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h i g h l i g h t s

• Neural analyses are used to quantify changes in accumulator model dynamics.
• Accumulator model dynamics distinguish models that behavior alone cannot.
• However, analysis of dynamics alone cannot pinpoint underlying model parameters.
• Joint consideration of behavior and neural dynamics provides maximal constraint.
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a b s t r a c t

Accumulator models explain decision-making as an accumulation of evidence to a response threshold.
Specific model parameters are associated with specific model mechanisms, such as the time when
accumulation begins, the average rate of evidence accumulation, and the threshold. These mechanisms
determine both thewithin-trial dynamics of evidence accumulation and the predicted behavior. Cognitive
modelers usually infer what mechanisms vary during decision-making by seeing what parameters vary
when a model is fitted to observed behavior. The recent identification of neural activity with evidence
accumulation suggests that it may be possible to directly infer what mechanisms vary from an analysis
of how neural dynamics vary. However, evidence accumulation is often noisy, and noise complicates the
relationship between accumulator dynamics and the underlying mechanisms leading to those dynamics.
To understand what kinds of inferences can be made about decision-making mechanisms based on
measures of neural dynamics, wemeasured simulated accumulatormodel dynamicswhile systematically
varying model parameters. In some cases, decision-making mechanisms can be directly inferred from
dynamics, allowing us to distinguish betweenmodels that make identical behavioral predictions. In other
cases, however, different parameterized mechanisms produce surprisingly similar dynamics, limiting
the inferences that can be made based on measuring dynamics alone. Analyzing neural dynamics can
provide a powerful tool to resolve model mimicry at the behavioral level, but we caution against drawing
inferences based solely on neural analyses. Instead, simultaneous modeling of behavior and neural
dynamics provides the most powerful approach to understand decision-making and likely other aspects
of cognition and perception.

© 2016 Elsevier Inc. All rights reserved.
Cognitive modeling allows us to infer the mechanisms under-
lying perception, action, and cognition based on observed behav-
ior (Busemeyer & Diederich, 2009; Farrell & Lewandowsky, 2010;
Townsend & Ashby, 1983). In the domain of decision-making, ac-
cumulator models (also called sequential-sampling models) provide
the most complete account of behavior for many different types of
decisions (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Brown
& Heathcote, 2005, 2008; Laming, 1968; Link, 1992; Link & Heath,
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1975; Nosofsky & Palmeri, 1997; Palmer, Huk, & Shadlen, 2005;
Ratcliff & McKoon, 2008; Ratcliff & Smith, 2004; Reddi & Carpen-
ter, 2000; Shadlen, Hanks, Churchland, Kiani, & Yang, 2006; Smith
& Vickers, 1988; Usher & McClelland, 2001; Vickers, 1979). These
models assume that evidence for a particular response is integrated
over time by one or more accumulators. A response is selected
when evidence reaches a response threshold. Variability in the
time it takes for accumulated evidence to reach threshold accounts
for variability in choice probabilities and response times observed
in a broad range of decision-making tasks.

Particular accumulator model parameters represent distinct
decision-making mechanisms (Fig. 1). An encoding time (te)
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parameter defines the time for sensory and perceptual processing,
a drift rate parameter (v) defines the mean rate of evidence
accumulation, a starting point parameter (z) determines the initial
state of an accumulator, a threshold parameter (a) defines the
level of evidence that must be reached before a response is
initiated, and a motor response time (tm) parameter defines the
time to execute a response (Fig. 1(A)). By identifying parameter
values that maximize the match between observed and predicted
behavior (e.g. Vandekerckhove& Tuerlinckx, 2007), themodels can
reveal the mechanisms underlying variation in decision-making
behavior across different experimental conditions. For example,
manipulations of speed versus accuracy instructions affect the
response threshold (Brown & Heathcote, 2008; Wagenmakers,
Ratcliff, Gomez, & McKoon, 2008), manipulations of experience
(Nosofsky & Palmeri, 1997; Palmeri, 1997; Petrov, Van Horn,
& Ratcliff, 2011; Ratcliff, Thapar, & McKoon, 2006) or stimulus
strength (Palmer et al., 2005; Ratcliff & McKoon, 2008; Ratcliff
& Rouder, 1998) affect drift rate, and manipulation of dynamic
stimulus noise prolong encoding time (Ratcliff & Smith, 2010).
In addition, many accumulator models assume that some of
these mechanisms can vary over trials to explain within-condition
variability in behavior, with additional parameters defining the
degree of variability in other parameters.

Recent neurophysiological and neuroimaging studies have
identified potential linking propositions (Schall, 2004; Teller,
1984) between accumulator models and measures of brain
activity (Forstmann, Ratcliff, & Wagenmakers, 2015; Forstmann,
Wagenmakers, Eichele, Brown, & Serences, 2011; Gold & Shadlen,
2007; Palmeri, Schall, & Logan, 2014; Shadlen & Kiani, 2013; Smith
& Ratcliff, 2004). Different approaches have established different
kinds of connections between models and neural measures
(Turner, Forstmann, Love, Palmeri, & Van Maanen, 2017). One
approach has been to fit a model to behavior, and use the fitted
parameters as a tool for interpreting or identifying neural signals.
Correlating model parameters and neural signals across subjects
and conditions can provide insight into what brain regions might
be involved in determining the model threshold, drift rate, and
non-decision time (Forstmann et al., 2008; Heekeren, Marrett,
Bandettini, & Ungerleider, 2004; van Maanen et al., 2011; White,
Mumford, & Poldrack, 2012). Another approach has been to jointly
model behavioral data and neural responses together, significantly
constraining parameter estimates (Cassey, Gaunt, Steyvers, &
Brown, 2016; Turner, van Maanen, & Forstmann, 2015).

Another line of work suggests that the firing rates of certain
neural populations directly represent the evidence accumulation
process proposed in the accumulator model framework. In these
studies, animals are trained to perform perceptual decision-
making tasks and neural activity is recorded from one or more
intracranial electrodes simultaneously while animals perform
the task. Neural responses can then be analyzed aligned to the
timing of task events (e.g., stimulus onset) or the behavior of
the animal (e.g., response initiation). Specifically, the firing rates
of neurons within a distributed network of areas including pre-
frontal cortex (Ding & Gold, 2012; Hanes & Schall, 1996; Heitz
& Schall, 2012; Kiani, Cueva, Reppas, & Newsome, 2014; Kim &
Shadlen, 1999; Mante, Sussillo, Shenoy, & Newsome, 2013; Purcell
et al., 2010; Purcell, Schall, Logan, & Palmeri, 2012), superior
colliculus (Horwitz&Newsome, 1999; Ratcliff, Cherian, & Segraves,
2003; Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves, 2007),
posterior parietal cortex (Churchland, Kiani, & Shadlen, 2008; de
Lafuente, Jazayeri, & Shadlen, 2015;Mazurek, Roitman, Ditterich, &
Shadlen, 2003; Roitman & Shadlen, 2002), premotor cortex (Cisek,
2006; Thura & Cisek, 2014; Thura, Cos, Trung, & Cisek, 2014), and
basal ganglia (Ding & Gold, 2010) exhibit dynamics consistent
with accumulation of perceptual evidence. Following the onset of
a stimulus, the firing rates of these neurons gradually rise over
Fig. 1. Expected relationships between accumulator model parameters, model dy-
namics, and neural dynamics. A: Illustration of accumulatormodel parameters. Four
primary parameters determine the decision-making mechanisms: encoding time
(te) defines the time for perceptual processing preceding evidence accumulation,
drift rate (v) defines the mean rate of accumulation, starting point (z) determines
the initial state, threshold (a) defines the level of evidence that must be reached
before a response is initiated, andmotor response time (tm) defines the time to exe-
cute a response. Four corresponding stochastic parameters (swith subscript) define
the across-trial variability for each parameter (see Section 1). In these simulations,
motor time was always assumed to be zero. B: Example model dynamics for five
simulated trials using identical parameters. During encoding time, the model activ-
ity is fixed at the starting point. Following encoding time, evidence is sampled from
a distribution with mean v and standard deviation s (within-trial noise, inset) and
accumulated over time. Response times (RTs, arrows) are the sum of encoding time,
the time needed for accumulated evidence to reach threshold (i.e., decision time).
Due to within-trial noise, even the same set of parameters produces variability in
bothRT and the evidence accumulation trajectory. C: Example simulated single-unit
activity and measures of neural dynamics. Top panels show that neural activity on
individual trials given by the spike discharge times (black dots) aligned on stim-
ulus onset (left) or RT (right; red circles). Individual spike trains are highly noisy,
but the average firing rate over trials reveals underlying structure in the dynamics
(gray lines, bottom). Four measures of neural dynamics are commonly applied to
make inferences about model parameters. The onset is hypothesized to correspond
to the encoding time, the growth rate is hypothesized to correspond to the drift rate,
the baseline is hypothesized to correspond to the starting point, and the activity at
RT is hypothesized to correspond to the threshold. Dashed black lines illustrate the
computation of growth rate based on the slope of the line connecting the activity
at onset to activity at RT. Neural spike times were simulated according to a time
inhomogeneous Poisson process with a rate parameter determined by simulated
accumulator model dynamics.

