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The authors propose and test an exemplar-based random walk model for predicting response times 
in tasks of speeded, multidimensional perceptual classification. The model combines elements of 
R.M. Nosofsky's (1986) generalized context model of categorization and G. D. Logan's (1988) 
instance-based model of automaticity. In the model, exemplars race among one another to be retrieved 
from memory, with rates determined by their similarity to test items. The retrieved exemplars provide 
incremental information that enters into a random walk process for making classification decisions. 
The model predicts correctly effects of within- and between-categories similarity, individual-object 
familiarity, and extended practice on classification response times. It also builds bridges between 
the domains of categorization and automaticity. 

Models of multidimensional perceptual classification have 
grown increasingly powerful and sophisticated in recent years, 
providing detailed quantitative accounts of patterns of classifi- 
cation learning, transfer, and generalization (e.g., Anderson, 
1991; Ashby, 1992; Estes, 1986, 1994; Kruschke, 1992; Nosof- 
sky, 1992b; Shanks & Gluck, 1994). However, a fundamental 
limitation of all the major competing models in the field today 
is that they offer no processing account of the time course of 
classification. Because response times provide a window into 
understanding the nature of cognitive representations and deci- 
sion processes, it is vital to move in the direction of models 
that account for this form of data. In this article we propose 
and test a process-oriented model for predicting response times 
in tasks of speeded perceptual classification. 

Our proposed model follows in the spirit of some leading 
extant models of categorization by assuming that people repre- 
sent categories in terms of stored exemplars (Hintzman, 1986; 
Medin & Schaffer, 1978; Nosofsky, 1986). Classification deci- 
sions are made by retrieving these stored exemplars from mem- 
ory. In the newly proposed model, retrieved exemplars are used 
to drive a random walk process (e.g., Luce, 1986; Townsend & 
Ashby, 1983) in which evidence accrues to alternative categories 
over time. Random-walk models have been successful at ac- 
counting for performance in tasks of memory, decision making, 
sensory discrimination, and unidimensional absolute judgment 
(e.g., Busemeyer, 1985; Karpiuk, Lacouture, & Marley, in press; 
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Link, 1992; Ratcliff, 1978). Thus, a random walk architecture 
seemed a promising one to explore in the domain of multidimen- 
sional perceptual categorization. Because our model assumes 
that retrieved category exemplars are used to drive a random 
walk process, we refer to it as an exemplar-based random walk 
( EBRW) model. 

The EBRW integrates and extends two previously developed 
and well-known exemplar models of cognitive processes. The 
first is Nosofsky's (1986) generalized context model (GCM),  
which has had a long history of success in accounting for rela- 
tions among categorization, identification, o ld-new recognition, 
and similarity (Estes, 1994; Medin & Schaffer, 1978; Nosofsky, 
1984, 1992b). The second model is Logan's (1988, 1990) in- 
stance-based model of automaticity, which has been extremely 
successful at accounting for the development of skilled perfor- 
mance as a function of extended practice. Although this article 
focuses on how the EBRW accounts for classification response 
times, another important contribution of the work is that it builds 
bridges between the domains of categorization and the develop- 
ment of automaticity (Palmeri, 1997). Indeed, we suggest that 
the EBRW may provide insights into the development of exper- 
tise in perceptual classification. 

We organize our article by first briefly reviewing Nosofsky's 
(1986) GCM and Logan's (1988) instance model. We then ex- 
plain how key components of each are integrated in the EBRW. 
Next, a formal statement of the EBRW is provided, its key proper- 
ties are discussed, and analytic predictions are derived. In the 
empirical section of the article, the EBRW is tested in several 
experiments involving speeded perceptual classification, and its 
predictions are compared with those of an alternative descriptive 
model of classification reaction time. Finally, applications of the 
EBRW to accounting for the development of skilled performance 
in tasks of visual numerosity judgment (e.g., Lassaline & Logan, 
1993) are briefly illustrated and discussed as we interrelate the 
domains of categorization and automaticity. 

Review of  the Component  Models  

The Generalized Context Model of  Classification 

According to Nosofsky's (1986) GCM, people represent cat- 
egories by storing individual exemplars in memory. Classifica- 
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tion decisions are based on summing the similarity of an object 
to the exemplars of the alternative categories. In the GCM, 
exemplars are represented as points in a multidimensional psy- 
chological space, and similarity between exemplars is a decreas- 
ing function of their distance in the space. Selective attention 
processes are assumed to systematically modify the structure of 
the space in which the exemplars are embedded. In what fol- 
lows, we review formal aspects of the GCM that underlie the 
exemplar-based random walk model. 

Assume the exemplars reside in an M-dimensional psycholog- 
ical space, and let Xim denote the value of exemplar i on psycho- 
logical dimension m. The distance between exemplars i and j 
is given by 

dij = ~/[X WmJXim - -  X j m J 2 ] ,  (1) 
m 

where Wm (0 -< Wm, •Wm = 1 ) represents the attention weight 
given to dimension m. The Xim psychological coordinate values 
for the exemplars are generally derived by conducting multidi- 
mensional scaling studies or else are assumed to be given by 
the physical coordinate values used for constructing the stimuli. 
The attention weights (Wm) are free parameters in the model 
(although various principles and learning mechanisms have 
been proposed for predicting the weights a priori, e.g., Nosofsky, 
1984, and Kruschke, 1992). Attending selectively to a dimension 
serves to stretch the space along that dimension and shrink the 
space along unattended dimensions. 

Following Shepard ( 1987 ), the distances (dij) are transformed 
to similarity measures (rlij) by using an exponential decay 
function, 

~Tij = e x p ( - c ' d i j ) ,  (2)  

where c is an overall sensitivity parameter for scaling distances 
in the space. There is extensive evidence that similarity is related 
to psychological distance according to this exponential law 
(Shepard, 1987). 

Because of factors such as recency of presentation, exemplars 
may reside in memory with differing strengths. Let Mj denote 
the memory strength for exemplar j. The degree to which exem- 
plar j is activated when presented with item i is determined 
jointly by the exemplar's strength in memory and by its similar- 
ity to item i (Nosofsky, 1988, 1991a). Specifically, the activation 
for exemplar j given presentation of item i (aij) is given by 

aij = Mj~ij. (3) 

Finally, the evidence for Category J given presentation of item 
i is found by summing the activations for all stored exemplars 
of Category J. The conditional probability with which item i is 
classified into Category J is found by dividing this evidence by 
the summed evidence for all the categories: 

P ( J l i )  = ~ aij/[~. ~ aik]. (4) 
jCJ K k~K 

There are numerous demonstrations of the GCM's ability to 
account accurately for the probability with which individual 
objects are classified into alternative categories (for reviews, 

see Nosofsky, 1992a, 1992b). However, the model provides 
no account of how the exemplar-based similarity comparison 
process unfolds over time. One of the central goals of this 
research is to develop such an account. 

Logan's Instance-Based Model of Automaticity 

The basic idea in Logan's (1988) instance model is that 
people start with general strategies or algorithms for performing 
skilled actions. Each time a Skilled action is successfully per- 
formed, however, it lays down an instance in memory. These 
instances can later be retrieved and used to perform the task. 
Skilled performance is conceptualized as a race between execut- 
ing the algorithm and retrieving any one of the numerous in- 
stances stored in memory. As the observer becomes highly expe- 
rienced, the stored instances begin to dominate and win the 
race, and performance becomes automatized. 

Logan's model provides an elegantly simple account of the 
development of automaticity in skilled performance. Indeed, it 
accounts quantitatively for the power law decreases in the mean 
and standard deviation of response times that are often observed 
with training (Logan, 1988, 1992; Newell & Rosenbloom, 1981 ) 
and deals quantitatively with entire distributions of reaction time 
data (Logan, 1992). The theory has also shown considerable 
power in accounting for the development of automaticity in 
memory search (Strayer & Kramer, 1994), lexical decision (Lo- 
gan, 1990), alphabet arithmetic (Logan & Klapp, 1991), and 
repetition priming (Logan, 1990). 

Despite these achievements, the current version of the in- 
stance model is limited in two important respects. First, it takes 
no account of graded similarity structure among exemplars. 
Second, as will be made clear, mechanisms of response competi- 
tion need to be added to the model. 

