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Stochastic accumulator models account for response time in perceptual decision-making tasks by
assuming that perceptual evidence accumulates to a threshold. The present investigation mapped the
firing rate of frontal eye field (FEF) visual neurons onto perceptual evidence and the firing rate of FEF
movement neurons onto evidence accumulation to test alternative models of how evidence is combined
in the accumulation process. The models were evaluated on their ability to predict both response time
distributions and movement neuron activity observed in monkeys performing a visual search task.
Models that assume gating of perceptual evidence to the accumulating units provide the best account of
both behavioral and neural data. These results identify discrete stages of processing with anatomically
distinct neural populations and rule out several alternative architectures. The results also illustrate the use
of neurophysiological data as a model selection tool and establish a novel framework to bridge
computational and neural levels of explanation.
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Mathematical psychology has converged on a general frame-
work to explain the time course of perceptual decisions. Models
that assume perceptual information accumulates to a response
threshold provide excellent accounts of decision-making behavior
(Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006; Nosofsky &
Palmeri, 1997; Palmeri, 1997; Ratcliff & Rouder, 1998; Ratcliff &
Smith, 2004; Smith & Van Zandt, 2000; Usher & McClelland,
2001). These accumulator models entail at least two distinct pro-
cesses: (a) A stimulus must be encoded with respect to the current
task to represent perceptual evidence, and (b) some mechanism
must accumulate that evidence to reach a decision. Models that
assume very different decision-making architectures can account for
many of the same behavioral phenomena (S. Brown & Heathcote,
2005; S. D. Brown & Heathcote, 2008; Ratcliff & Smith, 2004).
Recently, the observation that the pattern of activity of certain neurons

resembles an accumulation to threshold (Hanes & Schall, 1996)
sparked a synthesis of mathematical psychology and neurophysiology
(Beck et al., 2008; Boucher, Palmeri, Logan, & Schall, 2007;
Bundesen, Habekost, & Kyllingsbaek, 2005; Carpenter, Reddi, &
Anderson, 2009; Ditterich, 2006b; Mazurek, Roitman, Ditterich, &
Shadlen, 2003; Niwa & Ditterich, 2008; Ratcliff, Cherian, & Seg-
raves, 2003; Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves,
2007; Schall, 2004; Wang, 2002; Wong, Huk, Shadlen, & Wang,
2007; Wong & Wang, 2006). This synthesis is powerful because
neurophysiology can constrain key assumptions about the represen-
tation of perceptual evidence, the mechanisms that accumulate evi-
dence to threshold, and how the two interact.

In this article, we describe a modeling approach that assumes a
visual-to-motor cascade in which perceptual evidence drives an
accumulator that initiates a behavioral response. We make the
crucial assumption that the evidence representation and the accu-
mulation of evidence can be identified with the spike discharge
rates of distinct populations of neurons. These neural representa-
tions can be used to distinguish among alternative models of
perceptual decision making. We distinguished models by the qual-
ity of their fits to distributions of response times (RTs) and their
predictions of neuronal dynamics that accumulate to a threshold to
produce a response. A model in which the flow of information to
a leaky integrator is gated between perceptual processing and
evidence accumulation provides the best account of both behav-
ioral and neural data, while feed-forward inhibition and lateral
inhibition are less important parameters.

Accumulator Models of Decision Processes

Evidence accumulation must be preceded by the perceptual
encoding of stimuli according to the current task and potential
responses to produce the evidence that accumulates. Perceptual
encoding takes time, and this delays the start of the accumulation
(see Figure 1). Perceptual processing time has traditionally been
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estimated as a free parameter (e.g., Ratcliff & Smith, 2004). The
product of perceptual processing is known as drift rate and is often
estimated as a free parameter that is allowed to vary between
stimulus conditions and to vary between and within trials (Ratcliff
& Rouder, 1998; but see Ashby, 2000; Logan & Gordon, 2001;
Nosofsky & Palmeri, 1997; Palmeri, 1997; Palmeri & Tarr, 2008).
Many models assume that drift rate is constant over the course of
a trial (Ashby, 2000; Nosofsky & Palmeri, 1997; Ratcliff &
Rouder, 1998), but other models assume that it varies within a trial
(Ditterich, 2006a, 2006b; Heath, 1992; Lamberts, 2000; Smith,
1995, 2000; Smith & Ratcliff, 2009; Smith & Van Zandt, 2000).
Systematic variability in RT across stimulus conditions is gener-
ally attributed to systematic variability in drift rate. Many models
also allow the starting point (baseline) of the accumulation and the
threshold to vary across stimulus conditions (S. Brown & Heath-
cote, 2005; Ratcliff & Rouder, 1998) and propose different sources
of intertrial and intratrial variability (e.g., Ratcliff & Smith, 2004).

Alternative models propose different mechanisms for how evi-
dence is combined and accumulated to a threshold (reviewed by
Bogacz et al., 2006; Smith & Ratcliff, 2004). Independent race
models and their discrete analogue independent counter models
assume that evidence for each response accumulates indepen-
dently; the first accumulator to reach threshold determines which
response is made (Smith & Van Zandt, 2000; Vickers, 1970). Drift
diffusion models (Ratcliff, 1978; Ratcliff & Rouder, 1998) and
their discrete analogue random walk models (Laming, 1968; Link
& Heath, 1975; Nosofsky & Palmeri, 1997; Palmeri, 1997) assume
that perceptual evidence in favor of one response simultaneously
counts as evidence against competing responses. Competing accu-
mulator models (Usher & McClelland, 2001) assume that accu-
mulators’ support for alternative responses is mutually inhibitory;
as evidence in favor of one response grows, it inhibits alternative
responses more strongly in a winner-take-all fashion (Grossberg,
1976b). These alternative models can vary in other respects, such
as whether integration of evidence is perfect or leaky.

Different accumulator models make many different assumptions
about the representation of perceptual evidence and the mecha-
nisms that use it. We asked whether the assumptions that are
necessary to account for behavioral data are consistent with neu-
rophysiological data by systematically evaluating major model
assumptions within a modeling framework in which both model
inputs and outputs are neurally constrained. Our approach is valid
if and only if the data are from neurons that instantiate the
perceptual processing and evidence accumulation in question, that
is, if the linking propositions (Schall, 2004; Teller, 1984) that map
model components to brain structures are valid. In the next section,

we review support for the hypothesis that certain neurons in
particular brain structures implement the perceptual processing
and evidence accumulation proposed by these models.

Neural Basis of Perceptual Decisions

The past 10 years have witnessed a new focus of research on the
neurophysiological basis of decisions about where and when to
move the eyes (Glimcher, 2003; Gold & Shadlen, 2007; Schall,
2003; Smith & Ratcliff, 2004). Three major structures have been
studied most extensively: the frontal eye field (FEF), the superior
colliculus (SC), and the lateral intraparietal area (LIP). These
structures are densely interconnected and comprise a diversity of
neuron types. We focus on two major subpopulations of neurons,
those with tonic responses to visual stimuli and no saccade-related
modulation, termed visual neurons, and those with a very weak
modulation after stimulus presentation but pronounced growth of
discharge rate preceding saccade production, termed movement
neurons (also referred to as buildup neurons). Tonic visual neurons
are found in FEF, SC, and LIP, while movement neurons are found
in FEF and SC, but much less frequently in LIP.

FEF and SC receive converging projections from numerous
visual cortical areas (see Figure 2; Schall, Morel, King, & Bullier,
1995; Sparks, 1986). FEF and SC movement neurons issue com-
mands to brainstem nuclei to execute saccadic eye movements
(Scudder, Kaneko, & Fuchs, 2002; Sparks, 2002). FEF and SC are
also connected with brain regions implicated in cognitive control,
including medial frontal and dorsolateral prefrontal cortex (Schall
& Boucher, 2007; Schall, Morel, et al., 1995; Stanton, Bruce, &
Goldberg, 1995) and the basal ganglia (Goldman-Rakic & Porrino,
1985; Hikosaka & Wurtz, 1983). Thus, these areas lie at the

Figure 2. Connectivity between visual cortical areas and the oculomotor
system. Middle temporal (MT), visual area V4, visual area TEO, visual
area TE, and lateral intraparietal area (LIP) project to the frontal eye field
(FEF). LIP and FEF project to the superior colliculus (SC). FEF and SC
project to the brainstem saccade generator. Not pictured are connections
between prefrontal cortex and FEF, from LIP to SC, and from the sub-
stantia nigra pars reticulata of the basal ganglia to SC and to FEF via the
mediodorsal nucleus of the thalamus.

Figure 1. Stochastic accumulator model illustration.
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junction between perceptual and motor processing and are ana-
tomically situated to influence the decision to move the eyes
(Munoz & Schall, 2003).

In monkeys performing visual search, tonic visual neurons mod-
ulate their activity to select the target (see Figure 3B); this has been
observed in FEF (Schall & Hanes, 1993), SC (Basso & Wurtz,
1997; McPeek & Keller, 2002), and LIP (Ipata, Gee, Goldberg, &
Bisley, 2006; Thomas & Paré, 2007). The selection process is
independent of movement production (Juan, Shorter-Jacobi, &
Schall, 2004; Murthy, Ray, Shorter, Schall, & Thompson, 2009;
Murthy, Thompson, & Schall, 2001; Sato & Schall, 2003; Schall,
Hanes, Thompson, & King, 1995; Thompson, 2005; Thompson,
Bichot, & Schall, 1997; Thompson, Hanes, Bichot, & Schall,
1996). Tonic visual neurons in FEF, SC, and LIP are hypothesized
to represent the behavioral relevance of an object in their receptive
field (Findlay & Gilchrist, 1998; Goldberg, Bisley, Powell, &
Gottlieb, 2006; Thompson & Bichot, 2005). The findings support-
ing this hypothesis include the observation that the time course and
magnitude of selection (the difference in activity when a target vs.
a distractor is in a visual neuron’s receptive field) depend on
target–distractor similarity (Bichot & Schall, 1999; Sato, Murthy,
Thompson, & Schall, 2001; Sato, Watanabe, Thompson, & Schall,
2003), set size (Basso & Wurtz, 1997; Cohen, Heitz, Woodman, &
Schall, 2009b), and task contingencies (Sato & Schall, 2003;
Thompson, Bichot, & Sato, 2005; Zhou & Thompson, 2009).

Movement neurons in FEF and SC initiate a saccade when their
spike rate reaches a threshold (see Figure 3C; J. W. Brown, Hanes,
Schall, & Stuphorn, 2008; Dorris, Paré, & Munoz, 1997; Everling
& Munoz, 2000; Fecteau & Munoz, 2003; Hanes, Patterson, &
Schall, 1998; Hanes & Schall, 1996; Murthy et al., 2009; Paré &
Hanes, 2003; Ratcliff et al., 2003, 2007; Sparks & Pollack, 1977;
Woodman, Kang, Thompson, & Schall, 2008). The time when

movement neuron activity begins increasing and the rate at which
it grows to threshold account for random variability in RT (Hanes
& Schall, 1996; Thompson & Schall, 2000; Woodman et al.,
2008). The time when movement neuron activity begins increasing
accounts for changes in RT when the difficulty of a perceptual
decision is manipulated (Woodman et al., 2008). This activity has
been associated with the dynamics of accumulator models
(Boucher et al., 2007; Carpenter, 1999; Carpenter et al., 2009;
Carpenter & Williams, 1995; Ratcliff et al., 2003, 2007). However,
the neural source of the variability in accumulation time is not
identified (but see Bundesen et al., 2005). Visual neurons are often
assumed to represent a source of input that drives movement
neurons to threshold (Bruce & Goldberg, 1985; Carpenter, Reddi,
& Anderson, 2009; Hamker, 2005b; Heinzle, Hepp, & Martin,
2007; Schiller & Koerner, 1971), but this assumption has not been
rigorously evaluated.

Another line of research has identified a representation of per-
ceptual evidence for a motion direction discrimination task with
the activity of neurons in visual area MT (middle temporal; Dit-
terich, Mazurek, & Shadlen, 2003; Shadlen, Britten, Newsome, &
Movshon, 1996) and the evidence accumulation process with the
growth of activity in LIP (Roitman & Shadlen, 2002; reviewed by
Gold & Shadlen, 2007). The findings that support this claim
include the stimulus-dependent growth of activity of LIP neurons
(A. K. Churchland, Kiani, & Shadlen, 2008; Roitman & Shadlen,
2002), the effects of MT and LIP microstimulation on performance
(Ditterich et al., 2003; Hanks, Ditterich, & Shadlen, 2006; Salz-
man, Britten, & Newsome, 1990; Salzman, Murasugi, Britten, &
Newsome, 1992), and the effects of motion pulse stimuli on
behavior and LIP activity (Huk & Shadlen, 2005). Models based
on these linking propositions provide a reasonably clear account of
performance in terms of neural processes and statistical principles

Figure 3. Saccade visual search task and frontal eye field (FEF) activity during search. Panel A illustrates
example stimulus arrays used for color search (top), motion search (middle; arrows indicate direction of motion),
and form search (bottom). The color and motion search included a manipulation of target–distractor similarity,
with an example of easy on the left and hard on the right. The form search included only one difficulty condition.
Right panels show examples of FEF visual (Panel B) and movement (Panel C) neuron activity during visual
search. Easy trials are shown in red, hard trials are shown in green. Solid lines are trials in which the target was
in the visual neuron’s receptive field or movement neuron’s movement field, and dashed lines are trials in which
the target was outside the neurons’ response fields.
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(Beck et al., 2008; Ditterich, 2006b; Lo & Wang, 2006; Mazurek
et al., 2003; Wang, 2002). However, the activity of neurons in MT
and other early visual areas is more dependent on stimulus features
than task performance (Law & Gold, 2008). Also, LIP does not
initiate saccades (Paré & Wurtz, 2001; Wurtz, Sommer, Paré, &
Ferraina, 2001). Some additional processing is necessary to initiate
the final choice to act. For saccade generation, FEF and SC
movement neurons are the most likely candidates. Thus, we pro-
pose that a different set of linking propositions is necessary to
explain the full duration of the decision process.

We explored a range of accumulator models based on two
linking propositions: (a) Perceptual evidence is associated with the
activity of visual neurons in FEF, and (b) the accumulation of that
evidence is associated with the growth of activity to a threshold by
movement neurons in FEF. While this model is based on data
obtained from FEF, we believe that the signals produced by FEF
visual neurons correspond to counterparts in LIP and SC. Other
investigators have described the tonic visual neurons in LIP as
integrating sensory signals from extrastriate cortex (Gold &
Shadlen, 2007). In this study, we focused on the accumulation
process occurring in FEF movement neurons that lead to the
initiation of the response, and therefore, we consider the visual
neurons as the source of perceptual evidence. Similarly, we believe
that the signals produced by FEF movement neurons correspond to
counterparts in SC.

Overview

At the heart of our theory are the linking propositions that
perceptual evidence is reflected in the firing rates of FEF visual
neurons and the accumulation of evidence is reflected in the firing
rates of FEF movement neurons. We used a novel modeling
approach to test the validity of these assumptions. Rather than
modeling neural inputs to an accumulator, we used observed visual
neuron firing rates as the evidence that was accumulated over time.
Figures 4 and 5 illustrate the approach. Visual neuron activity was

recorded from the FEF of monkeys performing a visual search
task. Neurons with the target in their receptive field drove an
accumulator representing a saccade to the target, and neurons with
a distractor in their receptive field drove a response to a distractor.
The models predicted a saccadic response when an accumulator
unit activity reached a fixed threshold. Saccadic RT was the time
to reach the threshold plus the brief oculomotor ballistic time. If
visual neuron activity is the perceptual evidence, then the model
should correctly predict the observed RT distributions. If move-
ment neuron activity is the accumulation of evidence, then the
accumulator model dynamics should predict the movement neuron
dynamics observed in neurophysiological recordings (e.g.,
Boucher et al., 2007; Ditterich, 2006b; Ratcliff et al., 2003, 2007).

