into a more general model of perceptual categorization and
perceptual expertise (see Palmeri et al., 2004).

Of course, modeling is not all wine and roses. One common criticism of
models goes something like ‘‘with enough parameters to tweak, a model can
predict anything.’’ This is a valid criticism when a model has too many free
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parameters relative to the number of degrees of freedom in the data. And too
many free parameters can also risk overfitting, where the model accounts not
only for stable quantitative and qualitative effects, but also the random
variability—the ‘‘noise’’—in the data as well. In addition, it’s true that just
as underspecified verbal theories are unfalsifiable, underspecified or weakly
constrained computational models risk being unfalsifiable as well. The source
of this common criticism may partly stem from the way modeling results are
commonly portrayed in the literature. Often the focus is on a particular
parameterization of a particular model that fits a particular pattern of
observed data. In that sense, these are often more like cases of ‘‘postdiction’’
rather than prediction (e.g., Roberts & Pashler, 2000), or at least they can be
(perhaps falsely) interpreted that way. On the one hand, demonstrations of
the sufficiency of a particular formal model can be important in showing that
a hypothetical mechanism can work, even if that mechanism seems counter-
intuitive at first blush. On the other hand, demonstrating sufficiency is only
the first step.

The fact that most models have free parameters doesn’t mean that those
models are unconstrained. Models may produce similar qualitative predic-
tions for a wide range of (plausible) parameter values, demonstrating that the
pattern of behavior is inherent in the model structure rather than in a specific
choice of parameter values (e.g., Johansen & Palmeri, 2002; Pitt, Kim,
Navarro, & Myung, 2006). Sometimes model parameters can be chosen a
priori to have values that correspond to a range of values that have been
measured, either through neurophysiology, psychophysics, or scaling tech-
niques (e.g., Boucher et al., 2007; Nosofsky, 1992b). Specific parameter
values may also be chosen because they can be shown to be optimal in
some way (Nosofsky, 1998). Parameter-free predictions can also be generated
by first fitting the model to one part of the data, such as training data in the
case of learning models, and then model predictions with fixed parameters
can be compared to observed data that are outside the range of the training
data (e.g., Busemeyer & Wang, 2000; Dailey et al., 2002). It’s up to the
modeler to go through these extra steps.

Perhaps more vexing is that multiple models can produce the same
behavior; indeed, there are an infinite number of possible models that can
produce the same input–output behavior (Moore, 1956). This is where
model selection, and even model competition, may come in. One criterion
is to select models based upon an application of Ockham’s razor—simpler
models that account for the data are to be preferred to more complex ones.
Complexity can be measured in, for example, the number of parameters of
the model, or models may be nested within one another. Various statistical
tests can weigh whether additional complexity leads to a significantly better
account of the data. While as a first-order approximation, the more con-
straints there are on a model’s parameters, or the fewer free parameters a
model has, the simpler the model is, in actuality, quantifying model flexibility
and model falsifiability can get quite complicated (e.g., see Pitt et al., 2002).
If competing models are of comparable complexity, and they account for the
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same set of data, then the models must be weighed on the basis of their
predictions. Some of the best modeling work adopts a strong inference
approach (Platt, 1964) by designing critical experiments that contrast the
predictions of competing models (e.g., Ashby & Waldron, 1999; Nosofsky &
Palmeri, 1997).

MODELS OF OBJECT PROCESSING

One approach to developing a model of perceptual expertise is to first turn to
models of generic object processing and ask how those models might account
for the development of perceptual expertise after the right kind and the right
amount of learning has taken place. Of course, this assumes that perceptual
expertise can be seen as the end point of the trajectory of normal learning,
which need not be the case. However, if we can do so without making any
additional assumptions, then by Ockham’s razor, we should. In this section,
we begin by briefly describing the problems that models of object processing
try to solve. We then turn to a number of extant models of object processing
and discuss how those models might account for the development of percep-
tual expertise.

How do we know that an object is the same object we have seen before? Or
at least how do we know that it is the same kind of an object that we have seen
before? At first glance, what could be simpler? We just open our eyes and we
know what things are and whether we recognize them or not. Of course, these
naı̈ve intuitions belie the tremendous computational challenges facing our
visual system with every glance at the world around us. The dynamic, ever-
changing world conspires to present a dramatically different stimulus to our
eyes, even though the very same physical object may be present in front of us.
Somehow, our visual system overcomes this tremendous variation in visual
information to create a stable perception of the world. Three-dimensional
objects seem stable as we move around, as objects move around, and as the
lighting changes. But how does the visual system allow us to perceive this
stability when the two-dimensional images falling onto our retinae are
changing so dramatically? This is known as the invariance problem.

Almost all solutions to the problem of visual object recognition begin by
generally characterizing visual processing as a form of dimensionality reduc-
tion. The retinal representation has extremely high dimensionality in that
each of the 120 million or so photoreceptors can (semi) independently
encode a different local aspect of the visual scene. The visual system trans-
forms this high-dimensional stimulus representation into the activation of a
million nerve fibers. While this is hardly low dimensional, it is relative to the
dimensionality of the retinal stimulation. However, once the cortex is
reached, the dimensionality increases again, around 100-fold. This high-
dimensional representation allows the cortex to extract many independent
features from the input that are relatively sparse (meaning, a small fraction of
the neurons fire) and distributed. These independent features are then used
to recognize objects. Different theories propose varying solutions to the
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problem of creating a low-dimensional object representation, differing
markedly in the form of that representation, and in how great a dimension-
ality reduction is assumed. Most stop there and do not consider the dimen-
sionality expansion that occurs (although ongoing work on ‘‘overcomplete’’
independent components analysis is suggesting ways this might be done).

Some of the earliest models of object processing assumed that the funda-
mental goal of vision was to create a faithful description of the objects in the
world, in a sense reconstructing the three-dimensional structure of objects
and their spatial relations within visual representations. One of the most
intuitive proposals for constructing such representations, originally put forth
by Marr and Nishihara (1978; Marr, 1982), assumes that every given object
can be described in terms of generic three-dimensional primitives and their
spatial relations. This idea was adopted by Biederman (1987) and imple-
mented as a neural network simulation by Hummel and Biederman (1992),
in the ‘‘recognition-by-components’’ (RBC) theory. RBC assumes a small
vocabulary of three-dimensional primitives called ‘‘geons’’ and specifies the
rules, based upon ‘‘viewpoint invariant properties’’ for extracting geons from
images (see Figure 7.1). The key idea is that the geons have properties that are
invariant to some distortion and viewing angle, thereby directly addressing
two of the twin challenges facing vision. This represents an extreme dimen-
sionality reduction: different views of an object and different exemplars
within an object class all map onto the same configuration of three-dimen-
sional geon primitives.

Figure 7.1 Recognition-by-
components (Biederman, 1987;
Hummel & Biederman, 1992)
assumes that a retinal image is
initially described in terms of its
edges. A variety of nonaccidental
primitive features are extracted
from this edge description, such
as ‘‘L’’ junctions, ‘‘Y’’ junctions,
and other properties.
Combinations of various
viewpoint-invariant primitives
signal the presence of one of the
small number of geons.
Viewpoint-invariant object
recognition involves
recognizing the particular
combination and relative
configuration of the viewpoint
invariant geon representations
extracted from a complex object.
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In the context of RBC, any basic-level visually defined category may be
uniquely represented by a small subset of geons in particular spatial config-
urations. For example, a wide variety of birds are made up of roughly the
same parts—head, body, wings, beak—perhaps with the exception of atypical
birds like penguins. The problem of basic-level categorization is solved
because all birds map onto the same structural description. Of course, if
these structural descriptions lack metric information about the relative sizes
of geons and the quantitative location of geons with respect to one another,
which early versions of RBC did, then within-category discrimination is
nearly impossible. That is, if one believes that visual expertise is just an end
point of normal object recognition, it is unclear how this theory could be
generalized to that situation. More recent versions have added a separate
pathway for metric information in order to solve the problem of face recog-
nition, but the evidence for two distinct recognition pathways in the brain is
weak or nonexistent. In any case, it is unclear how such a model would
account for any of the phenomena of perceptual expertise.

