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Our ability to recognize an object as one that we have
seen before, even under very different viewing condi-
tions, effortlessly disguises the tremendous computa-
tional challenges that are presented to our visual system
by variations in location, viewpoint and lighting. Such
variations conspire to present a markedly different stim-
ulus to the eyes even though the same physical object is
being seen. We can also uniquely identify individual
objects in a class — not just faces, but also other objects,
such as particular cars, houses and animals. This
requires us to ignore changes in viewpoint, position, size
and lighting but to tolerate some changes in shape,
although other differences in shape can imply different
identities. And we can also tell what kind of object 
something is. For IDENTIFICATION, we must discriminate
between physically similar objects, but for CATEGORIZATION,
we must generalize across physically different objects,
and the amount of generalization varies with levels of
category abstraction.

Issues in object understanding
To recognize, identify or categorize an object involves
comparing its visual representation with some repre-
sentation of stored knowledge. This raises a number of
fundamental questions.

How are objects represented by the visual system? Are
object representations abstract three-dimensional
descriptions, or are they tied more closely to the 

two-dimensional image of an object? Are different 
representations used to identify unique objects and 
to generalize across categories? Are there specialized
representational systems for certain categories?

How is object knowledge represented? Are there specific
representations for object identity but abstract represen-
tations of object categories? Or can the same object 
representations be used adaptively to recognize, identify
and categorize objects?

What mechanisms underlie visual object understanding?
Research on visual object understanding often formalizes
mechanisms using computational models. Formal 
models are powerful tools for understanding how com-
binations of representations and processes can lead to
adaptive behaviour, often in ways that counter intuition1.

How does the visual object understanding system change
with experience? Are qualitatively different forms 
of knowledge used at different levels of experience, or
are the same representations transformed in a more
quantitative manner from those used by novices to
those used by experts?

Two relatively independent areas of research into
visual cognition have examined important aspects of
visual object understanding: Object RECOGNITION and
Perceptual Categorization. Despite addressing many of
the same issues, the two areas have focused on different
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IDENTIFICATION

A decision about an object’s
unique identity. Identification
requires subjects to discriminate
between similar objects and
involves generalization across
some shape changes as well as
physical translation, rotation
and so on.

CATEGORIZATION

A decision about an object’s
kind. Categorization requires
generalization across members
of a class of objects with
different shapes.

*Department of Psychology,
Center for Integrative and
Cognitive Neuroscience, and
‡Vanderbilt Vision Research
Center, Vanderbilt University,
301 Wilson Hall, Nashville,
Tennessee 37203, USA
Correspondence to T.J.P 
or I.G. e-mails:
thomas.j.palmeri@
vanderbilt.edu;
isabel.gauthier@
vanderbilt.edu 
doi:10.1038/nrn1364

©  2004 Nature  Publishing Group



RECOGNITION

A decision about whether an
object has been seen before. We
can recognize an object seen just
moments before — as in many
experiments from Object
Recognition — or we can
recognize an object seen on an
earlier occasion — as in many
experiments from Perceptual
Categorization and the memory
literature. Recognition involves
generalization across size,
location, viewpoint and
illumination.

GEONS

(Geometric ions). Simple
viewpoint-independent
volumetric primitives that are
the building blocks of object
representation for recognition-
by-components theory.

STRUCTURAL DESCRIPTION

A qualitative representation of
an object in terms of its three-
dimensional primitives (for
example, ‘geons’) and their
relative positions. Many
structural descriptions are
devoid of metric information
regarding quantitative aspects of
the primitives (specific shapes
and sizes) and their positions
(specific spatial locations).

IMAGE-BASED

A representation of an object
that preserves much of the
richness of the perceived two-
dimensional image. It is
viewpoint-specific, or
represented in an egocentric
frame of reference, and might
contain information about
illumination, colour and
material (but is often proposed
to be largely scale- and
translation-invariant).
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or categorization is generated and used to make a 
decision. By contrast, Perceptual Categorization models
often make simplifying assumptions about object repre-
sentations but provide detailed descriptions of how 
representations are used to make decisions11. Despite such
differences, models from the two fields show striking 
parallels in theoretical development. Most specifically,
early models assuming that representations were abstract
have been challenged by proposals that representations
are closely tied to specific experiences.

Models from Object Recognition. Early models from 
the Object Recognition literature assumed that the 
fundamental goal of vision is to create a faithful descrip-
tion of objects in the world, reconstructing the three-
dimensional structure of objects and their spatial 
relations6. One intuitive proposal for constructing 
a three-dimensional object description, recognition-
by-components12, and its neural network instantiation13,
represent each object by a small number of three-
dimensional primitives called GEONS, combined with
their spatial relationships in an object-centred reference
frame. Objects can be recognized independently of
viewpoint (under specific conditions14) because geons are
defined by a combination of non-accidental properties
(such as parallelism or curvilinearity) that are invariant
over viewing position.

These early STRUCTURAL DESCRIPTION models were 
challenged on empirical, computational and theoretical
grounds15. Reliable detection of geons is based on reliable
detection of edges and vertices, a notoriously challenging
problem in computer vision15 that the model largely
bypasses. In these early models, structural descriptions
lacked metric information about size and shape, making
many cases of within-category discrimination16 nearly
impossible; more recent structural description models
preserve some metric information17. Moreover, recog-
nition of both novel and familiar objects depends on
viewpoint and other specific aspects of object experience.

Of the alternatives to structural description theo-
ries18,19, perhaps the most successful are IMAGE-BASED

models. Rather than creating a viewpoint-invariant
structural description, these models represent an object
in terms of its similarity to two-dimensional views 
that are stored in memory. Accordingly, behavioural
performance and neural responses should depend on
viewpoint. Simple template-matching models are often
presented as foils for sophisticated feature-analysis and
structural description models20. However, the power of
sophisticated image-based models in computer vision
applications21 and in accounting for psychophysical22

and neurophysiological data23,24 belie any intuitive
implausibility of these models.

A key computational challenge faced by image-based
models is that whereas relatively simple transformations
of size, translation and picture-plane rotation can bring
an object view into correspondence with a stored view18,
no simple transformations can compensate for differ-
ences in illumination, depth-plane rotation or shape;
for example, the frontal view of a face does not contain
sufficient information to recreate the side view of a face.

aspects of those problems, with surprisingly little 
overlap2,3. Nevertheless, they have ultimately arrived 
at many complementary conclusions regarding the 
computational bases of visual object understanding.