In the next section, we give the details of the experimental and
modeling methodology and present the behavioral and neural data
to be predicted. Following the methods, we ask whether visual
neuron activity is sufficient to predict behavior and, if so, what
architectural assumptions for signal transformation are required.
Several models provide a good fit, while others can be ruled out
because they fail to predict behavior. We then ask whether the
same models can predict the dynamics of movement neurons using
the same parameters that fit the behavior. The models with con-
ventional parameters of leakage, feed-forward inhibition, and lat-
eral inhibition fail. However, models in which the flow of infor-
mation from visual neurons to movement neurons is gated provide
the best account of behavior and neural data; feed-forward and
lateral inhibition are not necessary. We conclude by discussing the
implications of these results for theories of decision making and
neural function.

Behavioral and Neurophysiological Methods
and Results

We analyzed behavioral and neurophysiological data from
awake behaving monkeys that have been the basis of previous
publications (Bichot, Thompson, Rao, & Schall, 2001; Cohen,

Figure 4. Simulation methods. Spike trains were recorded from frontal eye field visual neurons during a
saccade search task. Trials were sorted into two populations according to whether the target (top) or distractors
(bottom) were within the neuron’s response field. N spike trains were randomly sampled from each population
to generate a normalized activation function that served as model input on a given simulated trial.
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Heitz, et al., 2009b; Cohen et al., 2007; Sato et al., 2001; Schall,
Sato, Thompson, Vaughn, & Juan, 2004; Thompson et al., 2005;
Woodman et al., 2008). In this section, we describe how the
behavioral and neural data were collected and analyzed and sum-
marize the primary observations. Then, we turn to a detailed
discussion of the modeling methods and results that are the focus
of our new efforts.

Behavioral Training and Testing Methods

Five macaque monkeys (Macaca radiata, Macaca mulatta)
were trained to perform a visual search task in which reward was
contingent upon a single saccade from fixation to a singleton target
among a set of distractors. Animals were required to maintain
focus on a central fixation point at the start of each trial. After a
variable delay (�600 ms), the fixation point vanished, and the
search array appeared. Monkeys were rewarded if their first sac-
cade was directed to the target. The array consisted of one target
and seven distractors randomly located at eight isoeccentric loca-
tions equally spaced around the fixation point. During testing, the
eccentricity of the array was adjusted depending on the receptive
field properties of isolated neurons. The animal had one opportu-
nity to make a saccade to and maintain fixation on the target for
reward.

Figure 3A illustrates the search arrays. Three sets of stimuli
were used: a set in which the target was defined by color (Sato
et al., 2001), a set in which the target was defined by direction
of motion within a circular aperture of moving dots (Sato et al.,
2001), and a set in which the target differed from distractors in
shape (Cohen, Heitz, et al., 2009b). The color and motion
search tasks included easy and hard conditions determined by
target– distractor similarity. For the color search task, the easy
condition required a saccade to a green target among red
distractors, while the hard condition required a saccade to a
green target among yellow-green distractors; on other sessions,
monkeys searched for red among green or red among yellow-

red distractors. For the motion search task, the easy condition
required a saccade to a target in which 100% of the dots moved
to the right among distractors in which 100% of the dots moved
to the left. The hard condition required a saccade to a target
with only 50%– 60% of the dots moving in a particular direc-
tion; on other sessions, the opposite set of dot motion directions
for targets and distractors was used. Easy and hard conditions
were randomly interleaved within each session. For the form
search task, the target was a T among rotated distractor Ls; on
other sessions, an opposite set of targets and distractors was
used. No target– distractor similarity manipulation was included
in the form search for Monkey Q, although it also took place in
the context of other manipulations not analyzed here. The
difficulty of this task has been established in humans (Duncan
& Humphreys, 1989), and animal performance corresponded to
performance in the hard condition of the color and motion
search tasks (Cohen, Heitz, et al., 2009b), therefore we label
these data as another kind of hard search in all figures and
tables. Monkey F performed the color search task. Monkeys L
and O performed the motion search task. Monkey M performed
both color (Mc) and motion (Mm) search during separate re-
cording sessions that are distinguished in the model fits described
below. Monkey Q performed form search. Only movement neurons,
no visual neurons, were recorded from Monkey O.

Behavioral Results

We were primarily interested in the distribution of saccadic RTs
for the various search conditions. Each data set was fitted individ-
ually; Table 1 summarizes the observed behavior by monkey and
task. In addition, we fitted a pooled data set that combined across
Data Sets F, L, Mc, and Mm; observed RT quantiles for the
individual data sets were averaged using a standard Vincentizing
procedure (Ratcliff, 1979). Figure 6 displays the cumulative RT
distributions for each animal and for the pooled RT distribution.
Analyses of individual monkeys and the pooled data revealed a

Figure 5. General model architecture. Two visual units represent activity when a target is in the neuron’s
receptive field, vT, and when a distractor is in the neuron’s response field, vD. The activity of the visual units (far
left) on a trial is determined from samples of neural activity as shown in Figure 4. Visual neuron activity serves
as input to movement units representing a saccade to the target, mT, and distractor, mD. Models were defined by
setting parameters equal to zero to eliminate connections shown in dashed grey (see text for details). RT �
response time.
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significant difference in mean RT for easy versus hard search, all
paired t(22) � 7.79, p � .05.

Neurophysiological Methods and Analyses

Single-unit neurophysiological recordings in the FEF of behav-
ing monkeys were made using procedures that have been described
in detail elsewhere (Schall, Hanes, et al., 1995; Thompson et al.,
1996). Before being tested on the visual search task, animals
performed a memory-guided saccade task to characterize the re-
sponse properties of the isolated neuron and define it as a visual
neuron, movement neuron, or other neuron (Bruce & Goldberg,
1985). Animals were trained to fixate a central point while a
peripheral target was flashed in the receptive field for 80 ms. The
task required animals to maintain fixation for 400–1,000 ms after
the fixation spot disappeared. For reward, the animal made a
saccade to the remembered location of the target after the fixation
spot disappeared.

Neural activity during a memory-guided saccade task was used
to classify neurons. Neurons were classified as visual neurons if
their firing rate rapidly increased in response to the presentation of
the visual stimulus in their receptive field but showed no increase

in activation prior to a saccade. Neurons were classified as move-
ment neurons if their activity remained at baseline in response to
the presentation of the visual stimulus but showed an increase in
activation prior to a saccade within their movement field, the area
of the visual field to which a saccade is executed when activity
reaches threshold.

FEF neurons have heterogeneous response properties (Bruce
& Goldberg, 1985), and two groups of visually responsive
neurons were excluded from our analyses. First, FEF visuo-
movement neurons that show both visual and movement-related
activity were excluded. There is neurophysiological (Murthy et
al., 2009; Ray, Pouget, & Schall, 2009) and biophysical (Cohen,
Pouget, Heitz, Woodman, & Schall, 2009) evidence that visuo-
movement neurons are a distinct class of neurons apart from
pure visual and movement neurons. The simulations presented
in this article are limited to pure visual and pure movement
neurons because the distinction between these populations is
well established both functionally (Murthy et al., 2009; Thomp-
son, 2005; Thompson et al., 1997) and anatomically (Pouget et
al., 2009; Segraves, 1992). We also conducted simulations in
which visuomovement neurons were included, and the key
model predictions were unchanged. Nevertheless, there is evi-
dence that visuomovement neurons may reflect a corollary
discharge to update visual processing (Ray et al., 2009), and so
it remains an open question to what degree visuomovement
neurons can be functionally grouped with either pure visual or
pure movement neurons. Second, FEF phasic visual neurons
that show a brief visual response to a stimulus that does not
select the location of the target were excluded from our analyses
(Bruce & Goldberg, 1985; Thompson et al., 1996). This as-
sumes that the neurons that signal relevant stimuli are the
neurons that contribute most strongly to preparation of a re-
sponse (e.g., Bichot, Thompson, et al., 2001; Ghose & Harrison,
2009; Purushothaman & Bradley, 2005; but see Shadlen et al.,
1996). A visual neuron was said to select the target if the area
under the receiver-operating characteristic (ROC) curve calcu-
lated from trials in which a target was in the neuron’s receptive

Table 1
Mean Response Times and Percent Correct

Monkey
(task)

Easy search Hard search

Mean RT in
ms (SD)

%
Correct

Mean RT in
ms (SD)

%
Correct

F (color) 187 (38.9) 95.8 228 (67.6) 70.3
L (motion) 266 (30.1) 98.6 314 (72.9) 94.5
Mm (motion) 228 (32.2) 88.2 271 (67.0) 73.3
Mc (color) 209 (21.4) 97.1 349 (96.0) 78.7
Q (form) — — 373 (161.7) 85.6
Pooled 210 (43.9) 94.4 274 (87.4) 75.7

Note. Dashes indicate that the animal did not perform an easy version of
this task. RT � response time.

Figure 6. Observed behavioral data. Cumulative distribution of correct response times (RTs). RTs from easy
trials are red, hard are green. Each panel indicates a different data set. Monkey F (color search), L (motion
search), M (Mc � color, Mm � motion search), pooled (Vincentized RT distribution from F, L, and M), and Q
(form search).
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field and trials in which a distractor was in the neuron’s
receptive field reached 0.70 prior to the mean saccade RT in
either difficulty condition (Thompson et al., 1996). We also
explored simulations that included neurons that did not reach
0.70 in ROC area. Larger samples of trials were necessary to
signal the location of the target, but major conclusions were
unaffected.

Inclusion criteria for movement neurons were as follows: All
neurons that showed a sharp increase in activity immediately
preceding the saccade during the memory-guided search task were
included in the movement neuron analyses. We also included a
small number of movement neurons that showed a minimal visual
response but predominately responded immediately prior to sac-
cade. Movement neurons recorded with less than 30 correct be-
havioral trials were not included.

We also adopted several trial-specific inclusion criteria: (a)
Only trials in which a saccade was correctly made to the target
were included1; (b) trials in which the animal broke fixation
early, failed to maintain fixation on the target, or shifted gaze
away from the search array entirely were not included in these
simulations (�0.7% total trials); (c) trials in which the animal
anticipated the target location (RT � 100 ms) or the animal did
not respond within a time window (RT � 2,000 ms) were
excluded from analysis (�0.03% of total trials); and (d) trials in
which a distractor fell within the neuron’s receptive field but
the target appeared in an adjacent location were excluded for
two reasons: First, FEF receptive fields are irregularly shaped,
and it is difficult to guarantee that the target is completely
outside the neuron’s receptive field. Second, a subset of visual
neurons exhibits enhanced suppression of stimuli at the border
of the receptive field, and the effect of this inhibition will be
inconsistent across different neurons (Schall & Hanes, 1993;
Schall, Hanes, et al., 1995; Schall et al., 2004).

Neurophysiological Results

A total of 64 visual neurons met the inclusion criteria out-
lined above (11 neurons from F, three from L, six from Mm,
four from Mc, and 40 from Q).2 Figure 3B shows the response
of a representative visual neuron during easy and hard visual
search. Visual neurons typically show an initial indiscriminate
response to both target and distractor in their receptive field
after a search array appears. However, over time, visual neuron
activity evolves to signal the location of the target before a
saccade is generated. Across neurons, target selection is
achieved by a decrease of the response evoked by distractors
and the maintenance or enhancement of the response evoked by
a target. Divergence between target and distractor activity is
delayed, and the difference is slower to evolve for hard search
than for easy search (Bichot & Schall, 1999; Cohen, Heitz, et
al., 2009b; Sato et al., 2001). Activity patterns were similar
during color, motion, and form search. Of primary interest is
whether visual neuron activity is sufficient to be the represen-
tation of perceptual evidence that is accumulated by movement
neurons.

Sixty-one movement neurons met the inclusion criteria de-
scribed above (34 neurons from F, five from L, five from Mm,
four from Mc, three from O, and 10 from Q). Figure 3C shows
the activity of a representative movement neuron during the

easy and hard conditions of the visual search task when a
saccade was made to the target. The figure illustrates the
characteristic buildup of movement neuron activity prior to a
saccade to a target. There is often little activity of movement
neurons that would signal a saccade to a distractor, although
this varies across neurons. When trials are aligned on the time
of saccade initiation, activity rises to a constant threshold level
immediately prior to the eye movement. This pattern holds
across difficulty conditions. Further quantitative analyses of
both movement neurons and simulated model accumulators are
reported later in this article.

Modeling Methodology

A fundamental innovation of our approach was to use the actual
spike rate of recorded neurons as the input to alternative accumu-
lator models. For each monkey, visual neuron activity recorded
during individual trials of the visual search tasks was divided into
two populations (see Figure 4). The first population consisted of
trials that were recorded when the target fell in the neuron’s
receptive field. The second population consisted of trials that were
recorded when a distractor fell in the neuron’s receptive field. For
each simulated trial, we randomly sampled, with replacement, N
spike trains from the population of trials in which the target fell in
a neuron’s receptive field—the input to the accumulator for a
decision to saccade to the target location—and N trials from the
population of trials in which a distractor fell in a neuron’s recep-
tive field—the input to the accumulator for a decision to saccade

1 The task is relatively simple, and there were very few error trials,
particularly in the easy condition. To evaluate the model’s predictions of
errors, populations of trials would need to be split into the following two
populations: (a) trials in which the target appeared in the neuron’s receptive
field but a saccade was made to another distractor and (b) trials in which
a distractor appeared in a neuron’s receptive field and a saccade was made
to that location. The number of error trials that met these criteria was very
low in most of these data sets, making simulations where visual neuron
activity drives accumulator models impossible. We should note that FEF
visual neurons do select the location of the distractor to which an erroneous
saccade is made during saccade search tasks (Cohen, Heitz, Woodman, &
Schall, 2009a; Thompson et al., 2005; but see Trageser, Monosov, Zhou, &
Thompson, 2008). This is in agreement with the predictions of our frame-
work.

2 Our simulations randomly sampled trials of activity with replacement.
Each data set provided a sufficiently large number of trials from which to
sample when the target was in the neuron’s receptive field (easy: F, 883;
L, 267; Mm, 432; Mc, 177; pooled, 1,759; hard: F, 635; L, 271; Mm, 451;
Mc, 195; Q, 5,696; pooled, 1,552) and when a distractor was in the
neuron’s receptive field (easy: F, 2,202; L, 501; Mm, 730; Mc, 746; pooled,
4,179; hard: F, 1,586; L, 517; Mm, 778; Mc, 689; Q, 11,724; pooled, 3,570).
The complete data sets for L and M were not large, L: 11 neurons total (five
visual), Mm: 18 neurons total (seven visual), Mc: 11 neurons total (six
visual), but there were no consistent differences between these data sets
and other data sets that used a larger population of neurons (F, Q, pooled).
One data set, Mc, consistently fit the data worse than other data sets. This
may have been due to lower trial numbers.
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to the distractor location.3 The number of trials sampled from each
population was varied systematically from N � 1 to 24. Fits were
not improved by increasing N above this range, which reflects our
choice to only sample from visual neurons that select the location
of the target (e.g., Bichot, Thompson, et al., 2001).4

We generated an average activation function (spike density
function) from the collection of spike train trials by convolving the
spikes with a kernel resembling a postsynaptic potential (Thomp-
son et al., 1996). This visual neuron activation function was the
input to each accumulator on a simulated trial. Trials from multiple
neurons were combined into a single average activation function.
The tonic firing rates of FEF neurons are highly variable, therefore
we weighted the input from each neuron by the reciprocal of its
maximum firing rate. The result was a normalized activation
function for visual neuron input for target and distractor with a
maximum of 1 and minimum of 0. This computation was neces-
sary so that contributions were not overly weighted by neurons that
discharged, on average, at a much higher rate. It is plausible that
the brain implements a similar normalization operation (Gross-
berg, 1976a; Heeger, 1992).