These structural description models have been challenged based on other
objections (e.g., Edelman, 1997, 1999). Specifically, a variety of laboratories
have shown that object recognition depends on experience with particular
views of an object (e.g., Bülthoff & Edelman, 1992; Tarr, 1995; Tarr & Pinker,
1989). Viewpoint-invariant recognition derives from experience with mul-
tiple views (Tarr, Kersten, & Bülthoff, 1998), not because object representa-
tions are inherently viewpoint independent, as suggested by RBC and its
variants. These and other results led to an alternative class of object proces-
sing models based on stored representations of previously experienced views
of objects (see Figure 7.2). These theories often begin with a very different
assumption of the goals of vision. Rather than assuming that we need to
reconstruct the three-dimensional world inside our heads, view-based
approaches typically stress the importance of generalization from past to
present experiences (Edelman, 1999; Shepard, 1994). Considering that we are
vanishingly unlikely to ever experience the same situation twice, and that
similar objects often give rise to similar consequences, survival demands that
we recognize the similarities (Shepard, 1987). So one solution is to create
representations that preserve the similarity structure between objects even if
those representations do not encode three-dimensional structure explicitly
(Edelman, 1999).

View-based models solve the problem of viewpoint invariance by general-
izing according to the similarity between the current representation of an
object and the stored representations of objects in memory, without any need
for explicit image transformations (e.g., Poggio & Edelman, 1990;
Reisenhuber & Poggio, 1999; Serre, Oliva, & Poggio, 2007). Models of this
sort account well for experimental patterns of interpolation between learned
views and limited extrapolation beyond learned views (Bülthoff & Edelman,
1992; Edelman & Bülthoff, 1992). The most recent instantiations of view-
based models (e.g., Jiang et al. 2006; Reisenhuber & Poggio, 1999, 2000)
incorporate a number of neurobiological constraints in terms of

9780195309607_0197-0244_Gauthier_GAUT_Ch07 10/7/2009 16:59 Page:208

OUP s UNCORRECTED PROOF

208 Perceptual Expertise



computations that are performed and the hierarchy of transformations
performed by earlier stages of visual processing (illustrated later in Figure
7.9). One of the appealing aspects of using similarity as a means to invariance
is that the same kind of mechanism can account for how we generalize across
both viewing and category variation (more on the latter later). While invar-
iance over view can be achieved by encoding multiple views of individual
objects, invariance over kind can be achieved by encoding multiple views of
multiple objects of that kind. Given sufficient views of objects from multiple
classes, both view and class invariance can be achieved.

Unlike the RBC model, view-based models can be naturally extended to
account for aspects of perceptual expertise. For example, if one has a lot of
experience with certain classes of objects, for example, faces, the model would
store many representations of views of the same face. This dense representa-
tion would clearly lead to the ability to finely discriminate between faces,
while discrimination would be poorer for the more sparse representations of
other objects (Palmeri et al., 2004). Thus, view-based accounts provide a
language for thinking about the kind of perceptual learning that takes place
with expertise. Perceptual experts are better able to visually discriminate
between objects within their domain of expertise, even if those objects are
unfamiliar (Tanaka, Curran, & Sheinberg, 2005). To the extent that experts
have learned a wide range of views from a wider range of objects, they have a
larger ‘‘vocabulary’’ of stored images from which to encode a new shape and
represent its similarity to other objects. But the extent of this increase in

Figure 7.2 View-based models assume that objects are represented in terms of stored
views. Interpolation to new views differing from experienced views in terms lighting,
viewpoint, and other factors is based on similarity to stored views. In the model
illustrated in the figure, an input image is matched against the stored views depicted
for three different objects. The output depends on what the model is trained to
reproduce. It can be trained to generate a canonical view of an object plus
information about the pose of the viewed image (e.g., Poggio & Edelman, 1990). Or
it can be trained to categorize, identify, or recognize the viewed image.

9780195309607_0197-0244_Gauthier_GAUT_Ch07 10/7/2009 16:59 Page:209

OUP s UNCORRECTED PROOF

Modeling Perceptual Expertise 209



perceptual discriminability is limited to the range of objects experts have had
experience with (Gauthier & Tarr, 1997), and view-based models naturally
account for the limited extrapolation beyond the experienced set (see also
Palmeri, 1997).

Models like this can account for perceptual speedups by assuming an
inverse relationship between response time and categorization certainty,
with certainty proportional to the density of the (correctly labeled) repre-
sentations2. Furthermore, if the label stored with the representations corre-
sponds to the subordinate level, this would also account for the entry level
shift with expertise, as the density of subordinate-level representations would
be greater than category-level ones. Also, it is clear that if most representa-
tions are in a canonical orientation, then inversion effects should fall out of
the representation. It is less clear how they would account for the difference
in interference patterns between novices and experts, the shift from rule-
based behavior to similiarity-based, or fMRI results showing the use of
similar regions of cortex for different areas of expertise. Finally, if a view-
based model uses full-image representations, then it would seem that all
objects should show holistic responses, not just objects of expertise.

Ullman, Vidal-Naquet, and Sali (2002; Ullman, 2007) suggested an
alternative model of object processing that in some sense combines ele-
ments of structural description models and view-based models. They
showed that view-based features of ‘‘intermediate complexity’’ best account
for basic-level classification, where the particular features and their size
were determined by the mutual information between the patch and the
category label (see Figure 7.3). For faces, these features might include what
we would generally call the ‘‘parts’’ of a face such as the eyes, nose, or mouth,
and for a car these might include ‘‘parts’’ like the wheel or the driver’s side
window. It is important to emphasize that these are not parts in any way like
geons are parts. These are viewpoint-dependent view-based fragments.
They are generally not full images, although full-image representations
can be part of the suite of image features. Moreover, spatial relationships
between these parts are not explicitly encoded, but if the local context is
preserved and local features overlap, there is an implicit representation of
configural information. So generic object recognition at the basic level may
be view based, and it need not depend on full images of objects. Moreover, it
is tempting to speculate about the relationship between these view-based
fragments and the kinds of ad hoc feature sensitivities seen in neurons in
TEO (Tanaka, 1996, 2002; see also Serre et al., 2007). Neither correspond
directly to what we might typically think of as a distinct object part, or to
anything like a geon.

2
Ultimately, of course, any complete account of the time-course of perceptual expertise

demands models that incorporate true temporal dynamics, not simply correlating time with

some other nontemporal measure.

9780195309607_0197-0244_Gauthier_GAUT_Ch07 10/7/2009 16:59 Page:210

OUP s UNCORRECTED PROOF

210 Perceptual Expertise



Fi
g

u
re

7
.3

Il
lu

st
ra

ti
o

n
o

f
vi

ew
-b

as
ed

vi
su

al
fe

at
u

re
s

o
f

in
te

rm
ed

ia
te

co
m

p
le

xi
ty

m
ax

im
iz

e
d

el
iv

er
ed

in
fo

rm
at

io
n

w
it

h
re

sp
ec

t
to

a
b

as
ic

-l
ev

el
ca

te
go

ry
o

f
o

b
je

ct
s.

T
h

e
fi

gu
re

sh
o

w
s

ex
am

p
le

s
o

f
fa

ce
fr

ag
m

en
ts

an
d

ca
r

fr
ag

m
en

ts
(a

d
ap

te
d

w
it

h
p

er
m

is
si

o
n

fr
o

m
S.

U
ll

m
an

,M
.V

id
al

-N
aq

u
et

,&
E

.S
al

i,
20

02
,

‘‘V
is

u
al

fe
at

u
re

s
o

f
in

te
rm

ed
ia

te
co

m
p

le
xi

ty
an

d
th

ei
r

u
se

in
cl

as
si

fi
ca

ti
o

n
,’’

N
a

tu
re

N
eu

ro
sc

ie
n

ce
,

5(
7

)
�

20
02

N
at

u
re

P
u

b
li

sh
in

g
G

ro
u

p
).

Z
h

an
g

an
d

C
o

tt
re

ll
(2

00
5)

fo
u

n
d

so
m

ew
h

at
la

rg
er

an
d

m
o

re
co

m
p

le
x

vi
ew

-b
as

ed
vi

su
al

fe
at

u
re

s
fo

r
su

b
o

rd
in

at
e

id
en

ti
fi

ca
ti

o
n

.

9780195309607_0197-0244_Gauthier_GAUT_Ch07 10/7/2009 16:59 Page:211

OUP s UNCORRECTED PROOF

211



The approach proposed by Ullman et al. (2002) was intended to be a
solution to basic-level classification—classifying an object as a face or a car—
not more subordinate-level classifications—classifying an object as Barack
Obama or a Toyota Prius. But recently, Zhang and Cottrell (2005) extended
this approach to discover the image features that have maximal informative-
ness for subordinate-level classification. What they found was that these
image features were larger and more complex than the features Ullman
et al. reported for basic-level classifications. For example, for face individua-
tion, these features included an eye and a nose, or an eye with part of the nose
and mouth. Thus, it is possible that accounting for the emergence of config-
ural and holistic effects with expertise requires assembling hierarchies of
features, not simply relating them in a single level of spatial relations (e.g.,
Gauthier & Tarr, 2002; Maurer, Le Grand, & Mondloch, 2002). Holistic
effects emerge with perceptual expertise as larger and more complex view-
based fragments, or even entire images, are learned.