The Exemplar -Based  Random Walk Model  

Our elaborated model combines some of the major properties 
underlying Nosofsky's (1986) GCM and Logan's (1988) in- 
stance model. According to the EBRW, people represent catego- 
ries by storing individual exemplars in memory. As in Logan's 
model, presenting a test item causes stored category exemplars 
to race against one another to be retrieved. However, whereas 
in Logan's model only exemplars that are identical to the pre- 
sented item enter the race, in our elaborated model all exemplars 
race against one another with rates that are proportional to the 
degree to which they are activated by the test item. As we 
described previously, these activations are determined jointly by 
the exemplars' strength in memory and by their similarity to 
the test item. Furthermore, whereas in Logan's model the first 
retrieved exemplar initiates the action, in the elaborated model 
we assume that the retrieved exemplars provide incremental 
information that feeds into a random walk process. Only when 
sufficient information is obtained to complete the random walk 
is a categorization response initiated. As we discuss in the sec- 
tion Relations Among Models, extending Logan's single-in- 
stance race model by means of the random walk mechanism 
is critical to achieving plausible predictions of classification 
response time. 
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The exemplar-based random walk (EBRW) is illustrated for 
a two-category case in Figure 1. (More general versions of  the 
model applicable to multiple-category situations are described 
in a later section.) In the model, there is a random walk counter 
that accrues information pointing to either Category A or B. 
The counter has a starting value of zero; positive increments 
move it in the direction of  Category A, and negative increments 
move it in the direction of  Category B. The observer establishes 
criteria representing the amount of  evidence that is needed to 
execute either a Category A response ( + A )  or a Category B 
response ( - B  ). Once the counter reaches either of  these criteria, 
the appropriate categorization response is made. 

When Item i is presented, it sets off  a race among all the 
exemplars stored in memory. These race times are random vari- 
ables with rates that are proportional to the degree to which 
each exemplar is activated by Item i. For simplicity in getting 
started, and for reasons of analytic tractability, we assume that 
the race times are exponentially distributed. Thus, the proba- 
bility density that Exemplar j completes its race at time t is 
given by 

f ( t ) = aijexp( -aijt ), (5) 

where the aij activation values are computed as in the GCM 
(Equations 1 - 3 ). Bundesen (1990) and Logan (1997) incorpo- 
rated similar assumptions concerning object race times in their 
theories of  visual attention. Likewise, Marley (1992; Marley & 
Colonius, 1992) assumed such an exponential race process as 
a means of characterizing a wide variety of  models of  identifica- 
tion, classification, and preference. 

The exemplar (x) that wins the race is retrieved and enters 
into the random walk. If x belongs to Category A, then the 
random walk counter is increased by unit value, whereas if  x 
belongs to Category B, then the counter is decreased by unit 
value. If the counter reaches either the Category A criterion 
( + A )  or the Category B criterion ( - B ) ,  then the appropriate 
response is executed. Otherwise, a new race is initiated, another 
exemplar is retrieved, and the process continues. 
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Figure 1. Schematic illustration of the random walk process in the 
exemplar-based random walk model. AT = time taken for each step; a 
= step-time constant; tx = time to retrieve exemplar x; +A = Category 
A criterion; - B  = Category B criterion; RT = response time. 

The time to take each individual step in the random walk 
(T, tep) is given by 

T~tep = a + tw, (6) 

where c~ is a constant term associated with each step, and tw is 
the time that it takes to retrieve the "winn ing"  exemplar. Note 
that when an exemplar is retrieved, the observer needs to extract 
the category label to which it is associated and then accumulate 
this information on the random walk counter. A psychological 
interpretation for the a parameter is that it represents the time 
needed for this category-label extraction and accumulation 
process. 

Formal  Properties o f  the Model  

Before proceeding to a discussion of the conceptual and ana- 
lytic predictions associated with the EBRW, it is useful to briefly 
review some well-known mathematical properties of  exponen- 
tial distributions (e.g., see Townsend & Ashby, 1983, pp. 3 6 -  
43).  Suppose there are n independent exponential distributions 
racing in parallel with rates ha, k2 . . . . .  )k n. Consider the process 
defined as the minimum finishing time among all of  these expo- 
nentials. This process itself follows an exponential distribution 
with rate kj + kz + . . .  + kn. The expected finishing time of 
an exponential process with rate kj is given by E ( T )  = 1/ 
kj. Thus, the expected minimum finishing time among the n 
independent exponential processes, E(Tn),  is given by 

E(T , )  = 1 / ~  hk. (7) 

A final property of  the exponential distribution that is relevant 
for our purposes is that the probability that process j is the first 
to finish among the n processes (i.e., that it "wins  the r ace" )  
is given by 

P ( j )  = kjl~,  kk. (8) 

Consider now the situation described for the EBRW. There 
are two categories, A and B. Given presentation of  item i, each 
exemplar j races to be retrieved according to an exponential 
distribution with activation rate aij. Let Si, denote the summed 
activation of all exemplars in Category A when item i is pre- 
sented, that is, 

SiA = ~ a i j ,  (9) 
j~A 

and likewise for Sis. Then when item i is presented, the minimum 
finishing time for all the exemplars that race to be retrieved is 
distributed exponentially with rate h = SiA + S,B. Thus, when 
item i is presented, the expected minimum finishing time 
(i.e., the expected retrieval time for the winning exemplar) is 
given by 

E(twli)  = l/(SiA q- SiB). (10) 

Therefore, from Equation 6, when item i is presented, the 
expected time for taking each step in the random walk is 
given by 
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E(T~topli) = a + 1/(SiA + SiB). (11) 

It is also straightforward to derive the probability that, on 
each step of the random walk, the counter moves in the direction 
of Category A or Category B. We know from Equation 8 that, 
when item i is presented, the probability that exemplar j is 
retrieved is given by 

P ( j l i )  = aij/(~, ~ aik). (12) 
K keK 

The probability of taking a step toward Category A is found by 
summing the probabilities that any one of the exemplars j from 
Category A is retrieved, yielding 

Pi = ~ a i j / ( ' ~  ~ aik).  ( 1 3 a )  
jeA K keK 

In the present two-category situation (and using our earlier nota- 
tion), this probability of taking a step toward Category A can 
be expressed more simply as 

Pi = S iA / (S iA  ÷ SiB)- (13b) 

Likewise, the probability that the random walk takes a step in 
the direction of Category B is given by 

qi = 1 -- Pi 

= SiB/(SiA + SiB). (13c) 

C o n c e p t u a l  P r e d i c t i o n s  

Some main conceptual predictions of the EBRW can now be 
discussed. These predictions follow naturally from the underly- 
ing assumption in the EBRW that the duration of the random 
walk is determined jointly by the total number of steps required 
to initiate a response and by the speed with which each of the 
individual steps is made. 

The first prediction is that rapid classification decisions 
should be made for items that are highly similar to exemplars 
from one category and that are dissimilar to exemplars from 
the alternative category. Under such conditions, each retrieved 
exemplar will tend to come from the same category, and the 
random walk will march in consistent fashion to this category's 
criterion (Figure 1 ). For example, an item that is similar only 
to exemplars of Category A will yield a large value of Pi in 
Equation 13b, so each step in the random walk will tend to 
move toward criterion A. By contrast, items that are similar to 
exemplars from both categories should yield slow response 
times. The reason is that the random walk counter will tend to 
wander back and forth, sometimes retrieving exemplars from 
one category and other times retrieving exemplars from the 
contrast category. 

A second prediction is that increased experience with cate- 
gory exemplars should facilitate performance. As category train- 
ing increases, more exemplars come to be stored in memory. 
The greater the number of exemplars that race to enter the 
random walk, the faster the winning retrieval times will be. 
Formally, as a greater number of exemplars come to be stored 
in memory, the exponential processing rate Sig + S~B grows 

larger, so the expected winning retrieval time decreases (Equa- 
tion 10). Intuitively, the larger the number of exemplars that 
participate in the race, the greater is the probability that at least 
one of the retrieval times will be particularly fast (cf. Logan, 
1988). These faster retrieval times result in faster individual 
steps in the random walk process (Equation 11 ). 