Visual neuron activity was recorded throughout the duration
of the visual search task. Each simulated trial began 300 ms before
the presentation of the visual search array while the animal fixated
the center of the screen. The models were active from this point
until the saccade decision was made; in other words, input flowed
continuously throughout the simulation. Starting simulations at a
constant time prior to the appearance of the search array eliminated
the need for free parameters that would determine the initial value
of the accumulator (the starting point, or baseline), the duration of
perceptual processing (predecision time, or the time when the
accumulation begins), and any parameters that would govern how
those values vary across trials and conditions. Instead, intratrial
changes depended entirely on the nonstationary input function
derived from the recorded visual neuron activity (see Figures 3B
and 4). This also allowed us to explore predicted model dynamics
from before the search array onset until the saccade was made,
which had important implications for model selection.

Visual neurons were classified according to the object in their
receptive field, but this classification is meaningful only up until a
saccade is made and gaze shifts. This raises the question, What
should be done with the firing rates for neurons on trials in which
a saccade occurred before the model reached threshold? Simply
dropping postsaccade activity inflated variability in the visual
signals and caused simulations to terminate without any response,
which causes problems for the fit routine where initial parameters
may predict very long RTs. Our solution was to extrapolate visual
neuron activity beyond the time when a saccade was made when
that particular neuron was recorded on a particular trial with a
longer RT. The distribution of interspike intervals for cortical
neurons is approximately Poisson (Rodieck, Kiang, & Gerstein,
1962), so we generated spike trains according to a homogeneous
Poisson process with a rate parameter equal to the mean spike rate
in the interval 20 ms to 10 ms prior to a saccade. Essentially, this
extended the neuronal spike train at a constant rate. Importantly,
for well-fitting models that predicted the observed range of RTs,
these extrapolated portions of visual neuron input contributed little
to the predicted model activation.

On each simulated trial, the model input consisted of two visual
activations: vT (t), activation from visual neurons with the targets in

their receptive field, and vD(t), activation from visual neurons with
distractors in their receptive field. The visual neuron inputs varied
across time and across trials because of the random sampling from
recorded neurophysiological trials. Each model consisted of two
movement units: mT (t), activation of a movement neuron repre-
senting a saccade to the target, and mD(t), activation a model
movement neuron representing a saccade to a distractor. RT was

3 In our simulations, we used two accumulators (target vs. distractor)
rather than eight (one for each stimulus in the array) or far more than eight
(total number of accumulating neurons thought to reside in FEF). Essen-
tially, we have assumed that input driven by each distractor (nonadjacent
to the neuron’s receptive field) is pooled into a single unit that races against
the target-driven activity. This assumption was necessary for these data sets
because increasing the number of accumulators would decrease the popu-
lations of trials from which model input could be sampled, and the number
of neurons and trials from these previously recorded physiology sessions
was already rather limited. In other words, for most of the individual data
sets, there were not sufficient trials to simulate a model in this way. The
data sets we used all included a fixed set of eight stimuli and always
contained a target, so models did not need to predict changes in RT or
neural activity with set size. Because the neuron shows maximal activation
when the target is in its receptive field, it is unlikely that model predictions
would qualitatively change by including multiple competitors. In addition,
the vast majority of accumulator model applications have been in the
context of two-alternative forced-choice tasks, so this framework also
allows us to relate more directly to that broader family of models. To
ensure that our conclusions do not depend critically on modeling only two
locations, we simulated preliminary versions of the models using an
accumulator for multiple locations using the data set, Q, that contained
enough trials to sample activity for multiple distractors. The behavioral and
neural predictions of the model were qualitatively similar when multiple
accumulators were used.

4 How many neurons contribute to a perceptual decision is an open
question. The range of the sampled trials used in our simulations is
consistent with the findings of other studies examining reliability of neural
coding (e.g., Bichot, Thompson, et al., 2001; Ghose & Harrison, 2009).
One possible explanation for the small number of sampled neurons is that
decisions may be preferentially based on neurons that most reliably signal
the relevance of a stimulus (Purushothaman & Bradley, 2005). Even so,
these estimates may seem very low relative to the total number of neurons
in a given brain region. This may be explained in two ways: First, phasic
visual neurons that do not select the target may contribute to the pooled
response that ultimately drives movement neurons. We tested models that
included sampling from both selective visual neurons and nonselective
visual neurons that do not reach 0.70 in ROC area. Not surprisingly, larger
samples were needed for the model to reliably select the correct location of
the target. Second, the benefits of pooling across many neurons may be
limited by correlated noise between neurons (Shadlen et al., 1996). This
would put an upper limit on the signal-to-noise ratio of the pooled visual
neuron signal, which would be reflected in a relatively low number of
sampled trials required in the simulations. While noise correlations be-
tween individual FEF visual neurons are relatively weak (�0.1; Bichot,
Thompson, et al., 2001; Cohen et al., 2010), even small correlations can
have profound effects on pooled activity across a large number of neurons
(Cohen et al., 2010; Shadlen et al., 1996). Note that for our simulations, the
pooled visual activity across our trials was necessarily independent because
the neurons were not recorded simultaneously; therefore, we refrain from
drawing strong conclusions about the size of the actual neuronal pool based
on the present analyses. Future simulations using simultaneously recorded
pairs of neurons or simulating spike trains with correlated noise could shed
light on this issue.
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given by the first movement unit to reach a threshold, �. Simulat-
ing thousands of trials with different samples of vT (t) and vD(t) led
to different trajectories for mT and mD that predicted a distribution
of saccade RTs.

Several basic assumptions were shared by all models. All pa-
rameters were fixed across conditions because easy and hard
search arrays were interleaved. All between-condition variability
was due solely to observed changes in the visual neuron inputs.
Movement unit activation was rectified to be greater than zero
because we identified movement unit activity with neuronal firing
rate, which cannot be negative. All models compared movement
unit activity to a threshold, �, whose value was optimized to fit
behavior. In the following section, we discuss different models that
include additional parameters that determine movement neuron
computations. The first movement unit to reach threshold deter-
mined whether a saccade was made to the target or distractor. The
time when threshold was reached plus a brief ballistic time was the
RT. We did not explicitly model activity that followed threshold
crossings, but the latency between movement neurons reaching
threshold and the generation of a saccade is �15 ms in primates
(Scudder et al., 2002). This represents the time necessary for the
brainstem mechanisms to initiate a saccadic eye movement. There-
fore, the RT predicted for each simulated trial was defined as the
time from target onset to the time when threshold was crossed plus
a constant ballistic time, tballistic, which was constrained to fall
within an interval of 10–20 ms.

We adopted standard model fitting techniques to find values of
parameters that provided the best fit to the behavioral data. For a
given set of parameter values, we generated 5,000 simulated trials
to produce predicted RT distributions for both difficulty condi-
tions. All models were fit to behavioral data using the Simplex
routine (Nelder & Mead, 1965) implemented in MATLAB (The
MathWorks). We used a Pearson chi-square statistic to quantify
the discrepancies between the observed and predicted cumulative
correct RT distributions (Ratcliff & Tuerlinckx, 2002; Van Zandt,
2000):

�2 � N�i

�Oi � Pi�
2

Pi
. (1)

The summation over i indexes RT bins defined by the quantiles of
the observed RT distribution corresponding to the cumulative
probabilities of 0.1, 0.3, 0.5, 0.7, and 0.9. Oi are the observed
proportion of RTs, Pi are the predicted proportion of RTs within
the bins, and N is the total number of data points in the observed
RT distribution. With these quantiles, the six Oi are 0.1, 0.2, 0.2,
0.2, 0.2, and 0.1. Pi are the predicted proportion of RTs falling
within each bin, which varies with the values of the various
parameters. The probabilities are converted to frequencies by
multiplying by the observed number of data points, N. The chi-
square increases with the difference between the predicted RT
distribution and the observed RT distribution. We counted the
number of predicted responses falling within the correct RT dis-
tribution (Van Zandt, 2000); therefore, the fit routine maximized
the proportion of correct responses in addition to matching the
distribution of observed RTs.

Simplex finds values of free parameters that minimize the
chi-square. Five data sets from individual monkeys were fitted
separately (F, L, Mc, Mm, and Q), and a pooled data set that

combined across monkeys and stimulus sets was also fitted (F, L,
Mm, and Mc). For data sets with an easy and hard condition, both
difficulty conditions were fitted simultaneously by summing the
individual chi-square statistics for the two conditions. For each
model and data set, we ran the Simplex routine using �40 different
starting points that were distributed across a reasonable range of
parameter space to mitigate the problem of finding local minima
during the parameter search. This was done in parallel on the
high-performance computing cluster supported by the Vanderbilt
Advanced Center for Computing for Research and Education.

With only two RT distributions, one for easy search and one for
hard search, it did not seem sensible to engage in extensive
quantitative tests of model fits. Our goal was instead to find
models that provided an acceptable fit to behavior that would later
be compared to neural data. To quantify an acceptable fit, we
computed a standard R2 fit statistic from the observed and pre-
dicted RT percentiles: R2 � 1 	 (SSerror/SStotal). SSerror was given
by squaring the deviation between the observed and predicted
percentiles. SStotal was given by squaring the deviations between
the observed percentiles and the mean across difficulty conditions.
We used a simple heuristic of R2 � 90% as an acceptable account
of behavior. We also included a fit statistic, X2, in which observed
proportions were multiplied by 100 rather than the number of
observations, thus they were not true frequencies (Ratcliff &
Smith, 2004). This statistic facilitated comparisons of fit across
data sets because the number of observations varied across indi-
viduals.

Although we emphasize the use of neural data for model selec-
tion, we also compared models on their account of behavior.
Standard hierarchical model testing proved problematic for several
reasons when running these simulations,5 so we developed an
alternative benchmark for when a difference in X2 values was
deemed to be too large. To do this, we used the best fitting
parameters for a given model to simulate 5,000 RT distributions
(each containing 5,000 simulated RTs) that only differed in the
initial random number seed. An X2 statistic was computed for each
simulation. We then calculated a distribution of differences in X2

values between runs differing only in the randomly sampled in-
puts. We compared the difference in fit between two tested models
(Xdiff

2 � XModel 1
2 	 XModel 2

2 ) to these distributions to compute a p
value, and the 95th percentile of the distribution was used as an

5 First, these tests are limited to nested models, yet many of the model
comparisons we wished to make are between models that are not nested
and that have the same number of free parameters. Second, the power of
these tests increases with sample size, so one may attain significance
simply by running a large number of simulated trials (Busemeyer &
Diederich, 2010). Finally, even with 5,000 simulated trials per condition,
the difference between two runs of a model using the exact same parameter
values but differing in the random number seed at the start of a run
produces chi-square differences that can well exceeded the critical chi-
square value for nested models differing in one parameter. We considered
both parametric bootstrapping (Wagenmakers, Ratcliff, Gomez, & Iverson,
2004) and increasing the number of simulated trials in each model by an
order of magnitude. However, these approaches were not feasible given the
computational demands of Monte Carlo simulations. Ultimately, our em-
phasis is on neural predictions made by models with an acceptable behav-
ioral fit, not on detailed quantitative contrasts of the behavioral fits them-
selves.
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adjusted critical chi-square (Xcrit
2 ); calculations using the true chi-

square were qualitatively identical. This gave us a conservative X2

difference that we might expect from chance if the data were
produced by the same model that differed only in random factors.
Clearly, this approach does not have the statistical rigor of some-
thing like parametric bootstrapping, which would require compet-
ing models to be fitted 5,000 times. However, that approach was
intractable with our current hardware.

Accounting for Response Times

Given the tight constraints imposed on the models, the first
question to answer is whether RT distributions can be predicted
from the responses of FEF visual neurons. If so, then what com-
putations are necessary and sufficient? To address these questions,
we fit several stochastic models to the RT distributions observed
during the saccade visual search task. We selected models to
evaluate assumptions about the mechanisms thought necessary to
predict behavior.

Nonintegrated Models

The most fundamental assumption of the accumulator model
framework is that evidence must be integrated over time. The first
models we evaluated assume that moment-to-moment fluctuations
in current perceptual evidence are sufficient to trigger the response
threshold without any integration over time. Thus, we tested
whether a simple nonintegrated race model was sufficient to
account for observed behavior:

mT �t� � vT �t�. (2)

mD�t� � vD�t�. (3)

Here, movement unit activation is just the current input from the
visual neurons. The time at which m(t) reaches threshold varies
because the trial-to-trial input v(t) varies. Effectively, activation at
time t integrates across relevant visual neurons, but the movement
neurons do not integrate across time. One interpretation of this
model is that movement neurons simply pool the input from visual
neurons at a given point in time and determine when that pooled
activity reaches a threshold.

We also tested a model that assumes competition between visual
neuron inputs but no integration performed by movement neurons.
The activity of visual neurons in FEF showed a distinct pattern in
which the difference in activity between neurons representing the
target and distractors increased gradually over time, as expected
for a decision variable (see Figure 3B). The nonintegrated differ-
ence model assumes that the difference in visual unit activation
between target and distractor is directly compared to a response
threshold:

mT �t� � vT �t� � vD�t�. (4)

mD�t� � vD�t� � vT �t�. (5)

Thus, the movement neurons represent the relative support for one
response above and beyond the competing response. This is a basic
assumption made by some models of LIP (Ditterich, 2006b; Gold
& Shadlen, 2007; Mazurek et al., 2003), but in those cases, the

difference must be accumulated for a threshold to be crossed when
input is stationary. Here, this is not the case.

We evaluated how well both nonintegrated models fit the indi-
vidual and pooled behavioral data. Fits to behavioral data are
illustrated in two ways (see Figure 7): First, we presented the
predicted cumulative RT distributions for each condition using the
pooled data set along with the observed RT quantiles. A model that
fits this data set well will predict a cumulative RT distribution that
intersects the observed RT quantiles that were fit. Second, we
presented a scatterplot of the observed versus predicted quantiles
for the data sets from individual monkeys. A model that fits all
data sets well will produce a scatterplot distributed near the diag-
onal. The fit statistics for every data set and model are summarized
in Table 2.

Figure 7A illustrates the fits of the nonintegrated race model.
The predicted cumulative RT distribution indicates a very poor fit
to the pooled data set (R2 � 0). Recall that our null model (SStotal)
was given by the mean across conditions, so a negative R2 indi-
cates that these models actually fit worse than a model that simply
predicts the mean across conditions. This is due to extreme misses
in the upper tails. The fit is similarly poor across individual data
sets. The model cannot account for more than 90% of the variance
for a single data set (all R2 � 0.90). Thus, the nonintegrated race
model cannot fit the data.