MODELS OF PERCEPTUAL CATEGORIZATION

To recognize an object is to decide that its perceptual representation is
similar to an object representation created and stored during some previous
experience with that object. But to identify or categorize an object, its
perceptual representation must be compared with a knowledge representa-
tion that summarizes what is known about the identity or category of that
object. Ultimately, models of object processing and models of perceptual
categorization both aim to explain how people recognize, identify, and
categorize objects. But whereas models of object processing typically empha-
size the nature of the perceptual representations created by high-level vision,
models of perceptual categorization have focused more on the nature of the
knowledge representations and decision processes underlying recognition,
identification, and categorization (Palmeri & Gauthier, 2004). Perceptual
categorization models often begin with relatively simplified assumptions
about how objects are represented, commonly assuming that objects are
represented in a multidimensional psychological space (Ashby, 1992) with
visually similar objects close together in that space and visually dissimilar
objects far apart in that space (similar multidimensional representations
were adopted by ‘‘face space’’ theories discussed in the next section, e.g.,
Valentine, 1991). These multidimensional object representations are not
chosen arbitrarily in a post hoc manner; they are typically derived a priori
from known psychophysical mappings between physical and psychological
dimensions or using various psychological scaling techniques (e.g., Nosofsky,
1992b). So while object processing models differ in how objects are percep-
tually represented, categorization models often assume the same multidi-
mensional perceptual representations of objects. Categorization models
differ in how knowledge about an object’s identity and category
are represented.
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One key dimension on which categorization models differ is the abstrac-
tion of the category representations. A hallmark of visual cognition is gen-
eralization; even young children know when two visually similar but distinct
objects are members of the same category. One solution to the problem of
generalizing from specific experiences is to create knowledge representations
that are themselves abstract generalizations. An early solution was to assume
that conceptual knowledge is organized into abstract semantic networks or
conceptual hierarchies (Anderson, 1976; Collins & Quillian, 1969) that link
one kind of thing with another kind of thing. In a related vein, early theories
assumed that people learn new categories by forming abstract logical rules,
and research focused on what kinds of rules people found more or less
difficult to learn (e.g., Bruner, Goodnow, & Austin, 1956; Hunt, Marin, &
Stone, 1966; see also Goodman, Tenenbaum, Feldman, & Griffiths, 2008;
Nosofsky & Palmeri, 1998). Subsequent research instead assumed that people
learned abstract category representations based on prototypes—statistical
central tendencies of experienced category exemplars—rather than rules
(e.g., Homa, 1978; Minda & Smith, 2000; Posner & Keele, 1968; Reed,
1972). Both rule-based and prototype-based theories assume that because
category knowledge can be applied abstractly, the underlying category
knowledge representations must themselves be abstract (Figure 7.4).

This solution is similar to the solution to the invariance problem in object
recognition proposed by Biederman (1987). Objects differ in viewpoint. RBC
achieves viewpoint invariance by constructing abstract perceptual represen-
tations that are invariant over object view. Objects from the same category
look different. Prototype and rule models achieve class invariance by con-
structing abstract category representations that are invariant over category
instance. But in the same way that view-based models of object processing
can achieve viewpoint invariance using viewpoint-dependent representa-
tions (Bülthoff & Edelman, 1992; Poggio & Edelman, 1990; Tarr & Pinker,
1989), so-called ‘‘exemplar-based’’ models of categorization can achieve class
invariance using instance-specific representations (Hintzman, 1986;
Medin & Schaffer, 1978; Nosofsky, 1984); both ‘‘views’’ and ‘‘exemplars’’
are representations tied to specific object experience. Computationally,
there is a common solution to recognizing an object from a novel viewpoint
and categorizing a novel instance of a category using experience-specific
representations (Edelman, 1999).

As the name implies, exemplar models of categorization assume that
categories are represented in terms of the specific exemplars that have been
experienced. The perceptual representation of an object to be classified
activates these stored exemplars depending on its similarity to those exem-
plars, with similarity a decreasing function of distance in multidimensional
psychological space. The probability of classifying the object into a particular
category depends on how similar it is to exemplars of that category relative to
its similarity to exemplars of other categories (for details see Kruschke, 1992;
Lamberts, 2000; Medin & Schaffer, 1978; Nosofsky, 1984; Nosofsky, 1992a).
Exemplar models naturally account for many phenomena thought to
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demonstrate the formation of abstract rules or prototypes (e.g., Busemeyer,
Dewey, & Medin, 1984; Hintzman, 1986; Nosofsky, 1986; Shin & Nosofsky,
1992); for example, category prototypes are well classified because they are
similar to many stored exemplars, without any need to additionally store an
abstracted prototype explicitly (Palmeri & Nosofsky, 2001). A large body of
research demonstrated the theoretical success of exemplar-based models in
accounting for a range of categorization and related phenomena (e.g., Estes,
1994; Kruschke, 1992; Lamberts, 1995, 2001; Nosofsky, 1988; Nosofsky &
Palmeri, 1997; Figure 7.5 illustrates the formal relationships between various
models). Computationally, the exemplar representations in many exemplar
models of categorization (e.g., Kruschke, 1992) are quite similar to the view
representations in view-based models of object processing (e.g., Poggio &
Edelman, 1990; Riesenhuber & Poggio, 1999). 3 As such, exemplar models of

Figure 7.4 Illustration of rule-based, prototype-based, and exemplar-based
category representations. Verbal rules for categorizing edible chanterelle from
similar nonedible or even poisonous mushrooms can be quite complex (top row).
As an illustration of a simple one-dimensional rule, the space of objects is carved into
those defined by the rule in gray shading and everything else (bottom row). The most
prototypical chanterelle (top row) would be an average of experienced exemplars.
The prototype lies in the center of the space of category examples, with the
generalization gradient around the prototype defining the typicality (bottom row).
Knowledge of chanterelles can also be represented by the range of examples that have
been experienced (top row). Categorization is determined by the similarity to stored
exemplars in the space of possible objects (bottom row).

3
Exemplar models have also recently been shown to be computationally similar to certain

popular machine learning algorithms (Jäkel, Schölkopf, Wichmann, 2007, 2008).
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categorization share many of the same qualities—and shortcomings—of
view-based models of object processing in terms of accounting for core
phenomena of perceptual expertise as described in the last section.

Some defining characteristics of perceptual expertise entail comparisons
between categorization and subordinate-level identification. On the one
hand, categorization and identification seem diametrically opposed, with
identification highlighting discrimination between stimuli and categoriza-
tion rendering discriminable stimuli equivalent. Indeed, early work by
Shepard and colleagues (Shepard & Chang, 1963; Shepard, Hovland, &
Jenkins, 1961) suggested that the same exemplar generalization mechanism
could not account jointly for categorization and identification performance.
But Nosofsky (1984, 1986, 1987) showed how exemplar models could

Figure 7.5 A family tree expressing the relations between a class of computational
models over time. Models connected by solid lines have formal mathematical
relationships. Models connect by dotted lines share computational principles.
Important aspects of the development of perceptual expertise can be explained by
conjoining aspects of rule-based categorization models like RULEX, theories of
automaticity like instance theory, and exemplar-based categorization models like
EBRW. These models also bear important formal relations to models of visual
attention like ITAM. SCM = similarity choice model (Luce, 1959; Shepard, 1957);
context model (Medin & Schaffer, 1978); GCM = generalized context model
(Nosofsky, 1984, 1986); instance theory (Logan, 1988; Poggio and Edelman, 1990);
TVA = theory of visual attention (Bundesen, 1990); ALCOVE = attention learning
COVEring theory (Kruschke, 1992); RULEX = RULe-plus-EXception model
(Nosofsky, Palmeri, & McKinley, 1994); EBRW = exemplar-based random walk
model (Nosofsky & Palmeri, 1997; Palmeri, 1997); ECTVA = executive control of
TVA (Logan & Gordon, 2001); ITAM = instance theory of attention and memory
(Logan, 2002).
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naturally account for both kinds of decisions using the same exemplar
representations. The key insight was that exemplar generalization could be
task dependent, unlike the task-independent exemplar generalization
assumed by Shepard. Specifically, Nosofsky assumed that some psychological
dimensions could be weighted more heavily than others depending on their
diagnosticity for categorization (see also Kruschke, 1992; Lamberts, 2000;
Nosofsky & Kruschke, 1992). Whereas all dimensions may be important for
discriminating objects for purposes of identification, certain dimensions may
be more (or less) relevant than others for categorizing objects; this makes
exemplars that differ along nondiagnostic dimensions more similar than
exemplars that differ along diagnostic dimensions. In addition to accounting
for relations between identification and categorization, this dimensional
weighting (called ‘‘dimensional selective attention’’ in these models) is neces-
sary for exemplar models to account for the time course of learning cate-
gories; models without dimensional weighting have difficulty accounting for
category learning (Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994;
Nosofsky & Palmeri, 1996). Many models of object processing (e.g.,
Riesenhuber & Poggio, 1999) also lack this dimensional weighting and
assume task-independent generalization (Jiang et al., 2007), so it is quite
possible that they will be unable to account for the full gamut of object
categorization data either.