A third prediction is that, all other things being equal, individ- 
ual item familiarity should also facilitate speeded classification. 
We say that an item is familiar if it has been presented with 
high frequency or if it is highly similar to numerous other old 
exemplars. Note that, according to the proposed model, a highly 
familiar item will result in fast retrieval times for individual 
exemplars because numerous exemplars will race with high 
activation rates. Thus, familiarity should speed the random walk. 
This prediction about the role of individual item familiarity 
basically combines our predictions about the roles of similarity 
and experience in a more specific manner. We test each of these 
fundamental predictions, as well as some more subtle and fine- 
grained ones, in quantitative fashion in our subsequent 
experiments. 

A n a l y t i c  P r e d i c t i o n s  

The processing assumptions in the EBRW yield a simple 
random walk from which it is straightforward to derive analytic 
predictions. Given test item i, then on each step of the random 
walk there is fixed probability Pi of moving unit value in the 
direction of criterion +A, and probability qi = 1 - pi of moving 
unit value in the direction of criterion - B .  The random walk 
finishes as soon as either criterion +A or - B  is reached. The 
properties of this type of random walk are extremely well- 
known (e.g., Feller, 1968, chap. XIV). Because it is extremely 
difficult to motivate intuitively the derivations of the prediction 
equations, we simply list the relevant results (see Feller, 1968, 
chap. XIV). 

The expected number of steps in the random walk [E(N] i)] 
is given by 

E(NIi)  B A + B  [ 1.--_ (qi/pi)____.~ a ] 
qi -- Pi qi -- Pi 1 -- (qi/Pi) A+B ' 

and 

ifpi * qi, (14a) 

E(Nli )  = AB, ifpj = q~. (14b) 

Therefore, because each individual step in the EBRW has ex- 
pected duration a + 1/(SiA + Sia), and this duration is indepen- 
dent of which actual step is taken, the expected time of the 
entire random walk is given by ~ 

Equation 15 helps bring out the mathematical importance of the a 
parameter to the model's predictions. According to the equation, the 
expected decision time is a weighted sum of the expected number of 
steps in the random walk, where the weights are a and 1/(S~A + S~B). 
If o~ were zero, then even if the number of steps in the random walk 
were large, the expected decision time could be quite small if the factor 
1/(SiA + SiB), were small. Note that an item that is highly similar to 
the exemplars of both categories would produce a small value of 1/(S~A 
+ Sin), so the ot = 0 model would tend to predict a fast response time. 
Such a prediction would be incorrect, however, because an item that is 



270 NOSOFSKY AND PALMERI 

E ( T I i )  = E(Nli) 'E(T~topl i )  

= E ( N [ i ) . [ o t  + 1/(SiA + Sia)]. (15) 

The probability of  a Category A response given presentation 
of  item i is given by 

P ( A l i )  - 1 - (qi/Pi)  B i fp i  :~ qi, (16a) 
1 - ( q i / p i )  A + a  ' 

and 

B 
P ( A I i )  A + B ' ifp~ = q~. (16b) 

The probability of  a Category B response is given by 

P ( B l i )  = (qdPi)B - (qi/Pi)A+B 
1 - ( q i ] P i )  A + a  , i fp i  * qi, (17a) 

and 

A 
P ( B l i )  A + B '  i fp i  = q~. (17b) 

Busemeyer (1982) has derived equations for the expected 
number of  steps in the random walk conditionalized on each 
category response. The expected number of  steps given a Cate- 
gory A response is given by 

1 
E ( N I A ,  i)  - - -  [01(A + B) - 02(n) ] ,  

Pi -- qi 

i fp i  :# qi, (18a) 

and 

where 

A 
E ( N [ A ,  i) = -~ (2B + A) ,  ifp~ = qi, 18b) 

Ol -- (Pi[qi)A+B + 1 and 02 = (Pi/qi)a + 1 (19) 
(pi /qi )  A + B -  1'  (pi /qi)  B -  1 

For a Category B response, the relevant equations are 

[OI(A + B )  - O2(A)] ,  

i fp i  :t: qi, (20a) 

1 
E ( N I B ,  i) = 

qi -- Pi 

B 
E ( N I B ,  i) = -~ (2A + B) ,  ifp~ = qi, (20b) 

and 

where 

Ol = (Pi/qi)-(A+a) + 1 and 02 (Pi /q i ) -A + 1 (21) 
(Pi/qi)  - ( A * B ) -  1 (Pi/qi)  - A -  1" 

similar to the exemplars of both categories would be quite difficult to 
classify. The a parameter gives an absolute weight to the number of 
steps in the random walk. Items that are difficult to classify result in a 
large number of steps, so the model correctly predicts their slow RTs. 

For analogous expressions involving more general random walk 
processes, see Link and Heath (1975) and Luce (1986).  Again, 
as was the case in Equation 15, the expected time of the entire 
random walk conditionalized on Response A or Response B is 
found by multiplying the expressions in Equations 18 and 20 
by the factor [a  + 1/(SiA + Sia)]  from Equation 11. 

The values o fp i ,  q~, SiA, and Sia that enter into the prediction 
equations are determined by the processing assumptions in the 
EBRW. These values will vary for each individual test item i 
depending on its similarity to the exemplars of  the alternative 
categories. The values will also change during the course of 
learning as more exemplars are stored in memory. However, for 
any given item i at a particular stage of  learning, the relevant 
values of  Pi, qi, SiA, and SiB can be directly computed (from 
Equations 1-3 ,  9, and 13) and then substituted into Equations 
14-21 to derive the quantitative predictions of  the EBRW. 

Rela t ions  A m o n g  M o d e l s  

An important property of the EBRW is that it can be viewed as 
generalizing both Nosofsky's  (1986) GCM and Logan 's  (1988) 
instance model. In particular, suppose that the category criteria 
are set at A -- 1 and - B  = - 1 .  Then if the first exemplar that 
is retrieved belongs to Category A, a Category A response is 
made (and likewise for Category B) .  Thus, the probability of  
a Category A response is given by P ( A l i )  = p~ = S~A/(SiA + 
SiB), which is the GCM response rule (Equation 4).  2 

Likewise, suppose that the criteria are set at A = 1 and - B  
= - l ,  and that there is zero similarity between nonidentical 
objects (c = oo in Equation 2).  Then only exemplars that are 
identical to the presented item participate in the race, and the 
first one retrieved initiates the response. This process is essen- 
tially the one that is formalized in Logan 's  instance model. An 
important difference is that whereas we have assumed exponen- 
tially distributed races in the EBRW, Logan (1988, 1992) has 
advanced theoretical arguments for the importance of using a 
more general Weibull distribution. However, his arguments are 
based on the assumption that only the first instance retrieved 
initiates the response, whereas in our model multiple races take 
place until the random walk reaches a response criterion. It may 
well be that the predictions of  the EBRW can be improved by 
replacing the exponential-race assumption with the Weibull, but 
we leave this question as an issue for future research. 

The random walk decision mechanism in the EBRW is a 

2 It should be made clear, however, that if the magnitude of the criteria 
A and B is set at l, the EBRW does not yield reasonable predictions of 
classification response time (see main text). Furthermore, with criterion 
settings of magnitude greater than 1, the EBRW makes predictions of 
classification accuracy that exceed those predicted by the GCM (assum- 
ing all other parameters are held constant). Thus, for the EBRW to 
roughly match the accuracy predictions yielded by the GCM, modifica- 
tions in the values of some of the other free parameters would need to 
be made. It is interesting to note that Maddox and Ashby (1993) found 
that, when fitting the data of highly experienced individual participants, 
the GCM does underpredict the observed accuracies, so the EBRW may 
represent an improvement in this regard. We consider these issues in 
more depth in the General Discussion. 
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critical aspect of the model. If Logan's instance model were 
extended solely by allowing similarity-based retrieval mecha- 
nisms, but where the first instance retrieved still drives the re- 
sponse, there would be important situations in which it would be 
unable to yield reasonable predictions of classification response 
times. For example, suppose that one added an instance to Cate- 
gory B that was highly similar to an instance from Category 
A. This manipulation, which increases classification difficulty, 
would undoubtedly lead to slower response times. A pure single- 
instance race model predicts the opposite, however. Adding an- 
other highly similar instance to the race, even from a contrast 
category, could only speed the winning retrieval time, albeit at 
the cost of more errors in performance. In general, a pure single- 
instance race model with similarity-based retrieval predicts 
faster response times for difficult-to-discriminate objects. The 
random walk decision process in the EBRW leads the system 
to obtain additional evidence when discriminations are difficult, 
thereby trading speed for accuracy. 