time depending on the animal’s upcoming choice. Consistent with
expected accumulator model dynamics, the rate of rise depends
on stimulus strength and RT. Importantly, activity converges
to a fixed firing rate shortly before the response is initiated
regardless of the stimulus and RT, consistent with a threshold
mechanism for decision termination (Hanes & Schall, 1996). The
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finding that certain neural populations might be implementing
the computations proposed by accumulator models suggests that
neural activity from these populations can provide a window onto
the dynamics of evidence accumulation in the brain.

The proposed link between accumulator model dynamics and
neural dynamics suggests that we could infer the parameters
of the decision-making process directly from analyses of neural
dynamics. Conversely, the best-fitting parameters of model fits
to behavioral data could be used to directly generate predictions
about expected neural dynamics. For example, one straightforward
mapping for accumulator models associates the encoding time
parameter with the measured onset of accumulation when neural
activity first begins to rise from baseline, the starting point
parameter with measured baseline activity before the stimulus
turns on and before accumulation begins to rise, the drift rate
parameter with measured growth rate of accumulation, and the
response threshold parameter with measured activity prior to the
onset of the observed motor response (Fig. 1(C)). If we observe
changes in the measured neural onset, then without ever fitting
a model to data, we might assert that differences in the encoding
time parameter in the accumulator model explain why people
or animals are slow in one condition and fast in another. We
could also choose to constrain an accumulator model by setting
the encoding time parameter equal to the measured neural onset
time across conditions. Working in the other direction, suppose
that an accumulator model fitted to behavior required that there
be changes in the encoding time parameter across conditions.
This model could be tested by examining whether there are
concomitant changes in the measured neural onset.

Of course, both of these approaches are valid only if the
mapping between model parameters and neural dynamics is one-
to-one. A one-to-one mapping between parameters and dynamics
is indicated when variation in a certain parameter corresponds
to variation in a unique measure of dynamics. For example, that
variation in the onset time is only associated with variation in the
encoding time parameter (Fig. 1(C)), and not the drift rate, starting
point, or threshold. A direct mapping between model parameters
and dynamics may seem almost self-evident, but several factors
can make things more complicated than intuition might suggest.
To begin with, noise is ubiquitous in neural activity (Faisal,
Selen, & Wolpert, 2008) and many accumulator models assume
that evidence is noisy (e.g. Ratcliff & Smith, 2004). As we will
see, within-trial noise introduces additional sources of variability
such that qualitatively different model parameters can sometimes
predict very similar dynamics. The mapping between accumulator
model parameters and neural dynamics can also be obscured
because of averaging over trials that resulted in different RTs,
which is often necessary to combat noise in analyses of neural data
(Fig. 1(C)). If not done properly, this averaging can further obscure
the mapping between model parameters and neural dynamics.

To understand how variation in accumulatormodel parameters
relates to variation in neural dynamics, we quantified how
variation in accumulator model parameters relates to variation in
model dynamics (i.e., the trajectory of accumulated evidence). To
do this, we applied commonly used neurophysiological analyses
to characterize model dynamics generated from known sets of
parameters. In the following section, we describe the accumulator
models that were simulated, the parameters of those models that
were varied, the measures of accumulator dynamics that were
made, and how relationships between model parameters and
dynamics were assessed.

1. General simulation methods

1.1. Model overview

Researchers have proposed various accumulator model ar-
chitectures that make specific assumptions about the form of
evidence accumulation (e.g., the diffusion model, Ratcliff, 1978;
Ratcliff & Rouder, 1998; linear ballistic accumulator (LBA), Brown
& Heathcote, 2008; leaky-competing accumulator (LCA), Usher &
McClelland, 2001; linear approach to threshold with ergodic rate
(LATER), Reddi & Carpenter, 2000). Our goal here was not to evalu-
ate a specific architecture per se, but to evaluate the dynamics pro-
duced by different parameterized model mechanisms that can be
shared across architectures. Therefore, we adopted a general mod-
eling framework that included a broad range of decision-making
mechanisms. We first provide a broad overview of the framework
followed by a formal description of the model.

For biological plausibility, we modeled the decision process
as accumulation of perceptual evidence to a positive response
threshold (Fig. 1(B)). For our purposes, the model activation can
be identified with the firing rates of neurons that increase their
activity in support of a particular response (Mazurek et al., 2003;
Purcell et al., 2010; Ratcliff et al., 2007). Note that this approach
is compatible with accumulator models, like the diffusion model
(Ratcliff, 1978), that represent the decision process using a
single accumulatorwith positive and negative response thresholds
because these models can usually be reformulated using multiple
accumulators (Bogacz et al., 2006; Ratcliff et al., 2007; Usher
& McClelland, 2001). For simplicity, we modeled only a single
accumulator, but the framework can be naturally extended to
explain choice behavior with the addition of more accumulators
(e.g., LBA, LATER, LCA). To maintain focus on the decision making
mechanisms and their resulting dynamics, we did not explore
models that included competition among accumulators or leakage
of accumulated information (Smith, 1995; Usher & McClelland,
2001); analyses of model dynamics may help to distinguish
between these mechanism as well (Bollimunta & Ditterich, 2012;
Boucher, Palmeri, Logan, & Schall, 2007; Purcell et al., 2010; Purcell,
Schall et al., 2012).

Recall that four primary parametersdeterminehowaccumulator-
model mechanisms can vary across experimental conditions
(Fig. 1(A)). The encoding time (Te) determines the delay between
the onset of a stimulus and the start of accumulation. Neurally,
this parameter can be associated with afferent conduction delays,
including the time needed to encode a stimulus with respect to
potential responses. Typically, encoding time and post-decision
motor time (Tm) are combined into a single ‘‘non-decision time’’
parameter (often denoted Tr or Ter ) because the two parameters
are indistinguishable using only behavior. However, because they
can be distinguished inmodel and neural dynamics, we distinguish
between themhere, focusing specifically on encoding timebecause
the motor time is relatively short and invariable for neurophysio-
logical signals identified with some motor responses like saccadic
eye movement (Scudder, Kaneko, & Fuchs, 2002). The drift or drift
rate (V ) determines the mean of perceptual evidence for a partic-
ular response, and therefore the rate of accumulation. The starting
point (Z) determines the initial state of evidence at the start of the
accumulation process. The threshold (A) determines the amount of
evidence that must be accumulated before a motor response is ini-
tiated, and determines the tradeoff between accuracy and speed.

Eachprimaryparameter is associatedwith stochastic parameters
that can produce across-trial variability in behavior. Following
common conventions (e.g. Brown & Heathcote, 2008; Ratcliff &
Rouder, 1998), we assumed that encoding time varied according to
a uniform distribution with range sT ; drift rate varied according to
a Gaussian distribution with standard deviation sV ; starting point
varied according to a uniform distributionwith range sZ ; threshold
varied according to a uniform distribution with range sA (some
previous models have assumed normally-distributed thresholds
(e.g. Grice, 1968, 1972), but we used a uniform distribution to
eliminate the possibility that the threshold could be placed below
the starting point). In other words, primary parameters determine
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the mean of parameter distributions, and stochastic parameters
determine the variability.We adopt the convention of using upper-
case variables to refer to primary parameters that define a fixed
parameter distribution over trials, and lower-case variables to refer
to a sample from the distribution on an individual trial. To be clear,
a model assuming all four sources of across-trial variability would
be non-identifiable based on behavioral data alone, but variability
in the four mechanisms can possibly be distinguishable based on
analysis of accumulator dynamics.