The overall fit of the nonintegrated difference model to the
pooled data set is also very poor (see Figure 7B; R2 � 0). The
models generally predicted the correct ordering of the difficulty
conditions, but the model severely overpredicted the upper tail of
the distribution for most data sets. The quality of fit varied for
individual data sets but was generally poor. Although the model
provided an adequate fit to two data sets (F and Q: R2 � 0.90), it

Figure 7. Behavioral predictions of the nonintegrated models. Panel A
shows the fits of the nonintegrated race model. Panel B shows the fits of
the nonintegrated difference model. Left panels show the predicted cumu-
lative response time (RT) distributions for the pooled data set (solid lines)
with observed 10th, 30th, 50th, 70th, and 90th percentiles (open circles).
Easy is red, hard is green. Right panels show scatterplots of observed
versus predicted quantiles for individual data sets for easy and hard,
Monkey F � E, L � 
, Mm � �, Mc � x, and Q � ●.
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Table 2
Best Fitting Model Parameters for All Models and Data Sets

Data set � tballistic N � k g �2 X2 Xcrit
2 R2

Nonintegrated models
Nonintegrated race

F 0.91 14.99 16 — — — 749.07 21.68 3.12 �0
L 1.27 14.98 2 — — — 7,761.49a 607.21 50.84 �0
Mm 0.86 14.99 18 — — — 1,451.14 94.45 9.41 �0
Mc 0.89 14.99 13 — — — 968.60 87.91 8.15 0.46
Mc

� 0.84/0.91 15.00 17 — — — 668.15 64.59 7.12 0.86
Q 0.88 15.00 23 — — — 7,426.93 34.93 5.04 0.65
Pooled 0.94 14.99 13 — — — 8,390.70 119.97 10.82 �0

Nonintegrated difference
F 0.51 15.00 15 — — — 528.91 16.24 2.98 0.94
L 1.38 14.98 1 — — — 4,032.35a 377.28 34.53 �0
Mm 0.55 15.00 15 — — — 515.86 35.23 4.43 �0
Mc 0.62 15.00 8 — — — 318.06 29.80 3.59 0.86
Mc

� 0.58/0.64 15.00 8 — — — 247.60 23.45 3.35 0.96
Q 0.53 15.00 23 — — — 1,192.19 3.19 1.26 0.98
Pooled 0.59 15.00 23 — — — 2,368.56 32.03 4.46 �0

Perfect integrator models
Perfect race

F 138.26 15.00 8 — — — 2,077.78a 29.66 4.81 0.74
L 143.69 16.85 4 — — — 83.39 8.62 1.80 0.90
Mm 179.74 16.18 7 — — — 639.29a 27.90 3.96 0.71
Mc 138.10 13.41 1 — — — 10,178.87a 253.57 29.15 0.18
Mc

� 121.64/200.84 10.00 1 — — — 970.39a 36.10 4.81 0.91
Q 264.97 14.98 5 — — — 4,528.94a 7.42 2.02 0.89
Pooled 163.41 14.97 5 — — — 4,462.08a 41.11 5.53 0.69

Perfect diffusion
F 27.05 10.00 15 — — — 1,495.25a 22.55 3.93 0.17
L 79.05 15.78 5 — — — 27.06 2.32 0.88 0.97
Mm 36.65 15.88 14 — — — 283.41 15.70 2.67 0.73
Mc 48.06 10.00 4 — — — 933.64 70.16 7.01 0.71
Mc

� 37.38/63.78 13.93 4 — — — 322.98 27.21 3.69 0.95
Q 64.23 14.93 12 — — — 2,775.81 10.51 2.28 0.80
Pooled 43.04 15.01 10 — — — 936.29 8.97 1.99 0.87

Perfect competitive
F 98.64 14.95 10 0.0025 — — 1,699.13 20.98 3.47 0.66
L 119.55 15.00 11 0.0034 — — 10.39 0.90 0.53 0.98
Mm 120.89 14.97 23 0.0028 — — 354.44 24.38 3.64 0.74
Mc 92.42 15.00 15 0.0063 — — 1,206.93 102.74 9.06 0.46
Mc

� 81.28/122.82 15.01 8 0.0039 — — 380.10 29.97 3.66 0.92
Q 176.58 15.00 19 0.0023 — — 1,119.75 2.42 1.05 0.94
Pooled 105.39 15.03 21 0.0037 — — 1,922.71 23.55 3.46 0.78

Leaky models
Leaky race

F 33.13 15.00 7 — 0.0178 — 222.10 5.33 1.67 0.98
L 100.25 14.99 5 — 0.0036 — 42.89 5.22 1.42 0.86
Mm 52.72 14.99 10 — 0.0114 — 143.79 5.31 1.32 0.90
Mc 10.66 15.00 12 — 0.0753 — 823.83 79.06 7.14 0.51
Mc

� 27.76/31.53 15.00 8 — 0.0247 — 324.37 30.67 4.21 0.95
Q 65.61 15.00 20 — 0.0097 — 134.45 1.70 0.95 0.98
Pooled 49.67 14.99 11 — 0.0124 — 418.04 9.27 2.02 0.94

Leaky diffusion
F 10.27 14.98 10 — 0.0210 — 420.61 12.01 2.67 0.88
L 69.33 15.82 5 — 0.0018 — 21.07 2.51 0.99 0.98
Mm 22.04 15.33 8 — 0.0096 — 253.00 5.72 1.71 0.99
Mc 7.03 15.03 7 — 0.0667 — 490.18 26.89 3.25 0.88
Mc

� 9.82/11.82 15.00 6 — 0.0402 — 190.50 17.64 3.01 0.97
Q 12.88 15.00 15 — 0.0276 — 713.87 2.50 1.02 0.94
Pooled 23.22 14.95 10 — 0.0111 — 112.62 1.61 0.82 0.99

Leaky competitive
F 15.07 15.00 17 0.0474 0.0400 — 171.04 6.09 1.72 0.97
L 118.84 15.00 12 0.0036 0.0000 — 10.28 0.82 0.49 0.99
Mm 59.12 15.00 9 0.0001 0.0096 — 59.38 5.67 1.44 0.91

(table continues)
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failed to fit the remaining individual data sets (L, Mm, and Mc:
R2 � 0.86). We conclude that the nonintegrated difference model
cannot fit the behavioral data.

Discussion

Visual neurons in FEF are hypothesized to combine feature infor-
mation from early visual areas to represent the visual salience of
objects (e.g., Carpenter et al., 2009; Hamker, 2005a; Thompson &
Bichot, 2005); therefore, it was possible that temporal integration is
unnecessary. The nonintegrated models assume that a response is
initiated when the perceptual evidence given by FEF visual neuron
activity crosses some threshold. In other words, this hypothesizes that
movement neurons simply pool visual neuron inputs and compare that
pooled activity level directly to a response threshold but do not
integrate that activity over time. However, these models failed to
account for behavior regardless of whether the absolute level of
activity or a difference in activity was compared to threshold. Some
additional mechanism is required to account for behavior. Previous
modeling studies strongly suggest temporal integration.

Perfect Integrator Models

We next evaluated three models that assume perfect integration
of visual neuron inputs. Formally, we characterized each of these
perfect integrator models with specific parameterizations of the
following equations,

dmT �t� �
dt



�vT �t� � u � vD�t� � � � mD�t�� � �dt



�T, (6)

dmD�t� �
dt



�vD�t� � u � vT �t� � � � mT �t�� � �dt



�D, (7)

that specify the change in activation of the movement unit repre-
senting a decision to move the eyes to a target (mT) or a distractor
(mD) at each time step, dt (dt/
 was set to 1 ms in all simulations).
Movement units perfectly integrated visual activity (vT and vD)
with respect to time and initiated a saccade when activation
reached the threshold, �, after the ballistic time, tballistic.

Inhibitory interactions among response alternatives could be
implemented at two levels: (a) Competition between visual neuron

Table 2 (continued)

Data set � tballistic N � k g �2 X2 Xcrit
2 R2

Leaky models (continued)

Mc 22.63 15.01 24 0.0517 0.0296 — 365.16 33.11 3.49 0.81
Mc

� 47.31/57.59 15.00 5 0.0005 0.0117 — 218.22 20.57 3.22 0.97
Q 65.65 15.00 20 0.0000 0.0097 — 133.94 1.10 0.68 0.99
Pooled 28.91 15.00 12 0.0151 0.0211 — 102.00 1.56 0.77 0.99

Gated models
Gated race

F 11.66 15.00 9 — 0.0126 0.4616 317.63 6.87 1.92 0.98
L 56.14 15.00 7 — 0.0000 0.3767 53.48 4.13 1.52 0.96
Mm 11.63 15.00 24 — 0.0083 0.5435 100.23 8.00 2.26 0.98
Mc 12.32 15.00 8 — 0.0242 0.4385 1,127.52 76.47 8.38 0.61
Mc

� 36.90/54.26 14.99 5 — 0.0067 0.2527 342.98 23.85 3.85 0.97
Mc

�� 48.22 15.00 5 — 0.0037 0.2225/0.4125 195.00 15.02 2.78 0.99
Q 21.59 15.00 19 — 0.0002 0.5850 272.78 2.61 1.13 0.99
Pooled 17.18 15.03 22 — 0.0003 0.5782 190.94 2.33 1.17 0.99

Gated diffusion
F 7.04 14.99 11 — 0.0172 0.1335 488.20 13.78 3.05 0.98
L 57.25 14.85 4 — 0.0000 0.1524 51.21 2.10 0.91 0.97
Mm 9.36 14.99 10 — 0.0024 0.2600 84.80 10.49 2.63 0.89
Mc 3.19 15.00 8 — 0.0308 0.3612 486.18 28.95 3.60 0.91
Mc

� 7.65/11.78 15.00 6 — 0.0229 0.1496 279.16 20.92 3.15 0.97
Mc

�� 10.53 14.99 15 — 0.0001 0.2117/0.3772 211.29 10.74 3.30 0.98
Q 15.28 14.99 13 — 0.0050 0.2000 365.39 2.42 1.07 0.99
Pooled 16.72 14.99 11 — 0.0037 0.18 146.64 1.58 0.90 0.99

Gated competitive
F 11.31 15.00 9 0.0077 0.0088 0.4748 302.49 6.75 2.02 0.97
L 58.22 15.00 6 0.0036 0.0000 0.3409 52.57 3.44 1.36 0.99
Mm 12.39 15.00 18 0.0136 0.0053 0.5449 84.82 5.66 1.81 0.92
Mc 10.29 15.01 11 0.0012 0.0388 0.3748 591.52 75.48 8.06 0.53
Mc

� 44.95/61.04 14.98 5 0.0000 0.0075 0.1566 335.65 21.41 3.46 0.95
Mc

�� 52.16 15.01 5 0.0000 0.0050 0.2383/0.4238 192.83 15.71 3.52 0.98
Q 21.20 15.00 19 0.0016 0.0001 0.5850 246.14 2.84 1.24 0.99
Pooled 16.81 14.99 20 0.0000 0.0007 0.5768 149.88 2.35 1.11 0.98

Note. �2 indicates the goodness of fit between predicted and observed response time (RT) and distributions on the easy (if performed) and hard search
tasks. X2 indicates the same goodness of fit but is not dependent on the number of observations to facilitate comparison across datasets. Xcrit

2 indicates the
maximum difference in fit that would be expected by chance. R2 indicates the proportion of variance in RT accounted for by the models. All models
predicted � 90% accuracy for every data set except those with �2 values noted with a subscript a (a). Mc

� indicates a version of the model in which the
threshold, �, was free to vary between conditions. Mc

�� indicates a version of the model in which the gate parameter, g, was free to vary between conditions.
Dashes indicate that a parameter was fixed to zero for this model.
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inputs that were determined by the parameter u correspond to
feed-forward inhibition (e.g., Hamker, 2005b) or (b) competition
between movement units that were determined by a parameter �
correspond to lateral inhibition (e.g., Usher & McClelland, 2001).
We evaluated a perfect race model (u � � � 0), in which each unit
independently accumulates the activity of a visual neuron repre-
senting the object in its receptive field; this corresponds to previ-
ous models of two-alternative forced-choice tasks (Smith & Van
Zandt, 2000; Vickers, 1970). We evaluated a perfect diffusion
model (u � 1, � � 0), in which evidence for one response is
simultaneously counted as evidence against the competing re-
sponse; this is a neurally plausible implementation of a one-
dimensional diffusion process. As a result, movement units inte-
grate the difference between visual neuron inputs (similar to the
difference operation proposed by Ditterich, 2006a; Mazurek et al.,
2003). Finally, we evaluated a perfect competitive model (u � 0,
� free to vary), in which lateral inhibition between response units
at a given time point depends on the current activation of that unit
weighted by �; this corresponds to models that implement winner-
take-all dynamics through mutually inhibitory units (similar to
Usher & McClelland, 2001; see also Wang, 2002, for a detailed
neurophysiological implementation).

We included a Gaussian noise term, �, for both accumulating
units with a mean of zero and a standard deviation of �. In most
implementations of stochastic accumulator models, the only intra-
trial variability comes from this noise term. However, in our case,
there was substantial noise inherent in the input, vT and vD, because
input was derived directly from spike trains that are inherently noisy.
Thus, we parsed noise into two components: exogenous noise that is
inherent in the visual neuron input and endogenous noise that is

intrinsic to the movement units given by �. We explored versions of
these models with various levels of endogenous noise, but adding
noise did not strongly affect most predictions. Therefore, for these
models, we assumed that all noise was due to the visual neuron
input by fixing � � 0 in all cases. We explore models with
endogenous noise later in this article.

The fits of the perfect integrator models to the RT distributions
are shown in the left panels of Figure 8, and details are given in
Table 2. By our criterion, the overall fit was very poor for the race
and competitive models (race R2 � 0.69, competitive R2 � 0.78)
because they severely underestimated between-condition variabil-
ity. The diffusion model provided a slightly better account of the
pooled data set than the race and competitive models (R2 � 0.87)
but still underestimated between-condition variability and missed
the upper tail of the hard RT distribution. All models failed to meet
our benchmark of accounting for 90% of the variance. The fits to
the individual data sets were also poor for each of the perfect
integrator models (see Figure 9, left panels). The poor fit can be
summarized in the low average R2 (R2) across data sets (race R2 �
0.69, diffusion R2 � 0.71, competitive R2 � 0.76). In general, the
model fits the data sets of individual monkeys poorly, although
there is some variability across data sets.

Discussion

Integration appears to be necessary, but models assuming per-
fect integration could not predict the observed behavior. Why did
these models fail when similar models have been successful in
accounting for richer sets of data? The models failed because, in
our approach, visual neuron activity is input to accumulator units

Figure 8. Behavioral predictions of the perfect (left panels), leaky (middle panels), and gated (right panels)
accumulator models to the pooled data set. Each panel shows the predicted cumulative response time (RT)
distributions for the pooled data set (solid lines) with observed 10th, 30th, 50th, 70th, and 90th percentiles (open
circles). Easy is red, hard is green.
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continuously over time. There is no mechanism to limit the rate of
accumulation prior to the onset of the stimulus array. Visual
neurons do not discriminate the target until late in the trial, which
means that units accumulate noise for the majority of the trial.
Stimulus-dependent differences in the model inputs have little time
to impact the accumulation. Some mechanism is necessary to limit
the rate of accumulation until a decision is made.

Several plausible mechanisms could be implemented to limit the
rate of input to the accumulator units. Many accumulator models
circumvent this problem by assuming that the start of the accu-
mulation is delayed relative to the onset of the stimulus. It is
plausible that some external signal initiates the accumulation
sometime after the stimulus onset. However, a more complete and
parsimonious explanation is that some mechanism limits the rate
of flow from visual to movement neuron activity until a relevant
signal is present. In the following sections, we evaluate two simple
mechanisms that perform that function.

Leaky Accumulator Models

We first asked whether leaky integration could improve model
performance. Leakage in these models is implemented as self-
inhibition of a unit that scales with the activation of the unit at a
given point in time. We considered leaky versions of the race
model, diffusion model, and competitive model as follows:

dmT �t� �
dt



�vT �t� � u � vD�t� � � � mD�t� � k � mT �t�� � �dt



�T,

(8)

dmD�t� �
dt



�vD�t� � u � vT �t� � � � mT �t� � k � mT �t�� � �dt



�D.