Domain  of  Appl ica t ion  

The EBRW is intended to model the time course of the classi- 
fication decision-making stage. A complete account of classifi- 
cation response time also requires modeling of encoding and 
response execution stages. For simplicity, we assume that the 
time courses for these other residual stages are identical for all 
stimuli and are independent of the decision-making stage mod- 
eled by the EBRW. 

An important question concerns the generality with which ex- 
emplar-based memory and retrieval processes operate in classifi- 
cation decision making. Although successful applications of the 
GCM have been demonstrated in numerous stimulus domains, 
alternative classification strategies may also operate (e.g., Nosof- 
sky, Palmeri, & McKinley, 1994). We hypothesize that exemplar- 
based classification processes are most likely to operate in do- 
mains involving integral dimension as opposed to separable di- 
mension stirr0ali (Garner, 1974; Lockhead, 1972; Shepard, 1964; 
Shepard & Chang, 1963; Treisman & Gelade, 1980). As dis- 
cussed by numerous investigators, integral dimension stimuli are 
ones that tend to be encoded, perceived, and represented as single, 
unitary wholes. This processing constraint seems conducive to 
exemplar storage and retrieval strategies. By contrast, highly sep- 
arable dimension stimuli appear to be processed in terms of their 
separate dimensions, perhaps rendering the storage of complete 
exemplars less efficient. Another difficulty involving highly sepa- 
rable dimension stirrmli is that their encoding may require serial 
processing (or limited-capacity parallel processing), thereby fur- 
ther complicating response time predictions. Although the gener- 
ality with which the EBRW may apply is an empirical question, 
our initial tests of the model will focus mainly on domains involv- 
ing integral dimension stimuli. 

Model  Parameters  

The free parameters in the EBRW include the sensitivity pa- 
rameter (c) for transforming distances to similarities (Equation 
2); the set of attention weights (Win) in the distance function 
(Equation 1 ); the category criteria ( +A and - B  ) in the random 

walk; and the time constant (ct) in the exemplar retrieval func- 
tion (Equation 6). Because the predictions of the EBRW are in 
arbitrary units, simple linear regression is used to rescale the 
predicted values onto the observed response times. These regres- 
sions use a slope parameter, k, which is the scaling factor; and 
a y-intercept, /~R, which Can be interpreted as the mean of the 
residual processing stages. More general versions of the EBRW 
with additional free parameters are also considered in subse- 
quent sections of the article. 

Pre l iminary  Considerat ions:  Predict ing React ion Times 
for Members  of  Normal ly  Dis t r ibuted Categor ies  

To illustrate some preliminary successes for the EBRW, we 
first demonstrate its ability to account for some important classi- 
fication reaction time data reported by Ashby, Boynton, and 
Lee (1994). These researchers used an experimental paradigm 
known as the general recognition randomization technique 
(GRRT). In typical applications of the GRRT, the stimuli vary 
along two continuous dimensions, and the experimenter estab- 
lishes two categories defined by bivariate normal distributions. 
Examples of three different experimental conditions tested by 
Ashby et al. (1994) are shown in Figure 2. In the figure, each 
solid-line circle or ellipse represents a contour of equal likeli- 
hood for a given bivariate normal distribution. All points falling 
along the contour are equally likely to be produced by the normal 
distribution. The shape of the contour provides an illustration 
of the structure of the distribution. The center of each ellipse 
gives the mean of the normal distribution on each of its dimen- 
sions. The expanse of the ellipse along each dimension repre- 
sents the variability of the distribution along that dimension. 
The correlation between the dimensions is represented by the 
angle of orientation of the ellipse. For example, in the leftmost 
panel of Figure 2, category distributions A and B have equal 
variance along both dimensions and the dimensions are posi- 
tively correlated. 

Note that any point in the two-dimensional space can be 
produced by either Distribution A or B. However, certain loca- 
tions are more probable for one distribution than another, so the 
degree of overlap between the distributions can be manipulated. 
In the examples in Figure 2, the distribution means are identical 
across conditions, and all that varies are the dimension variances 
and correlations. Ashby et al. (1994) manipulated these parame- 
ters to produce a low-overlap, medium-overlap, and high-over- 
lap condition, as illustrated in Figure 2. 

In the GRRT paradigm, each bivariate distribution defines a 
category. Thus, on each trial of the experiment, (a) a category 
distribution is selected; (b) an exemplar from this distribution is 
randomly chosen and presented to the observer; (c) the observer 
judges the exemplar's category assignment; and (d) corrective 
feedback is then provided. By the time learning is completed, 
an observer may have experienced hundreds or even thousands 
of unique training exemplars from each category. Because the 
distributions are overlapping, it is impossible to perfectly clas- 
sify all exemplars. However, it is possible to define an optimal 
decision boundary that maximizes classification accuracy. For 
the bivariate normal distributions in Figure 2, the optimal deci- 
sion rule in each condition is the same linear boundary ilhis- 
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Figure 2. Contours of equal likelihood from the three overlap conditions tested by Ashby, Boynton, and 
Lee ( 1994, Experiment 1 ). fA = probability density for Category A; fB = probability density for Category 
B. Reprinted from "Categorization Response Time with Multidimensional Stimuli," by E G. Ashby, G. 
Boynton, and W. W. Lee, 1994, Perception andPsychophysics, 55, p. 15. Copyright 1994 by the Psychonomic 
Society. Reprinted with permission. 

trated in each panel of the figure. Anytime an object falls to the 
upper left of the boundary it should be classified in Category 
A, and anytime it falls to the lower right it should be classified 
in Category B. In the numerous experiments reported by Ashby 
and his colleagues, participants' classification choices are often 
well described by these optimal decision boundaries or by 
boundaries with a form very close to optimal (Ashby & Gott, 
1988; Ashby et al., 1994; Ashby & Maddox, 1992). 

In the Ashby et al. (1994) studies, in addition to recording 
the classification choice for each stimulus, the experimenters 
measured the response times. One key finding was that in all 
conditions, there was a statistically significant (negative) rank- 
order correlation between the response time for each object 
and the distance of the object from the classification decision 
boundary. In other words, in general, the greater the distance 
of an object from the decision boundary, the faster was the 
classification response. A second finding was that there was 
essentially zero correlation between the response times and a 
measure of familiarity for each stimulus. Familiarity (Fi) was 
computed by summing the similarity of any given item i to all 
exemplars in the space, where similarity is computed as in 
Equations 1 and 2. Thus, objects in dense regions of the space, 
which are highly similar to numerous other exemplars, have 
high familiarity, whereas those in isolated regions have low 
familiarity. 

The results obtained by Ashby et al. (1994) were consistent 
with a descriptive model of classification response time (RT) 
proposed by Ashby and Maddox ( 1991; see also Ashby & Mad- 
dox, 1994, and Maddox & Ashby, 1996). According to the RT-  
distance hypothesis, " . . .  RT decreases with the distance in 
psychological space from the stimulus representation to the deci- 
sion bound that separates the exemplars of the contrasting cate- 
gories" (Ashby et al., 1994, p. 11). Although not a process- 
based model, the RT-distance hypothesis is the main current 
proposal in the field for predicting multidimensional categoriza- 
tion response times. In our article, we compare and contrast the 
predictions of the RT-distance hypothesis with those of the 
EBRW. 

Our initial question concerns whether or not Ashby et al.'s 

(1994) results are consistent with the EBRW. To test the model, 
we generated random samples of 300 exemplars from the cate- 
gory distributions illustrated in Figure 2 (see Ashby et al., 1994, 
for the parameters that define these distributions). We based 
our analyses on 300 exemplars because this was the number of 
training exemplars used by Ashby et al. in their experiments. 
Assuming that this entire sample of exemplars was stored in 
memory, we then conducted simulations of the EBRW to gener- 
ate response time predictions. We used simulations rather than 
computing the expected values from the analytic model because 
we needed to mimic the variability inherent in Ashby et al.'s 
data. In Ashby et al.'s (1994) experiment, only a single response 
time was obtained for each individual object, so this variability 
was presumably quite large. Thus, in our analyses, a single 
response time was simulated for each individual object, and 
these simulated data were then compared with the objective 
measures of interest. 