The other major source of variability is within-trial noise. Many
accumulator models assume that evidence is noisy (Fig. 1(B),
inset; Ratcliff, 1978; Usher & McClelland, 2001), perhaps because
of some combination of within-trial stimulus noise, momentary
variation of the evaluation of a percept, or intrinsic variability in the
brain; other models do not assume within-trial variability (Brown
& Heathcote, 2005, 2008; Reddi & Carpenter, 2000). Here, we
explored different levels of within-trial noise to understand what
impact this noise might have on measures of model dynamics.
Following common convention (e.g. Link & Heath, 1975), we
assumed that within-trial variability in drift rate is normally
distributed with standard deviation s (but see Jones & Dzhafarov,
2014; Ratcliff, 2013).

If we assume that the evidence in the accumulator maps
onto the firing rate of a neuron, then the translation from rate
to spikes will introduce an additional source of noise in any
measure of neural dynamics (Fig. 1(C); Churchland et al., 2011;
Nawrot et al., 2008; Smith, 2010, 2015). This additional source of
variability can be added to the model dynamics by assuming that
the neural activity is a doubly-stochastic process reflecting both
rate variability (trial-by-trial variation in accumulated evidence)
and point-process variability (Poisson-like spiking noise). This
point-process variability has the potential to further obscure the
relationship between model parameters and dynamics. However,
because separate trials are generally recorded sequentially, the
spiking noise is independent across trials and can be reduced by
averaging. For the analyses reported in this paper, we reached
the same conclusions regardless of whether we directly analyzed
the model trajectories or used the model trajectories to drive
a Poisson process and then analyzed the resulting spike count
histograms (Fig. 1(C); Purcell et al., 2010; Purcell, Schall et al.,
2012), at least so long as the number of trials was ∼20 or more
(most neurophysiological studies record many more). Here, we
report direct analyses of themodel trajectories to demonstrate that
our conclusions about the relationship betweenmodel parameters
and dynamics are not an artifact of the conversion from spike rates
to spike times, nor are they a consequence of limited statistical
power. In practice, when comparing neural and model dynamics,
one should always take spiking variability into account to ensure
that differences between model and neural dynamics are not
explained by differences in statistical power.

1.2. Simulation details

At the start of a simulated trial, model activation, x(t), is fixed
at starting point, z, which is sampled for that trial from a uniform
distribution with range [Z −

sZ
2 , Z +

sZ
2 ]. Activation remains at z

throughout the encoding time, te, which is sampled for that trial
from a uniform distribution with range [Te −

sT
2 , Te +

sT
2 ]. After

the encoding time, model dynamics are governed by the following
stochastic differential equation (see Bogacz et al., 2006; Usher &
McClelland, 2001):

dx =
dt
τ

v +


dt
τ

ξ

where x is the model activation (accumulated evidence), v is
the drift rate, which is sampled for that trial from the Gaussian
distribution with mean V and standard deviation sV , and ξ is a
within-trial Gaussian noise term with mean zero and standard
deviation s. The process terminateswhenmodel activation exceeds
a threshold, a, which is sampled for that trial from a uniform
distribution with range [A −

sA
2 , A +

sA
2 ].

The predicted response time, RT , is the sum of the encoding
time (te), the decision time – the time for the activation to reach
threshold – and the motor time (tm; here, set to zero). Because
firing rates cannot drop below zero, we initially explored versions
of the model that included a lower reflecting bound at zero.
However, we found that our results were qualitatively similar with
or without such a lower bound, so we report results from a model
that does not include a lower reflecting bound to be clear that this
is not a crucial factor influencing our findings and conclusions.

By analyzing the relationship between model dynamics and
model parameters, we hoped to inform the types of inferences
that can be made by analyzing real neural signals. We therefore
adopted simulation and analysis methods designed to mimic
the type of data and analyses seen in actual neurophysiological
experiments. Although closed-form solutions are available for
expected behavior, simulations are needed to study the dynamics
at the level of individual simulated trials. We used Monte-Carlo
simulations to generate expected single-trial model dynamics
(e.g. Tuerlinckx, Maris, Ratcliff, & De Boeck, 2001). All simulations
used a simulation time step dt/τ = 0.1ms, andmodel trajectories
were downsampled to 1 ms resolution to match the resolution of
typical neural recordings.

We simulated different parameter sets to represent different
experimental conditions. For each parameter set, we generated
5000 simulated trials, with each trial providing one RT and
one model activation trajectory, x(t). In some cases, we chose
parameter sets by systematically varying individual parameters
to understand the selective influence these parameters have on
accumulator dynamics. In other cases, we randomly sampled
parameters from specified ranges to ensure that our results were
not specific to a particular parameter set. For those simulations,
we sampled 2500 parameter sets from the following ranges:
Te: 0.15–0.5; V : 0.01–0.15; Z: 0.001–0.1; A: 0–0.15; sTe: 0–0.2;
sV : 0–0.1; sZ : 0–0.1; sA: 0–0.1. These parameters generated a
diversity of RTdistributions that spanned the range of RTs observed
in typical decision-making experiments with humans and non-
human primates. To ensure that each parameter set produced
realistic behavior and dynamics, we also imposed several inclusion
criteria. We required that Z < A so that the model produced
non-zero decision times. In addition, we required that the leading
edge (5th percentile) of the decision time distribution must be at
least 50 ms to ensure a sufficiently long time interval over which
to measure accumulator dynamics. Finally, we required that at
least 90% of trials reached the threshold within 2.0 s of decision
time (our maximum simulation time) to prevent excessively long
decision times and reduce computational demands.

1.3. Measures of model dynamics

We applied several measures of model dynamics to identify
the parameters underlying variability in RT. We considered
two types of RT variability. First, we asked whether we could
identify the parameters underlying within-condition variability
in RT (i.e., random, across-trial variability). Here, the goal is to
infer which stochastic parameters are greater than zero given
the observed model trajectories. Second, we asked whether we
could use model dynamics to identify mechanisms underlying
across-condition variability in RT—for example, variation due to an
experimental manipulation. Here, each set of primary parameters
can be identified with a simulated experimental condition and
the goal is to infer which primary parameters have changed given
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the observed changes in the model trajectories. In both cases, the
problem is not trivial because within-trial noise contributes to all
variability in RT.

Both neural and model trajectories are very noisy at the level
of individual trials (Fig. 1), which makes it difficult to extract
meaningful insights about model parameters based on single
trials alone. Signal averaging is the most common method of
noise reduction in analyses of neural data. Individual trials are
first binned according to the condition or behavior of interest
and then averaged in order to eliminate across-trial noise and
reveal common underlying structure. To mirror this approach for
our model dynamics, we binned and averaged model trajectories
before analyzing the pattern of dynamics. Each measure of model
dynamics (described below) was applied to the average trajectory
for individual bins.

To understand sources of within-condition variability in RT, we
analyzed the activation trajectories that produced different RTs for
a single parameter set. We divided the 5000 simulated trials for
each condition into bins based on the predicted RT and averaged
trajectories within each bin. We choose a bin size of 20 because
it was large enough to average out some across-trial noise, but
small enough to limit the range of RTs within a single bin, and also
approximated the values used in physiological studies (e.g. Purcell
et al., 2010; Purcell, Schall et al., 2012;Woodman, Kang, Thompson,
& Schall, 2008).

To understand sources of across-condition variability in RT, we
evaluated several different approaches to binning trials that have
been employed by previous neurophysiological studies. First, one
could simply group all trials from a condition into a single bin
and average. Alternatively, one could analyze responsedynamics in
small RT bins as described above and then averaging the resulting
measurements over bins. Ultimately, we will show that both of
these methods are problematic for inferring model parameters
from dynamics, but focusing on the subset of trials that result in
moderately fast RTs (e.g., 30th–50th percentile) produces better
results for the set of neural measured that we evaluated.

We adapted four measures of model dynamics that were
developed to analyze observed neural responses (Fig. 1(C); Pouget
et al., 2011; Purcell et al., 2010; Purcell, Schall et al., 2012;
Woodman et al., 2008). Each measure was originally defined and
developed to correspond conceptually to a particular accumulator
model parameter in the absence of any sensory noise. We can then
ask how effective is each measure once noise is introduced.