One source of the rift between them is the classic
demarcation between perception and cognition4,5. Early
research in Object Recognition arose from work on
visual perception and focused on how the visual system
creates a perceptual description of an object6. Theories
were grounded in models of perception, and empirical
studies were based on psychophysics. Early research in
Perceptual Categorization, by contrast, was rooted 
in cognitive science and focused on the structure of
conceptual knowledge7. Theories were grounded in
models of semantic memory, and empirical studies were
based on cognitive research methods. This early demar-
cation is reflected in the limited number of recent
research papers with citations that cross the two areas.
Also, Object Recognition researchers and Perceptual
Categorization researchers present their scientific work
in journals and conference sessions that too rarely reach
individuals in the other area.

This traditional rift is consistent with a modularized
view of visual cognition8, where the creation of visual
representations is uninfluenced by knowledge or goals.
But, if categorization does not start where perception
ends2, then issues of perceptual representations, knowl-
edge representations and how they are used must be
studied concurrently 4,9.

In this review, we provide a selective review of
behavioural, neuropsychological, neurophysiological and
theoretical research from the Perceptual Categorization
and Object Recognition literatures, using the term ‘visual
object understanding’ to subsume these two literatures.
We show how the two literatures have begun to converge
on computational issues regarding representations and
processes that underlie how we recognize, identify 
and categorize objects. We also review research issues
that have been central to recent developments in both
areas, such as those concerning modular models of
visual object understanding, evidence for interactions
between perception and conception, and the importance
of studying visual understanding in a dynamic perspec-
tive that takes into account learning and expertise.

Computational models
Computational models have had central theoretical
roles in both Object Recognition and Perceptual
Categorization. Verbal descriptive theories often suffer
from hidden, unstated or overlooked assumptions. By
contrast, computational models specify hypothesized
representations and processes in sufficient detail that
they can be instantiated in mathematical equations or
computer simulations, allowing theories to be more
explicitly tested1,10.

Traditionally, computational models of Object
Recognition and Perceptual Categorization have focused
on different stages of visual processing. Object Recog-
nition models typically provide a detailed description 
of the format of object representations, with less
emphasis on how evidence for a particular identification
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characterized as receptive fields in a multidimensional
representational space (FIG. 1), with similar views activ-
ating the same units and dissimilar views activating 
different units. Early models assumed that implicit 
preprocessing corrected for scale and translation28, and a
more recent model30 has added a hierarchy of processing
layers31 to create scale- and translation-invariant repre-
sentations (but see REF. 32).

There has been a recent trend towards hybrid models
that combine viewpoint-specific and viewpoint-invariant
mechanisms. Some of these models postulate parallel 
systems that represent objects using image-based and
structural description representations33. Others integrate
metric information into a structural description model17.

The solution is to store multiple views of a single object,
compensating for changes in viewing conditions25,26, and
to store multiple views of multiple objects, compensating
for changes in shape27. VIEWPOINT-INDEPENDENT recognition
is possible when a sufficient number of views are
stored28. Novel objects can be represented in a distrib-
uted fashion by their similarity to a relatively small
number of stored views of known objects27.

Image-based models can be instantiated in neural 
networks with a representational layer of view-tuned
radial basis function (RBF) units29 (BOX 1). The response
of each RBF depends on the degree of correspondence
between the input and the RBF’s stored view, being
maximal when the two match27,28,30. RBF units can be

VIEWPOINT-INDEPENDENT (OR

DEPENDENT) PERFORMANCE

Behavioural performance that is
invariant of viewing position
and independent of experience
with particular views is said to be
viewpoint-independent. By
contrast, viewpoint-dependent
performance depends
systematically on experience
with specific views of an object.

GREEBLES

Novel objects that, like faces, all
share a common spatial
configuration. Their features can
be varied systematically to test
aspects of object recognition and
feature perception.

Box 1 | Summary of some visual object understanding models

The figure summarizes a broad class of computational models of visual object understanding, illustrating stages of visual
processing and their possible neural loci; both the physiology and computational theories are simplified for purposes of
illustration.A three-dimensional object is first represented as a two-dimensional spatial array along the retina and lateral
geniculate nucleus (LGN); in many models from the Object Recognition field, the input is simply an array of luminance
values. The two-dimensional array is processed in early visual areas (V1 and V2) according to orientation and spatial
frequency; in some models from Object Recognition, the input array is processed by a bank of frequency- and orientation-
tuned Gabor filters27,30,155.Additionally, some models have proposed implicit27 or explicit50 processing in early visual areas to
create a scale- and translation-invariant image-based representation, although the need for such explicit preprocessing has
been questioned on the basis of neurophysiological evidence.Various kinds of intermediate object representation have been
proposed for intermediate stages of visual processing, such as areas V4 and TEO/lateral occipital cortex (LOC)70,121. Some
models from Object Recognition propose local viewpoint-dependent features of intermediate complexity (IC)30,50,107, others
propose holistic components that are obtained through techniques such as principal components analysis (PCA)155, and
some ignore intermediate representations entirely27.Although not shown, some models have proposed direct mappings
from such intermediate representations to category knowledge106,107. These mappings could allow early representations, such
as those in V4 or TEO, to support basic-level judgements. Object shape is represented according to the activity of a
population of view-tuned units in inferotemporal (IT) neurons24,74; novel views of an object are represented by similarity to
stored views, and novel objects are represented by similarity to stored objects (FIG. 1). Essentially, this distributed view-tuned
representation provides a low-dimensional shape description27.According to some theories27, view-tuned units are directly
connected to category or identity knowledge. However, in other theories an intermediate exemplar (or exemplar-like)
representation is needed156. Models from the Perceptual Categorization field (accounting for categorization, identification
and recognition) typically begin with a low-dimensional representation of an object in terms of its shape, colour and other
dimensions; these dimensions are either taken from known psychophysical mappings or are derived using techniques such
as multidimensional scaling. One crucial component of some models from Perceptual Categorization is that parts,
properties or dimensions of an object can be selectively attended according to their diagnosticity35,46.An exemplar (or
exemplar-like) representation is a local conjunction of shape, colour, texture and so forth in multidimensional space.
Efficient creation of such configural exemplar representations could depend on the hippocampus115,119,120 but might not42.
The exemplars might be stored in anterior IT78 or in the basal ganglia68. The activity of an exemplar is proportional to its
similarity (distance in psychology space) to the presented object. Category (or identity) might be encoded by units in the
prefrontal cortex78; some theories formalize the dynamics of the categorization decision process as an accumulation of
relative evidence for various responses, such as identifying that particular GREEBLE as ‘Pimo’49,102.

Visual
array

Gabor
filters PCA or IC View-tuned

units

Colour, texture,
context

Exemplars Category/
identity

Selective
attention

Selective
attention

Selective
attention

Retina/LGN V1/V2 V4/LOC IT

Other visual areas

Anterior IT/
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A combination of perceptual noise in the location of an
object in psychological space and decisional noise in the
location of the decision boundary leads to errors11 and
response-time variability41. Object knowledge is abstract
in the sense that a decision boundary for categorization
or identification is abstracted from specific experience.
Representations of specific experiences are not used to
categorize or identify, so recognizing that an object was
seen on an earlier occasion relies on an independent
episodic memory system42.