Although the precise predictions of the EBRW depend on the 
values of the free parameters, we discovered that over a wide 
range of parameter settings the qualitative predictions of the 
model were essentially the same (details are provided in Appen- 
dix A). First, the rank-order correlation between the predicted 
response times and the distance-from-boundary measure ranged 
from - .25 to - .55, which is essentially the same range reported 
by Ashby et al. (1994). Second, as found by Ashby et al. 
(1994), the rank-order correlation between the predicted re- 
sponse times and the familiarity measure was negligible. Thus, 
the exemplar-based random walk yields response time predic- 
tions that share some key properties with the observed data. 3 

Why does the model predict that response times will generally 

Although a detailed explanation goes beyond the scope of this arti- 
cle, we note that the EBRW also predicts some more fine-grained results 
observed in the Ashby et al. (1994) study. First, it predicts their finding 
that median response times for correct classification choices were faster 
than for incorrect ones. Second, it predicts their finding that the differ- 
ence in response speed for correct versus incorrect choices decreased 
as one moved from the low-overlap to the high-overlap condition. Third, 
the EBRW is fully consistent with their finding of null effects of familiar- 
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be shorter as the distance from the category decision boundary 
increases? In the GRRT paradigm, an exemplar that is far from 
the boundary tends to be highly similar only to exemplars from 
its own category. Thus, on each step of  the random walk, exem- 
plars from the correct category are retrieved, and the counter 
marches in consistent fashion to the appropriate category crite- 
rion. By contrast, an exemplar that lies close to the boundary 
tends to be similar both to exemplars from its own category and 
to exemplars from the opposite category. The random walk tends 
to wander back and forth, first in the direction of  one category 
criterion and then in the direction of the other. Thus, more evi- 
dence needs to be accrued before a decision can be made. 

As discussed previously, the EBRW does predict that there 
should be a relation between familiarity (Fi) and response times 
because highly unfamiliar exemplars should lead to slow indi- 
vidual steps in the random walk (Equation 6).  However, in the 
GRRT paradigms tested by Ashby et al. (1994),  the distance- 
from-boundary measure and the familiarity measure are them- 
selves negatively correlated. That is, objects lying far from the 
decision boundary tend to have lower overall familiarity. Be- 
cause our simulations of  the EBRW correctly indicated roughly 
zero correlation between Fi and the response times, it is appar- 
ently the case that the familiarity differences yielded in the 
Ashby et al. (1994) conditions are not sufficient to undermine 
the critical contribution of  distance-from-boundary. Further- 
more, although Ashby et ai. (1994) conducted several analyses 
that revealed no effect of  the familiarity factor while attempting 
to hold constant distance-from-boundary, our simulations with 
the EBRW indicate that the model correctly predicts the results 
of  these analyses as well (see Footnote 3).  

We hypothesize that more extreme manipulations are needed 
to reveal an effect of  the familiarity factor. Indeed, in one experi- 
ment conducted by Nosofsky (1991b),  participants received 
initial classification training that was followed by a transfer 
phase requiring speeded classification responses. Among the 
transfer stimuli were novel objects that were several standard 
deviations further away from the category boundary than any 
other objects previously presented. Response times to these iso- 
lated objects were significantly slower than to familiar objects 
a moderate distance from the category boundary. In a new exper- 
iment reported in this article, we demonstrate significant effects 
of  familiarity for objects a fixed distance from the category 
boundary. In sum, the EBRW predicts the general relation that 
response times are shorter as distance from the boundary in- 
creases but also predicts breakdowns of  this relation in situa- 
tions involving more extreme manipulations. 

E x p e r i m e n t  1: P red ic t ing  Ind iv idua l  O b j e c t  R e s p o n s e  

T i m e s  and S p e e d u p s  in Class i f i ca t ion  P e r f o r m a n c e  

Our analyses of  the response time results in the experiments 
conducted by Ashby et al. (1994) provide preliminary evidence 

ity in analyses in which only the response times of the 50 exemplars 
closest to the decision boundary were considered (see Ashby et al., 
1994, Figure 4). Finally, it predicts their finding that, among the 50 
exemplars whose distance-from-boundary was closest to that of the 
prototype, the rank ordering of the RT associated with the prototype 
was approximately 25 (see Ashby et al., 1994, p. 20). 

in favor of  the predictions made by the EBRW. However, because 
response time data are highly variable, and only a single re- 
sponse time was obtained per individual object in this paradigm, 
the tests of  the model thus far are limited to rough rank-order 
correlations with the data. The main goal of  Experiment 1 was to 
provide more exacting tests of  the EBRW by collecting extensive 
response time data for individual objects in a perceptual classi- 
fication task and then quantitatively fitting the model to the mean 
response times for these individual objects. A secondary goal 
was to study changes in overall categorization response speed 
as a function of  extended practice and to test whether the EBRW 
could account for this development of  skilled classification 
performance. 

The stimuli in our experiment were a set of  12 colors gener- 
ated on a computer screen. The colors were divided into two 
categories, each with six members. Three participants engaged 
in an extended task of  speeded perceptual classification. On 
each trial, one of  the colors was randomly selected, and the 
participant was instructed to classify it into either Category A 
or B as rapidly as possible without making errors. Feedback 
was provided on each trial. Participants quickly learned the 
category assignments and rarely made errors, so the key depen- 
dent variable was classification response speed. Each participant 
was tested over a period of  5 days, with a total of  360 stimulus 
presentations per day. In addition to the speeded classification 
task, extensive similarity scaling work was performed to derive 
individual-participant multidimensional scaling (MDS)  solu- 
tions for the colors. These MDS solutions were then used in 
conjunction with the EBRW to predict each participant's mean 
RT for classifying each color into its category. 

M e ~ o d  

Participants. The participants were 3 Indiana University graduate 
students. They were paid $5.00 per 1-hr session plus up to a $2.00 bonus 
per session depending on performance. All participants claimed to have 
normal color vision. None of the participants was familiar with the 
issues under investigation in this study. 

Stimuli. The stimuli were a set of 12 colors generated on computer 
screens. Extensive pilot work was used to construct a set of stimuli that 
approximately matched the Munsell color configuration illustrated in 
Figure 3. (This Munsell configuration was used by Nosofsky [1987, 
1988] in previous studies of category learning.) According to the 
Munsell system, in this configuration the stimuli are of a constant red 
hue (5R) and vary only in their brightness and saturation. As illustrated 
in Figure 3, the stimuli were divided by the experimenters into two 
categories. Stimuli enclosed by squares belong to Category A, and stimuli 
enclosed by circles belong to Category B. The goal was to generate 
category structures in which the stimuli varied along two dimensions, 
where both dimensions were relevant for classifying the objects, and 
where a relatively smooth curvilinear boundary could separate the ob- 
jects into categories. As will be seen, because our theoretical analyses 
of the data make use of individual-participant MDS solutions for the 
colors, the precise correspondence with the Munsell configuration illus- 
trated in Figure 3 is not critical. The main purpose of aiming for a 
roughly two-dimensional color space was to reduce the number of free 
parameters needed for fitting the EBRW to the response-time data. 

The stimuli were generated on CompuAdd 14-in. monitors (Model 
51109) by adjusting the red, green, and blue (RGB) color channels on 
a Dell 486 machine. The RGB values corresponding to each color are 
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Figure 3. Schematic illustration of the approximate Munsell color con- 
figuration used in Experiment 1. 

provided in Appendix B. Each color occupied a 6 cm × 6 cm square 
surrounded by a white background. Participants sat approximately 60 
cm from the computer monitor, so the visual angle subtended by each 
stimulus was approximately 6 ° . Participants entered responses by press- 
ing appropriate buttons on the computer keyboard. Response times were 
measured by using the internal ms-accuracy PC timer. 

Procedure. The stimulus presentation schedule was organized into 
blocks of 12 trials, with each color presented once per block. Order of 
presentation of the colors was randomized within each block. By using 
this blocked presentation method, we hoped to minimize complex se- 
quential effects resulting from stimulus repetitions or exceedingly long 
lags between identical stimulus presentations. Each participant com- 
pleted five sessions of testing, one session per day on contiguous days 
of the week. There were 30 blocks (360 trials) per session, for a total 
of 1,800 trials per participant. Thus, each participant classified each 
individual color 150 times. 