The flexibility imbued by dimensional selective attention in exemplar
models seems to fly in the face of the limits on selective attention seen with
perceptual expertise. While novices can attend selectively to part of a com-
plex object, experts show interference from variation in an irrelevant part.
Experts represent objects holistically. Perhaps what’s key to resolving this
paradox is that most experiments demonstrating holistic processing have
made irrelevant (temporarily) a part of an object that has always in the past
been diagnostic for identification or categorization. From a subject’s per-
spective, for decades both the top and bottom parts of a face have been
important for face recognition; for car experts both the top and the bottom of
a car have always been relevant for telling apart car models. Now in the
experiment, they are told that the bottom is no longer relevant for some
decision they are asked to do (for the next few minutes). Like novices they are
able to do the task, and attend to the top while ignoring the bottom.
However, selective attention is never perfect, especially for spatially contig-
uous parts. Decades of experience have caused long-term exemplar repre-
sentations of faces or cars to include both the top and the bottom because
both parts are critical to successful identification or categorization of faces or
cars. So even a small failure to ignore the irrelevant part can end up having a
large effect on observed behavior, manifested by an interference by the
irrelevant part for experts. It’s likely that the flexibility in selective attention
cannot override extensive past experience that has created more permanent
representations (see Gauthier & Palmeri, 2002; Palmeri et al., 2004), but this
dynamic in exemplar models between extensive past experience and current
task demands has not yet been fully explored.
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Understanding dynamics has to play a key role in fully understanding
perceptual expertise. Experts are fast. Several core features of perceptual
expertise involve significant speedups in processing. Unlike many other
models of categorization and object processing, exemplar-based models of
categorization have taken time seriously (e.g., Cohen & Nosofsky, 2003;
Lamberts, 2000; Logan, 1988; Nosofsky & Palmeri, 1997; Palmeri, 1997; see
also Ashby et al., 2007). These models make specific assumptions about the
time for perceptual processing, the time it takes to match perceptual repre-
sentations with stored representations in memory and how those times
change with experience, and the time to accumulate evidence from these
matches in order to make rapid perceptual decisions.

For example, the exemplar-based random walk (EBRW) model
(Nosofsky & Palmeri, 1997; Palmeri, 1997) assumes that when an object is
presented, its perceptual representation is used as a probe of stored exem-
plars. These stored exemplars race to be retrieved with rates proportional to
their similarity to the presented object. The winning exemplar provides
incremental evidence for a particular categorization decision. Retrieval is
noisy, so multiple exemplar retrievals are needed to obtain reasonably accu-
rate decisions. The results of these multiple retrievals are accumulated over
time, with each potential decision associated with a different accumulator.
Whichever accumulator reaches its threshold first determines which decision
is made and when it is made. EBRW is a member of a family of stochastic
(noisy) accumulator models (random walk models and diffusion models)
that provide excellent accounts of things like speed–accuracy tradeoffs and
shapes of response time distributions (e.g., Ratcliff, 1978; Ratcliff & Rouder,
1998), and these models appear to have some grounding as the neural basis of
perceptual decisions (Boucher et al., 2007; Schall, 2004; Smith & Ratcliff,
2004). What distinguishes EBRW from more general diffusion-type models
is that it provides a specific theory of the evidence that drives the stochastic
accumulation of evidence to a threshold.

Objects that are hard to categorize, because they are similar to objects in
other categories, are categorized slowly. According to EBRW, confusable
objects will tend to retrieve objects from multiple competing categories,
causing a stochastic accumulation that vacillates between competing alter-
natives, causing longer response times. But even difficult-to-categorize
objects will be categorized more quickly and more accurately as people
develop perceptual expertise. EBRW assumes that with more and more
experience with exemplars, more and more exemplar information is stored
in memory (Logan, 1988). As more exemplar information is stored in
memory, the right exemplars are retrieved (Lamberts, 2000; Nosofsky &
Alfonso-Reese, 1999). Exemplar retrieval also takes place ever more rapidly.
More rapid retrieval causes more rapid accumulation of evidence to a
threshold and faster decisions. EBRW naturally accounts for the ubiquitous
power law of learning observed throughout the skill learning and expertise
literatures (Logan, 1988, 1992; Newell & Rosenbloom, 1981; Palmeri, 1997;
but see Heathcote et al., 2000; Palmeri, 1999; Rickard, 1997). With the
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sharpening of exemplar representations that comes with experience
(Nosofsky, 1987), EBRW naturally accounts for the relative speedups in
basic-level categorization versus subordinate-level identification seen over
the development of perceptual expertise. The entry-level shift with expertise
emerges directly from quantitative changes in exemplar representations
rather than any qualitative shift in processing strategies (Mack et al., 2007;
Palmeri et al., 2004).

While exemplar models have provided compelling accounts of a range of
phenomena, there has been growing interest in reexamining the potential
role of more abstract forms of category representation, such as rules or
prototypes (but see Nosofsky & Johansen, 2000). Various hybrid theories
(see Figure 7.6

AQ1

) have been proposed that involve mixtures of rules and
exemplars (e.g., Anderson & Betz, 2001; Erickson & Kruschke, 1998;
Johansen & Palmeri, 2002; Noelle & Cottrell, 1996; Nosofsky, Palmeri, &
McKinley, 1994; Palmeri, 1997; Smith, Patalano, & Jonides, 1998; Thomas,
1998), prototypes and exemplars (e.g., Anderson, 1990; Love, Medin, &

Figure 7.6 An illustration of a broad class of categorization models (e.g., Ashby
et al., 1998; Erickson & Kruschke, 1992; Johansen & Palmeri, 2002; Kruschke, 1992;
Nosofsky & Palmeri, 1997; Palmeri, 1997). Objects are represented along multiple
perceptual dimensions and features (Perceptual Representation). Categories can be
represented using exemplars or rules. Along the exemplar route, dimensions can be
selectively attended according to their diagnosticity (e.g., Gauthier & Palmeri, 2002;
Kruschke, 1992). As such, exemplars are activated according to their similarity to the
presented object, but with diagnostic dimensions carrying more weight than
nondiagnostic dimensions (Nosofsky, 1984). Depending on the model, exemplars
are associated with learned categories by weights tuned using Hebbian or error-
driven learning mechanisms. Categorization decisions can be driven by a variety of
accumulation of evidence models (e.g., Nosofsky & Palmeri, 1997; Smith & Ratcliff,
2004). A variety of processes can be used to resolve the competition between rule-
based and exemplar-based categorization decisions.
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Gureckis, 2004; Smith & Minda, 1998), and various kinds of linear and
nonlinear decision boundaries (e.g., Ashby, Alfonso-Reese, Turken, &
Waldron, 1998; see also Ashby, Ennis, & Spiering, 2007). Let us consider
the possible interplay between abstract knowledge and more specific knowl-
edge as it might play out in a domain of perceptual expertise. We can imagine
that a novice searching the woods for prized Chanterelle mushrooms must
refer to a set of fairly complex rules for telling them apart from many visually
similar, yet quite poisonous species, such as the Jack O’Lantern mushroom
(Phillips, 1991). Although these rules may become internalized, categorizing
mushrooms as edible versus poisonous (without requiring reference to a field
guide) may still appear to involve deliberate use of explicit rule-based knowl-
edge. With experience, however, a mushroom gatherer eventually seems to
shift from this potentially slow, deliberate, attention-demanding mode of
categorizing to a far more rapid and automatic mode of processing that
seems to characterize more expert-like performance (it’s likely that after
finding the mushroom at a glance, they may still check whether they are
correct by using the well-known rules since the consequences of misclassifi-
cation could be dire). Understanding the kinds of representational changes
that allow someone to become a skilled mushroom gatherer who can recog-
nize the prized Chanterelle so quickly and effortlessly without needing to
make recourse to explicit rules is a key question of perceptual expertise. These
hybrid categorization models have attempted to explicitly understand these
changes in category knowledge.