(9)

Here, k is the leakage constant, and all other variable are as
described earlier. Leakage is inherently inhibitory, so k is con-
strained to be greater than zero. As with the perfect integrator
models, we evaluated a leaky race model (u � � � 0), a leaky
diffusion model (u � 1, � � 0), and a leaky competitive model
(u � 0, � free to vary). We report values where leakage was
optimized to fit behavior, and we also explored the effect of
varying the value of the leakage constant incrementally while
finding best fitting values of the other parameters. As before, we
found that adding small amounts of endogenous noise did not
affect model predictions, so it was fixed to zero (� � 0).

The fits of the leaky models to the pooled data set are shown in
Figure 8 (center panels). In contrast to the perfect integrator
models, all leaky integrator models provided a good account of the
pooled data set (all R2 � 0.90). This improvement in fit, relative
to perfect integrator counterparts, was significant for all three
models (all Xdiff

2 � 7.36, all p � .05). The leaky models also fit
nearly all individual data sets very well (see Figure 9; all R2 �
0.90, except Mc). In general, the fit of the leaky integrator model
was significantly better than that of the perfect integrator models.
For the race model, the improvement in fit was significant for all
data sets (all Xdiff

2 � 3.38, all p � .05); for the diffusion model, the
improvement was significant for most (four out of five) individual
data sets (all Xdiff

2 � 2.27, all p � .05, except L, Xdiff
2 � 0.19, p �

.72); and for the competitive model, this improvement was signif-

Figure 9. Behavioral predictions of the perfect (left panels), leaky (middle panels), and gated (right panels)
accumulator models to all data sets. Each panel shows a scatterplot of the observed versus predicted response
time (RT) quantiles that were fit by the data. Easy is red, hard is green. Monkey F � E, L � 
, Mm � �, Mc �
x, and Q � ●.
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icant for most (four out of five) individual data sets (all Xdiff
2 �

1.32, all p � .05, except L, Xdiff
2 � 0.08, p � .88). Across models,

only the Mc data set was fit poorly, which we attribute to low trial
numbers. To summarize, the leaky integrator models fit the pooled
data and nearly all data sets very well, and the improvement over
the perfect integrator models was nearly always significant.

We also compared behavioral fits between the leaky race, leaky
diffusion, and leaky competitive models, but differences in fit
across these models were not consistent enough to draw strong
conclusions about the nature of interactions among response units.
Leaky integrator models that assume different forms of competi-
tion seem able to predict behavior equally well, at least for the
behavioral data set we tested.

Discussion

Unlike perfect integrators, models that assume leaky integration
predicted the observed behavior. Here, leakage is advantageous
because it asymptotically limits the accumulation of perceptual
evidence prior to a decision. Visual neuron inputs are approxi-
mately constant in the absence of a stimulus, so accumulator
activity reaches a lower asymptote when the rate of decay is
approximately equal to the input. Following the presentation of the
search array, visual neuron inputs increase, so the accumulators
begin to increase again until an upper asymptote is reached. If the
threshold is placed between the lower and upper asymptotes, then
the model will predict a baseline firing rate that increases
to threshold when the visual neuron inputs increase. In other
words, the leak is constant throughout the trial, but it is the level
of input that changes. Thus, leakage provides one way to limit the
rate of accumulation in the presence of dynamic neural inputs.

Leakage limits the rate at which evidence is accumulated, but
evidence still flows continuously to accumulator units. These
models assume that visual neurons represent relevant perceptual
evidence while movement neurons simultaneously accumulate that
evidence over time. Alternatively, a pure discrete stage model
would assume that the accumulation of evidence does not begin
until perceptual processing is complete, when a representation of
perceptual evidence is achieved. This assumption is made by
models in which the drift rate is constant and the accumulation
begins some delay following the presentation of the stimulus.
However, this assumption seems at odds with our neurally con-
strained framework in which perceptual evidence is defined by a
neural representation that evolves continuously over time. In the
following section, we evaluate a new set of models assuming that
the start of the accumulation is not determined by a fixed delay
from the stimulus onset but, like leakage, depends on the level of
visual input flowing into the accumulator. In contrast to leakage,
input is gated prior to reaching the accumulator until it exceeds a
particular level. In this way, these simple models represent a
neurally plausible implementation of discrete stages.

Gated Accumulator Models

We tested gated models of perceptual decision making that
assume dynamic visual neuron input exactly like the continuous
flow models described so far but where a gate parameter controls
the minimum level of visual neuron input needed to modulate

activity of the movement units. Formally, the following equations
defined the gated models:

dmT �t� �

dt



��vT �t� � u � vD�t� � g�
 � k � mT �t� � � � mD�t�� � �dt



�T,

(10)

dmD�t� �

dt



��vD�t� � u � vT �t� � g�
 � k � mD �t� � � � mT �t�� � �dt



�D.

(11)

The gate parameter, g, is a constant inhibition applied to the visual
neuron input that drives the accumulators. Mathematically, this is
equivalent to constraining the total input to be greater than g for
accumulation to begin. Once g is exceeded, it continues to be
subtracted from the visual inputs but does not scale with the level
of the accumulation. The term (vT (t) 	 u � vD(t) 	 g) is constrained
to be � 0 because the gate is applied to the input, not the
movement units themselves. In all fits, g was a free parameter that
was constrained to be greater than zero. We evaluated a gated race
model (u � � � 0), a gated diffusion model (u � 1, � � 0), and
a gated competitive model (u � 0, � free to vary).6

Like the earlier models, we have a term for intrinsic Gaussian
noise with a mean of zero and standard deviation, �. As before, we
found that including noise did not impact behavioral predictions.
However, if m(t) starts at zero and g is high enough to suppress
input to zero, then there is nothing to accumulate, so the models
predicted little to no baseline activation. Most FEF movement
neurons have a small tonic baseline firing rate (Bruce & Goldberg,
1985; Schall, 1991; Segraves & Goldberg, 1987); therefore, we
included an endogenous noise term to represent stochastic ele-
ments in movement neuron activity or the neural circuit. Low
levels of intrinsic noise (� � 0.2) accumulate in movement units,
and low levels of leakage cause activation to asymptote at a
relatively invariable baseline that is well below threshold. This
means that the baseline level of activity is primarily due to intrinsic
noise but that the rise of activation to threshold is primarily due to
modulations in the visual neuron inputs.

The fits of the gated models to the pooled behavioral data are
shown in Figure 8. All three gated models provided an excellent
account of the pooled data set (race R2 � 0.99, diffusion R2 �
0.99, competitive R2 � 0.98). Compared to their leaky coun-
terparts, only the gated race model fit significantly better than
its leaky counterpart (race Xdiff

2 � 6.94, p � .05), whereas the
fit was not significantly different for the other models (diffusion
Xdiff

2 � 0.02, p � .96; competitive Xdiff
2 � 0.81, p � .16).

On average, all three gated models accounted for the individual
data sets very well (see Figure 9; race R2 � 0.92, diffusion
R2 � 0.95, competitive R2 � 0.90), with the exception of Mc.
The change in fit between the leaky race and gated race models

6 Working simulations of the accumulator models described in this
article can be downloaded from http://catlab.psy.vanderbilt.edu/wp-
content/uploads/PurcellHeitzCohenLoganSchallPalmeri_PublicCode.zip
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was not significant for most (four out of five) individual data
sets (Xdiff

2 � 2.78, p � .09), except Mm for which the leaky
models fit slightly, but significantly, better (Xdiff

2 � 2.70, p �
.02). The change in fit between the leaky diffusion and gated
diffusion models was not significant for most (four out of five)
individual data sets (Xdiff

2 � 2.02, p � .25), except Mm for which
the leaky models fit significantly better (Xdiff

2 � 4.73, p � .001).
The leaky competitive models fit significantly better than the gated
models for most (three out of five) individual data sets (Xdiff

2 �
1.74, p � .05), but two data sets were not significantly different (F
and Mm, both Xdiff

2 � 0.64, p � .50). In general, the gated and
leaky models fit the data equally well. As with the leaky models,
we also compared the models against one another but found little
evidence to support one form of competition over another.

For all of the models tested so far, the fits to the Monkey M
color search data set (Mc) were poor relative to the other data sets
(see Figure 9 [x symbols] and Table 2). In particular, models often
underestimated the RT difference between easy and hard condi-
tions. This is most likely because the Mc data set included fewer
trials than the other data sets, and therefore, the population of spike
trains from which inputs were sampled was not variable enough to
predict observed variability in behavior. We also explored some
potential process-oriented explanations. One possibility is that the
monkey was able to rapidly adapt its criterion depending on the
difficulty of the search task. Indeed, fits were improved for all
models if we allowed the threshold to increase for the hard relative
to the easy condition (see Table 2, Mc

*). Another possibility is that
the gate parameter could be strategically adjusted for the easy and
hard conditions. Fits of this elaborated model were also substan-
tially improved (see Table 2, Mc

**). This may indicate that the gate
constant can be selectively modified to adapt behavior, but data in
which animals are able to modify their performance across blocks
will be necessary to evaluate more rigorously this hypothesis.

Discussion

A primary goal of these simulations was to determine whether
visual neuron dynamics could serve as a neural representation of
perceptual evidence. Models that assume leaky or gated integration
provide an excellent account of the distributions of saccade RTs. It
may be seen as quite surprising that any of the models successfully
accounted for observed RT distributions. From a modeling stand-
point, the use of raw neural inputs dramatically reduces the number
of free parameters that would typically be optimized to fit behav-
ior. Indeed, the impact of these neural constraints is illustrated by
the models that could not adequately fit behavior. Furthermore,
from a neurophysiological standpoint, the full neural circuitry
required for saccade control is complex and incompletely under-
stood. Yet, by assuming a simple connection between visual and
movement neurons, these models capture essential characteristics
of behavior. Visual neuron activity during search is sufficient to
serve as input to the accumulation decision process thought to be
instantiated in movement neurons.

Another goal of these simulations was to determine the mech-
anisms that are necessary to predict behavior from the neural
representation of evidence in FEF visual neurons. The perfect and
leaky integrator models assume a continuous flow of information
from visual processing to evidence accumulation. In contrast, the
gated models assume that gating inhibition prevents the integration

of evidence early in the trial when no information is present in the
signal (i.e., when the visual neurons have not yet selected the
location of the target). In other words, the gate acts as a threshold
on the evidence that must be reached before the accumulation
process can begin. Despite the important theoretical distinction,
there was little evidence to distinguish the gated and leaky models
based on behavioral fits alone. We turned to the neurophysiology
to resolve this mimicry.

Thus far, we used neurophysiological recordings from visual
neurons to constrain the perceptual evidence driving models of
decision making and contrasted models on their ability to account
for observed behavior. If the link between movement neurons and
the accumulation of evidence is valid, then accumulator units
should predict the observed neural dynamics. In the next section,
we quantify and compare the dynamics of movement neurons
recorded in FEF with dynamics of predicted model accumulator
activity. Models that predict both neural and behavioral data
should be selected in favor of models that predict only behavior.

Accounting for Movement Neuron Dynamics

The goal of the following analyses was to compare quantita-
tively the dynamics of the model accumulator units with move-
ment neuron activity. Note that the movement neuron activity is a
prediction of the model, not a fit to data. The parameters that
optimized fits to the behavior were used to generate predicted
activity trajectories. These trajectories were then analyzed using
the same algorithms applied to the FEF movement neurons.

Analysis of Movement Neuron Dynamics

Woodman et al. (2008) analyzed how movement neuron activity
varied with RT in monkeys performing visual search with stimuli
supporting more or less efficient search. Following their method-
ology, trials in which a saccade was made correctly to a target in
the neuron’s movement field were sorted by RT and grouped into
bins of 10 trials. A spike density function was generated for each
bin of 10 trials (see Figure 10A). We calculated four characteristics
of each spike density function: (a) time of onset of activity, (b)
growth rate, (c) baseline discharge rate, and (d) threshold dis-
charge rate (see Figure 10B). The onset, growth rate, and baseline
were calculated from spike density functions generated from trials
of spike trains that were aligned on the time of the presentation of
the search array. To calculate the onset of activation, we used a
sliding-window algorithm (	20 ms to 20 ms) that moved back-
ward in 1-ms increments from 15 ms before the time of saccade
initiation. The onset of activation was given when the following
three criteria were met: (a) Activity no longer increased according
to a Spearman correlation (� � .05) within the window around the
current time, (b) activity at that time was less than activity during
the 20 ms preceding saccade onset, and (c) as the window was
moved backward in time, the correlation remained nonsignificant
for 20 ms. The growth rate was calculated by dividing the differ-
ence between the threshold activity level and the activity level at
the time of onset by the difference between the time of saccade and
the time of activity onset. Baseline activity was calculated as the
average activity in the 200 ms prior to the appearance of the search
array. Threshold was measured using a spike density function that
was generated by aligning trials on the time of saccade for each RT
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group. The threshold activity was computed as the average activity
level of a neuron in the interval 	20 to 	10 ms relative to saccade
(J. W. Brown, Hanes, et al., 2008; Hanes & Schall, 1996).

Figure 10B shows scatterplots of each neural activity measure-
ment versus RT for each bin for one characteristic neuron. We
computed the correlation (r) between each measure of neural
activity for the trials in each bin and the mean RT for each bin.
This neuron shows a strong correlation between the onset of
activity and RT for both difficulty conditions (reasy � 0.91, rhard �
0.94, p � .05). However, the correlation with RT was not signif-
icant for growth rate (reasy � 	0.35, rhard � 0.26, both p � .29),
baseline (reasy � 	0.12, rhard � 	0.23, both p � .59), and
threshold (reasy � 0.12, rhard � 0.12, both p � .72). Figure 10C
summarizes the results for the entire population of movement
neurons that were analyzed. Since there were no major qualitative
differences, results were combined across individual monkeys and
tasks. Table 3 summarizes the mean correlation and percentage of
significant correlations (� � .05) for the entire set of neurons.
Most notably, a high percentage of neurons showed a significant
positive correlation between the time of onset of activity and RT in
both difficulty conditions (r�easy � 0.53 [54.9%], p � .05; r�hard �
0.72 [68.9%], p � .05). However, there was little or no corre-
lation between baseline (r�easy � 	0.11 [3.9%], p � .05; r�hard �

	0.05 [1.6%], p � .05), and threshold (r�easy � 0.12 [9.8%], p �
.05; r�hard � 0.06 [13.1%], p � .05) for the vast majority of
neurons. Some neurons did show a significant correlation between
growth rate and RT (r�easy � 	0.22 [3.9%], p � .05; r�hard � 	0.14
[6.6%], p � .05), but the relationship was far weaker than that
observed between the onset and RT. These observations are in
agreement with previous reports that when stimuli vary in discrim-
ination difficulty, RT correlates most strongly with the onset of
neural activity (Thompson & Schall, 2000; Woodman et al., 2008),
correlates less strongly with the growth rate of neural activity
(Hanes & Schall, 1996), and does not vary with the baseline or
threshold in this task.

We also measured activity of movement neurons when a dis-
tractor was in their movement field and a saccade was made to
another location. We compared this activity with the activity of the
same neuron when a target was in its movement field. We aver-
aged activity in the time interval when threshold on movement
neuron activity would be reached (	20 to 	10 ms prior to sac-
cade). We calculated a distractor/target (D/T) ratio:

D/ T ratio �
Din � B

Tin � B
. (12)

Figure 10. Movement neuron activity. A: Activity for a representative movement neuron from fast and slow
trials (average activity from 10 consecutive trials at the 0.1 and 0.9 response time [RT] quantiles). B: Scatterplots
of neural measurements plotted versus RT. Insets illustrate the pattern of activity implicated by a significant
correlation. C: Mean correlation across all movement neurons. Percentages of neurons with significant corre-
lation are shown below. D: Mean distractor/target (D/T) ratio. Error bars are 95% confidence intervals. Easy
trials are in red, hard trials in green. Fast trials are in black, slow trials in grey. Inset illustrates calculation. sp/s �
spikes per second.
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Tin is the activity of the movement neuron when the target was
in its movement field prior to the saccade, Din is the activity
when the distractor was in its movement field, and B is the
baseline activity of the neuron (see Figure 10D). We only
included movement neuron activity responding to distractors
that were not adjacent to the target to ensure distractors and
targets were in different receptive and movement fields and to
avoid local suppressive zones surrounding the receptive and
movement fields of neurons in FEF (Schall, Hanes, et al., 1995;
Schall et al., 2004). Thus, the D/T ratio represents activity when
a saccade was made to a distant location in the visual field.