By contrast, exemplar models assume that recogni-
tion, categorization and identification depend on stored
instances of experienced objects43,44. Categorization (or
identification) judgements are based on the relative simi-
larity of an object to exemplars of categories (or unique
objects). Recognition is based on the overall familiarity 
of an object, irrespective of its category or identity 45,
and explicit recognition memory might also depend on
contextual representations that are bound to object repre-
sentations44. A successful class of exemplar models43,46,47

assumes that attention is allocated to psychological
dimensions in a task-specific manner, effectively ‘stretch-
ing’ and ‘shrinking’ psychological space along relevant
and irrelevant dimensions, respectively (FIG. 2). Such 
task-specific, dimension-selective attention is necessary to
account for recognition, categorization and identification
using the same exemplar representations46,48,49.

Commonalities between models. View-based models
from Object Recognition and exemplar-based models 
from Perceptual Categorization are complementary. Both
image-based theories50,51 and exemplar-based theories45

have articulated how the same representations can be
used to recognize, identify and categorize. However, they
differ in focus. Image-based theories describe detailed
mechanisms for how an image-based representation 
is created from visual features and demonstrate the 
sufficiency of image-based representations for many
important aspects of visual object understanding. But
details of how an object representation is used to recog-
nize, identify or categorize the object sometimes involve
little more than directly mapping an object representation
to a response label27,50. By contrast, exemplar-based 
models — as well as other models from Perceptual
Categorization — begin with simplified assumptions
about object representations, but describe in detail 
the process of how object representations are used to 
recognize, identify or categorize objects, accounting for
quantitative patterns of errors and response times across
different kinds of task over the course of learning.
Marrying image-based models and exemplar-based
models is a natural theoretical linkage, but the details
remain to be elucidated.

Despite their theoretical successes, both view-based
and exemplar-based models have been criticized for
apparently requiring that each experienced view of every
object for all categories is explicitly represented44,52. But it
has been shown that storing just a modest number of
experiences — a few score to several score, depending on
stimulus complexity53 and category complexity54 — can
produce nearly the same performance as storing all 

A recent model predicts the linear costs that are observed
in object recognition by additively integrating contribu-
tions from object structure and image-based views34.

Models from Perceptual Categorization. Many models
from Perceptual Categorization begin with simplified
assumptions about object representations, most 
commonly assuming that objects are represented in 
a multidimensional psychological space11 (FIG. 1) with
similar objects close together in that space and dissimilar
objects far apart. Such multidimensional representa-
tions are often derived from known psychophysical 
mappings11,35 or using various psychological scaling 
techniques36,37. Whereas models from Perceptual
Categorization share assumptions about object repre-
sentations, they differ markedly with respect to how
object knowledge is represented.

Prototype models assume that object categories are
represented abstractly, as the central tendency of experi-
enced members of that category38. Objects are categorized
according to their relative similarity to stored prototypes;
prototypicality effects — whereby certain objects are
deemed better members of a category — emerge because
certain items are more similar to the abstracted proto-
type. But whereas categorization depends on similarity to
a prototype, identification and recognition of specific
objects relies on other independent representations from
specific experiences39,40.

Decision-boundary models11 are multidimensional
generalizations of signal detection theory, with psycho-
logical space carved into response regions by linear and
non-linear boundaries. Decisions are based on what
region of psychological space an object representation
occupies. Categorization versus identification decisions
are made by carving psychological space with decision
boundaries into coarse versus fine response regions.

Size

A
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a b c

Figure 1 | Multidimensional representations of objects. Many models from Object
Recognition and Perceptual Categorization assume that objects are represented in a
multidimensional psychological space. Similarity between objects (or between views of an object)
is inversely proportional to distance in the space. Dimensional representations are sometimes
derived from known psychophysical mappings (a), with each psychological dimension
representing a basic stimulus-processing channel, such as orientation or size11,35. Alternatively,
dimensional representations can be derived using various psychological scaling techniques, such
as multidimensional scaling (b)36,37. Some Object Recognition theorists27 have described how a
low-dimensional shape space (c) for complex objects can emerge from a distributed pattern of
similarity to particular stored views. Change in shape (represented along the plane of the figure)
and changes in viewpoint (represented by the dotted blue trajectory that is roughly orthogonal to
the plane of the figure) are captured within such low-dimensional representations. Novel views of
objects are recognized by interpolating between stored views of objects. Extrapolation beyond
the range of stored views is rather limited. Categorization of a novel object is a function of the
similarity to stored objects. Category typicality effects emerge because prototypical objects are
similar to many stored objects, whereas atypical objects are similar to few stored objects and
might be similar to objects in other categories.
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from the challenge of making any strong argument from
null results). Because most objects are experienced from
many viewpoints, apparent viewpoint-independent
behaviour could instead depend on a collection of
viewpoint-specific representations. So, our extensive
experience with common objects58 makes them unsuit-
able to compare the predictions from multiple-view59

and structural description models14,60.
Even after substantial experience of viewing novel

objects from a limited set of viewpoints, recognition from
unfamiliar viewpoints depends on the angular distance
from the nearest familiar viewpoint26,61. Even recognition
of single geons shows orientation-dependent perfor-
mance62, rendering them unlikely building blocks for 
a theory of viewpoint-invariant recognition. Further 
evidence against abstract object representations includes
findings that recognition also depends on changes in size,
position, colour and illumination63.

Abstraction from Perceptual Categorization. Everyday
experience also indicates that knowledge about object
categories is abstract55. Indeed, early theories assumed

experienced views of all experienced objects. Image-based
and exemplar-based models are computationally 
viable and representationally tractable.And, as described
below, they are also consistent with behavioural and
neurophysiological evidence.

The role of abstraction
A hallmark of visual object understanding is the ability
to generalize — for example, to recognize objects from
new viewpoints or to categorize new objects. Does this
imply that mental representations are abstract55?