One way of thinking about these shifts is to view categorization as just
another domain in which people develop cognitive skills with experience.
According to Logan’s (1988) instance theory, automaticity in a range of skills
is attributed to a shift from strategic and algorithmic processes, such as the
use of explicit rules, to the retrieval of exemplars from memory. Automaticity
is a memory phenomenon. Exemplars are memories. Could such shifts
characterize the development of expertise in perceptual categorization
whereby people initially use simple rules to categorize objects but eventually
come to rely on similarity-based retrieval of exemplars? Palmeri (1997, 1999;
see also Palmeri et al., 2004) found evidence for shifts from rules to exemplars
in a paradigm in which subjects were supplied an explicit rule for initially
classifying objects into different categories. In a different paradigm, Brooks
and colleagues (Allen & Brooks, 1991; Regehr & Brooks, 1993) found evi-
dence for intrusions of similarity-based retrieval even when subjects were
supplied an explicit categorization rule. But in many experimental paradigms
and in many real-world situations, people are not supplied categorization
rules prior to learning about categories of objects. Johansen and Palmeri
(2002) found that in situations where no explicit rule is provided, people still
seem to adopt an analytic strategy of developing simple rules at the outset of
category learning. However, over the course of learning, these rules even-
tually give way to processes more akin to similarity-based exemplar retrieval.
According to this view, because much of expert performance is based on
similarity, generalization to new objects can be rather limited. Experts may
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sometimes be able to turn to rules when exposed to truly novel objects in
novel situations, but then performance may not have the automaticity and
fluency that often distinguishes experts from novices.

MODELS OF FACE RECOGNITION

Much of the research described throughout this volume begins with the
hypothesis that what makes faces special is not that they are faces per se,
but that faces are a domain of perceptual expertise; needless to say, this is seen
as a controversial hypothesis by some researchers (Farah et al., 1998;
McKone, Kanwisher, & Duchaine, 2007; Robbins & McKone, 2007), as
addressed in some detail in other chapters. Starting with the hypothesis
that expert face processing shares important computational principles with
other domains of perceptual expertise, models of face processing and face
recognition can be a fruitful starting point for a computational under-
standing of other domains of perceptual expertise. Face recognition differs
from common object recognition in the type of problem: object recognition
typically requires ignoring within-class variability, in order to recognize all of
the variants of a class, while face recognition requires paying a great deal of
attention to within-class variability, because that is the signal that separates
the individual members of the class. One could therefore imagine treating
face recognition as another type of object recognition, just one level down the
hierarchy of objects, but in this case, all of the objects share overall shape and
parts. This is what makes the classic RBC theory far from able to account for
expertise.

We will begin this section by describing some classic and more recent
models of face recognition and then turn to work that makes direct links
between face recognition and other kinds of expert recognition within the
same general processing architecture.

There are at least three kinds of face recognition models: psychological
models, computer vision models, and models that try to combine these
approaches to generate computational cognitive models of face recognition.
Within the latter class, there are models that emphasize the relationship to
the brain, and attempt neural plausibility, while others abstract away from
the neural architecture.

We will start with the best-known psychological model of face recogni-
tion, the classic Bruce and Young (1986) model (Figure 7.7). While it is not a
computational process model, it serves as a useful starting point and gave rise
to a later implementation. Bruce and Young’s model, which they termed a
‘‘functional’’4 model, was designed to account for a wide range of behavioral
and neuropsychological data. They began by distinguishing seven different

4
Here, ‘‘functional’’ means that the model tries to account for all of the functions required, but

the model is not computational in the sense that it is not implemented on a computer.
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‘‘codes’’ or representations that were necessary in order for their model to
account for this data. In the model, face processing starts with a pictorial
code, corresponding to Marr’s (1982) ‘‘primal sketch.’’ This is followed by a
view-based code, analogous to Marr’s ‘‘2.5D sketch’’, useful for face recogni-
tion memory of unfamiliar faces, recognition of facial expressions, and visual
speech coding, all of which branch off at this point. For identifying known
faces, the view-centered description is further transformed into an expres-
sion-independent representation, corresponding to some extent to Marr’s
‘‘3D object representation’’ level, allowing the recognition of familiar faces in
new situations (e.g., in novel lightings, orientations, etc.). However, the
structural codes were considered to be very different than those posited by
Marr, who was interested in visual object recognition; in face recognition,
within-class discrimination is the primary problem. Hence, the structural
encoding must have fine-grained configural information encoded. The struc-
tural encoding stage then activates face recognition units, which allow for
recognition of a face as known, without necessarily recognizing who it is. This
is the job of the person identity units, which activate semantic information
about the person and the name unit for the person.

These various levels were deemed necessary to account for a great deal of
data. For example, prosopagnosics would have damage somewhere along the
stream that activated the face recognition units, without damage to the
person identity nodes, since they can recognize people from voice or other
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Figure 7.7 Illustration
of the Bruce and Young
model (reproduced with
permission from
Bruce & Young, 1986,
� The British
Psychological Society).
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means. The name units were differentiated from other semantic units
because information about a person can be accessed without accessing their
name. This model and its later implementations (Burton & Bruce, 1993;
Burton et al. 1990; Burton et al., 1999) have continued to have a major
influence on theories of and experiments in face recognition. However, no
learning mechanism was included in the model, so it is hard to say how it
would account for the acquisition of perceptual expertise.

Another influential psychological model is Tim Valentine’s face space
model (Valentine, 1991). His idea was that faces are represented as points
in a high-dimensional space (which could be the equivalent of the structural
encoding stage of the Bruce and Young model). In terms of a computational
model, these dimensions could each correspond to a feature, and the actual
point then specifies values for each feature. These kinds of representations are
akin to the multidimensional representations used in many of the perceptual
categorization models described in the previous section (e.g., Ashby, 1992;
Lamberts, 1995, 2000; Nosofsky & Palmeri, 1997). Thinking of faces in this
way leads to consideration of clusters in that space, for example, for unfami-
liar-race faces versus familiar-race faces. Valentine posited that unfamiliar-
race faces were clustered in a less differentiated ball in the face space, while
familiar-race faces were more differentiated, explaining the so-called ‘‘other-
race effect’’ (ORE) in face recognition. This model is highly compatible with
current computational models that use patterns of activation over a set of
units to represent faces. Indeed, such models have been used to explain the
ORE in much the same way as Valentine envisioned it (e.g., Haque & Cottrell,
2005; O’Toole, Deffenbacher, Valentin, & Abdi, 1994).

Another influential psychological model is that of Farah, Wilson, Drain,
and Tanaka (1998), in which they posited holistic representations for faces.
The idea of a holistic representation is that the features of a face are connected
in some way with one another, achieving a more important status than the
representations of the individual parts. While they were somewhat agnostic
concerning the actual form of this representation—it could correspond to
whole-face templates or it could correspond to strong connectivity between
the parts of a single face—the holistic representation can be used to explain
the whole-face superiority effect. This effect, similar to the word superiority
effect, corresponds to the ability of subjects to better discriminate a nose in
the context of a face than a nose in isolation.

Computational models of face identification (in contrast with the face
categorization models noted above) began with Takeo Kanade’s doctoral
thesis in 1973. His model was the first to actually use real images as inputs.
It recognized faces by measuring distances between face features. Unlike
many modern models, it actually had a top-down component that reanalyzed
the face if there was not a good enough match. The next generation of models
began with Kohonen’s neural network model (Kohonen et al., 1977), which
essentially used singular value decomposition to learn a map from pixels to
names; another way of thinking about this model is that it was a linear neural
network that learned to map from faces to names. This results in an
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appearance-based, holistic model. He showed that he could recognize faces in
novel orientations by training the system on multiple orientations. This
model thus was one of the first to show how an appearance-based model
could generalize by interpolating between learned views.