First,wemeasured the onset timeof accumulationwhen activity
first increased above the pre-stimulus baseline levels. To quantify
the onset time, we used a sliding-window algorithm (+/−50 ms)
that moves backward in 1 ms increments beginning at RT. The
onset of activationwas determined as the timewhen the following
criteria are met: (1) activity no longer increases according to a
Spearman correlation (alpha = 0.05) within the window around
the current time; (2) activity at that time was lower than 50% of
the maximum; and (3), as the window was moved backwards in
time, the correlation remains nonsignificant for 30 ms. Our results
were unchanged when we instead computed the onset as the time
at which activation first exceeds 10% of the distance from baseline
to threshold.

Second, we measured the baseline of accumulation. This is the
initial level of activation immediately following stimulus onset. To
quantify the baseline, we computed the average activation in the
initial 100 ms of each simulated trial, which was always less than
theminimumencoding time assumed by our choice of parameters.

Third, we measured the activity at RT. This is the level of
activation near the time when the response was initiated. To
quantify the activity at RT, we first aligned all simulated trials to
the time of the initiated response. The activity at RT was then
computed as the average activation in the 5 ms window centered
on response time.
Fourth, we measured the growth rate of accumulation to
threshold. This is the average rate of accumulation from the
time when activity first began increasing (onset time) until the
threshold was reached. To quantify the growth rate, we estimated
the slope ofmodel activation from the onset time until RT. Thiswas
computed as the activity at RT minus the baseline, divided by the
RT minus the onset time (see Fig. 1(C)).

2. Simulation results

Variability in accumulator model parameters causes variability
in predicted behavior and model dynamics. We asked whether the
source of variability could be inferred not by fitting parameterized
models to behavioral data, as in cognitive modeling work, but by
measuring accumulator dynamics directly, as in neurophysiolog-
ical work. To do this, we simulated a general accumulator model
architecture while introducing variability in particular parameter-
ized mechanisms. We then measured accumulator dynamics in
ways analogous to how neurons are analyzed in order to deter-
mine how variability in those dynamics relates to the variability
we introduced via model parameters.

2.1. Within-condition variability in parameters and dynamics

To understand sources of within-condition variability in RT,
we analyzed the model trajectories that produced different RTs
given a set of parameters. We first examined a model architecture
assuming no within-trial noise (‘‘Noiseless’’, s = 0) to validate
our measures of neural dynamics and provide a baseline for
comparison to noisy models. We started by simulating four
versions of the model assuming across-trial variability in only one
of the four primary parameterized mechanisms (encoding time,
drift rate, starting point, threshold); in other words, in each of
the four model versions, only one of the stochastic parameters,
sTe, sV , sZ , or sA, was non-zero and all the rest were equal to
zero. The left column of Fig. 2 illustrates model dynamics for
each version of the model using a representative set of primary
parameter values; later, we generalize beyond this particular
parameter set. In the absence of within-trial noise, there is a
clear one-to-one mapping between variability in manipulated
parameters and variability in measured dynamics. As anticipated
by our earlier discussion, variability in encoding time (Te) maps
onto variability in measured onset, variability in drift (V ) maps
onto variability in measured rate, variability in starting point (Z)
maps onto variability in measured baseline, and variability in
threshold (A) maps onto variability in activity at RT.

To quantify this, following typical neural analyses, we grouped
trials into bins of size 20 and plotted each measure of model dy-
namics as a function of the mean RT for all bins (Fig. 3(A)). A par-
ticular measure of model dynamics correlated with RT only for a
single stochastic parameter in the model. This is illustrated in
Fig. 3(A) by the fact that only the diagonal panels show any rela-
tionship between manipulated model parameters and measured
dynamics. Without within-trial noise (s = 0), the measured dy-
namics of accumulation and variability in the resulting behavior
are exclusively determined by variability in a particular accumula-
tor model parameter. In that case, the relationship betweenmodel
dynamics andmodel parameters is one to one, straightforward and
intuitive.

The relationship between variability in accumulator model
parameters and measured model dynamics is more complicated
with the addition of within-trial noise. The right column of Fig. 2
illustrates variability in accumulator dynamics generated with the
same set of parameters, but now with the addition of within-trial
noise (Noisy, s = 0.1). All four parameter sets, regardless of the
underlying source of variability, produce variation in themeasured
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Fig. 2. Inferring sources ofwithin-condition variability frommodel dynamics. Each
panel shows the average model trajectories divided by RT for different sets of pa-
rameters. For each row, one stochastic parameterwas set to a positive value, and the
remaining stochastic parameterswere set to zero (row 1—encoding time, sTe = 0.3;
row 2—drift rate, sV = 0.02; row 3—starting point, sZ = 0.05; row 4—threshold,
sA = 0.04). Model trajectories shown in the left column included no within-trial
noise (s = 0, ‘‘Noiseless’’) and model trajectories shown in the right column in-
cluded conventional levels of within-trial noise (s = 0.1, ‘‘Noisy’’). For all panels,
primary parameters were fixed at the following values: Ter = 0.3, V = 0.1, Z =

0.029, A = 0.08. Following standard neurophysiological approaches, model trajec-
tories for each set of parameters were grouped by RT and averaged in bins of size 20
(see Section 1). Fast, medium, and slow refers to the average trajectory for the RT
bins at the 25th, 50th, and 75th percentile, respectively. Dashed lines indicate the
model threshold for each RT group. Arrows, when shown, highlight the time when
the threshold is crossed for each RT group.

onset and growth rate with RT. This was clearly evident in the
correlation between the measured onset and growth rate and RT
for all four models. As shown in Fig. 3(B), there is a relationship
between onset and RT (first row) and between growth rate and RT
(second row) even when a seemingly incommensurate parameter
was varied. This means that simply observing changes in the onset
or growth rate of neural signals as a function of RT is not sufficient
to draw conclusions about parameterized sources of variability
in the decision process. Changes in the measured baseline and
activity at RT can be somewhat diagnostic, but changes in the onset
and growth rate could well reflect accumulator noise.

This ‘‘one-to-many’’ relationship between measured dynamics
and manipulated parameters was not unique to the particular
set of parameters we used in the above illustrations, but was
observed across a broad range of parameter sets. To demonstrate
this, we again simulated four model variants in which a single
stochastic parameter (st, sv, sz, or sa) took on a value greater than
zero. But instead of evaluating just a single set of parameters,
we sampled from a broad range of values resulting in diverse
RT distributions (see Section 1). Across 2500 sampled parameters
sets, Fig. 4 displays the average correlation between measured
dynamic and RT for each of themanipulated stochastic parameters.
As shown in the figure, without any within-trial noise (Noiseless,
s = 0), there is a clear one-to-one mapping between the measures
of model dynamics and stochastic parameters. However, within-
trial noise of a standard magnitude (Noisy, s = 0.1) produces
strong correlations between the measured onset of activity and RT
and between the measured growth rate of activity and RT.

Fig. 5 provides some intuition about why the dynamics under
cases of within-trial noise take this form. The left panels illustrate
example trajectories sampled from different ranges of RTs (fast,
medium, and slow), while the right column shows the probability
distribution of accumulated evidence at each time step conditional
on the same RT range. Fast RTs result from positive samples
of noise that elevate the observed growth rate, even if the
underlyingmean rate of growth is invariable. Slow RTs occur when
accumulated evidence meanders around the starting point, only
rising immediately prior to reaching the threshold. As a result,
the actual end of encoding time (start of evidence accumulation)
may have occurred long before activity first begins rising toward
threshold.

We found that the signal-to-noise ratio (SNR) of incoming
evidence is a key factor influencing the correlation between
measured onset and RT, and between measured growth rate and
RT. In the accumulator model framework, SNR is defined by the
ratio of the mean drift rate (V ) over within-trial noise (s). To study
the influence of SNR on model dynamics, we simulated a model
in which within-trial noise was the only source of variability; in
other words, all other stochastic parameters were set equal to
zero. We varied the SNR, while all other primary parameters were
randomly sampled as described above. The relationship between
onset and RT is highly dependent on SNR.When SNR is high (≥10),
the model trajectories are more likely to rise directly to threshold,
and so measured onset does not correlate with RT (Fig. 6(A)).
However, when the SNR is low (roughly < 5), the onset correlates
strongly with RT. In this case, the growth rate correlates with RT
irrespective of SNR because thewithin-trial noise is the only source
of variability in the model. In contrast, the measured baseline and
threshold are unaffected by SNR.