Stimulus displays were response terminated. Each stimulus display 
was followed by 2 s of feedback. Following a 500-ms ISI, the next color 
was displayed. Participants were instructed to rest their index fingers on 
the Category A and Category B response buttons throughout the testing 
session. Participants were instructed to make their responses as quickly 
and as accurately as possible. They were told that their bonus was 
determined jointly by the speed and accuracy of their responses. 

Following the speeded classification task, each participant completed 
three sessions of a similarity scaling study, one session per day. There 
were 6 blocks of similarity judgments per session. On each block, all 
66 unique pairs of colors were presented, one pair per trial, in a random 
order. Thus, there were 396 similarity judgment trials per session. Over 
the three sessions of testing, each participant provided 18 similarity 
judgments per color pair. The 6 cm × 6 cm color squares were presented 
simultaneously on the screen, separated by 3 cm. Left-right placement 
of each color square was randomized on each trial. Participants judged 
the similarity between the colors in each pair by using a 10-point scale 
( 1 = very dissimilar, 10 = very similar) and were urged to use the full 
range of ratings when making their judgments. 

Resul t s  and  Theoret ical  Analys i s  

Multidimensional scaling. MDS solutions for the colors 
were derived by fitting the INDSCAL model (Carrol l  & Wish, 
1974) separately to each individual par t ic ipant ' s  similarity rat- 
ings. The data input to the INDSCAL program were the averaged 
similarity rating matrices obtained for each participant on each 
of  the 3 days of  testing. Figure 4 displays the two-dimensional  
scaling solutions obtained for each participant. These scaling 
solutions accounted for an average of  95.9, 93.6, and 93.9% of  
the variance in the similarity ratings of  Participants 1, 2, and 3, 
respectively. We judged these fits to be reasonably good and 
decided to use the two-dimensional  solutions for purposes of 
fitting the EBRW to the speeded classification data. 4 

Speeded classification. The mean  response time with which 
each participant classified the colors is shown as a function of  
grouped blocks of  practice in Figure 5. Each grouped block 
corresponds to five blocks of training (60  trials).5 The speedups 
in performance are well described by power-law functions, as 
illustrated in the figure. Power-law speedups as a function of  
practice are well documented in various domains of  skilled 
performance (e.g., Anderson & Fincham, 1994; Logan, 1992; 
Newell & Rosenbloom, 1981 ). To our knowledge, however, this 
study may be the first to document  a similar form of facilitation 
in the domain of speeded mult idimensional  perceptual classifi- 
cation. Estes (1994, p. 103) also reported speedups in classifi- 
cation performance with increased trials of  training; however, 
the amount  of  training in his study was l imited to a single 
day and the data were averaged over participants. Because the 
differences in response speed in Figure 5 are relatively small 
across Days 2 - 5  (Blocks  3 1 - 1 5 0 ) ,  we decided to use these 
latter data when computing response times for individual stimuli 
in our subsequent modeling analyses. 

The mean  response times and accuracies for the individual 
stimuli across Days 2 - 5  are reported in Table 1. As can be 
seen, the accuracies were close to ceiling, so our analyses focus 
on the overall mean response times. ( In  Appendix C we present 
model-based analyses in which the EBRW is fitted simultane- 
ously to the response t ime and accuracy data, with reasonable 

4 Improved fits to the similarity ratings data can be achieved by using 
various methods. First, one can increase the dimensionality of the scaling 
solutions. Adding a third dimension, for example, increases the percent- 
age of variance accounted for to 97.1, 95.6, and 95.2 for Participants 1, 
2, and 3, respectively. Also, instead of using a deterministic scaling 
solution, in which each color is represented as a single point in the 
space, one can use probabilistic scaling solutions, in which each color 
is represented as a probabilistic distribution of points in the space (e.g., 
Ashby, 1992; Zinnes & MacKay, 1983). Although both methods improve 
the fit of the scaling model to the similarity data, they do so at a cost 
of adding extra free parameters. These parameters may be unreliable 
and can potentially lead one astray when predicting some independent 
set of data, such as our speeded classifications. Furthermore, adding 
extra dimensions or using probabilistic representations increases the 
complexity of fitting the EBRW to the independent set of speeded classi- 
fication data. 

The only exception is the first group, in which we have deleted 
Block 1. In this block, each color exemplar and its corresponding cate- 
gory feedback were presented for the first time. 
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Figure 4. Individual-participant multidimensional scaling (MDS) solutions for the color stimuli used in 
Experiment 1. The center of each circle represents the MDS coordinate for the color. Tl~e diameter of each 
circle is linearly related to the mean classification response time observed for the color in the speeded 
classification task. The dashed curve is the boundary of equal summed similarity to the exemplars of each 
category, as computed in the GCM. 

success.) The response times are illustrated graphically in the 
MDS solutions shown in Figure 4. In the figure, the diameter 
of  the circle enclosing each stimulus is linearly related to the 
mean response time. The dashed curve in each figure illustrates 

the exemplar-based category boundary predicted by the GCM. 
(This boundary does not enter into the modeling analyses; it is 
illustrated simply for descriptive convenience.) Each point on 
the boundary has equal summed similarity to the exemplars of  
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Figure 5. Mean response time (ms) to the colors for each grouped block of 60 trials in Experiment 1. 
Also shown is the best-fitting power function and the correlation with the observed data. RT = response 
time. 

Category A and Category B. Points falling to the upper right of  
the boundary have greater summed similarity to Category A, 
whereas points falling to the lower left have greater summed 
similarity to Category B. It is evident from inspection that the 
response times for the individual stimuli are highly regular: In 

general, the greater the distance of  a stimulus from the exemplar- 
based boundary, the faster is the response time. 

Fits o f  the EBRW. Using the previously derived MDS solu- 
tions, we fitted the EBRW simultaneously to the mean response 
times observed for each individual color and to the aggregated 



EXEMPLAR-BASED RANDOM WALK MODEL 277  

mean response times observed as a function of  grouped blocks 
of  practice. In fitting the model,  we assumed that on each block 
an additional token of  each individual exemplar  was stored in 
memory. The first step in the analysis was to use the model to 
predict  the mean  response t ime for each color in each individual 
block. Then, for each exemplar, these individual block predic- 
tions were averaged over Blocks 3 1 - 1 5 0  (Days  2 - 5 )  to obtain 
the overall predicted mean  response times (i.e., to predict the 
data in Figure 4 ) .  Likewise, we averaged the predicted mean 
response times over all exemplars  in each grouped block of  
practice to predict  the speedup curves in Figure 5. A single set 
of  parameters was used to simultaneously predict  both  sets of  

Table 1 
Classification Accuracy, Response Time (ms), and Standard 
Errors for  Each Stimulus Averaged Over 
Sessions 2 - 5  in Experiment 1 

Stimulus p(C) M MSE 

Participant 1 

1 1.000 815 18.1 
2 .983 795 17.4 
3 .917 1,159 31.7 
4 1.000 725 12.4 
5 1.000 967 25.6 
6 .975 1,068 31.2 
7 1.000 706 13.4 
8 .975 931 24.8 
9 .950 1,346 41.4 

10 1.000 744 16.2 
11 .992 911 27.7 
12 .967 1,208 43.5 

Participant 2 

1 .917 982 50.4 
2 1.000 601 11.4 
3 .992 1,007 35.8 
4 1.000 546 5.9 
5 1.000 665 13.0 
6 1.000 649 12.2 
7 1.000 529 4.5 
8 .992 619 14.9 
9 .983 734 23.9 

10 1.000 530 8.0 
11 1.000 577 16.4 
12 .950 857 36.6 

Participant 3 

1 .975 780 14.0 
2 1.000 709 8.9 
3 .956 962 21.8 
4 1.000 660 12.0 
5 1.000 841 18.9 
6 1.000 748 13.6 
7 1.000 640 7.7 
8 .984 834 20.8 
9 .984 834 20.4 

10 1.000 697 12.2 
11 1.000 779 12.7 
12 .934 1,007 25.5 

Note. p(C) = probability correct; M = mean response time (all re- 
sponses); MSE = mean standard error. 