The D/T ratio was interpreted as the level of evidence accumu-
lated for a saccade to the distractor relative to the threshold at the
time a decision was made (i.e., the threshold was crossed). A
positive value indicated that accumulated evidence supporting a
distractor was still present although the response was made to the
target. A negative value indicated that accumulated evidence sup-
porting a distractor response was suppressed or decayed below
baseline at the time a decision was made, which was present in a
small number of neurons. A ratio near zero indicated that accu-
mulated evidence supporting the distractor either remained at
baseline for the duration of the trial or increased but then decayed
to baseline level by the time the decision was made.

On average, movement neurons showed slightly elevated activ-
ity when a response was made to a target opposite their receptive
field. Figure 10D shows 95% confidence intervals around the
mean observed D/T ratio across the neurons (Measy � 0.15,
Mhard � 0.18). For both easy and hard, this ratio was significantly
greater than zero, teasy(50) � 2.90, thard(60) � 3.31, both p � .05,
and significantly less than 1.0, teasy(50) � 	16.42, thard(60) �
	18.36, both p � .05. There was no significant difference between
easy and hard conditions in this ratio, paired t(50) � 1.68, p � .05
(excluding Data Set Q, which had no easy condition). Table 4
(right column) summarizes these results.

Analysis of Model Dynamics

We conducted the same analyses on the movement unit trajec-
tories predicted by each model, calculating onset, baseline, growth
rate, threshold, and D/T ratio. The results in the previous section
established five benchmark criteria that the models must satisfy to
predict movement neuron activity. For targets in the movement
field, they should predict (a) a strong positive correlation between
the onset of activation and RT, (b) a weak inverse correlation
between growth rate and RT, and zero correlation between RT and
the (c) baseline or (d) threshold. Finally, for distractors in the
movement field, they should predict (e) a D/T ratio that is close to
zero. Later, we quantify additional characteristics of the trajecto-
ries, but these five criteria proved most useful for model selection
purposes.

Model unit accumulation was defined in terms of spike rate
(normalized to arbitrary measurement units). Our simulation meth-
ods allowed us to generate thousands of simulated trials (each with
a predicted RT and activation pattern), whereas only �120 trials of
spike activity were analyzed from each neuron from trials in which
the target was in the neuron’s movement field. To have commen-
surate statistical comparisons of models and neurophysiology, our
analyses of model dynamics were performed in the following way:
(a) We generated 120 simulated trials to approximate the average
number of trials of observed movement neuron activity, (b) we
normalized and rescaled the model trajectories from those trials by
the approximate average observed threshold across neurons, (c) we
generated one spike train for each trial according to a time-
inhomogeneous Poisson process with the rate given by the model
activation trajectory for that trial, (d) we binned the simulated
spike trains into groups of 10 trials according to the predicted RT,
and (e) we generated an activation function (in spikes per second
[sp/s]) from the predicted spikes exactly as was done for the actual
spikes. These steps were repeated 500 times to obtain a distribution

Table 3
Movement Neuron and Model Dynamics: Mean Correlation With Response Time (Percentage of Significant Correlations
in Parentheses)

Onset Growth rate Baseline Threshold

Neural data and model
predictions Easy Hard Easy Hard Easy Hard Easy Hard

Neural data
Movement neurons 0.53 (54.9) 0.72 (68.9) 	0.22 (11.5) 	0.14 (9.8) 	0.11 (3.9) 	0.05 (1.6) 0.12 (9.8) 0.06 (13.1)

Perfect integrator models
Race 0.58 (60.6) 0.67 (75.1) 	0.03 (4.3) 	0.02 (2.9) 	0.82 (98.6) 	0.82 (97.2) 0.02 (3.0) 0.01 (2.6)
Diffusion 0.46 (37.7) 0.64 (67.6) 	0.10 (7.0) 	0.07 (6.5) 	0.68 (78.6) 	0.67 (73.5) 	0.02 (2.6) 	0.02 (1.9)
Competitive 0.60 (62.6) 0.71 (81.5) 	0.05 (2.8) 	0.03 (2.8) 	0.78 (94.9) 	0.79 (96.6) 0.03 (2.8) 0.02 (3.0)

Leaky models
Race 0.72 (85.1) 0.79 (92.4) 	0.13 (6.5) 	0.10 (3.8) 	0.36 (22.6) 	0.30 (18.2) 0.06 (4.2) 0.05 (3.8)
Diffusion 0.58 (57.2) 0.76 (87.0) 	0.16 (6.6) 	0.11 (5.6) 	0.26 (21.6) 	0.26 (17.9) 0.10 (5.8) 0.09 (4.4)
Competitive 0.61 (66.4) 0.72 (85.0) 	0.07 (3.9) 	0.06 (3.4) 	0.57 (59.0) 	0.56 (58.8) 0.02 (3.6) 0.01 (3.1)

Gated models
Race 0.67 (71.9) 0.83 (96.0) 	0.22 (13.3) 	0.11 (7.0) 	0.04 (5.2) 	0.05 (5.4) 0.10 (6.0) 0.10 (4.4)
Diffusion 0.63 (68.1) 0.84 (96.0) 	0.24 (9.2) 	0.16 (6.2) 	0.07 (6.4) 	0.09 (7.3) 0.08 (4.5) 0.10 (5.5)
Competitive 0.67 (70.8) 0.83 (95.8) 	0.19 (11.3) 	0.10 (5.2) 	0.11 (6.9) 	0.06 (5.2) 0.09 (5.4) 0.09 (4.4)

Note. Percentages of neurons/simulations with a significant correlation were calculated with � � .05. Observed data combine across animals. Predicted
data are averaged across data sets. See Figures 11, 12, and 13 for plots of individual data sets. Data from Monkey Q are included in the hard condition.
A subset of the neural data was previously published (Woodman, Kang, Thompson, & Schall, 2008).
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of predictions. Essentially, this transformed a model prediction in
terms of sp/s into a single predicted spike train. The model spike
trains were then analyzed by correlating RT with onset, growth
rate, baseline, and threshold and calculating the D/T ratio in
exactly the same way we analyzed the observed spike trains. We
then computed a mean correlation and percentage of significant
correlations for each activity measurement comparable to those
reported for observed neurons. All of this being said, our conclu-
sions do not depend on whether our analyses were performed
directly on model activation in terms of spike rate or on model
Poisson spikes trains; our motivation for generating spike trains
was to ensure that the model and neurophysiological analyses had
comparable statistical power. For example, differences in the vari-
ability of the model and neural signals could lead to differences in
the measured onset time.

Perfect Accumulators

Figure 11 summarizes the results from the analyses of the
perfect accumulator model trajectories (see also Table 3). Al-
though these models inadequately accounted for behavior, a quan-
titative analysis of their predicted trajectories can indicate why.
First, notice that all models predicted a consistent positive corre-
lation between the measured onset of activation and predicted RT.
This may seem counterintuitive because all simulations began at
the same time. However, when the onset must be measured as it is
with neurophysiological data, the onset of activity (the time when
it increases above the starting point/baseline) and the start of the
accumulation are not necessarily the same time. It has been shown
that a correlation between the time when accumulator model
activity begins increasing and the time when threshold is crossed
is a common property of stochastic accumulator models (Purcell,
Schall, & Palmeri, 2009; Ratcliff, 1988; Ratcliff et al., 2003). This
is due to noise in the process. Trials in which activity took longer
to reach threshold are generally trials in which activity, by chance,

remained near baseline for a longer time. This means that a
correlation between the onset and RT is not a useful criterion for
discriminating among stochastic accumulator models. In contrast,
when the accumulation process is ballistic (e.g., S. Brown &
Heathcote, 2005; Carpenter & Williams, 1995), the time when
activity begins increasing is necessarily defined by the start of the
accumulation.

The perfect integrator models made several incorrect predictions
about the movement neuron dynamics. All three models predicted
a negative correlation between the baseline activation and pre-
dicted RT that was not observed in movement neuron activity. In
addition, all perfect integrator models predicted a D/T ratio that
was inconsistent with the observed values. Table 3 summarizes the
mean correlation between RT and the onset, growth rate, baseline,
and threshold and the mean percentage of significant correlations
across data sets for each model.

The models failed to predict the observed pattern of neural
activity for the same reason they failed to predict behavior: They
lack a mechanism to limit the rate of accumulation. Prior to the
onset of the array, the models accumulated noise in the neural
inputs. The baseline level of activity correlated with RT because
there was substantial variability in activity accumulated prior to
the array onset. If a unit had a high activation after accumulating
noise over time, the threshold was likely to be reached more
quickly; if a unit had a low activation, the threshold was likely to
be reached more slowly. Similarly, the D/T ratio was too high for
the race model because nothing limited the accumulation of evi-
dence for a saccade to the distractor. In contrast, the diffusion
model incorrectly predicted that feed-forward inhibition was
strong enough to suppress activity below zero, which is rarely
observed. The D/T ratio predicted by the competitive model will
depend on the value of �, but using the best fit parameters to
behavior resulted in competition that was insufficiently strong to
suppress competing activity for almost all data sets. We can

Table 4
Movement Neuron and Model Dynamics: Mean Activity Measurements During Easy and Hard Search (95% Confidence Interval
in Parentheses)

Onset Growth rate Baseline Threshold Distractor/Target ratio

Neural data and model
predictions Easy Hard Difference Easy Hard Difference Easy Hard Difference Easy Hard Difference Easy Hard Difference

Neural data
Movement neurons 101 151 50 (13) 0.56 0.56 0.00 (0.09) 13 13 0 (0.34) 67 65 2 (2) 0.15 0.18 0.03 (0.04)

Perfect integrator models
Race 147 159 12 0.76 0.76 0.01 11 11 0 75 75 0 0.63 0.69 0.06
Diffusion 123 162 39 0.77 0.74 	0.03 7 7 0 70 71 1 	0.11 	0.11 0.00
Competitive 147 171 24 0.75 0.76 0.00 12 12 0 75 75 1 0.42 0.47 0.06

Leaky integrator models
Race 147 188 41 0.74 0.75 0.00 14 14 0 75 75 1 0.42 0.49 0.07
Diffusion 123 178 55 0.84 0.82 	0.03 6 7 0 70 71 1 	0.10 	0.11 0.00
Competitive 126 179 53 0.75 0.74 	0.01 10 10 0 74 74 1 0.08 0.10 0.02

Gated integrator models
Race 130 174 44 0.83 0.80 	0.03 6 6 0 71 72 1 0.08 0.12 0.03
Diffusion 139 197 58 1.08 1.00 	0.08 10 10 0 69 70 1 0.03 0.04 0.01
Competitive 133 174 41 0.84 0.80 	0.04 5 5 0 71 72 1 0.02 0.04 0.02

Note. Neurons were combined across animals. 95% confidence interval width around the mean difference is shown in parentheses. Simulations represent
averages across data sets (see Figure 14 for values from individual data sets). These data exclude Monkey Q, who did not perform an easy search. Some of these
data have been previously published as part of a different set of neurons than those analyzed here (see Woodman, Kang, Thompson, & Schall, 2008).
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therefore reject these models on the basis of both poor behavioral
fits and poor neural predictions.

Leaky Accumulators

Figure 12 illustrates the results of the leaky accumulator models
and the mean correlations and percentage of significant correla-
tions (see also Table 3). Although leakage improved behavioral
fits, it did not sufficiently improve neural predictions. For all three
leaky models, the inverse correlation with the baseline was re-
duced, but not eliminated, and the mean predicted correlations
generally fell outside the observed confidence interval. Further-
more, all three models incorrectly predicted the magnitude of the
D/T ratio. The race model predicted that distractor-related activity
would reach a much greater level than was observed. As before,
the diffusion model predicted that distractor-related activity was
suppressed below baseline, which was not observed. Finally, the
predictions of the competitive model varied across data sets, which
reflects differences in the best fitting � parameter, but most pre-
dictions fell outside the confidence interval around the mean
observed D/T ratio.

We hypothesized that leakage would eliminate the negative
correlation between the baseline of activity and RT by causing
model activation to reach a lower asymptote prior to stimulus
onset, but a consistent correlation was still observed. The threshold
and leakage parameters were constant across simulations, but
variability in the neural inputs prior to stimulus onset led to
variability in the level at which activity reached the lower asymp-
tote. If the distribution of baseline activity was sufficiently large
relative to the threshold, then it was likely to correlate with RT.
This was the case for each of the leaky accumulator models.

It is possible that the best fitting parameters could be adjusted
such that the neural predictions were improved without compro-
mising the fits to behavior. Variability in an accumulator was
inversely related to the magnitude of leakage, therefore increasing
leakage could eliminate the inverse correlation between baseline
activity and RT. We tried fitting each leaky accumulator model
while systematically varying the leakage term in small increments
and finding the best fitting values of the threshold (�) and tballistic

parameters. However, even small changes in the leakage constant
away from its best fitting value resulted in extremely poor ac-
counts of the behavioral data. This is because increasing leakage
decreased the upper asymptote on model dynamics, which re-
stricted the range at which the threshold could be placed and still
capture variability in RT. Thus, although the leaky models ac-
counted well for the behavioral data, they failed to predict the
observed pattern of neural results.

Gated Accumulators

Figure 13 illustrates the gated accumulator models’ predictions
of neural activity (see also Table 3). In contrast to previous
models, there was no significant correlation with baseline or
threshold. Furthermore, the gated models also predicted D/T ratios
that generally fell within the 95% confidence interval of the
observed mean value. These observations aligned closely with the
observed neurophysiology.

The gated models predicted the neural data well because they
assumed that integration did not begin until the visual inputs
exceeded the gate. For nearly all gated models, the value of the
gate parameter that optimized behavioral fits was sufficiently high
that the start of the accumulation was delayed until visual neuron

Figure 11. Simulation results: perfect accumulator models. The left panels plot the sample trajectories for the
race (Panel A), diffusion (Panel B), and competitive (Panel C) models. The left panels plot model activation from
fast and slow trials (average activity from 10 consecutive trials at the 0.1 and 0.9 response time [RT] quantiles).
The center panels plot the mean correlation for simulated data. The right panels plot the mean predicted
distractor/target (D/T) ratio. Brackets are 95% confidence intervals around observed mean values. Symbols
indicate Data Sets F (E), L (
), Mm (�), Mc (x), Q (●), and pooled (▫). Easy trials are in red, hard trials in green.
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inputs elevated in response to the stimulus. Across all data sets and
gated models, only three data sets (Q, race; Mm, diffusion; Q,
competitive) initially predicted a gating value that was too low to
suppress the early accumulation of evidence, but unlike leakage, this
value could be increased without a major impact on behavioral
predictions because the upper asymptote of the accumulation will not
be affected. Thus, all variability in the baseline activity was due solely
to the minimal Gaussian noise added to our model, which was too low
to predict a significant correlation with RT. Thus, although the gated
and leaky models predicted indistinguishable accounts of the behav-
ioral data, the gated models provided a superior account of the
observed pattern of movement neuron activity.