Abstraction from Object Recognition. Objects can usually
be recognized effortlessly from any viewpoint, indicating
that a viewpoint-independent representation might be
abstracted. However, naming, matching and priming
experiments have revealed costs of viewpoint changes for
both novel and familiar objects (for review, see REF. 56),
indicating instead that recognition might be supported
by viewpoint-specific representations. Studies that 
use familiar objects and find no effect of viewpoint (for
example, REFS 14,57) can be difficult to interpret (apart
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Figure 2 | Neurophysiology of Perceptual Categorization. a | A simplified version of stimuli in multidimensional psychological space76. In this depiction, the stimuli
in category A are shaded green and the stimuli in category B are shaded blue (stimuli were monochromatic in the experiments). b | According to exemplar-based
models of perceptual categorization35,43,46 selective attention stretches the space along diagnostic dimensions and shrinks it along non-diagnostic dimensions. 
c,d | Sigala et al.76 found cells in inferotemporal (IT) neurons that were selective for at least one of the stimulus dimensions. Spike rate is shown as a function of time
from stimulus onset for two representative cells. Cells that responded to a diagnostic dimension (for example, tail shape) showed discriminative responses for particular
feature values along that dimension (for example, a pointed tail) (c). The figure shows the cell response for the best feature value (green) versus the worst feature value
(blue) along the dimension. Cells that responded to non-diagnostic dimensions (for example, the shape of the ventral fin) showed little discriminative response between
the best and worst feature value (d). e,f | Freedman et al.78 had monkeys learn to categorize a continuous space of ‘cats’ and ‘dogs’ with test stimuli generated by
systematically morphing across a continuum from 100% ‘cat’ to 100% ‘dog’. Cells in IT and prefrontal cortex (PFC) were recorded while monkeys performed a
category-matching task in which a sample was shown, after a delay a test item was presented, and the monkey had to release a bar if the sample and test were from
the same category. Part e shows spike rate as a function of time for a category-sensitive IT cell during presentation of the sample, during delay and during presentation
of the test item. IT cells showed more significant responses during stimulus processing than during the delay. IT cells also showed significant within-category variability
in spike rate. Part f shows spike rate as a function of time for a category-sensitive PFC cell. PFC cells show significant activity during the delay. PFC cells also showed
more between-category variability than within-category variability in spike rate. Panels c and d adapted, with permission, from REF. 76 © (2002) Macmillan Magazines
Ltd. Panels e and f adapted, with permission, from REF. 78 © (2003) Society for Neuroscience.
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discrimination, indicating a distributed representation
that emphasizes exemplar-specific information rather
than highlighting category-specific information27,37.
Neural responses are also modulated by the diagnostic-
ity of stimulus dimensions76, consistent with learned
selective attention, the cornerstone of many exemplar
models43,46,79,80 (FIG. 2). Category-specific responses are
observed in the prefrontal cortex78, which could be the
category output layer that is assumed in all models from
Perceptual Categorization and Object Recognition50

(FIG. 2). Alternatively, a recent theory of category learning
implicates the striatum in mediating the mapping from
object representations in IT to category representations
in the prefrontal cortex42.

Although neurophysiology mainly reveals image-
based responses in IT cortex, human functional magnetic
resonance imaging (fMRI) studies provide evidence for
both image-based and more abstract processing in
homologous regions of human cortex81,82. There also
seems to be a plurality of image-based mechanisms: one
study compared mental rotation with recognition of the
same novel objects and found that, despite the same
behavioural effects of viewpoint, mental rotation engaged
the parietal lobe but recognition engaged the fusiform
gyrus83. So, the transformations that are used in object
recognition might not be the same as those used in 
mental rotation, as had been suggested61.

Levels of categorization
Objects can be categorized at several levels of abstraction
(for example, animal, mammal, cat,Abyssinian, Max). By
some accounts, discriminating similar objects (discern-
ing Fido from Fifi) and generalizing across a category of
objects (calling both of them dogs) are competing goals
that require different representational systems6,12,33,74.
One system is thought to be optimal for categorization at
a BASIC84 or ENTRY LEVEL85, and the other for identification at
the exemplar or subordinate level of categorization16.
However, categorization can occur at more than two 
levels of a conceptual hierarchy, and no one has proposed
a unique representational system for every level. Clearly,
a flexible system is needed to account for categorization.
This has led to the investigation of whether a single 
representational system can support categorization at
multiple levels of abstraction51,86.

Category levels from Object Recognition. This 
identification–categorization distinction is an under-
current throughout debates between structural-
description and image-based theorists. Abstract 
structural descriptions of objects at the same basic
level84 — for example, different cats — have the same
geon description. Such descriptions are devoid of the
metric information that is necessary to discriminate
between members of the same class (but see REF. 87).
Some argue that basic-level categorization is the 
fundamental goal of vision, with identification relying
on features other than object shape12. By contrast, early
tests of image-based theories emphasized discrimination
at the subordinate level23,61. It is possible that structural
descriptions support basic-level categorization and

that abstract rules defined category membership64 (BOX 2).
But membership in natural categories is often proba-
bilistic, not rule-defined7. When subjects learn novel,
ill-defined categories, membership is a graded function
of prototypicality7,38. Moreover, category prototypes 
that are never explicitly learned are often classified 
more accurately than other category members65,66.
These results indicated that category learning involves
abstracting a category prototype39,65, but later work
showed that such prototype effects are consistent with
exemplar theories that assume no prototype abstrac-
tion44,67. As with image-based models from Object
Recognition, exemplar generalization accounts for inter-
polation of the unseen prototype from the surrounding
stored exemplars (FIG. 1). Just as recognizing an object is
influenced by particular stored views, categorizing an
object is influenced by particular stored exemplars.
There is an emerging consensus that exemplar-based35,46

or at least exemplar-like68 representations underlie
important aspects of category representations (BOX 2).

Neural evidence. Image-based and exemplar-based
models are also supported by behavioural and neuro-
physiological results from monkeys. Responses of
inferotemporal (IT) neurons to objects largely depend
on stimulus size69 and orientation69,70; even accepted
notions of retinal position invariance in IT71 have 
been challenged in recent work72,73. Relatively few neural
responses in IT are invariant to position, size or view-
point74. When trained on particular object views,
monkeys recognize novel views according to their simi-
larity to experienced views, and neurons respond in a
similar graded fashion24. When monkeys are trained to
categorize objects, their behaviour is consistent with
exemplar generalization and not prototype abstraction75,
and IT neurons respond selectively to particular exem-
plars37,76–78. Interestingly, neurons often show more
within-category discrimination than between-category

BASIC LEVEL

The level at which object
descriptions (both functional
and perceptual attributes)
maximize a combination of
informativeness and
distinctiveness. Typically, the
basic level is the entry level of
recognition. Exceptions include
atypical category members (such
as penguin, palm tree).

ENTRY LEVEL

The first level of abstraction at
which a perceived object triggers
its representation in memory.
Empirically it is the fastest level
at which observers can verify
that an object can be given a
particular label at some level of
the hierarchy (for example,
canary, bird or animal).

Box 2 | Rules and exemplars

Accompanying the emerging consensus for exemplar-based or exemplar-like
representations that underly important aspects of knowledge representation has been a
re-emerging interest in whether such specific representations might be supplemented by
more abstract representations. Some contemporary theories of perceptual
categorization have hypothesized a role for both abstract rules (or prototypes) and
specific exemplars42,134,157,158. Part of the impetus for such hybrid accounts comes from
the recognition that people are sometimes instructed with explicit rules for categorizing
objects146, and that when faced with the task of learning novel categories without any
explicit instruction people might attempt to form explicit categorization rules64,109,157,159.
The expression of such explicit rules could eventually be supplemented by — or at least
influenced by — stored exemplar information52,102,134,145.