2.2. Across-condition variability in parameters and dynamics

The analyses above focused on within-condition variability
in model dynamics and stochastic parameters, but accumula-
tor models are also frequently used to infer changes in decision
making across experimental conditions (e.g., variation in stim-
ulus strength, speed–accuracy instructions, etc.). To understand
whether measuring neural dynamics can be used to directly iden-
tify changes in decision-makingmechanisms across conditions, we
also tested how variation inmeasured accumulator dynamics is re-
lated to manipulated variation in primary model parameters.

Quantifying changes in model dynamics and neural dynamics
across experimental conditions raises a challenge of how to
summarize dynamics across multiple trials. For speeded decision-
making tasks in which a subject determines when to make their
response, the total trial duration will vary substantially over trials.
While it is straightforward to average RTs of different durations
since those are simply point observations, there is no clear way
to average trajectories of different durations because those are
extended time series. Neurophysiological studies have dealt with
this variability in different ways, but the choice of how to average
and bin trials can have a marked influence on the form of resulting
measured dynamics that can help or hinder inferences about
underlying parameters.
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Fig. 3. Correlations between accumulator model parameters and measures of model dynamics for model simulations without noise (A, Noiseless) and with convention
levels of noise (B, Noisy). For each column, one stochastic parameter was set to a positive value, and the remaining stochastic parameters were set to zero. Parameter values
were identical to the simulations shown in Fig. 2. Each row shows one measure of model dynamics (onset time, growth rate, baseline, activity at RT) applied to the average
trajectories of individual RT bins as a function of the average RT for that bin. When evidence accumulation is noiseless, each stochastic parameter produces correlations
between RT and a single measure of neural dynamics (a one-to-one mapping). When evidence accumulation is noisy, multiple measures of neural dynamics correlate with
RT for each stochastic parameter (a many-to-one mapping).
One seemingly straightforward approach is to simply average
across all trials regardless of their RT. A critical limitation of this
approach is that it requires some explicit assumption about how
to treat post-response accumulator activity (Fig. 7(A)–(D)). For
early time points, all of the model or neural trajectories can be
averaged together at every time step, but at progressively later
time points, increasingly more of the trajectories will have hit
threshold and triggered a response. Once a trajectory has resulted
in an RT and exited the process, how should it contribute to the
average trajectory? Most accumulator models do not define the
state of accumulated evidence after the response (but see Moran,
Teodorescu, & Usher, 2015; Pleskac & Busemeyer, 2010; Resulaj,
Kiani, Wolpert, & Shadlen, 2009). Following the response, activity
might continue to accumulate above the threshold after the
decision is made (Fig. 7(A)), decay back to baseline (Fig. 7(B)), or
remain at the threshold (Fig. 7(C)). Alternatively, we may exclude
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Fig. 4. Average correlations between measures of model dynamics and RT. When
evidence is noiseless (black), correlations between RT and measures of model
dynamics (onset, growth rate, baseline, and activity at RT) indicate a single source of
within-condition variability (stochastic parameters, x-axis).When evidence is noisy
(red), correlations between RT and measured onset and growth rate are observed
regardless of stochastic parameters. For a given set of simulations, one stochastic
parameter (x-axis) and all primary parameters were randomly sampled from a
range of values (see Section 1); the other stochastic parameters were set to zero.
The sampled parameter values were used to generate 5000 simulated trials. The
simulated trials were divided into RT bins of size 20, and the Pearson correlation
coefficient was computed between eachmeasure of model dynamics and the mean
of each RT bin (see Fig. 3). This process was repeated 2500 times for each stochastic
parameter and each value of within-trial noise. Panels show themean and standard
deviation of the resulting correlations. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

all post-response activities from the analysis of neural trajectories
by clipping the trajectories after each response (Fig. 7(E)).

Unfortunately, we do not know which assumption about post-
response activity is correct in actual neural data and different
assumptions about post-response activity can produce very
different dynamicswhen averaged across trials. Fig. 7(E) illustrates
this point by showing the grand average model trajectories from
the same set of parameters used in Figs. 2 and 3, but differing only
in the assumptions about post-response dynamics. The average
trajectory is dramatically different depending on whether activity
continues to accumulate (red), decays to baseline (blue) or remains
at threshold (black). Simply dropping post-response activity and
averaging across trials is also problematic for several reasons.
As time progresses, the composition of RTs contributing to the
average changes. As more trials drop out over time, the signal
becomes progressively noisier as fewer trials contribute to the
average and the dynamics are dictated by the sensory noise of
individual trials. As a result, earlier and later time points may be
associated with very different dynamics (e.g., higher growth rate
early, lower drift rates later), resulting in a grand average that
is nonlinear and non-representative of individual trials (Fig. 7(E),
green curve).

An alternative approach is to first group trials into small
RT bins as in the preceding section, compute the measures of
model dynamics for each RT bin, and then simply average the
resulting measures over all bins (i.e., imagine averaging all data
points in each panel of Fig. 3). This approach will minimize
the contribution of post-response activity, but it is susceptible
to the same influences of within-trial noise highlighted in the
previous section. Fig. 8 illustrates the problem for an example set
of parameters in which across-condition variability is explained
solely through different values of the drift rate, all stochastic
parameters were fixed at zero, and there was accumulator noise
(s = 0.1). For the faster RTs, the measured onset closely matches
the actual end of encoding time because evidence rises directly
from baseline to the threshold on those trials (Fig. 8(A)). For
moderate and slow RTs, however, the measured onset is often
later than the actual end of encoding time (Fig. 8(B) and (C)).
Because V (signal) is decreasing and s (noise) remains fixed, the
SNR drops across conditions, resulting in increased correlations
between onset and RT even though the encoding time parameter
remains fixed (Fig. 8(D)). To summarize, under this approach,
conditions in which the SNR is different across conditions may
result in non-selective influences on the measured onset.

One simple solution is to focus on a relatively small range of fast
to moderate RTs (e.g., 30th to 50th percentile). This range of RTs is
small enough to limit the influence of post-response activity and
early enough to allow a good estimate of the true encoding time.
Fig. 9 shows the average model trajectories for the 30th–50th RT
percentile generated fromdifferent sets of primary parameters; for
each set of simulations, one primary parameter was varied across
conditions (encoding time, starting point, drift rate, or threshold),
while the other primary parameters were held fixed, within-trial
noisewas fixed at 0.1, and stochastic parameterswere fixed at zero.
In each case, the model dynamics qualitatively reflect the primary
parameter that was varied. We applied this approach to a broad
range of randomly sampled parameter sets that included within
trial noise (s = 0.1; see Methods), and found that it captured
variation in primary parameters reasonably well even with the
inclusion of within-trial noise (Fig. 10). Other solutions such as
examining the full distribution onset, growth rate, baseline, and
threshold across all RT bins or developing alternative measures of
neural dynamicsmaywork aswell. The critical point is that the link
between model parameters and neural dynamics is not assumed,
but is directly tested through analysis of model dynamics.

3. General discussion

Thediscovery that certain neural signals represent accumulated
evidence has raised exciting new possibilities to constrain model
parameters with measures of neural dynamics and predict neu-
ral dynamics based on parameters values fitted to behavior. To
understand the relationship between accumulator model param-
eters and neural dynamics, we examined the relationship between
accumulator model parameters and model dynamics. We system-
atically variedmodel parameter values over large ranges and quan-
tified model dynamics by adapting established neurophysiological
methods. Our simulations revealed both advantages and poten-
tial pitfalls of directly relating accumulator model parameters to
measured neural dynamics. On the one hand, our results provide
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Fig. 5. Example single-trial trajectories and probability distribution of accumulated evidence conditional on RT. Grouping noisy model trajectories by RT produces delays in
themeasured onset. All stochastic parameters were set to zero andwithin-trial noise was set to 0.1. (A–C) Example single-trial trajectories (colored lines) and average (black
line) for simulated trials that resulted in fast (A, 0–0.2 s), medium (B, 0.3–0.4 s), or slow (0.4–0.5 s) RTs. (D–F) Probability distribution for accumulated evidence conditional
on RTs terminating with the specified fast, medium, and slow ranges. Individual trajectories and probabilities were smoothed with a Gaussian filter for illustration purposes
only; no other analysis or figure used smoothed trajectories. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
a simple example of using neural dynamics to distinguish alter-
native models that make identical behavioral predictions. On the
other hand, our results show how within-trial noise and trial av-
eraging can potentially obscure the relationship between model
parameters and dynamics in misleading ways. In the following
discussion, we review advantages and challenges of analyzing
neural dynamics as a model selection tool. Methods that attempt
to simultaneously explain both behavioral and neural data provide
the strongest constraints on inferences about underlying mech-
anisms. We emphasize that, when possible, model and neural
dynamics should be directly compared to avoid incorrect assump-
tions about links betweenmeasures of neural dynamics andmodel
parameters.