The gated model met our benchmark criteria for both the be-
havioral and neural activity. We followed these results with a
series of additional analyses of the movement neuron and gated
model dynamics. Thus far, we have shown that the models pre-
dicted the relationship between measurements of activity and
random (within-condition) variability in RT. Next, we asked
whether the models could accurately predict how activity varied
across difficulty conditions. We computed the average onset,
growth rate, baseline, and threshold within each difficulty condi-
tion across all neurons (see Table 4, top). Only the onset was
significantly different between the easy and hard conditions
(paired t � 7.58, p � .001; this observation was previously
reported in Woodman et al., 2008). The difference in onset be-
tween easy and hard conditions was correlated with the difference
in mean RT between easy and hard (r � .53, p � .001). By
contrast, growth rate, threshold, and baseline did not significantly
vary across conditions (all t � 1.02, all p � .31), and the difference

in those measures did not correlate with the difference in RT (all
r � 0.11, all p � .44).

All three gated models successfully predicted the magnitude of the
difference in onset of activation between conditions without predict-
ing other differences (see Figure 14 and Table 4). The average
difference between conditions across data sets for all measurements
(onset, growth rate, baseline, threshold, and D/T ratio) was not sig-
nificantly different than the average difference for the movement
neurons (race, diffusion, competitive; all t � 1.91, all p � .06).
Importantly, the predicted timing of the onset closely corresponded to
the observed ranges. The models slightly overpredicted the absolute
values of the onset and growth rate, but the match was still very good
considering that these were not fitted values.

It is possible that the gated integrators were flexible enough to
predict the basic pattern of behavioral and neural data regardless of
the specific computational architecture. We tested one additional
model that implemented competition between visual neuron inputs
using a normalization operation rather than a subtraction. This
normalized model divided the input to each accumulator by the
sum of the input to both accumulators at each given time step. This
is a common assumption of stochastic accumulator models that
reduces the number of free parameters (Bogacz et al., 2006;
Ratcliff et al., 2007; Usher & McClelland, 2001). As evidence for
one alternative grows larger, evidence for the second unit must
necessarily be reduced. We evaluated two normalized models
using the pooled data set, a normalized race without competition
(� � 0), and a normalized competitive model (� free to vary). In
stark contrast to the other accumulator models, all versions of the
normalized model (perfect, leaky, and gated) failed to account for

Figure 12. Simulation results: leaky accumulator models. The left panels plot the sample trajectories for the
race (Panel A), diffusion (Panel B), and competitive (Panel C) models. The left panels plot model activation from
fast and slow trials (average activity from 10 consecutive trials at the 0.1 and 0.9 response time [RT] quantiles).
The center panels plot the mean correlation for simulated data. The right panels plot the mean predicted
distractor/target (D/T) ratio. Brackets are 95% confidence intervals around observed mean values. Symbols
indicate Data Sets F (E), L (
), Mm (�), Mc (x), Q (●), and pooled (▫). Easy trials are in red, hard trials in green.
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the behavioral data (all R2 � 0.40). The models failed because the
normalization constrained the total input for both units to sum to a
constant (1.0) at all times, thus if the input to one accumulator was
low, the other was necessarily high. This was true both before the
onset of the search array and at the time the threshold was crossed.
Therefore, any value of leakage or gate that was strong enough to
limit the accumulation prior to the array onset was also too strong

during the decision. We can rule out this architecture when taking
prestimulus activation levels into account.

General Discussion

Stochastic accumulator models explain how perceptual evidence
is used to make a decision but do not explain the mechanisms that

Figure 13. Simulation results: gated accumulator models. The left panels plot the sample trajectories for the
race (Panel A), diffusion (Panel B), and competitive (Panel C) models. The left panels plot model activation from
fast and slow trials (average activity from 10 consecutive trials at the 0.1 and 0.9 response time [RT] quantiles).
The center panels plot the mean correlation for simulated data. The right panels plot the mean predicted
distractor/target (D/T) ratio. Brackets are 95% confidence intervals around observed mean values. Symbols
indicate Data Sets F (E), L (
), Mm (�), Mc (x), Q (●), and pooled (▫). Easy trials are in red, hard trials in green.

Figure 14. Mean onset, growth rate, baseline, and threshold. Observed data are shown with brackets indicating
95% confidence intervals around the mean. Predicted data are shown using symbols. Easy is red, hard is green.
Monkey F � E, L � 
, Mm � �, Mc � x, and Q � ●. sp/s � spikes per second.
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give rise to that perceptual evidence. This has begun to change,
with models that explain the mechanisms that cause the drift rate
(Ashby, 2000; S. D. Brown, Marley, Donkin, & Heathcote, 2008;
Bundesen et al., 2005; Lamberts, 2000; Logan, 2002; Nosofsky &
Palmeri, 1997; Palmeri, 1997). More elaborate models have been
developed based on psychophysical and neurophysiological prin-
ciples that utilize changes in drift over time (Smith, 1995; Smith &
Ratcliff, 2009). Here, we took a different approach. We assumed
that the firing rate of a specific neuronal population was the input
to an accumulator network. Our simulations produced three key
results. First, most fundamentally, we showed that accumulator
models that use visual neuron activity as input were sufficient to
account for observed variability in behavior during a saccade
visual search task. Second, we showed that although models may
make indistinguishable predictions of behavior, they make differ-
ent predictions about the characteristics of neural activity. Finally,
we showed that to account for both behavioral and neural data,
models must assume that the flow of perceptual evidence to the
accumulator is gated. These results have broad implications for
cognitive modeling techniques, theories of perceptual decision
making, and mechanisms of neural function.

Decision-Making Mechanisms

A primary goal was to use the constraints imposed by neural
data to determine the mechanisms underlying perceptual decisions.
A basic assumption of accumulator models is that evidence is
integrated over time to make decisions (e.g., Ratcliff & Smith,
2004). Several arguments have been put forth for the necessity of
integration in perceptual decision making. Integration is necessary
for statistically optimal decisions (Bogacz et al., 2006; E. Brown et
al., 2005), but monkeys and humans may not always perform
optimally. We tested two models that did not assume integration
and found that neither model predicted observed RT variability.
These results add converging support for temporal integration of
evidence. In addition, the failure of models without integration
implies that some additional stage during which integration takes
place is necessary to produce a response. Neurophysiological
evidence for distinct stages of processing instantiated by different
populations of neurons in FEF has also been demonstrated in
monkeys performing stop signal and target step tasks (J. W.
Brown, Hanes, et al., 2008; Hanes et al., 1998; Murthy et al.,
2009).

Models assuming perfect integration failed to predict behavior.
They failed because the neural firing rates provide a continuous
representation of evidence starting before the onset of the search
array. Visual neurons discriminate the target �110 ms after the
stimulus onset, so the model units accumulate only noise for the
majority of the trial. In this framework, a continuous representa-
tion of the perceptual evidence signal requires some mechanism to
limit the flow of perceptual evidence until a signal is present in the
neural inputs. We showed that leakage and gating are effective.
Other mechanisms that explicitly start the accumulation (e.g.,
Wong et al., 2007; Larsen & Bogacz, 2010) and that reset the
accumulation after threshold is crossed (e.g., Logan & Gordon,
2001) may also work.

Unlike perfect integrators, models assuming leaky integration
accounted well for observed behavior. In previous comparisons
between perfect and leaky integrators, the best fits to behavior

were found when leakage was near zero (Boucher et al., 2007;
Ratcliff & Smith, 2004). In other cases, leakage has been included
to explain limited accuracy despite extended decision time (Buse-
meyer & Townsend, 1993; Smith & Vickers, 1989; Usher &
McClelland, 2001), that is, the upper asymptote of the activation
function after stimulus presentation. In our case, leakage was
critical to limit the accumulation of perceptual evidence prior to a
decision, that is, the lower asymptote or baseline prior to stimulus
presentation. As expected, leakage limited the rate of accumulation
until visual neuron activity increased, and behavioral fits improved
significantly. Surprisingly, however, leaky models predicted a
correlation between the movement neuron baseline activity and
RTs that was not observed in the data and could not be eliminated
by manipulating the leakage parameter. Thus, models assuming
only leaky integration cannot account for the pattern of neural data.

Gated models include a constant inhibition that prevents the
flow of evidence until it exceeds a critical level. The leaky and
gated models accounted for behavior equally well, but only the
gated accumulator models accounted for both behavior and neural
activity. These models support a theory of perceptual decision
making in which evidence is continuously represented in one
neural population but the decision process is carried out by a
distinct population of neurons after there is sufficient support for a
particular response.

Neural and Mental Chronometry

Classes of neurons can be distinguished anatomically, morpho-
logically, and neurophysiologically, and the activity of these pop-
ulations can be mapped onto distinct stages of mental processing
(Schall, 2004; Shallice, 1988). Our union of neurophysiology and
cognitive computational modeling can shed light on the stages of
processing that comprise RT during simple perceptual tasks. A
pure discrete model assumes that perceptual processing has com-
pleted before transmitting the output and that the accumulation
does not begin processing that output until perceptual processing
of evidence is complete (Sternberg, 1969, 2001). Alternatively, a
pure continuous model would assume that both stages operate in
parallel and that information is transmitted continuously from one
stage to the next (Eriksen & Schultz, 1979; McClelland, 1979).
Most accumulator models assume that the encoding and categori-
zation of perceptual evidence and the accumulation of that evi-
dence take place during discrete stages whose durations sum.

By assuming that evidence about target location is represented
in the firing rates of visual neurons in FEF, we make an explicit
commitment to a continuous representation of information, that is,
a small grain size of evidence (Miller, 1982, 1988). This allows for
the possibility of continuous transmission to subsequent stages but
does not require it. Our perfect and leaky accumulator models
assume pure continuous transmission of evidence to movement
neurons, but a gating mechanism is necessary to account for the
neural data. When optimized to fit behavior, the gate parameter
prevents the accumulation until a signal is present in the perceptual
input. This essentially decomposes RT into two stages: an initial
stage in which the perceptual evidence representation is still
emerging and no accumulation takes place, and a later stage in
which the accumulation begins and a decision is made. This is
similar to the two-stage model of Carpenter et al. (2009), which
proposes an initial diffusion process that detects stimulus features,
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followed by a ballistic rise to threshold that initiates the response.
Here, visual neuron activity is represented continuously over time,
but it can only influence the subsequent decision stage when it
exceeds the level of gate. Therefore, the gated models instantiate
the basic assumptions of the accumulator model framework, dis-
crete perceptual processing followed by an accumulation of evi-
dence, in a simple neurally plausible network.

Previous work has used single-unit activity from FEF, SC, and
LIP neurons to divide RT into processing stages. The time required
for these visual neurons to select the target has been identified with
the time required to perceptually process a stimulus. When search
is easy, this time is relatively short and has less variability
(Thompson et al., 1996). When search is more difficult, this time
is longer and accounts for a larger portion, but not all, of RT
variability (Bichot, Rao, & Schall, 2001; Cohen, Heitz, et al.,
2009b; Ipata et al., 2006; McPeek & Keller, 2002; Sato et al.,
2001; Thomas & Paré, 2007). Movement neuron activity is also
associated with a distinct stage of motor preparation (J. W. Brown,
Hanes, et al., 2008; Bruce & Goldberg, 1985; Carpenter et al.,
2009; Dorris et al., 1997; Hanes et al., 1998; Hanes & Schall,
1996; Murthy et al., 2009). However, it has been difficult to
determine how these processes interact. We have shown that the
stages of processing instantiated in visual and movement neuron
activity can be interpreted in the context of the accumulator model
framework as a simple feed-forward visual-to-motor network.

Movement neurons have previously been used to explore the
discrete versus continuous flow of information, but results have
been contradictory. In one study, the onset of activity increased
with target–distractor similarity; this was interpreted as discrete
information flow (Woodman et al., 2008; see also Mouret &
Hasbroucq, 2000). In another study, the activity of accumulator
units representing the distractor was elevated when it was more
similar to the target; this was interpreted as continuous information
flow (Bichot, Rao, & Schall, 2001; see also Miller, Riehle, &
Requin, 1992; Riehle, Kornblum, & Requin, 1994). Studies of the
lateralized readiness potential, the voltage difference between
event-related potentials over motor cortex contralateral and ipsi-
lateral to the effector, also suggest partial activation in the move-
ment preparation stage (Gratton, Coles, Sirevaag, Eriksen, &
Donchin, 1988; Osman, Bashore, Coles, Donchin, & Meyer,
1992). The gated accumulator model can potentially reconcile
these results. The onset increases with RT because activity takes
longer to reach the gate. However, partial transfer of information
occurs if activity temporarily exceeds the gate but may decay
before the response threshold is crossed.

Studies of movement-related scalp potentials and single-unit
activity suggest that subjects may adjust their behavior by chang-
ing the amount of partial information transferred between stages
when speed or accuracy is emphasized (Bichot, Rao, & Schall,
2001; Coles, Henderikus, Smid, Scheffers, & Otten, 1996; Gratton,
Coles, & Donchin, 1992; Low & Miller, 2001). Accumulator
models traditionally assume that organisms adapt their response
threshold to trade off speed and accuracy (e.g., Simen, Cohen, &
Holmes, 2006), but there is currently no evidence for threshold
changes in single-neuron recordings from movement-related neu-
rons. We speculate that the gate parameter could be adjusted to
determine whether partial information is used, which would pro-
vide a way to strategically adapt RT (Pouget et al., 2010). A
potential source of cognitive control is the basal ganglia, which are

proposed to play a role in gating the initiation of saccades (J. W.
Brown, Bullock, & Grossberg, 2004; Hikosaka, Takikawa, &
Kawagoe, 2000). The gating can be adapted to modify perfor-
mance (Frank, 2006). In our model, if a task emphasizes accuracy,
the gate parameter can be raised so that the onset of movement
neuron activity is delayed until the magnitude of visual selection is
large. If the task emphasizes speed, then the gate parameter can be
lowered, and perceptual evidence will be continuously accumu-
lated. Therefore, manipulations of speed and accuracy could be
evident in the baseline and onset of activity instead of in the
threshold. Recent evidence from fMRI studies suggests that ma-
nipulations of speed and accuracy cause changes in the baseline
activity of areas related to response preparation (Forstmann et al.,
2008; Ivanoff, Branning, & Marois, 2008; van Veen, Krug, &
Carter, 2008), but it is not yet known how these manipulations
affect the activity of FEF neurons.

The nature of single-unit data limits strong assertions about pure
discrete versus continuous transmission. One interpretation of
these results is that the entire population of visual neurons repre-
senting an object must exceed the level of the gate for any
movement neurons to begin accumulating evidence for a saccade
to that object. This global gating of visual inputs would represent
a pure discrete model (e.g., Sternberg, 1969, 2001). Alternatively,
individual movement neurons may begin accumulating only after
the particular visual neuron inputs to that neuron first exceed the
gate. This local gating of visual inputs would represent a contin-
uous, or at least discrete, asynchronous model (Miller, 1982). This
could be ultimately resolved empirically by simultaneously record-
ing movement neurons that represent the same saccade vector and
comparing the timing of their onset. This issue could also be
addressed theoretically using spiking network models (e.g. Furman
& Wang, 2008; Wang, 2002; Wong et al., 2007; Wong & Wang,
2006), in which the connections between individual neurons can be
manipulated. However, this requires data and a level of modeling
beyond the scope of the present report.