We can draw an intuitive distinction between modes of cognition that are explicit and
deliberate and those that seem more implicit and automatic160. But a real challenge is to
relate such an intuitive distinction to an actual distinction in the kinds of mental
representation that underlie various aspects of human cognition134. There is real
controversy over what patterns of observed behaviour provide an appropriate signature
for distinguishing between explicit (rule-based) and implicit (exemplar-based)
categorization135,159,161,162. Converging evidence from behavioural studies, computational
modelling, neuropsychology and functional brain imaging will be needed to resolve such
basic issues regarding the experiential and abstract bases of human knowledge.
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considered face experts in that they can identify faces
(for example, Bill Clinton) as quickly as they categorize
them at the basic level (human). Our expertise in 
recognizing faces can be contrasted with our expertise in
recognizing letters.Although the goal of face recognition
(like expert bird or dog recognition) is subordinate-level
identification, the goal of expert letter identification is to
distinguish letters at the basic level while ignoring
within-class variations in font and writing style. In 
ongoing research in Gauthier’s laboratory, comparisons
of novices and experts with Chinese characters and
experts with Roman characters indicate that expertise
leads to a relative shift in categorization, but instead of
subordinate-level judgements becoming as fast as basic-
level judgements, judgements at the basic level become
faster with expertise98. The levels of categorization
framework can lead to a taxonomy of different kinds of
expertise that might recruit different neural substrates.

One issue concerns the computational inferences that
can be drawn by contrasting response times at different
levels of categorization. The entry level can be interpreted
as the first categorization stage that needs to be 
completed before processing at more subordinate or
superordinate levels can begin. Indeed, subordinate-level
processing of certain specific categories has been 
proposed to proceed only after an initial ‘detection’ stage,
which categorizes an object as a member of that basic-
level class — for instance, a face is only identified after it is
categorized as a face99,100.Alternatively, basic-level judge-
ments could be completed earlier because these catego-
rizations can be made using coarse perceptual informa-
tion that is available earlier than the detailed perceptual
information required for more specific discriminations
(BOX 1). Decisions about category membership can be
made on the basis of partial perceptual information, with
perceptual processing cascading into decision processes47.

In understanding the flow of information processing,
one challenge is to account for how experts achieve 
subordinate-level recognition as fast as basic-level
recognition95,96. Some theories from Object Recognition
have suggested that the development of perceptual
expertise involves a switch from one representational
system to another. For instance, experts might represent
objects using a holistic system, similar to the one that is
postulated for faces101. Alternatively, some theories from
Perceptual Categorization suggest that rapid expert 
subordinate-level processing, as well as emergent holis-
tic effects, can be explained by changes in memory 
representations49,102 or decision stages103 (see section 
on learning and perceptual expertise). In addition,
expertise could entail the creation of new features to
discriminate members of different classes3 (see section
on interactions between perception and conception).

Neural evidence. Neurophysiological evidence is 
consistent with cascaded processing at different levels of
abstraction. Moving rostrally along IT, the response prop-
erties of neurons tend to increase in complexity70,74.
However, efferents from IT are not limited to cells that
encode entire objects. Rather, the entire span of cortex
from area V4 through areas TEO and TE in the macaque

image-based representations support subordinate-level
categorization74. Subordinate-level judgements have been
suggested to depend more on viewpoint than on basic-
level decisions88. However, presentation of novel objects
among distractors of varying discriminability revealed
that judgements of highly discriminable object sets (akin
to a basic-level discrimination) were just as viewpoint-
dependent as judgements of less discriminable object sets
(akin to a subordinate-level discrimination)89.

Recently, image-based theorists have argued that 
categorization at all levels can be accomplished using
image-based representations27,50,63. Although theoretical
work supports the sufficiency of a single, flexible system,
some empirical evidence indicates that there might be
multiple systems. Evidence primarily from lateralized-
presentation studies indicates that objects can be repre-
sented simultaneously in an image-based and in an
abstract fashion by different systems. For instance, the left
hemisphere is more efficient at categorization, whereas
the right hemisphere is more efficient at encoding exem-
plars33,90,91. Event-related potentials (ERPs)92 reveal that
the additional perceptual processing that is necessary for
subordinate-level categorization (for example, terrier) is
associated with early activity in the occipito-temporal
cortex, whereas the semantic processing that is necessary
for superordinate judgements (for example, animal) trig-
gers later activity in frontal areas92 (and see also REF. 93).

Category levels from Perceptual Categorization. Early
work in Perceptual Categorization also suggested that
identification and categorization used distinct represen-
tations and processes. Object similarities can be derived
from stimulus–response confusions by subjects in an
identification task. However, these identification-derived
similarities could not account for categorization 
performance94, indicating that qualitatively different 
representations supported identification and categor-
ization. However, although object similarities vary 
systematically across tasks, the same underlying multi-
dimensional psychological space can support both 
categorization and identification43. Selective attention to
dimensions35,46,48 can change stimulus similarities in 
a task-dependent manner depending on the relative
diagnostic values of dimensions for identifying or 
categorizing objects. From a computational standpoint,
|a common representational substrate can be used 
adaptively according to task demands48,50,63.

Expertise and levels of categorization. One virtue 
of considering visual object understanding in terms of
levels of categorization is in providing a framework for
contrasting the performance of experts and novices.
Novices make basic-level categorizations (for example,
bird) more quickly than either more subordinate
(robin) or superordinate (animal) categorizations.
But when categorizing objects within their domain 
of expertise, experts (for example, dog experts) make
subordinate-level judgements (terrier) as fast as basic-
level judgements (dog) and are more likely to use 
subordinate-level labels in speeded naming95,96. In 
addition, Tanaka97 showed that typical adults can be
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Researchers from Object Recognition have tradition-
ally discussed modularity of content: are there specific
modules that are devoted to particular kinds of object?
According to one framework, object recognition is 
supported by a general-purpose mechanism in the 
lateral occipital cortex (LOC)121; fMRI reveals greater
activation of the LOC by objects than by random pat-
terns, whether those objects are defined by luminance,
motion, texture or otherwise. This mechanism might
be supplemented by a small number of modules for
processing special categories such as faces122, places123 or
body parts111 (but see BOX 3). Interestingly, a similar 
pattern of specialization for faces and perhaps for bodies,
but not for hands, fruits or man-made objects, has been
reported in fMRI studies of macaques124.

