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Abstract
The target article, “Robust Modeling in Cognitive Science,” proposes a number of recommended practices in computational
modeling in response to the growing “crisis of confidence” facing many scientific disciplines, including psychology and
neuroscience. Those of us who do modeling, write about modeling, teach modeling, and mentor modelers worry deeply about
best practices and any new suggestions for making modeling more transparent, trusted, and robust are welcome. Many of the
recommendations seem uncontroversial. My commentary focuses on forms of preregistration and postregistration, which con-
stitute three of the four key ideas highlighted as take-home recommendations at the conclusion of the target article. I have chosen
to consider these recommendations by reflecting on my own past experiences developing new models and modeling approaches.
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I applaud this distinguished team of researchers for proposing
ways to make cognitive modeling more transparent, trusted,
and robust. My commentary considers how a few of these
recommendations might have impacted my own past work
had these recommendations been made years ago. Some of
the recommendations regarding good practices in model
fitting and model comparison seem uncontroversial and some
are embodied in some way in modern textbook treatments of
cognitive modeling (e.g., Farrell and Lewandowsky 2018).
My comments focus on forms of preregistration and
postregistration, which constitute three of the four key ideas
highlighted as take-home recommendations at the conclusion
of the article.

Some of my earliest cognitive modeling projects contrasted
alternative models of category learning, such as ALCOVE
(Kruschke 1992), the rational model (Anderson 1990), and
the configural cue model (Gluck and Bower 1988), on their
ability to predict errors made when learning different types of
categorization problems (Nosofsky et al. 1994a)1 and learning
categories at different levels of abstraction (Palmeri 1999). I

could well imagine work like this having been preregistered.
These were well-established models, all of which could be
implemented precisely following their descriptions in the lit-
erature, with a goal that was a straightforward comparison of
model predictions, fitted and evaluated using well-established
techniques, at least for their time,2 with failures of certain
models that were qualitative in nature, not merely quantitative
by some particular metric. From what I recollect (after many
years), the way the models were fitted and evaluated were
loosely “preregistered” in that we did not deviate from the
way similar models had been fitted and evaluated in previous
work. Preregistration would have memorialized decisions
made before the modeling work began.

While I remain to be entirely convinced that preregistration
would have made our work stronger (e.g., Adam 2019), or
would have facilitated the peer review process, I understand
that one prime motivator for such recommendations is a lack
of trust, manifest as a “crisis of confidence” (Pashler and
Wagenmakers 2012). Would preregistration or even a regis-
tered modeling report have allayed the criticism about certain
examples of modeling leveled by Roberts and Pashler (2000)?
Perhaps, though I suspect not. As the authors of the target
article note well, “preregistration is no substitute for good
judgment.” To the extent that preregistration—whether

2 We have certainly evolved over the years to using more robust modeling
methods (Farrell and Lewandowsky 2018), from minimizing sum-squared-
error (SSE) in these early publications, to minimizing chi-squared or maximiz-
ing likelihood, to using Bayesian estimation and model comparison when
possible (e.g., Annis and Palmeri 2018, 2019).

1 An early example of “adversarial” collaboration (Kahneman and Klein
2009) in cognitive modeling.
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required or rewarded—encourages a modeler to think critical-
ly about each step of the modeling process, this could help
push modelers to engage in better (if not best) practices.

I wonder what goes into a preregistration and how
deviations from preregistered model predictions are to be
interpreted. Johansen and Palmeri (2002) had participants
learn novel categories and tracked over the course of category
learning how individual participants generalized their catego-
ry knowledge to untrained test items in three experiments.
Early in learning, participants generalized on the basis of sin-
gle diagnostic dimensions, consistent with the use of simple
categorization rules. Later in learning, participants generalized
in a manner consistent with the use of similarity-based exem-
plar retrieval, attending to multiple stimulus dimensions.

The category structure used in experiment 1 was first used
by Medin and Schaffer (1978) to contrast predictions of ex-
emplar and prototype models. The category structures used in
experiments 2 and 3 were constructed by me to contrast rule
and exemplar models. I created dozens of different category
structures over the course of many weeks, testing each on
what kinds of generalization from trained items to test items
would be predicted by a particular exemplar model, the gen-
eralized context model (GCM) (Medin and Schaffer 1978;
Nosofsky 1986). I selected for experiment 2 and 3 category
structures that were different from one another that predicted
different generalization patterns depending on whether a par-
ticipant was using a single-dimension rule versus exemplar
similarity to categorize. “Ideally, a preregistered model could
take the form of the precise predictions that are made by the
model” (Lee et al., in press, p. 2)—I could well have
preregistered these generalization predictions by the model,
anticipating the rule generalizations early in learning and the
exemplar generalizations later in learning.