Relation to Other Models

Previous modeling work has incorporated neurophysiology into
the accumulator model framework, but our approach is novel in
three ways. First, neural data constrained both model inputs and
outputs. Previous investigations fitted accumulator models to be-
havior and then compared the predicted trajectories with neural
activity (Boucher et al., 2007; Ratcliff et al., 2003, 2007), but
model input (drift rate) was defined by free parameters. Other
investigations used accumulated spike rates to predict RT but did
not compare model and neural output (e.g., Bundesen et al., 2005;
Cook & Maunsell, 2002; Oram, 2005). Our models integrate
neural data to make predictions, and we compare those predictions
with neural data. Second, we went beyond a qualitative account of
the movement neuron activity and quantified several ways in
which model activation and neuron activity varied within and
across stimulus conditions (see also Boucher et al., 2007). Third,
by using neural data, our input representation of perceptual evi-
dence was defined continuously at all times. Consequently, our
models needed to account for activity throughout a trial, from prior
to the stimulus array until the saccade was made. This requirement
had implications that were critical for ruling out certain model
architectures.
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A different approach to modeling has aimed to provide a
system-level account of saccade generation that includes FEF, SC,
and LIP (for a review, see Girard & Berthoz, 2005). Several of
these models propose connections between visual and movement
neurons (J. W. Brown et al., 2004; Hamker, 2005b; Hamker &
Zirnsak, 2006; Mitchell & Zipser, 2003). This approach to mod-
eling is advantageous in that interactions across multiple brain
areas may be taken into account and the dynamics of those areas
explored under a variety of tasks. Connections between visual and
movement neurons were also proposed by Heinzle et al. (2007),
who developed a detailed spiking network model of local FEF
circuitry that includes connections between visual and movement
neuron connections. One advantage of our simplified architecture
is that it allowed us to contrast alternative mechanisms mediating
the visual-to-movement transformation, which could later be in-
corporated into larger scale models and models including realistic
populations of spiking neurons. Other models have also proposed
a gating inhibition that prevents movement neurons from ramping
up until visual neuron activity is sufficient (Hamker, 2005b; Hei-
nzle et al., 2007) or withholds a preplanned movement during
countermanding (Boucher et al., 2007; Lo, Boucher, Paré, Schall,
& Wang, 2009; Lo & Wang, 2006). In most of these models,
however, inhibition is either dependent on the level of movement
neuron activity or it is applied directly to the movement neurons.
A key conclusion of our simulations is that inhibition must be
independent of the level of movement neuron activity to predict
both neural and behavioral observations. If this is the case, then a
direct inhibition of the movement neurons themselves may cause
the models to predict a zero baseline, which is rarely observed. We
address this in our models by applying the gate specifically to the
model input from the visual neurons, which provides a parsimo-
nious and neurally plausible explanation for the observed pattern
of data. We reached this conclusion by fitting our models to
behavior and predicting neural dynamics. This was possible be-
cause we chose a level of complexity appropriate to draw conclu-
sions about abstract theories of decision making and guide the
development of biologically plausible models.

We used the saccade visual search task to evaluate accumulator
models because it contains the necessary components to constitute
a perceptual decision: stimuli with interpretations relevant to al-
ternative behaviors (Schall, 2001). Our goal was to address spe-
cific decision-making mechanisms; therefore, we did not expand
the model to address important aspects of search behavior (e.g.,
set-size manipulations and target-absent trials). That being said,
our proposed mechanism for visual-to-motor interactions does
have implications for more complete models of search. Many
visual search models include a salience map that represents ex-
plicitly the perceptual evidence for and against different stimuli
being the target defined by the task contingencies (Bundesen et al.,
2005; Findlay & Walker, 1999; Wolfe, 2007). FEF, SC, and LIP
visual neurons have been associated with a neural instantiation of
the hypothetical saliency map (Findlay & Gilchrist, 1998; Gold-
berg et al., 2006; Thompson & Bichot, 2005). For saccade deci-
sions, our model assumes that the saliency map is the representa-
tion of perceptual evidence supporting a saccade to that location in
visual space (see also Hamker, 2005a). When this evidence ex-
ceeds the gate, it feeds into an accumulator producing a particular
response. In the saccade visual search task, the response is a
saccade to the location of the target, and the accumulation is

accomplished by movement neuron activity. There is evidence that
an accumulation to response threshold may operate in motor cortex
for manual responses (Lecas, Requin, Anger, & Vitton, 1986; but
see M. M. Churchland, Yu, Ryu, Santhanam, & Shenoy, 2006).
Detailed theories have been developed to explain the formation of
the saliency map (Bundesen et al., 2005; Itti & Koch, 2001). To
more completely connect our proposed decision-making models
with models of search, the gated accumulator models will need to
be fitted to a data set in which the number of stimuli in the search
array is varied across trials. Of particular interest is whether
changes in the visual inputs alone would be sufficient to predict
changes in behavior due to changes in the number of stimuli or
whether additional parameters and the number of accumulating
units will need to vary (Cohen, Heitz, et al., 2009b). Although
much work remains, this suggests a foundation to begin bridging
accumulator models of perceptual decisions with models of search
and eye movements in a manner compatible with neurophysiolog-
ical observations.

Inhibitory Interactions

We tested neural implementations of race (Logan & Cowan,
1984), diffusion (Ratcliff, 1978), and competitive (Usher &
McClelland, 2001) models that assume different inhibitory inter-
actions between accumulators. Often, these models cannot be
distinguished using behavioral data alone (Ratcliff & Smith, 2004;
Van Zandt, Colonius, & Proctor, 2000; Van Zandt & Ratcliff,
1995), and some are formally equivalent under certain assumptions
(Bogacz et al., 2006). We expected that neural constraints imposed
by our framework would distinguish among these models. Some
models with perfect or leaky integration made distinguishable
predictions, but none predicted both behavioral and neural data. In
contrast, all gated integrators predicted the behavioral and neural
data, but there was no reason to prefer one model over another.
The various forms of gated models were difficult to distinguish
because the visual inputs only affected the accumulation of evi-
dence for a brief time before the threshold was reached.

These results show that the simplest gated model, the indepen-
dent gated race, is sufficient to account for the observed pattern of
neural and behavioral data. However, there are several reasons to
believe that some form of inhibitory interaction may be operating
that is not revealed by our relatively limited behavioral data.
Inhibitory interactions are necessary to optimize the rate of reward
(Bogacz et al. 2006), and feed-forward inhibition allows accumu-
lators to approximate a log likelihood decision variable when
neuronal activity indicates support for alternative hypotheses
(Gold & Shadlen 2007). Neurophysiological data also provide
evidence for competition among FEF and SC neurons. There
appears to be a local center-surround inhibition between �20% of
neurons in FEF and SC (McPeek & Keller, 2002; Schall, Hanes, et
al., 1995; Schall et al., 2004), but the long-range interactions we
considered in our simulations are less well understood. Micro-
stimulation of FEF in one hemisphere can reduce firing rates in the
opposite hemisphere (Schlag, Dassonville, & Schlag-Rey, 1998),
but microstimulation could activate both visual and movement
neurons. Thus far, however, experimental results concerning the
precise nature of interactions have been inconclusive.

The nature of inhibitory interactions among response alterna-
tives may be resolved with neurophysiological experiments. The
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diffusion and competitive models make different predictions about
the relative level of activity recorded simultaneously from visual
and movement neuron representing the same or different objects.
The diffusion model predicts that activity for visual neurons rep-
resenting an object should vary inversely with the activity of
movement neuron representing the alternative object in the time
interval prior to reaching threshold because increased visual neu-
ron will lead to decreased movement neuron activity. The com-
petitive model predicts that activity of movement neurons repre-
senting alternative responses will vary inversely during the same
time interval because activation of one response should lead to
decreased activation of the alternative response. Behavioral tasks
that require more complex stimulus–response mapping may also
require competitive interactions that are not apparent in the visual
search task that we used. For example, tasks that dissociate the cue
and response locations (Sato & Schall, 2003) or involve dynami-
cally changing search arrays (Murthy et al., 2009) have been
shown to require inhibition of the previously prepared response
(Camalier et al., 2007; Verbruggen, Schneider & Logan, 2008),
which could be due to feed-forward or lateral inhibition.

Neural Mechanisms

Our model predicts a functional connection between visual and
movement neurons. This relationship has long been hypothesized
(Bruce & Goldberg, 1985; Schiller & Koerner, 1971) but has not
been tested as it was here. Most directly, this could be interpreted
as local topographic projections from FEF and SC visual neurons
to movement neurons, but empirical evidence for intrinsic connec-
tions between functionally defined neuronal populations is diffi-
cult to obtain (for evidence from rat SC, see Ozen, Augustine, &
Hall, 2000), and behavioral data demonstrate that these connec-
tions cannot be hardwired (e.g., Hallett & Lightstone, 1976; Mays
& Sparks, 1980). Eye movements are guided by a distributed
network of structures (Wurtz et al., 2001). LIP visual neurons
project to FEF and SC (Ferraina, Paré, & Wurtz, 2002; Paré &
Wurtz, 1997). FEF visual and movement neurons project to SC,
although reports vary on the proportion of visual versus motor
signals (Segraves & Goldberg, 1987; Sommer & Wurtz, 2000),
and saccades elicited by microstimulation of FEF are impaired
when SC is inactivated (Hanes & Wurtz, 2001). An ascending
pathway through the mediodorsal thalamus also carries informa-
tion from SC to FEF (Lynch, Hoover, & Strick, 1994), but inac-
tivation of SC does not decrease FEF movement neuron activity
(Berman, Joiner, Cavanaugh, & Wurtz, 2009). The visual-to-motor
transformation described in our model most likely represents a
visual selection process that is distributed across these structures
and culminates in the activation of FEF and SC movement neu-
rons, as well as long-lead burst neurons in the brainstem that
initiate the actual saccade (Scudder, 1988).

Our model predicts that some gating mechanism intervenes
between visual and movement neurons. A potential neurophysio-
logical source is the basal ganglia, which are hypothesized to gate
the preparation of motor responses (J. W. Brown et al., 2004;
Frank, 2006). This gating would be reflected in the activity of FEF
and SC neurons. The substantia nigra pars reticulata of the basal
ganglia sends inhibitory projections to SC (Hikosaka & Wurtz,
1983) and to FEF via the mediodorsal thalamus (Goldman-Rakic
& Porrino, 1985). A recent model has proposed that these projec-

tions serve a gating function (Lo & Wang, 2006), but the gate is
applied directly to movement neurons and they do not distinguish
among visual and movement neurons. Other models have posited
a gating function of FEF and SC fixation neurons (Boucher et al.,
2007; Heinzle et al., 2007; Lo et al., 2009). Fixation neurons
maintain a high baseline firing rate during fixation and reduce their
activity prior to the onset of a saccade (Dorris et al., 1997; Hanes
et al., 1998; Paré & Hanes, 2003; but see Hafed, Goffart, &
Krauzlis, 2009; Krauzlis, Basso, & Wurtz, 1997). Finally, Shea-
Brown, Gilzenrat, and Cohen (2008) proposed that the release of
neuromodulators may correspond to an increase in gain on a
decision variable; they implemented such a mechanism in a simple
two-layer network where threshold crossings in the first layer lead
to increased gain in the second layer, which has potential parallels
to our gated visual-to-movement network. Ultimately, the current
data and simulations do not allow a strong claim about the source
of the gating inhibition, but we note that there are known mech-
anisms that could implement this simple function.

Although we have implemented the gating mechanism as a
constant value throughout a simulated trial, evidence suggests that
it may be more dynamic. Specifically, some FEF visual and
movement neurons exhibit a pause in discharge rate prior to the
visual or movement response (Sato & Schall, 2001). Across cor-
tical areas, a preexcitatory dip of activity has been attributed to a
resetting of neural integration (Mazurek et al., 2003) and decreased
activity in cortical afferents due to the division of attention among
stimuli (Furman & Wang, 2008; Wong et al., 2007), but no
conclusive data exist to indicate the neurophysiological mecha-
nisms responsible for this. Our model could explain the dip as a
transient rise in the level of gating inhibition following array onset.
The goal of the present report was to distinguish models according
to predictions of a set of observed neurophysiological data in
which a dip was uncommon, and it is not clear that augmenting the
models with a transient rise in gate would aid in model selection,
so we must leave the exploration of possible explanations for this
phenomenon to future model developments.

Linking Propositions

Linking propositions are statements that map unobservable cog-
nitive states onto observable neural states (Schall, 2004; Teller,
1984). Conclusions drawn from the association between models
and neurophysiology are only as valid as the linking propositions
upon which they are based. Identifying valid linking propositions
is a complex issue, particularly when the models have been pri-
marily developed in an abstract mathematical framework, rather
than from neurobiological observations. This is apparent when
considering the mapping of a single accumulator process onto
neuronal activity in the oculomotor circuit. Many FEF, SC, and
LIP neurons have similar properties. For example, in monkeys
performing visual search, the visual neurons in FEF, LIP, and SC
all seem to perform the same selection process at approximately
the same time (e.g., McPeek & Keller, 2002; Schall & Hanes,
1993; Thomas & Paré, 2007). However, these are heterogeneous
structures, and the diversity of cell types within and across FEF,
SC, and LIP must be recognized (Barash, Bracewell, Fogassi,
Gnadt, & Andersen, 1991; Bruce & Goldberg, 1985; Horwitz &
Newsome, 1999). Thus, the accumulation process may map onto
multiple brain areas, but it is doubtful that it maps onto all neurons
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in any particular area. Here, we drew an important theoretical
distinction between visual neurons (perceptual evidence) and
movement neurons (evidence accumulation) located within FEF.

Previous work has identified accumulator models with tonic
visual neurons in LIP and FEF (Gold & Shadlen, 2007). LIP
neuron activity has been described as integrating sensory evidence
from early visual areas (e.g., area MT), and this has been modeled
as an accumulation to a threshold (Ditterich, 2006b; Mazurek et
al., 2003; Wang, 2002). However, unlike visual neurons in oculo-
motor areas, the activity of MT neurons is most closely linked to
the immediate stimulus features independent of the task at hand
(Law & Gold, 2008). Furthermore, LIP does not initiate the re-
sponse. LIP does not contain many movement neurons (Wurtz et
al., 2001), and their response is more dependent on visual stimu-
lation (Paré & Wurtz, 2001). LIP neurons do not project directly to
the brainstem saccade generator; the final command to move the
eyes must be relayed through FEF or SC movement neurons
(Sparks, 2002). Finally, many models of an LIP accumulator
include substantial delays prior to and following the accumulation
that are modeled as a constants (e.g., Mazurek et al., 2003). Under
certain conditions, however, these stages may account for variabil-
ity in RT. The accumulation to threshold movement neurons in
FEF and SC is one example (Hanes & Schall, 1996). Hence, the
decision to act cannot end in LIP.

Conclusions

Computational models can explain neuronal function in terms of
cognitive processes. Since the identification of both visual and
movement neurons in FEF and SC, it has been assumed that the
visual information flows directly to movement neurons (Bruce &
Goldberg, 1985; Schiller & Koerner, 1971). The identification of
movement neuron activity with an accumulation to threshold sug-
gested a natural framework to investigate this assumption more
rigorously. Models using actual visual neuron activity as input
predicted not only the variability in observed behavior but also the
dynamics of movement neuron activity. This union of cognitive
modeling and neurophysiology strengthens the interpretation of
visual neuron activity as a representation of perceptual evidence of
saccade target location and the interpretation of movement neuron
activity as the accumulation of that evidence.

Neurophysiology can also inform the development of cognitive
models. By using observed neural spike times in the model eval-
uation, we eliminated assumptions that govern all properties of
model input. Perhaps most important is the demonstration that this
neurally constrained approach to modeling actually works. Vari-
able neural signals can be used as input to cognitive models to
make accurate predictions about observed behavior. Furthermore,
we showed that the constraints imposed by neurophysiology can
be used to rule out models that make indistinguishable predictions
about behavior. Our framework is relatively simple and flexible
enough to be extended to other models of search and decision
making.
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