The Perceptual Categorization literature has been
embroiled in debates regarding the modularity of
memory systems125,126 — are there specific modules that
are devoted to particular tasks, irrespective of object 
category? Theories that propose multiple memory sys-
tems125 suggest that categorization and recognition are
subserved by independent systems. Evidence for this
comes from a double dissociation in which amnesics
can categorize new dot patterns as members of a pre-
viously seen category but cannot recognize dot patterns
that they have seen before40,127, whereas patients with
Parkinson’s disease cannot learn probabilistically defined
categories but perform normally on tests of explicit
recognition42,128 (BOX 2).

In both fields, claims of modularity have been 
disputed. Neurons are selective for particular objects,
including faces and other complex objects24, but selec-
tivity alone is not sufficient to support claims of a truly
modular organization. As a rule, modularity tends to be
invoked when neurons that are selective for a category
cluster into spatially contiguous patches of cortex, some-
thing more easily seen with functional imaging than
with neurophysiological recordings. Such localized hot
spots of activity are found for a small number of object
categories, including faces, places and body parts111,122,123.
Furthermore, brain lesions sometimes seem to affect
only one of these clusters, as in PROSOPAGNOSIA129. However,
even brain lesions that lead to selective deficits are often
large, diffuse or impossible to localize, and the distribu-
tion of category-selective areas seen with neuroimaging
is far from a perfect match to the distribution of brain
damage in patients.

Spatial clustering of selective neurons might be tied to
claims of modularity because it seems reasonable 
to attribute a special function to a dense network of inter-
connected neurons with similar selectivity. However, our
understanding of how these local cortical networks func-
tion is limited (but see REFS 76,130). In truth, the link
between spatial clustering of selectivity and modularity
has often been more assumed than explicitly deliberated.
Spatially clustered selective neurons might be revealed to
be parts of larger interactive, non-modular networks117,
or more spatially distributed systems might meet many of
the characteristics that are otherwise expected of mod-
ules. Even if there are cognitive modules, we do not know
what they should correspond to in neural terms (BOX 3).

projects to frontal and striatal areas (BOX 1). This includes
the frontal eye fields, where neurons that respond to 
the categorization of visual objects104 begin to respond
before neurons in anterior IT105. Therefore, object repre-
sentations might be distributed across many areas.
Representations that are available after relatively early
visual processing, for example, in area V4 or TEO, might
be sufficient for basic-level judgements, but more detailed
representations, formed later in area TE, might be needed
for more specific decisions106. Image-based ‘features’
of intermediate complexity, possibly akin to responses of
neurons in TEO, could be sufficient to categorize types 
of objects (such as faces or cars) but are probably insuffi-
cient to discriminate objects within a class107.

In humans, fMRI studies93 reveal that subordinate-
level judgements (as compared to basic-level decisions)
recruit more anterior regions of the occipito-temporal
stream, including the fusiform face area. A CASCADE MODEL

that emphasizes the importance of perceptual overlap
between exemplars has also been proposed to account
for category-selective deficits in brain-damaged individ-
uals108. Because evidence from any single technique
might be compatible with both cascade and serial
implementations, converging evidence at many scales
(temporal and spatial) will probably be required to test
specific models of the flow of processing that is respon-
sible for categorization at different levels of abstraction.

Modularity
Whether categorization and identification are subserved
by independent systems is just one of the MODULARITY

debates that permeate the Perceptual Categorization
and Object Recognition literatures. Are there domain-
specific, informationally encapsulated subsystems8 for
recognizing certain objects or performing certain
object-understanding tasks?

Modular explanations abound for dissociations and
double dissociations within normal individuals on 
different tasks33,109, between brain-damaged individuals
on the same tasks101,110, and in functional brain imaging
studies111,112.According to this logic, finding two patients
with opposite patterns of deficits and spared function
indicates the existence of modules. Unfortunately, this
logic is not flawless. As Shallice113 stated, “If modules 
exist, then double dissociations can reveal them. However,
finding double dissociations is no guarantee that modules
exist.” Logical arguments113, simulated deficits with 
computational models114–116, and alternative analyses of
fMRI data117 all reveal that non-modular systems can
yield double dissociations. Unquestionably, parts of the
brain are specialized for different ways of representing,
integrating or processing information. However, what
distinguishes most modular approaches is the claim that
some areas are exclusively devoted to one domain or task.
By contrast, many non-modular accounts acknowledge
that subsystems might be relatively more important for 
a domain or task, but emphasize interactions between
systems in the service of adaptive behaviour118–120. There
are some interesting contrasts in the way in which modu-
larity issues have been manifest in the Object Recognition
and Perceptual Categorization fields.

CASCADE MODELS

Cascade models are those in
which the later stages of
information processing can
begin before the completion of
earlier stages, unlike discrete
models in which computations
at any given stage are completed
before the subsequent step is
engaged.

MODULARITY

A thesis concerning the structure
of the mind that is based on
special-purpose computational
mechanisms termed ‘modules’.
Fodor8 proposed that modules
are innate, that they perform
their operations on a specific
input or domain (for example,
faces or speech) and that their
operations are informationally
encapsulated (not accessible to
any other module).

PROSOPAGNOSIA

Originally defined as the
inability to gain a sense of
familiarity from known faces,
prosopagnosia also now includes
a deficit in the perception of
faces. It typically occurs in the
context of visual agnosia — a
visual deficit in object
recognition — and only a few
cases have been suggested to
present with a face-specific
deficit.
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Interactions between perception and conception
In addition to horizontal modularity for different 
kinds of object or kinds of memory, the traditional 
distinction between Object Recognition and Perceptual
Categorization can be seen as a form of vertical 
modularity from the perceptual to the conceptual8.
Traditionally, visual perception was thought to create
the representational input (the domain of Object
Recognition) to a conceptual system that identified 
or categorized objects (the domain of Perceptual
Categorization). Recently, more ‘interactive’ solutions
have been proposed3–5.

As discussed earlier, in one traditional model,
an object is first categorized at the basic level84.
Categorization at more subordinate levels requires 
further perceptual processing85,92, and categorization 
at superordinate levels requires further semantic pro-
cessing84,85. This framework is supported by an ERP
study that dissociates subordinate and superordinate
processing both spatially and temporally in the brain92.
However, such clear distinctions can break down 
in cases of perceptual expertise, where equivalent 
performance is seen at the basic and subordinate 
categorization95,96.