Table 2 
Best-Fitting Parameters of the Exemplar-Based 
Random Walk Model, Experiment 1 

Participant 

Parameter 1 2 3 

c 2.998 2.295 2.742 
w t 0.450 0.555 0.716 
a 0.105 0.136 0.045 
A 3 4 6 
k 9,411.75 3,271.92 3,518.22 
/ZR 100.06 153.28 442.28 

Note. c = sensitivity parameter; w I = attention weight on Dimension 
1; t~ = step-time constant; A = random walk criterion; k = scaling 
constant; #a = mean residual response time. 

data. The free parameters were the sensitivity parameter  c, the 
attention weight  w~ (with  wz = 1 - w~ ), the step-time constant  
a ,  a single category criterion A (with  B = A) ,  and the regression 
parameters k and #R- The model was fitted by minimizing the 
total sum of  squared deviations between predicted and observed 
mean  response times across both  data sets (42  data points) .  
The best-fitting parameters and summary fits for each of  the 
three participants are reported in Table 2. 

The model-fitting results for the individual color RTs are 
shown in Figure 6. The figure plots, separately for each partici- 
pant, the observed mean  response times for each of  the individ- 
ual colors against  the predicted mean response times. The ob- 
tained correlations were .886, .990, and .949 for Participants 1, 
2, and 3, respectively. We consider these reasonably good fits 
to provide support  for the EBR'W. 6 The model predicts these 
results because objects far f rom the exemplar-based boundary 
tend to be similar only to exemplars f rom their own category 
and not to exemplars  f rom the contrast  category; thus, the ran- 
dom walk marches in consistent  fashion to the appropriate re- 
sponse criterion. Objects  close to the boundary are similar both  
to exemplars  f rom their own category and to exemplars f rom 
the contrast  category; thus, exemplars  f rom both  categories tend 
to be retrieved, and the random walk wanders back and forth. 

The fits of the EBRW to the speedup curves are shown for 
each individual participant in Figure 7. The correlations between 
predicted and observed RTs were .938, .776, and .963 for Partici- 
pants 1, 2, and 3, respectively. The fits for Participants 1 and 3 
are essentially the same as those achieved by the descriptive 
power-law functions,  and the fit for Participant 2 is only slightly 
worse (see Figure 5 ). Given that we are dealing with individual- 

6 We should emphasize that there are only three effective free parame- 
ters involved in achieving these correlations, namely, c, w~, and ct. 
Except for extremely small values of the category criterion (A), the 
correlations remain essentially unchanged. Likewise, the regression pa- 
rameters k and #a do not influence the correlations; they serve only to 
rescale the predictions of the EBRW, which are in arbitrary units, into 
milliseconds. Note also that markedly improved fits to Participant l ' s  
data can be achieved with the addition of an extra free parameter (see 
Appendix C). 
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Figure 6. Scatterplot of observed mean response times (ms) for each individual color against the predicted 
mean response times from the exemplar-based random walk model, Experiment 1. 

Ii 

1100 

participant data and that there are bound to be large sources of 
uncontrolled noise from day to day, we consider the fits of the 
process model to be reasonably good. (Its main shortcoming is 
that Participant 2 's  response times during Day 2, Blocks 3 1 -  
60, are slower than predicted.) The EBRW predicts these 
speedup curves for essentially the same reason as in Logan's  

(1988) model: As practice continues, an increased number of 
exemplars are stored in memory. The greater the number of 
exemplars that race to be retrieved, the faster are the winning 
retrieval times. Thus, the individual steps in the random walk 
occur more rapidly with increased training. 

RT-distance model. As an initial source of  comparison for 
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Figure 7. Mean response times (ms) to the colors predicted by the exemplar-based random walk (EBRW) 
model as a function of grouped blocks of practice in Experiment 1. 

the EBRW, we also fitted a version of the RT-distance model 
to the mean response time data for the individual colors. Because 
there exists an infinite variety of decision boundaries, it is not 
possible to test the model in its general form. Following a sug- 
gestion from E G. Ashby (personal communication, October 
1995), we assumed that the decision boundary had the same 

form as the one produced by the EBRW, namely, the locus of 
points with equal summed similarity to the exemplars of Cate- 
gory A and Category B. This boundary has particular theoretical 
importance: Given certain parametric assumptions, the boundary 
of equal summed similarity is the optimal boundary for parti- 
tioning the space into categories, in the sense that it maximizes 
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observers' percentage of correct classification choices (Ashby & 
Maddox, 1993; Nosofsky, 1990). Following Murdock (1985) 
and Maddox and Ashby (1996), we further assumed that the 
mean decision time for classifying an object was given by 

r = exp i - /3" 0 ) ,  (22) 

where D represents distance-from-boundary, and the/3 parame- 
ter determines the rate at which decision time decreases with 
distance. The exponential assumption formalized in Equation 
22 is the version of the RT-distance model that Maddox and 
Ashby (1996) found provided the best overall quantitative fits 
to their sets of speeded classification data. The free parameters 
in the RE-distance model were the parameter/3 in Equation 22; 
regression constants k and # ,  for transforming the predicted 
decision times into milliseconds; and the parameters c and w~ 
that determine the exact shape of the equal summed similarity 
boundary. 7 

The RE-distance model yielded essentially the same correla- 
tions between predicted and observed mean RTs as did the 
EBRW: .903, .982, and .976 for Participants 1-3, respectively. 
When the EBRW is fitted to the individual color RE data without 
the constraint of also fitting the speedup curves, its correlations 
are .915, .991, and .956 for Participants 1-3,  respectively. The 
fits of the EBRW to the RE data remain essentially the same 
over a wide range of values for the criterion parameter, A. The 
value of this parameter exerts an influence only on the accuracy 
predictions of the model. Thus, the versions of the EBRW and 
the RE-distance model tested here use the same number of 
effective parameters. 

In sum, the EBRW yields correlations with the data that are 
as good as those provided by an important representative from 
the class of RE-distance models. As this class of models pro- 
vides what is currently the best descriptive approach to modeling 
multidimensional classification response times, the EBRW ap- 
pears to be performing fairly well. An important advantage of 
the EBRW is that it provides an explicit process account of how 
participants might learn decision boundaries with an optimal 
form, and why response time is generally a decreasing function 
of distance from this boundary. The EBRW also simultaneously 
accounts for the roughly power-law decreases in mean response 
time observed as a function of practice, a phenomenon not ad- 
dressed by current versions of the RE-distance model. 

Discussion 

In this experiment we demonstrated that the EBRW, when 
used in conjunction with derived MDS solutions, yielded good 
quantitative fits to mean classification response times observed 
for individual objects. The model simultaneously characterized 
the roughly power-law speedups in classification response speed 
that were observed as a function of practice. Adding to the 
impressiveness of these results is that, in all cases, the model 
was fitted to individual-participant data. 

Other factors besides increased exemplar storage may influ- 
ence the development of response speed as a function of prac- 
tice. For example, Nosofsky (1987) found evidence of increases 
in overall sensitivity (the value of c) as a function of classifica- 

tion learning. Increases in c would lead to a speedup because 
it would increase the tendency for test items to retrieve only 
their own memory traces, yielding a more consistent walk to 
the appropriate response criterion. On the other hand, decreases 
in memory strength due to decay and interference would lower 
the activation rates with which the exemplars race, thereby slow- 
ing the random walk. The baseline version of the EBRW tested in 
this article provides a parsimonious explanation of the speedup 
effect, but future research should explore the influence of these 
other factors. 

Experiment 2: The Role of Individual Object Familiarity 
in Speeded Classification 

A fundamental prediction of the EBRW is that large differ- 
ences in individual object familiarity should influence classifi- 
cation response time. Objects that are unfamiliar should result 
in relatively slow retrieval times for stored exemplars, thereby 
slowing the random walk. In Experiment 2 we sought to manipu- 
late individual object familiarity in a speeded classification task 
while holding fixed the distance of objects from a presumed 
classification decision boundary. Effects of familiarity on classi- 
fication RT would thereby support the predictions of the EBRW 
while placing strain on the RT-distance hypothesis as the sole 
explanation of classification response time. 