The next set of models all began around 1990 when there was a sudden burst
of interest in the use of principal components analysis (PCA) to represent faces.
Turk and Pentland’s (1991) ‘‘eigenface’’ model used principal components of
gray scale images to learn a representation of faces (see Figure 7.8). These

Figure 7.8 Examples of training faces (top row) and the first three eigenfaces (middle
row) found using PCA (Adapted with permission from M. N. Dailey, G. W. Cottrell,
and T. A. Busey, 1998, ‘‘Eigenfaces for familiarity,’’ In Proceedings of the Twentieth
Annual Cognitive Science Conference, � 1998 Lawrence Erlbaum Associates.). Faces
are represented in terms of a linear combination of eigenfaces, generating a
multidimensional face space representation (bottom row).
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models are holistic in the sense that a face is represented by a weighted
combination of whole-face features, that is, eigenfaces. Once the eigenfaces
were extracted from a set of images, novel images could be categorized by
projecting them onto the eigenfaces, and then labeling them with the identity
of the closest projection from the training set (Figure 7.8). A version of this
model won portions of Defense Advanced Research Projects Agency’s
(DARPA’s) face recognition bake-off (Face Recognition Technology, FERET)
in 1994 and 1995. A number of similar models based on neural networks were
developed at this time, but they were considered cognitive models, and we
discuss them below. In that section, we also discuss some of the interesting
cognitive modeling properties of eigenfaces.

The model that performed the best overall in the FERET 1994 and 1995
tests was von der Malsburg’s system (Okada et al., 1998). It used a deformable
template that was fitted over the face. At each node of the template was the
response of a set of Gabor filters (wavelets), which can be thought of as a kind
of ‘‘zip code’’ for that portion of the face. There was one such template for
each person in the training set. The links between the nodes can be thought of
as ‘‘springs’’ that were stretched when matching a new face, which gave the
model the ability to match faces that were displayed in quarter and full
profile. It was this ability to match rotated faces that gave this system the
edge over eigenfaces, which had no method for deforming them in order to
match such rotations. This fitting process must be repeated for each template
in the database, which is computationally more expensive than the nearest-
neighbor technique used in the eigenface system. Given that the training faces
were frontal, it is unclear how the eigenface method could be adapted to this
test, without learning in advance how faces are transformed by rotations out
of the image plane.

Around this same time, cognitive models based on PCA or their neural
network equivalent, autoencoder networks, were being developed (Cottrell &
Metcalfe, 1991; Fleming & Cottrell, 1990; Hancock et al., 1996; O’Toole et al.,
1993). What was demonstrated in these early models is that there is a neurally
plausible architecture for extracting principal components (eigenfaces when
applied to faces) and that these representations are sufficient for a number of
face processing tasks when used with a discriminative classifier, including
identity, gender, and emotion classification (Padgett & Cottrell, 1997). These
models made contact with the psychological literature in a variety of ways.
For example, the other-race effect (ORE) was explained in a manner very
close to that envisioned by Valentine by encoding a greater proportion of one
race versus the other in an autoassociative matrix (O’Toole et al., 1994). The
matrix then reproduced the less-represented-race faces with less fidelity than
the faces of the more frequently encoded race. Padgett and Cottrell (1998)
compared their model’s categorization of morph stimuli to human
responses, and by comparing internal representations, showed that the
model could discriminate facial expressions better near a category boundary,
as people do (Young et al., 1997). The PCA approach has also been combined
with an interactive activation and competition version of the Bruce and
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Young (1986) model to create a model that can explain face priming effects,
such as Stan Laurel’s face priming Oliver Hardy’s, as well as face repetition
effects (Burton et al., 1999). O’Toole and her colleagues have extended the
idea of statistical analysis of 2D faces, as represented by PCA, to 3D face
representations, and demonstrated the psychological validity of the repre-
sentation through adaptation effects (Blanz et al., 2000).

More recently, neurophysiologically realistic models of general object
processing (Riesenhuber & Poggio, 1999) have been applied to face recogni-
tion (Jiang et al., 2006). By so doing, these models make explicit the hypoth-
esis that computations performed in the context of recognizing faces are
qualitatively the same as those for recognizing common objects. As shown in
Figure 7.9, this model starts with model cells similar to simple cells and has
layers that alternate between layers of cells that encode complex cell responses
by combining the responses of simple cells using a ‘‘max’’ operation, and
layers of cells that combine the max cell responses into shape representations
with linear rules. At the uppermost layer, cells with a Gaussian response
function are trained to respond to particular individuals. While the model is
illustrated for a face recognition problem, the basic structure of the model is
identical for nonface object recognition as well. The training is via a brute
force search of thousands of parameter settings until some are found that give
response profiles that are not significantly different from the desired
responses. After this training, the model has view-tuned units that have
responses in quantitative agreement with human response profiles on the
same data. This kind of modeling gives a proof of concept that such models
can show both configural and featural effects without an explicit encoding of
either. However, this kind of result can also be obtained by PCA models of
face processing (Zhang & Cottrell, 2006), which use a more realistic training
mechanism of learning the statistical structure of faces from the responses of
Gabor filters used to model V1. However, the Jiang et al. model then makes
predictions concerning the tuning and connectivity properties of FFA neu-
rons that can be checked experimentally. Indeed, Jiang et al. (2007) use an
fMRI-RA (rapid adaptation) paradigm to test the model’s prediction that
there should be an asymptote to discrimination performance that occurs
when the population of neurons in the FFA responding to the two faces
becomes disjoint. Thus, using a combination of computational modeling,
fMRI, and behavioral techniques, they found that both human face discri-
mination performance and FFA activation can be quantitatively explained by
a simple shape-based model in which human face discrimination is based on
a sparse code of tightly tuned face neurons.

We now turn to a series of models developed originally by Fleming and
Cottrell (1990) and Cottrell and Metcalfe (1991). The models reached their
mature form in Dailey and Cottrell (1999) and then were further elaborated
upon over the next 10 years by Cottrell and colleagues, although we will simply
refer to these variants as ‘‘the model.’’ Whereas Jiang et al. (2006) originated
from a model of object processing (Riesenhuber & Poggio, 1999) that was later
extended to face recognition, this model originated as a model of face
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Figure 7.9 Illustration of the network architecture of the object and face recognition
model developed by Riesenhuber and Poggio (1999, 2000; reproduced with
permission from Jiang et al., 2006). An image is initially processed by a hierarchy
of levels that extract edges and vertices, representing visual areas V1–V4 in cortex.
Scale and translation invariance is performed by layers that calculated a weighted
sum of inputs (solid lines) and layers that compute the unit with maximal activity
(dotted lines). These feed into high-level view-tuned and view-invariant
representations in IT. Task-specific units for making categorization and
identification decisions are assumed to be in prefrontal cortex. Reprinted from
X. Jiang, E. Rosen, T. Zeffiro, J. VanMeter, V. Blanz and M. Riesenhuber, 2006,
‘‘Evaluation of a Shape-Based Model of Human Face Discrimination Using fMRI and
Behavioral Techniques,’’ Neuron, 50(1), pp. 159–172. Copyright 2006. Used with
permission from Elsevier.
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recognition that was later extended to object recognition and perceptual exper-
tise. The common theoretical insight is that qualitatively the same computa-
tional principles account for both object recognition and face recognition.

The basic structure is that of a neural network with four processing layers
(Figure 7.10). The first layer represents the processing by V1, which is
modeled as Gabor filters of five scales and eight orientations. The second

Figure 7.10 Illustration of the network architecture of a perceptual expertise model
developed by Cottrell and colleagues (adapted with permission from Tong, Joyce, &
Cottrell, 2005). The retinal image is preprocessed by a bank of Gabor wavelet filters at
a number of different spatial scales and orientations to approximate the processing
that occurs in early visual areas. The result is submitted to principal components
analysis to reduce the dimensionality to a PCA projection (note that the PCA layer is
‘‘trained’’ on a different set of images from those used to test other predictions of the
model). The resulting PCA representation is labeled as the Gestalt level in the figure.
This representation is associated with basic-level and subordinate-level categories via
a hidden layer representation, with weights trained using standard back-propagation.
In this particular instantiation of the model, there are separate basic- and expert-level
subnetworks, with the expert-level subnetwork hypothesized as a model FFA.
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layer uses principal components to extract covariances from the Gabor filters
and reduce the dimensionality of the representation. This can be thought of
as the structural description layer from the Bruce & Young model and may
correspond to later occipital layers. The next layer is an adaptive hidden layer
trained by back-propagation to learn features that are appropriate for the
task, and corresponds to either FFA when the model is trained at an expert
level, or object layers in the ventral stream when trained to categorize. While
back-propagation itself is not thought to be neurally plausible, more biolo-
gically realistic training methods exist that give rise to similar representations
(Plaut & Shallice, 1993). This adaptive layer is often divided into several
separate areas that are considered to be separate cortical areas competing to
solve the tasks given to them, an assumption that was explicitly modeled by
Dailey & Cottrell (1999). The fourth layer represents the output of the model,
providing category or individual labels to the inputs, and likely corresponds
to frontal areas (Palmeri & Gauthier, 2004; Riesenhuber & Poggio, 1999).
The level of differentiation at this layer determines the fineness of the hidden
layer features needed to discriminate the categories. Structurally, both the
Cottrell model and a recent extension of the Riesenhuber and Poggio model
(Serre et al., 2007) propose an initial stage of image filtering, followed by
unsupervised learning of visual representations, followed by supervised
learning of object categorizations.