But experts also acquire a rich knowledge base of
information. For example, bird experts know not only
what an Indigo Bunting looks like, but also that it eats
seeds, berries and herbs, and can navigate using the
stars. One study of a patient with category-specific
visual agnosia indicates that perceptual and conceptual
knowledge might not be independent137. Patient ELM
was an expert on brass instruments before his brain
injury. Surprisingly, he can learn arbitrary pairings
between names of brass instruments and novel abstract
shapes better than when the names are those of string
instruments. The use of expert concepts led to facilita-
tion in a perceptual task with arbitrary visual stimuli,
indicating an interaction between perception and 
conceptual knowledge. Such interactions might occur
even in the absence of expertise. Gauthier et al.138 asked
subjects to associate novel objects with non-visual
semantic attributes. The semantic attributes overlapped
either significantly, in that different objects shared many
of the same attributes, or not at all. After learning,
subjects performed matching judgements across view-
point changes on these objects. They made fewer errors
after learning non-overlapping semantic features during
training, even though the matching task made no refer-
ence to the semantic features. So, conceptual knowledge
might be invoked involuntarily to influence perceptual
judgements. A similar study using fMRI found that 
conceptual associations with novel objects recruited the
frontal lobe during a simple perceptual matching
task139. The frontal areas involved are active during
semantic encoding, retrieval and generation140.

Along similar lines, computational arguments3 and
empirical evidence9 have shown that category learning
can influence perceptual representations. After category
learning, perceptual discriminations can be enhanced
along dimensions that are relevant for the learned 
categorization9. Such perceptual learning could be due

In Perceptual Categorization, arguments against
modular accounts have relied on demonstrations that
non-modular models can account for dissociations
between categorization and recognition in neuropsycho-
logical populations115,116,120,131–133 and those between 
different kinds of categorization strategy in normal indi-
viduals134,135. Mirroring arguments from the Object
Recognition field, it has been argued that categorization
and recognition tasks often differ in important ways
beyond judging category membership versus judging
familiarity. For example, for the widely used dot pattern
tasks39,40,127 a single-system exemplar model predicts that
categorization performance will be far less affected by
memory impairment than recognition performance
because of the similarities between stimuli used in those
tasks115,131.A single-system exemplar model that assumes
degraded memory in amnesia provides a parsimonious
account of the behaviour of amnesics and normal indi-
viduals; recent arguments to the contrary136 have been
challenged120. In addition, in some experimental para-
digms, memory for category members might not even
be required. When subjects are deceived into believing
that they have received subliminal exposure to training
items — no items having been presented — their 
performance on categorization tests is the same as that
observed in patients and controls who were exposed to
training items120,131,133.

Box 3 | Are faces special?

Two related debates centre around whether faces are special. First, how can we explain the
pattern of activity across extrastriate cortex in response to different categories? One view
focuses on the maximal response of a cluster of neurons163.This leads to the conclusion that
most classes of objects are recognized using a general-purpose system that is distributed
across a large portion of cortex but that there are a few ‘hot spots’ for ‘special’classes of
objects, such as faces, places and body parts35,123,163,164.Alternatively, there might be a
distributed and continuous representation of all categories of objects across the cortex, in
which neurons that respond non-maximally nonetheless participate crucially in object
representations117.According to the first perspective, faces are represented only in the
fusiform face area (FFA); but from the other perspective, faces are coded in a distributed
manner across the cortex, with the FFA simply being an area of maximal activity.

Another debate concerns the origins of the category specialization that is observed in
extrastriate cortex, such as in the FFA122. Specialization itself is not challenged, but the
question is how best to characterize it, as well as its causes. The replicability of the
pattern of specialization for a few categories across individuals117 indicates that innate or
maturational constraints might govern the development of cortical representation. One
view is that the ‘face module’ is innately programmed for the unique geometry of
faces165. This was supported by findings that newborns prefer upright to inverted
faces166. However, this preference might not be unique to faces per se : newborns prefer
the version of any pattern that has more elements at its top167. An alternative is that
more general constraints, such as gradients of eccentricity168 or a continuum from local
parts to holistic representations169, govern organization across the visual cortex.
Category selectivity correlates with these cortical biases because of the processing biases
that are associated with certain objects through experience118,170. For instance, faces are
recognized individually more than other objects93 and we develop expertise with this
task. Behavioural144,149, functional magnetic resonance imaging148,171 and event-related
potential (ERP)172,173 evidence reveals that experts can process non-face objects such as
cars, dogs, birds and novel objects in a manner that is similar to face processing, using
the same brain areas, and with neural responses with the same latency (see also REF. 174).
In addition, face recognition by car experts — but not by car novices — shows
interference, both behaviourally and in ERPs, from concurrent processing of cars150,
indicating that in experts, face and car processing share important neural resources.
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mode of expert categorization. Instance theory52

posits shifts from strategic rule-based processes to
exemplar-based memory retrieval as the basis for the
development of automaticity in a range of domains
(BOX 2), including perceptual categorization49,102,134.
People might initially categorize using rules102,145–147,
but with experience they start to retrieve exemplars
from memory49,102,134; expert performance is faster, less 
deliberate and less attention-demanding than catego-
rization by novices, because memory retrieval is faster,
less deliberate and less attention-demanding than most
rule use52.

The automatic strategies that are acquired by 
perceptual experts can sometimes confound study
results. For instance, comparisons between object and
face processing often indicate that faces are processed 
in a ‘special’ way (BOX 3). However, subjects are more
experienced at recognizing faces individually. This
might influence performance on identification 
tasks, but face experts — typical adults — might also
automatically recognize faces individually when they
are not explicitly instructed to do so. In an fMRI study
in which car or bird experts selectively attended to the
identity or the location of faces, birds or cars148, novices
(birders looking at cars or car experts looking at birds)
showed more activity in the fusiform face area (FFA)
during identity than location judgements. By contrast,
there was little difference in FFA activity between 
identity and location judgements for experts with birds
and cars, just as for faces. So, expertise might promote
automatic processing of identity, even when identity is
irrelevant.

Although perceptual expertise confers benefits to
the expert, some behavioural effects of expertise are
best described as interference. For example, subjects
might be asked to attend to part of an object, but
experts show a larger influence of the parts they were
told to ignore, a ‘holistic processing’ effect149,150. The
same effects are obtained with faces101,151. Expertise 
carries a cost: the loss of flexibility of processing for
objects in a highly trained domain.

Comparisons between novices processing objects and
experts processing faces have provided evidence for two
representational systems, one representing objects in
terms of their parts and the other representing objects 
as relatively undifferentiated wholes101. During the acqui-
sition of perceptual expertise, there could be a switch to
using holistic representations, rendering experts unable
to attend selectively to parts. However, when subjects are
tested at various timepoints during the acquisition of
expertise, holistic processing seems to occur at different
times for different parts of an object149: there were inter-
mediate steps between apparent part-based and holistic
processing when only a subset of an object’s parts
seemed to be bound together. Therefore, rather than a
representational switch, the acquisition of expertise
could rely on fine tuning and quantitative changes in the
same representational system.