3.1. Potential pitfalls of inferring parameters from model and neural
dynamics

The discoveries that link accumulator models and neural
dynamics (Hanes & Schall, 1996; Roitman & Shadlen, 2002) might
seem to suggest that we can bypass fitting models to behavior
altogether and simply ‘‘read out’’ the underlying parameters from
the neural dynamics. Our simulations highlight some of the
significant dangers of inferring parameters from dynamics in the
absence of behavioral model fitting.

Our simulations show that the onset of neural activity does not
necessarily reflect the end of encoding time, a component of the
Ter parameter in accumulatormodels; introducing variability in the
drift rate, starting point, and threshold parameters all manifest as
variability in measured onset. This result has important implica-
tions for the interpretation of neural signals in decision-making
experiments. During a variety of perceptual decision-making tasks,
the onset time when firing rate increases correlates strongly with
stimulus strength and RT in pre-frontal cortex (DiCarlo &Maunsell,
2005; Pouget et al., 2011; Purcell et al., 2010; Purcell, Schall et al.,
2012;Woodman et al., 2008) and superior colliculus (Ratcliff et al.,
2003, 2007). Similar increases in the onset time with RT are some-
times observed in parietal neurons (Cook & Maunsell, 2002). It is
tempting to interpret these increases in the onset activity as delays
in the start of evidence accumulation, but our results indicate that
thismay simply reflect a signature of noisy evidence accumulation.

The observation that the onset of neural activitymay varywith-
out explicit variation in encoding time has important implications
for inferences about the nature of information flow across process-
ing stages (Meyer, Osman, Irwin, & Yantis, 1988;Miller, 1982). Pre-
vious studies haveused the onset ofmotor-relatedneural signals as
a proxy for the start of a discrete stage of motor processing (Miller,
1998;Miller, Ulrich, & Rinkenauer, 1999; Osman et al., 2000; Smul-
ders, Kok, Kenemans, & Bashore, 1995; Woodman et al., 2008). Ex-
perimentalmanipulations that prolong onset timehave been inter-
preted as delays in the start of motor processing. Our simulations
show that themeasured onset of neural responsesmay be substan-
tially different from the actual start time of evidence accumulation.
Even a continuous flow of information to the accumulator network
can produce correlations between the onset and RT or variation of
onset with stimulus strength.

We found that the relationship between the encoding time
parameter and the measured onset depends critically on SNR. If
the SNR is low (roughly less than 5; see Fig. 6), then one can
expect reasonably strong correlations between onset and RT even
in the absence of any explicit encoding time variability. SNR is
tightly linked to stimulus strength, which is often manipulated in
psychophysical studies (e.g. Palmer et al., 2005), meaning that the
relationship between model parameters and dynamics may differ
across conditions of the same experiment. Strong correlations
between onset and RT may be observed for weaker, but not
stronger stimuli, even with a fixed unvarying encoding time
(Fig. 8). In the absence of behavioralmodel fits, changes in the onset
time alone are not conclusively diagnostic about the underlying
cause of behavioral variability.

Our simulations highlight how methods of binning and
averaging over trials can dramatically influence the resulting form
of the measured dynamics. Simply averaging trajectories for all
trials, as is common in many neural analyses, produces average
trajectories that are highly dependent on assumptions about the
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Fig. 6. Correlations between RT and measured onset depend on the signal-to-
noise ratio (SNR, v/s). Primary parameters were randomly sampled from a range of
values and the level of within-trial noisewas chosen to systematically vary the SNR.
Stochastic parameters were fixed at zero. For each parameter set, the correlation
between RT and measures of model dynamics was computed as in Fig. 4.

form of post-response activity. Unless the behavioral state of
the subject after the response is carefully controlled during an
experiment and the model makes clear predictions about the form
of post-response dynamics (e.g. Moran et al., 2015; Pleskac &
Busemeyer, 2010; Resulaj et al., 2009), then it is risky to draw
strong conclusions that depend heavily on unchecked assumptions
about post-response activity. Binning and averaging by small
groups of RTs before applying measures of dynamics is one way
to exclude post-response activity, but simply averaging over all
RT bins can produce misleading results because the relationship
between the measured onset and RT changes with SNR (Figs. 6(A)
and 8). One possible solution is to examine changes in measures
of model dynamics over the full distribution of RT bins; for
example, as drift rate increases, how does the measured onset
change for every single RT bin? However, we found that a simpler
method may suffice. Binning over a limited subset of trials that
produced fast tomoderate RTs (∼30th to 50th percentile) seems to
provide a simple and reliablemethod for tracking across-condition
parameter variability, at least in the subset of model architectures
and model parameterizations that we explored here.

Of course, the analyses of model and neural dynamics that
we applied here are not exhaustive. We selected four measures
(onset, growth rate, baseline, and activity at RT) to inform the
interpretation of past and future neurophysiological studies that
used similar approaches (e.g. Woodman et al., 2008). Alternative
methods for quantifying dynamics could potentially provide
Fig. 7. Different assumptions about post-response activity can strongly influence
average model dynamics. (A–C) Four illustrations of potential post-response
dynamics on single trials. (A, red) Evidence accumulation continues after the
threshold is reached, (B, blue) evidence decays back to starting point, (C, black)
evidence remains at the threshold, and (D, green) evidence is clipped when the
threshold is reached. (E) Average dynamics over 5000 simulated trials for the same
set of model parameters, but assuming different forms of post-response dynamics.
Parameter values are identical to those used for Fig. 2. Colors indicate post-response
dynamics illustrated in A–D. The green line in which activity on individual trials is
clipped at RT becomes noisier as time progresses because fewer trials contribute to
the average. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

additional insights about the underlying parameters. For example,
although our analyses focused specifically on analyses of mean
activity, the trial-to-trial variance and covariance of neural
trajectories over time can reveal important insights about the
underlying parameters (Churchland et al., 2011). For example,
Churchland et al. (2011) showed that the trial-to-trial variance of
LIP neurons exhibited signatures of noisy evidence accumulation.
Similar responses have been observed in FEF movement neurons
(Purcell, Heitz, Cohen, & Schall, 2012).

3.2. Neural dynamics as a model selection tool

Our simulations demonstrate a simple illustration of how
neural dynamics might be used to resolve behavioral model
mimicry. Inmany accumulatormodel frameworks, variation in the
starting point and variation in threshold make indistinguishable
predictions about variation in behavior because they both change
the total evidence that must be accumulated for a choice.
But these parameters have very different implications for the
underlying neural mechanisms. For example, adjustments in
neural activity at the time of RT are associated with changes in
the strength of cortico-striatal connections (Lo & Wang, 2006),
whereas adjustments of the baselinemay be implemented through
background excitation and inhibition (Lo, Wang, & Wang, 2015).
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Fig. 8. Across-condition variation of drift rate can produce variation in measured
onset. (A–C) Simulated model dynamics for three values of drift rate divided into
fast RTs (A, 25th percentile), medium RTs (B, 50th percentile), and slow RTs (C, 75th
percentile). For slow RTs, the onset appears to increase with drift rate, although the
encoding time parameter was unchanged. (D) Each measure of model dynamics
was computed for individual RT bins of size 20, and the resulting measures were
averaged over all RT bins for a given set of parameters. The average onset decreases
with drift rate due to changes in the SNR.

Although the measured onset time and growth rate of neural
dynamics appear to be less diagnostic about specific underlying
parameters, variation in measured neural baseline and neural
activity at RT can be associated more directly with variation in the
starting point and threshold parameters of accumulator models.
Examining neural dynamics can reveal underlying mechanisms
that can be invisible based on fits of models to behavioral data
alone.