One of the first issues addressed by this model was how the FFA develops
in the first place (Dailey and Cottrell, 1999; see Figure 7.10). In their model,
the banks of Gabor filters of different scales were treated as separate input
channels. The representation of each scale was processed by a channel-
specific PCA, so there was a low–spatial frequency input channel, up through
a high–spatial frequency input channel, and PCA captured the covariances
within each channel. It is well known that babies have poor contrast sensi-
tivity in higher spatial frequencies, so using this scheme they could model the
developmentally appropriate lower spatial frequency input to the cortex by
attenuating the input from the higher spatial frequencies. The model then
consisted of competing representations, which can be conceptualized as
modeling the left and right hemispheres, one receiving relatively low spatial
frequencies and one receiving relatively high spatial frequencies (Ivry &
Robertson, 1998). The model was then trained to either categorize four
classes of 12 objects each (five images per object) at a basic level, or to
individuate one of the classes into its 12 identities, while continuing to
simply categorize the other three classes of stimuli. To explain the differen-
tiation of cortical areas for different tasks, the model assumed that different
cortical areas competed for task through a gating network that fed more error
back to the classifier with the lowest error—a rich-get-richer approach (this
is also known as a ‘‘mixture of experts’’ model). Experiments using these
differing levels of classification, as well as identical versus differential spatial
frequency inputs, demonstrated that only in the case of different spatial
frequency inputs to the two hidden layers, and the task of face identification,
was there consistent specialization of one of the networks for face processing.
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Consistent with behavioral data, the network receiving the lower spatial
frequencies was always superior in the face identification task. Differential
damage to the model produced prosopagnosia and object agnosia. Further
experiments demonstrated that networks using lower spatial frequencies
generalized to new images of the trained individuals much better than net-
works using high spatial frequencies, explaining why the specialization
occurred, as better generalization also implies faster learning. They con-
cluded that the model supported the hypothesis that something resembling
a face processing ‘‘module’’ could arise as a natural consequence of the
infant’s developmental environment—poor visual acuity coupled with the
goal of individuating people’s faces—without being innately specified.

In terms of how this model accounts for the core features of perceptual
expertise, we start with the last one, that experts tend to show activity in the
fusiform face area (FFA) for objects of expertise, even after only 10 hours of
training in the lab (Gauthier et al., 2000). If this is true, then the question
arises as to why the FFA, an area that must start out as a face area in typically
developing children, becomes recruited for other expertise tasks. One sug-
gestion is that the FFA is the location of a process—fine-level discrimination
of homogeneous categories. However, this is an analgesic answer—it makes
us feel better, but it just covers up the problem by giving it a name. A modeler
wants to know how this happens—what is the mechanism? In a series of
papers, Cottrell and colleagues have addressed this as a question that can be
solved by modeling (Joyce & Cottrell, 2004; Sugimoto & Cottrell, 2001; Tong
et al., 2005; Tong et al., 2008). Following Dailey and Cottrell (1999), the
model assumes that there are two networks (corresponding to two cortical
areas) that have competed such that one becomes specialized for categorizing
objects at the basic level (modeling LOC or other visual processing areas),
and the other is specialized for the subordinate/expert level (i.e., it corre-
sponds to the FFA). Aside from their tasks, the two networks have identical
processing resources in their hidden layers. Despite this, the model displays
the entry-level shift in response times—RT’s (modeled as the uncertainty of
the output) are just as fast for expert-level responses as for basic-level ones as
in humans (Gauthier & Tarr, 1997). These two networks are then placed in a
competition to learn a new category of objects at the expert level. The
consistent result is that the expert network always learns the new expertise
category first. This occurs even if the first category of expertise is not faces;
hence, there is nothing special about faces per se. Indeed, a model trained to
individuate donuts learns to individuate swords faster than a basic-level
categorizer. Thus, the rather fanciful conclusion is that if our parents were
donuts, the fusiform donut area would win the competition for new cate-
gories of expertise.

The model can then be analyzed to determine why the expert network
won. The analysis reveals that the expert network spreads the stimuli into
broader regions of representational space. That is, as in the Valentine
model, faces are spread out in representational space, while objects are
localized. This makes sense given that we need to ignore within-class
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variability in order to categorize an object, while we need to amplify to
within-class variability in order to individuate members of a category.
The mapping from the inputs to the hidden units amplifies variability for
expert objects, and this spreading transformation generalizes to new
objects. Thus, the expert network has a head start in differentiating new
objects from one another. The model also predicts that there will be
relatively greater within-class variability in neural responses within the
FFA as compared to object recognition areas, a prediction that can be
tested neurophysiologically.

In terms of the other core features of perceptual expertise, the model
accounts for speedups in processing due to the development of expertise.
This phenomenon can be explained in terms of the connection strengths to
the correct outputs growing with learning. The correct outputs are then
turned on with less uncertainty, which leads to faster response times. The
entry-level shift is explained in a similar fashion, combined with the non-
linearity in the outputs. As the connection strengths to the correct output are
increased, the activity of the correct output increases, but it reaches a max-
imum level, so that uncertainty cannot be reduced beyond a floor. Hence,
the subordinate-level category outputs reach the same level of activity as the
category-level outputs and can go no further, so the corresponding response
times are the same. Thus, this model shows that the entry-level shift can be
explained as a continuous, quantitative change in the efficiency of processing
over learning (Joyce & Cottrell, 2004). We should note that while the model
accounts well for speedups with expertise, the model itself has no inherent
temporal dynamics; response times are assumed to be inversely related to
categorization certainty.

The model also shows the same pattern as experts in being unable to
ignore variation in an unattended part (Cottrell et al., 2002). Specifically, the
model can be modified to ‘‘pay attention’’ to half of the face by simply
attenuating the input from part of the face. In these circumstances, the
model shows interference from unattended parts of the face and also shows
the same specific interaction between changes in identity and expression that
is seen in human subjects (Calder et al., 2000). This form of holistic proces-
sing can be explained in terms of the whole-face templates that are developed
at the PCA level (while this layer is like the eigenfaces in other models, in this
model, it is ‘‘eigen-Gabor-faces,’’ but the principle is the same). Suppose the
model is presented with George Bush’s face in the upper half of the input, and
Al Gore’s face in the lower half of the input. If there is a template (principal
component) that preferably matches Al Gore’s face, it will be partially
matched by the input, and so will fire at a reduced level and pass this
activation on to later layers. However, there is no way for these later layers
to ‘‘know’’ what part of the input was matched – this template is voting for all
of Al Gore’s face, including his eyes, and so there is interference in recog-
nizing the top half of the input as George Bush.

The model is also able to account for the way that experts generalize their
knowledge, given the way they are trained to categorize the objects
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(Nguyen & Cottrell, 2005). Specifically, subjects will fail to improve their
discrimination of new examples of a category of objects when they have been
trained only to give the same label (i.e., categorize) that set of objects
(Tanaka, Curran, & Sheinberg, 2005). However, when they are trained to
the individual level (in this case, the species of a type of bird, owls or wading
birds), they then improve their discrimination in a graded fashion depending
on the similarity of the novel examples to the trained categories. As with the
explanation of the recruitment of the FFA for new objects of expertise, the
result is explained in terms of within-class versus between-class variance in
the representations required for basic-level categorization versus expert-level
categorization. The internal representations are more differentiated for
objects of expertise, and when new examples of the expert category are
presented, they are more or less differentiated, depending upon their simi-
larity to the trained expert class. On the other hand, when a large number of
objects are categorized as ‘‘the same’’ by being given the same label (e.g.,
‘‘owls’’ or ‘‘wading birds’’), then the internal representations of those objects
are pushed closer together by the learning mechanism and hence are less
differentiated.