Before we can fully understand how processes 
and representations become ‘holistic’ with expertise,
clarifications about the mechanisms that underlie

to enhanced receptive field properties or an increased
number of units coding a diagnostic dimension.
Although IT neurons seem to encode stimuli in a way
that emphasizes diagnostic dimensions37,76, the neural
mechanisms involved are still unclear80. Perhaps there is
a more complex form of perceptual learning in which
the underlying dimensional descriptions adapt to the
categorization task that is being learned3. The mecha-
nisms of such feature creation remain to be elucidated,
but image-based parts of intermediate complexity107

might be a starting point.
Finally, perhaps the greatest swing away from a 

modular view of visual object understanding counters
the classic view that conceptual knowledge is amodal
and separate from episodic memory, and instead 
suggests that abstract semantic knowledge is grounded
in specific episodes of perception, action and
emotion4. According to this view, your knowledge of
a kiwi fruit is the conjunction of the visual, somato-
sensory, motor, olfactory and gustative states that are
stored each time you interact with one. Such conjunc-
tions could be represented by neurons in ‘convergence
zones’141, and the process of reactivating such states 
in modal systems has been described as ‘running 
simulations’. These simulations can combine stored
information, making it possible to experience concepts
in novel ways that diverge from actual experience.
The implementational details of this framework
remain speculative, but it is consistent with behav-
ioural results showing that sensorimotor variables 
can affect performance in feature listing or property
verification — for example, subjects are more likely to
produce ‘roots’ as a property for rolled-up lawn than
for lawn142 — and is consistent with neuroimaging
results showing that the use of concepts activates pro-
cessing in modality-specific areas — for example,
motion-related features (such as hops, jumps or walks)
recruit cortical areas that overlap with those that are
engaged by biological motion perception143.

Learning and perceptual expertise
Historically, both the Perceptual Categorization and
Object Recognition literatures were largely polarized
around binary questions, for example: are object 
representations viewpoint-dependent or viewpoint-
independent12,61? Is perceptual categorization based on
exemplars, prototypes or rules35? Are faces and objects
processed in the same way144? Recently, a more dynamic
approach has been favoured. Novice subjects can
demonstrate visual object understanding in qualita-
tively different ways than experts. Fully understanding
the development of learning and perceptual expertise
will demand a synergy of several fields of research, as
perceptual expertise might reflect changes in perceptual
representations, perceptual knowledge and conceptual
knowledge.

A novice searching for Morel mushrooms might
use well-memorized rules, categorizing mushrooms 
as edible or poisonous explicitly. With experience, a
mushroom gatherer shifts from this slow, attention-
demanding mode to a more rapid and automatic
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Conclusion
We are just beginning to understand how people learn
to recognize, identify and categorize novel objects, in
some cases developing expertise in a domain. These
challenges highlight the importance of investigating
changes in perceptual representations, knowledge repre-
sentations and processes that act on those representa-
tions. The line between perception and cognition has
been blurred. Despite their historic differences, current
theories from Object Recognition and from Perceptual
Categorization have begun to consider complementary
problems and have converged on similar solutions.
Ultimately, a complete understanding of visual object
understanding will demand an integration of the best
theoretical constructs from the Object Recognition and
Perceptual Categorization fields.

holistic processing, or what it means to form a holistic
representation, are needed152. Until recently, accounts
of holistic processing were more verbal descriptions
than specified models149,153. Image-based representa-
tions27,28 provide one natural substrate for holistic or
unitized representations154. It might also be useful to
decompose holistic processing into specific aspects of
information processing: whether components of an
object are processed independently, whether those
components are processed in parallel, whether there
are capacity limitations, and so forth103,152. Although
some holistic processing effects could emerge as a
result of underlying holistic representations, others
could instead emerge because of decision processes
that integrate information about the dimensions of
an object103.
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At-a-glance
• Two relatively independent areas of visual cognition research examine

important aspects of visual object understanding: Object Recognition
and Perceptual Categorization. These areas have focused on different
aspects of the same problems, with surprisingly little overlap.
Nevertheless, they have ultimately arrived at complementary conclu-
sions regarding the computational bases of visual object understand-
ing.

• Traditionally, computational models in Object Recognition provide a
detailed description of the format of object representations, whereas
Perceptual Categorization models emphasize how representations are
used to make decisions. Both image-based theories and exemplar-
based theories have articulated how the same representations can be
used to recognize, identify and categorize objects.

• Although intuition suggests that object recognition is effortless regard-
less of changes in viewpoint, and that knowledge about object cate-
gories is abstract, there is much evidence to the contrary. Just as recog-
nizing an object is influenced by particular stored views, categorizing
an object is influenced by particular stored exemplars. Image-based
and exemplar-based models are supported by behavioural, neurophys-
iological and functional imaging results. There is also some renewed
support for abstraction, and new hybrid models attempt to integrate
structural descriptions with image-based representations and to inte-
grate abstract category representations with exemplar-based represen-
tations.

• Objects can be categorized at several levels of abstraction (for example,
animal, mammal, cat, Abyssinian, Max). Some argue that basic-level
categorization is the fundamental goal of vision, with identification
relying on features other than object shape, whereas early tests of
image-based theories emphasized discrimination at the subordinate
level. Recently, image-based theorists have argued that categorization
at all levels can be accomplished using image-based representations.
Early work in Perceptual Categorization suggested that identification
and categorization used distinct representations and processes, but
recent evidence indicates that a common representational substrate
can be used adaptively according to task demands.

• Researchers in Object Recognition have traditionally discussed modu-
larity of content: are there specific modules devoted to particular kinds
of objects? The Perceptual Categorization literature focused on debates
regarding the modularity of memory systems: are there specific mod-
ules devoted to particular tasks, irrespective of object category? In both
fields, claims of modularity have been disputed, relying primarily on
demonstrations that non-modular models can account for dissocia-
tions.

• Traditionally, visual perception was thought to create the representa-
tional input to a conceptual system that identified or categorized
objects in a linear fashion. Recently, more ‘interactive’ solutions have
been proposed. The evidence indicates that there is an interaction
between perception and conceptual knowledge, and that category
learning can influence perceptual representations.

• A new dynamic approach emphasizes the role of learning in most
questions of interest in visual object understanding. Novices can
demonstrate visual object understanding in qualitatively different ways
than experts: for instance, people might initially categorize using rules
but with experience start to retrieve exemplars from memory.

Experience with certain categories leads to specialization in the visual
system: for example, experts can process non-face objects such as cars,
dogs, birds and novel objects in a manner similar to faces, using the
same brain areas and with neural responses with the same latency.

• Despite their historic differences, current theories of Object
Recognition and Perceptual Categorization have begun to consider
complementary problems and have converged on similar solutions.
Ultimately, a complete understanding of visual object understanding
will demand an integration of the best theoretical constructs from
Object Recognition and Perceptual Categorization.
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