A number of recent studies have provided further illustrations
of the power of neural dynamics as a model selection tool in
diverse experimental paradigms. For example, behavior in stop-
signal tasks, in which subjects must withhold a preplanned
response following an infrequent cue to stop, has traditionally been
explained as a race between independent processes representing
going and stopping (Logan & Cowan, 1984). Boucher et al. (2007)
implemented the stop and go processes as either independent
racing accumulators or interactive racing accumulators that inhibit
one another (Boucher et al., 2007). Bothmodels explained behavior
equally well, but the interactive model provided a better account
of neural responses from FEF movement neurons. More recently,
Logan, Yamaguchi, Schall, and Palmeri (2015) showed that models
in which stopping inhibition is not direct, but instead acts as a
gating mechanism on the input to the go unit, provide an even
better account of the neural dynamics (Logan et al., 2015).

As another example, in the domain of visual search, Purcell,
Schall et al. (2012) and Purcell et al. (2010) evaluated different
accumulator models based on their ability to explain not
only behavior (RT and accuracy), but also the dynamics of
FEF movement neurons thought to implement the evidence
accumulation process for this task. Models in which evidence was
not integrated at all or integrated perfectly could be ruled out
based on poor fits to behavior alone. Models that assumed leaky
Fig. 9. Averaging model trajectories for the 30th to 50th percentile of the
RT distribution produces qualitative changes in dynamics that match model
parameters. For each set of simulations one primary parameter was varied (rows)
while the rest were held constant. All stochastic parameters were fixed at zero and
within-trial noise was set to 0.1.

evidence accumulation provided an excellent account of behavior,
but failed to explain the observed neural dynamics. The failure of
the leaky models motivated a novel gating mechanism in which
evidence accumulation begins only after the evidence exceeds
some constant level. In addition to providing an excellent fit to
behavior, the gated model also predicted the observed neural
dynamics.

Analyses of neural dynamics have also revealed crucial insights
about the mechanisms underlying strategic adjustments of speed
and accuracy. Traditionally, accumulator models explain tradeoffs
between speed and accuracy through adjustments in the model
threshold (e.g. Brown & Heathcote, 2008; Palmer et al., 2005;
Wagenmakers et al., 2008). Surprisingly, recent experiments in
which monkeys were trained to emphasize speed or accuracy in
different blocks did not show the expected changes in the firing
rates of LIP and FEF neurons around the time of the response
(Hanks, Kiani, & Shadlen, 2014; Heitz & Schall, 2012). Instead,
neurons in both areas showed changes in the baseline activity
and in the dynamics of the evidence accumulation process; when
speed was emphasized, the growth rate of neural responses was
stronger irrespective of the subject’s choice. One way to reconcile
the model and the FEF data was to extend the model with a
second stage of accumulation (Heitz & Schall, 2012). Alternatively,
the LIP data were explained by assuming that adjustments in
threshold are implemented through an evidence-independent
urgency signal (Churchland et al., 2008; Hanks et al., 2014;
Thura & Cisek, 2014). Increasing urgency causes responses to rise



B.A. Purcell, T.J. Palmeri / Journal of Mathematical Psychology 76 (2017) 156–171 167
Fig. 10. Measures of model dynamics can track changes in primary parameters whenmodel trajectories are averaged for the 30th to 50th percentile of the RT distributions.
Primary parameters were randomly sampled from a range of values (see Section 1), stochastic parameters were fixed at zero, and within-trial noise was fixed at 0.1. Panels
show the mean and standard deviation for each measure of model dynamics (rows) grouped into deciles by primary parameter values (columns). Each measure of model
dynamics captures variation in one primary parameter when only a restricted range of RTs is averaged. Note that it was possible for our inclusion criteria (see Section 1) to
induce spurious correlations between parameters and measure of model dynamics; for example, because the starting point must be lower than the threshold, increasing
the threshold could produce increased baseline simply because the possible range of starting points increased. To eliminate these spurious correlations, we used a limited
range of parameter values for starting point and threshold.
faster irrespective of incoming evidence, leading to faster but
more error-prone responses, whereas decreasing urgency allows
more time for evidence accumulation, leading to slower and
more accurate responses. Similar analyses of neural dynamics
suggest that urgency signals may implement adjustments of
response threshold following errors (Purcell & Kiani, 2016).
Recent behavioral modeling suggests that the strength of urgency
may vary considerably over subjects and experiments (Hawkins,
Forstmann,Wagenmakers, Ratcliff, & Brown, 2015), but this model
mechanism currently provides themost parsimonious explanation
for both behavioral and neural data.

3.3. Modeling behavioral and neural dynamics

While neural dynamics can provide a powerful tool to select
among competingmodels, analysis of dynamics alone can produce
misleading inferences about the underlying mechanisms. We
recommend a modeling approach in which both behavioral and
neural data are jointly considered; several approaches to doing so
have been implemented (Turner et al., 2017).

Fig. 11 summarizes some different approaches that have been
used to understand behavioral and neural data. Traditional neuro-
physiological approaches involve directly analyzing neural dynam-
ics to infer themechanisms that give rise to behavior (arrow 1). For
example, correlations between neural responses and behavior are
taken as evidence that the neural population is somehow involved
in generating the behavior. Direct manipulations such as electrical
microstimulation and pharmacological inactivation can help infer
a causal role of a particular brain region in the behavior (Fetsch,
Kiani, Newsome, & Shadlen, 2014; Gold & Shadlen, 2000; Hanks,
Ditterich, & Shadlen, 2006; Monosov & Thompson, 2009; Stuphorn
& Schall, 2006). However, without the aid of formal models, the
Fig. 11. Illustration of different approaches to relating cognitive models, behavior,
and neural dynamics. We assume that the behavior and neural dynamics were
observed simultaneously in the context of some task, and neural dynamics
may be analyzed in relation to task events or observed behavior. Arrow 1:
Traditional neurophysiological approaches relate neural dynamics directly to
behavior (e.g., how do neural responses change under task conditions in which
choices are more or less accurate?). Arrow 2: Traditional cognitive modeling infers
model parameters based on fits to behavior (e.g., how domodel parameters change
when fitted to behavior from conditions associatedwith higher or lower accuracy?).
Arrow 3: One approach to model-based cognitive neuroscience relates model
parameters directly to observed neural dynamics (e.g., how do BOLD responses in a
particular brain region correlate withmodel parameters fitted to behavior?). Arrow
4: An alternative approach tomodel-based cognitive neuroscience involves a direct
comparison betweenmodel dynamics and neural dynamics (e.g., howwell does the
model replicate both behavioral and neural dynamics across different conditions?).

precise mechanisms linking neural responses to observed behav-
ior often remain murky.

Traditional cognitive modeling involves making inferences
about mechanisms by optimizing model parameters to maximize
the correspondence between predicted and observed behaviors
(arrow 2 in Fig. 11). This approach makes assumptions about
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the underlying cognitive mechanisms explicit and facilitates
rigorous comparison of alternative models through evaluation of
quantitative predictions. In the absence of neural data, however,
these models make no explicit predictions for where and how
these cognitive mechanisms are implemented in the brain.
Additionally, as noted above, behavior alone may be inadequate to
distinguish competing models.

Model-based cognitive neuroscience aims to combine the
power of cognitive modeling with measures of neural activity.
One approach involves directly relatingmodel parameter values to
observed neural dynamics (arrow 3 in Fig. 11). A researcher might
first fit a model to behavioral data and then identify correlations
between fitted model parameters values and observed neural
measures (Mulder, van Maanen, & Forstmann, 2014). For example,
subject-to-subject variation in the magnitude of the response
threshold parameter is correlated with variation in the strength
of BOLD responses in striatum and pre-supplementary motor area
(Forstmann et al., 2008). This approach can identify particular brain
areas that are somehow related to the mechanisms controlled by
model parameters (O’Reilly & Mars, 2011), providing a useful tool
for interpreting neural data.

A potentially more powerful approach is to simultaneously fit
the neural andbehavioral data by jointlymaximizing the likelihood
of behavior and dynamics. For example, Turner and colleagues
developed a method to simultaneously fit model parameters
to behavior while also constraining parameter estimates based
on patterns of BOLD activation in cortex (Turner et al., 2015).
An important advantage of this approach is that it incorporates
constraints from the neural data as part of the fitting process,
allowing one to identify whether a subset of parameter space
can jointly explain both the behavioral and neural data. Still, it is
common that the link that is established is one between model
parameters and neural measures (arrow 3 in Fig. 11).