Finally, the model is impaired by inversion in the same way human
subjects are (Ge et al., 2006; Mondloch et al., 2002). This can be explained
entirely by the principal components level of the model (McCleery et al.,
2008; Zhang & Cottrell, 2006). The principal components are sensitive to the
orientation of the training data. If most of the training data is upright, and
the objects of expertise have quite different statistics when inverted, the
representation of inverted objects is relatively undifferentiated. The model
is able to explain the difference in priming effects between inverted Chinese
characters and faces, two types of expertise (McCleery et al., 2008), as well as
the development of the sensitivity to configural, featural, and contour differ-
ences between upright and inverted faces (Zhang & Cottrell, 2006).

This model has not been tested against the data on the transition from
verbalizable rules to automated processing, but connectionist mechanisms
exist for making this transition (Noelle & Cottrell, 1996). Furthermore, the
interference patterns seen in n-back tasks between different areas of expertise
(Gauthier & Curby, 2005; Gauthier et al., 2003) have not been investigated.
Adding residual activation patterns to the units in the model to implement
the role of previous processing might accomplish this, but at this point, this is
mere speculation. Even with the success of the model so far, it is important to
systematically explore what phenomena it can’t account for.

SUMMARY AND CLOSING THOUGHTS

What makes an expert an expert? Experts perceive objects in their area of
expertise better than novices. Do they perceive differently? Experts know
more than novices; that’s what makes them experts, after all. They have a
deeper and more fine-grained understanding about objects in their area of
expertise. Is their knowledge fundamentally different from what novices
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know, or do they just know more and do they know it better? Experts make
faster and more accurate decisions than novices. Are experts using informa-
tion to make decisions in a way that novices simply cannot? Or are experts
using that information more effectively?

Although perception, knowledge, and decisions by experts could be qua-
litatively different from novices—in that the mechanisms underlying exper-
tise might operate under completely different principles from those
underlying novice performance—computational models allow us to explore
whether qualitative changes in behavior might emerge from quantitative
changes in perception and memory over the course of learning. A number
of key expertise effects can indeed be explained by using models of normal
object recognition and perceptual categorization that learn representations,
select representations, strengthen representations, and sharpen representa-
tions, without having to invoke qualitative changes. From a neural perspec-
tive, it is far easier to envision incremental changes in the brain from those
that support novice object recognition to those that support expert object
recognition than it is to envision creating a new special-purpose module for
an expert domain. That certainly could happen, especially over the course of
evolution or maybe over the course of development, and expertise does take a
long time to develop (e.g., Ericsson & Lehmann, 1996; Ericsson et al., 2006).
But so far we have not needed to invoke this kind of modular restructuring to
explain many of the important behavioral or neural changes that take place
over the development of perceptual expertise.

One basic question that seems not fully resolved is the specific locus for
changes that take place with perceptual expertise. For example, are holistic
processing effects that emerge with expertise best explained by changes in
how objects are perceived, how decisions are made about those objects, or
some combination of the two (Cheung et al., 2008; Richler et al., 2008)? We
could also ask whether perceptual expertise is driven by changes in how we
perceive objects or what we know and remember about objects, but
the boundaries between perception and memory are rather fuzzy (e.g.,
Palmeri & Tarr, 2008). Category representations are strongly influenced by
the particular category exemplars that have been experienced, and object
representations are strongly influenced by the particular views of objects that
have been experienced—so what you know about a category of objects and
how you perceive objects from a well-known category depends on some kind
of memory for what you’ve seen before. Open questions remain regarding
issues such as how densely the space of experienced exemplars is represented
(e.g., Ashby & Waldron, 1999; Palmeri et al., 2004), whether view-based
representations are full templates (e.g., Riesenhuber & Poggio, 1999), view-
based parts (e.g., Ullman et al., 2002), or somewhere in between (Zhang &
Cottrell, 2005), and the extent to which representations are localist (e.g.,
Ashby & Waldron, 1999; Kruschke, 1992) versus distributed (e.g., Dailey &
Cottrell, 1999).

Models need to take time seriously. As we documented, many of the key
phenomena of perceptual expertise involve time. It is not sufficient to simply
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correlate the output activations of a model with mean observed response
times. Trade-offs between speed and accuracy are far more complex and far
more interesting (e.g., Lamberts, 2000; Mack et al., 2007, 2008). There are
important details in distributions of response times that are not captured by
simply examining the mean or the median RT (e.g., Townsend, 1990), so
models should produce distributions of RTs (e.g., Lamberts, 2000;
Nosofsky & Palmeri, 1997; Palmeri, 1999). Behavior changes with the tem-
poral dynamics of the stimulus (e.g., Grill-Spector & Kanwisher, 2005; Mack
et al., 2008), so models need to be dynamic. The precise timing of neural
events is the cornerstone of neurophysiological studies (e.g., Anderson &
Sheinberg, 2008; Mruczek & Sheinberg, 2008) and ERP studies (e.g., Scott
et al., 2006; Tanaka & Curran, 2001), and techniques are emerging to
significantly improve the temporal resolution of fMRI (e.g., Dux, Ivanoff,
Asplund, & Marois, 2006). Process models must not only account for the
timing of behavior, but the precise timing revealed by the neural markers as
well (e.g., see Boucher et al., 2007). While efforts have been made to develop
models of perceptual categorization and perceptual decision making that
take time seriously, many object processing models are static (e.g., Dailey &
Cottrell, 1999; Riesenhuber & Poggio, 1999). Given the growing body of
cognitive neuroscience data on the timing of object recognition and how it
changes with perceptual expertise, models of high-level vision need to incor-
porate these temporal dynamics.

Despite the plethora of models we have reviewed in this chapter, there is a
surprising amount of theoretical convergence toward a comprehensive com-
putational model of perceptual expertise. Over the years, research in object
recognition and perceptual categorization has approached questions of
visual cognition with somewhat surprising independence yet has arrived at
theories that share important properties (Palmeri & Gauthier, 2004).
A challenge will be putting the pieces together. The model of object recogni-
tion proposed by Riesenhuber and Poggio (1999; Serra et al., 2007) shares
important computational principles of exemplar category representations as
models of categorization proposed by Nosofsky, Kruschke, and others (e.g.,
Kruschke, 1992; Nosofsky & Kruschke, 1992). Categorization models have
stressed the critical importance of learned selective attention to diagnostic
properties of objects relevant to particular categorizations (e.g., Nosofsky,
1984, 1986) and have played close attention to how perceptual decisions are
made (e.g., Lamberts, 2000; Nosofsky & Palmeri, 1997), neither of which
have been the focus of object processing models. Object processing models
have tried to make reasonable assumptions about lower-level visual proces-
sing (Dailey & Cottrell, 1999; Riesenhuber & Poggio, 1999, 2001), whereas
categorization models typically start with representations suggested by
careful psychophysical scaling studies without worrying about how those
representations arise, probably at their detriment.

A comprehensive model of perceptual expertise must incorporate all of
these various components. It’s probably clear from our review that we believe
this comprehensive model of perceptual expertise will also be a
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comprehensive model of normal object recognition and categorization as
well, with expertise merely the end point of normal learning. One challenge in
this endeavor is balancing the need for a model that spans perception,
memory, and decisions, accounts for existing data, and predicts new results
with an honest appraisal of the complexity that might encumber such an
omnibus model. While having a model that works in the real world and
behaves like people do is the goal of machine learning, artificial intelligence,
and robotics, it’s not the ultimate goal of psychology and neuroscience.
Arguably, having a model that really ‘‘works’’ on real images in real time
has an advantage over one that is more theoretical. But if such a model is
burdened with so many ad hoc processing assumptions and freely tuned
parameters in order to make it ‘‘work,’’ then it fails as a viable and testable
theory that can be falsified. Our challenge then is to balance these competing
goals as we move toward more powerful and comprehensive theories of
perceptual expertise.
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QUERIES TO BE ANSWERED BY AUTHOR (SEE MANUAL MARKS)

IMPORTANT NOTE: Please mark your corrections and answers to these
queries directly onto the proof at the relevant place. Do NOT mark your
corrections on this query sheet.

Chapter 7

Q. No. Pg No. Query

AQ1 218 The Erickson & Kruschke (1992) work that is cited in

the Figure 7.6 caption doesn’t appear in the References

(Please add).

AQ2 238 Please provide publisher for reference ‘Kohonen et al.,

1977’.
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