But my predictions would have been wrong. After
collecting the data, we saw that in experiments 2 and 3,
some prominent generalization patterns had emerged over
the course of category learning that I had not anticipated in
my initial predictions generated using the GCM. We ended
up fitting the data using ALCOVE, a connectionist imple-
mentation of the GCM that learns categories, and found
that ALCOVE predicted at the end of learning the full
distribution of generalization patterns, including the prom-
inent ones I had not initially predicted using GCM. Maybe
ALCOVE was too flexible? Maybe with the right choice of
parameters, ALCOVE could account for any types of gen-
eralizations? No. We conducted tens of thousands of sim-
ulations of ALCOVE over a dense grid of possible param-
eter combinations (see also Pitt et al. 2006), which took
several weeks on what were state-of-the-art workstations
at the time, and found instead that ALCOVE predicted
these prominent generalizations over most parameter com-
binations. My predictions were wrong. I erroneously as-
sumed that the static GCM would make the same

predictions as the learning ALCOVE model. If I had
preregistered the wrong predictions with GCM, would that
have weakened the explanatory power of ALCOVE? I
hope not. ALCOVE predicts the prominent generalization
patterns over a wide range of parameter values (as well as
by optimizing parameters to fit the details of observed da-
ta) whether I preregistered those predictions beforehand or
discovered those predictions after the data were collected.
Preregistering might well have highlighted my inability to
anticipate the surprises lurking in models with variability,
nonlinearities, and parallelism that learn (Hintzman 1990),
but would not have impacted whether or not a model truly
predicts an observation in a (nearly) parameter-free
manner.

Fitting an existing model and comparing existing
models may well lend themselves to some form of pre-
registration since the models are already specified and the
fitting and comparison approach can be selected, de-
scribed, and justified. But it is unclear where and how
preregistration comes in when developing a new model
or a new modeling approach. I have been fortunate to
work with some great collaborators on the development
of new cognitive models, such as RULEX (Nosofsky
et al. 1994b), EBRW (Nosofsky and Palmeri 1997;
Palmeri 1997), the interactive race model (Boucher et al.
2007), and the gated accumulator model (Purcell et al.
2010). As the authors rightly note (Lee et al. 2019, p.
6), “model development is a creative activity that often
proceeds in [an] incremental and exploratory fashion.”

When developing EBRW, we wanted to create a model that
could predict both errors and RTs during categorization and
predict how those changed with learning and expertise. We
were guided theoretically by the GCM, instance theory
(Logan 1988), and accumulation of evidence models of deci-
sion making as our building blocks, but we did not have a
fully complete blueprint of how those blocks might come
together until we started to generate simulations and try to fit
the model to data. When creating a model like the gated ac-
cumulator (Purcell et al. 2010), we were also creating a new
approach to model-based cognitive neuroscience (Palmeri
et al. 2017; Turner et al. 2017) that used the spike rates record-
ed from neurons in awake-behaving primates to drive an ac-
cumulation of evidence model to predict saccade decisions.
How best to use the spiking data to drive model predictions,
how to aggregate spikes and behavioral data across sessions,
and how to both evaluate the fits of the model to behavioral
data and evaluate the predictions of neural dynamics from
accumulator dynamics were all discoveries that emerged over
the course of a couple of years of model development and
exploration. In all of the cases of developing new models
and modeling approaches that I have been involved with, I
cannot think of a time when it would have been most appro-
priate or sensible to preregister our theoretical plans.
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In such cases, the authors of the target article instead pro-
pose postregistration documentation. Some elements of this
documentation make eminent sense for any computational
laboratory, like keeping detailed modeling records, using
modern version control methods, maintaining onsite and
offsite shared repositories, and establishing digital laboratory
protocols (e.g., Noble 2009; Rouder et al. 2019). Sadly, too
often, my digital records are a photo of the notes on the 8-foot
white board in my lab using my iPhone and my lack of dili-
gence in establishing and enforcing digital protocols has oc-
casionally created challenges in finishing a project when
someone leaves the lab.

But these recommendations go beyond mere digital hy-
giene to suggest that “in exploratory model development,”3

the postregistration documentation should be “made public at
the time of publication or even as the research is being done”
(Lee et al., in press, p. 6). While I admit to having watched
with morbid fascination the live webcam of H.M.’s famous
brain being cryogenically sliced (Annese et al. 2014), is there
really a use for a public digital record of all the undistilled
hunches, the soul-crushing, time-sucking theoretical rabbit
holes, and ideas that with hindsight were sheer lunacy that
are all part of forging new theoretical ground? At least in the
work I have been involved in, the most important lessons
learned during model development—the models that fail—
are either given a prominent place within the body of an article
or are described in footnotes, appendices, and supplementary
materials; these failed approaches seemed like good ideas to
us, so they might be to someone else. Such failures also help
explain and understand what works and justify why models
might need certain complexity because simpler alternative
may fail in important ways. Some of these theoretical journeys
also make their way, albeit in distilled form, into the formal
classes I teach and the informal mentoring I provide to folks
working with me—and I suppose into this commentary as
well. Raw thoughts are not raw data, whether when creating
new models or designing new experiments.

Keeping good records of modeling steps (in programming
a model, simulating a model, fitting a model to data, contrast-
ing alternative models) is unquestionably important. There
must be sufficient detail in any modeling article—whether in
the body of the article itself, in an appendix, or, when article
space is severely limited, in supplementary information—to
allow any competent modeler to reproduce the model predic-
tions. It is incumbent upon authors to be mindful about

providing sufficient detail and upon editors and reviewers to
demand such detail. But, in my view, those details will be
carefully distilled from the records of modeling steps, not be
a raw copy of a physical or digital laboratory notebook in a
postregistration document.

I recognize that there is a danger in being perceived as
railing4 against robustness. Who would ever not want to be
robust—“one might as well ask for acne” (Mook 1983). But
the appropriate boundary conditions for when preregistration
is appropriate, or even necessary, and what kinds of informa-
tion might actually be useful for science, if anything, in a
postregistration when developing new models needs very
careful consideration by the field before becoming
expected—or demanded—practice in computational
modeling.
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