Our simulations suggest, at least when appropriate forms of
neural data are available, that the best practice is to establish links
not between model parameters and neural dynamics (arrow 3 in
Fig. 11) but betweenmodel dynamics and neural dynamics directly
(arrow 4 in Fig. 11). One example is a ‘‘two-stage’’ approach, in
which behavioral data are first fitted and then model dynamics
are generated by the best fitting parameters (Boucher et al., 2007;
Mazurek et al., 2003; Purcell et al., 2010; Purcell, Schall et al.,
2012; Ratcliff et al., 2007). The key is that rather than directly
comparing neural dynamics to the best-fitting model parameters,
the neural dynamics are compared to the simulated model
dynamics. Simulation methods should be chosen to match the
statistical power of the neural analyses; for example, matching the
number of simulated and observed trials, matching the simulated
and observed firing rates, and simulating spiking noise based on
observed model trajectories. Identical measures should then be
applied to the model dynamics to allow for a direct comparison to
observed neural dynamics. This approach avoids many potential
pitfalls highlighted by our simulations; for example, incorrect
assumptions about the direct relationships – or lack thereof –
between model parameters and neural dynamics. One advantage
of this two-stage approach is that the model dynamics represent a
true prediction (not a fit) to the neural data. If the same parameter
values that maximize the quality of fit to the behavior also provide
a good a priori account of the underlying neural dynamics without
any additional fitting, this provides compelling validation of the
model fits and guards against overfitting.

A complementary approach to link accumulator models to
neural data is to replace model mechanisms specified by free
parameters with actual neural data. Purcell, Schall et al. (2012)
and Purcell et al. (2010) used the observed firing rates of visually-
responsive FEF neurons during a visual search task as the input
to a network of model accumulators in place of the mechanisms
instantiated via the encoding time, starting point, and drift rate
parameter. This neurally-constrained model provided a good fit
to behavior, indicating that variability in the responses of the
visually-responsive neurons was sufficient to explain behavioral
variability for this task. Note that this approach is distinct from the
method described above because there is no comparison of neural
and model dynamics; instead, the observed neural dynamics
replace the parameterized model mechanisms.

Complementing Purcell, Schall et al. (2012) and Purcell et al.
(2010), Cassey and colleagues (Cassey et al., 2016) recently
developed a joint modeling approach that simultaneously fitted
the neural dynamics and used the model specification of those
dynamics to drive an accumulation of evidence. With this
approach, the influence of different parameters on the expected
dynamics is directly incorporated into the fitting process, obviating
the need for proposing and validating connections between
specific measures of dynamics and model parameters.

3.4. Linking propositions

We have primarily made connections to work using single-unit
recordings from individual neurons in awake and behaving non-
human primates because these responses have beenmost strongly
identified with a representation of the evidence accumulation
process. To date, most neurophysiological studies of this type
are limited to recordings within a single region of the brain,
raising the question of whether it is valid to draw conclusions
about the decision-making process based on analyses of a
limited population of cells. It is highly doubtful that any one
region implements the evidence accumulation process alone.
Rather, neurophysiological evidence suggests that the evidence
accumulation process is represented by a network of brain
regions distributed throughout cortical and subcortical regions
(Schall, 2013; Shadlen & Kiani, 2013). When different regions
of the network are observed during the same decision making
tasks, neural responses exhibit remarkably similar dynamics in
relation to common task events and behaviors. For example,
during a visual search task with eye movement responses,
visual and motor neurons distributed throughout parietal cortex
(Thomas & Pare, 2007), prefrontal cortex (Bichot & Schall, 1999;
Thompson, Hanes, Bichot, & Schall, 1996), and superior colliculus
(McPeek & Keller, 2002; White & Munoz, 2011) exhibit response
properties consistent with a representation of perceptual evidence
or the accumulation of evidence to a response threshold. During
a motion-discrimination task, neurons throughout the same
network of structures exhibit dynamics consistent with gradual
accumulation of sensory evidence to a threshold (Ding & Gold,
2012; Horwitz & Newsome, 1999; Kim & Shadlen, 1999; Purcell
& Kiani, 2016; Roitman & Shadlen, 2002). Therefore, while the
strongest conclusions about the decision making process would
need to include recordings from multiple brain regions, even
recordings from a single region can provide critical insights about
activity that is taking place throughout the network.

Other studies have suggested that a representation of evidence
accumulation may be monitored noninvasively through extracra-
nial electroencephalography (EEG). During certain perceptual de-
cisions, extracranial voltage potentials can be analyzed to extract
an evolving signal that demonstrates dynamics consistent with ev-
idence accumulation (Kelly & O’Connell, 2013; O’Connell, Dockree,
& Kelly, 2012). The lateralized readiness potential, an event-related
potential associated with motor preparation, also exhibits dynam-
ics similar to accumulation to a threshold (De Jong, Coles, Logan, &
Gratton, 1990; Gratton, Coles, Sirevaag, Eriksen, & Donchin, 1988;
Schurger, Sitt, & Dehaene, 2012). Our conclusions regarding the
relationship between model and neural dynamics should apply
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equally to these higher-level representations of the decision pro-
cess. The major limitation of larger-scale representations of evi-
dence accumulation is that they will reflect the combined activity
of cortical areas not directly involved in evidence accumulation as
well as aggregating over neurons representing distinct choices. It
is not clear how these additional signalsmight distort the resulting
dynamics.

An essential goal for future research is to understand how the
representation of evidence in individual neurons scales up to larger
populations of neurons within and across multiple areas. Going
from individual neurons to larger populations raises important
questions about how evidence accumulation is coordinated over
neurons and how these different neurons reach a consensus to
terminate the decision process. Spiking neural network models
have demonstrated how large pools of neurons with recurrent and
competitive dynamics could implement the evidence accumula-
tion process proposed by these models (Furman & Wang, 2008;
Wang, 2002), but the complexity of these models can make it
difficult to contrast competing hypotheses about neuronal coop-
eration and decision termination. To address this problem, Zand-
belt, Purcell, Palmeri, Logan, and Schall (2014) used simulations to
explore how large ensembles of redundant accumulators (multi-
ple accumulators representing a single choice) could produce both
RT distributions and neural dynamics consistent with single-unit
recordings. They found that a very broad range of mechanisms by
which the accumulators coordinate and terminate their response
could produce RTs and neural responses consistent with observed
behavioral and neural data. On the one hand, these results indi-
cate that redundant stochastic accumulators represent a very ro-
bust method to produce realistic RT distributions and single-unit
activity. On the other hand, these results suggest that single-unit
recordings and behavior alone are not adequate to identify the pre-
cise mechanisms bywhich large networks of accumulators coordi-
nate and terminate upon a choice.

Distinguishing alternative mechanisms for evidence accumula-
tion in large populations requires simultaneous recordings from
many individual neurons during ongoing decisionmaking. Exciting
new technological advances in multielectrode arrays have made
it more common to record simultaneously from tens to hundreds
of neurons in awake behaving animals (Churchland, Yu, Sahani, &
Shenoy, 2007). Thus far, these techniques have primarily been ap-
plied to the study of motor control (e.g. Churchland et al., 2012)
and neural prosthetics (e.g. Sadtler et al., 2014), but are just start-
ing to be applied in awake behaving animals during more complex
decision-making tasks (Cohen&Maunsell, 2009; Kiani et al., 2014).
In one notable example, Kiani et al. (2014) trained a linear classi-
fier to decode animal’s choices from a large population of∼90 neu-
rons recorded simultaneously from dorsolateral prefrontal cortex
while animals performed a motion direction discrimination task.
The accuracy of the classifier gradually increased throughout the
trial at a rate that depended on the strength of sensory evidence,
consistent with a population-wide representation of evidence ac-
cumulation. The population activity revealed ‘‘changes of mind’’ in
which the accumulated evidence flipped from favoring one choice
to another, consistent with predictions of an existing behavioral
model (Resulaj et al., 2009). As more large-scale data sets become
available, these approaches can be further extended to constrain
potential sources of behavioral variability at the level of individual
trials.

4. Conclusions

Neural dynamics have proven to be a powerful tool to evaluate
alternative hypotheses about decision making mechanisms, but
the connections between model parameters and neural dynamics
often go untested. We systematically varied model parameter
values and applied established neurophysiological measures
to model dynamics to test for selective influences of model
parameters on expected neural dynamics. In some cases, model
parameters could be successfully inferred from model dynamics,
but in other cases measures of dynamics alone could provide a
misleading picture about the underlying sources of behavioral
variability. Altogether, we argue for a modeling approach in which
both behavioral and neural data are jointly considered, and model
dynamics are directly compared to neural dynamics.
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