The design of Experiment 2 is illustrated schematically in 
Figure 8. There were eight color stimuli residing in a two- 
dimensional space. Stimuli 1-3,  enclosed by circles, belong to 
Category 1; whereas Stimuli 4 -8 ,  enclosed by squares, belong 
to Category 2. Stimuli 1-6  were always presented during train- 
ing, but presentations of Stimuli 7 and 8 were manipulated. In 
Condition U7 (unfamiliar-7), Stimulus 7 was never presented 
during training; whereas in Condition U8, Stimulus 8 was never 
presented during training. Following the initial training phase, 
a speeded classification test was conducted. Each of the eight 
colors was presented in a random order in each of eight blocks 
of testing. The central comparison of interest concerns classifi- 
cation response times for Stimuli 7 and 8. The EBRW predicts 
that in Condition U7, Stimulus 7 should be classified more 
slowly than Stimulus 8 but that the reverse should occur in 
Condition U8. 

The RT-distance hypothesis has little basis for predicting 
differential response times for Stimuli 7 and 8 across conditions. 
It is possible to estimate an infinite variety of different decision 
boundaries, and some set must certainly yield high correlations 
between distance and RT across the conditions. The critical 
question, however, is what the decision boundary theory predicts 
a priori. As discussed earlier, most of the a priori predictions 

7 Because there is no analytic method for computing the distance 
between a point and the boundary of equal summed similarity, we fol- 
lowed a brute force approach. First, we conducted a. computer search 
to find 200 evenly spaced points that spanned the coordinate space 
illustrated in Figure 4 and that had equal summed similarity to the 
exemplars of Category A and B, given the parameters c and wl. Next, 
we computed the distance between a given exemplar and each of these 
200 points. The minimum of these 200 distances was the measure of 
distance-from -boundary. 
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Figure 8. Schematic illustration of the approximate Munsell color con- 
figuration used in Experiment 2. Color 7 was not presented during 
training in Condition U7, whereas Color 8 was not presented during 
training in Condition U8. 

s temming f rom the decision boundary theory assume that parti- 
cipants adopt optimal boundaries,  or at least boundaries  that are 
close to optimal in form (Maddox  & Ashby, 1993).  Under a 
variety of  plausible assumptions,  it is possible to show that 
the optimal decision boundary for separating the exemplars of  
Categories 1 and 2 is essentially identical, regardless of  whether  
Stimulus 7 or Stimulus 8 is presented during training. The key 
intuit ion here is that  Stimuli 1 - 6 ,  which lie close to the pre- 
sumed boundary and are relatively difficult to classify, carry the 
l ion'  s share of  the weight  in determining the form of  the optimal 
boundary. Stimuli 7 and 8, which lie far f rom the boundary and 
are easy to classify, have a minuscule  influence. Thus, the pure 
dis tance-from-boundary hypothesis predicts no difference in 
classification RTs between. Stimuli 7 and 8 across conditions, 
whereas the EBRW predicts a crossover interaction based on 
the familiarity manipulation.  

Whereas  in Experiment  1 we tested a few individual partici- 
pants over extended periods of  time, in Experiment  2 we exam- 
ined multiple participants in a single training session. To test 
for effects of  familiarity, multiple observations need to be ob- 
tained for the critical t ransfer  stimuli. Repeatedly presenting the 
same novel  stimulus at test, however, would soon render that 
stimulus familiar. Thus, we needed to rely on data averaged over 
multiple participants, each of  whom experienced the unfamil iar  
stimuli with l imited frequency. 

In addition to the speeded classification test, an independent  
group of  participants provided similarity judgments  for all pairs 
of colors in the set. These similarity judgments  were used to 
derive an MDS solution for the colors. The goal was to use 
the MDS solution in conjunct ion with the EBRW to generate 

quantitative predict ions of  the classification response times 
across the different familiarity conditions. 

Method  

Participants. In the speeded classification experiment, there were 
40 participants in Condition U8 and 37 participants in Condition U7. 
There were 43 participants in the similarity scaling study. Participants 
were undergraduates from Indiana University who received credit toward 
an introductory psychology course requirement. Small bonuses were 
paid for good performance. All participants claimed to have normal 
color vision. 

Stimuli. The stimuli were a set of eight colors generated on Compu- 
Add monitors. Extensive pilot work was used to construct a set of colors 
that approximately matched the Munsell configuration illustrated in Fig- 
ure 8. The RGB values used for generating the stimuli are reported in 
Appendix B. Other aspects of the stimuli and apparatus were the same 
as in Experiment 1, except the colors were displayed against a medium 
gray background rather than a white background. 

Procedure. In the first part of the experiment, an unspeeded category 
training phase was conducted. Stimulus presentations were organized 
into 15 blocks. Each training stimulus was presented once per block in 
a random order. Color 7 was never presented during training in Condition 
U7, and Color 8 was never presented during training in Condition U8. 
In each respective condition in which Colors 7 and 8 were familiar, they 
were presented once per block along with all of the standard training 
stimuli. The stimulus displays were response terminated. Category feed- 
back was provided for 2 s following each response. There was a 500- 
ms ISI. 

Following the training phase, a speeded classification transfer phase 
was conducted. Participants were instructed to classify each stimulus as 
rapidly as possible without making errors. The transfer phase consisted 
of two parts. In the first part, only the original training stimuli were 
presented. There were four blocks of transfer trials, with each stimulus 
presented once in a random order in each block. These blocks were used 
to give participants practice in making speeded classification judgments. 
In the second part, both the training stimuli and the unfamiliar transfer 
stimulus were presented. There were eight blocks of trials, with each 
stimulus presented once in a random order in each block. There was no 
break between the first and second parts of the speeded classification 
transfer phase. Feedback continued to be presented during Part 1 but 
was withheld during Part 2 of the transfer phase. Other aspects of the 
procedure were the same as in Experiment 1. 

The similarity scaling study was organized into 10 blocks of trials. 
Each of the 28 unique pairs of the 8 stimuli was presented once per 
block in a random order. Thus, there were 10 repetitions of each pair 
and a total of 280 trials in the experiment. Other aspects of the procedure 
were the same as in Experiment 1. 

Results and Theoretical Analysis  

Similarity scaling. The INDSCAL model was used to ana- 
lyze the similarity ratings to derive an MDS solution for the 
colors. The data input to the program were the averaged similar- 
ity rating matrices obtained for each individual participant. The 
two-dimensional  solution, illustrated in Figure 9, accounted for 
an average of  89.2% of  the variance in the 43 individual partici- 
pants '  similarity ratings. The obtained configuration does not 
correspond precisely to the planned schematic design, mainly 
because Color 3 is more isolated than anticipated (compare  to 
Figure 8) .  Nevertheless, the obtained configuration is sufficient 
to satisfy the goals of  the experiment.  In particular, consider the 
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optimal decision boundaries (Figure 9) .  Although these optimal 
boundaries are highly nonlinear, they are still virtually identical 
across Conditions U7 and U8, so the R'F-distance model has 
little basis for predicting differential response times based on 
the familiarity manipulation. The optimal linear boundaries are 
also virtually identical across conditions, so this version of  the 
RT-dis tance model also does not predict an effect of  familiarity. 
The methods of  deriving the optimal boundaries are discussed 
in Appendix D. 

Speeded classification. The data obtained during Part 1 of  
the speeded classification transfer phase were analyzed to select 
participants for inclusion in the theoretical modeling. Because 
we were interested in modeling only those participants who 
were highly motivated and performed relatively well, we set a 
criterion of  80% correct or better during this phase. This crite- 
rion led to the removal of  9 participants in Condition U8 and 
6 participants in Condition U7. Thus, there were 31 remaining 
participants in each of  the conditions. 

The mean correct response times and accuracy rates for each 
of  the stimuli during Part 2 of  the speeded classification transfer 
phase are reported in Table 3. The response times are illustrated 
graphically in Figure 9, where the diameter of  the circle enclos- 
ing each stimulus is linearly related to the RT. As expected, 
Colors 7 and 8, which lie far from the boundary, tended to be 
classified more rapidly than Colors 1-6 ,  which lie close to 
the boundary (except for Color 3).  The most important result, 
however, is that Color 7 was classified more rapidly than Color 
8 in Condition U8, but the reverse was observed in Condition 

Table 3 
Classification Accuracy, Response Time (ms), and 
Standard Errors for Each Stimulus in Conditions 
U7 and U8 in Experiment 2 

Stimulus p(C) M MSE 

Condition U7 

1 .964 750 17.7 
2 .927 794 23.8 
3 .992 648 11.1 
4 .891 859 25.4 
5 .988 740 19.5 
6 .932 846 26.7 
7 .944 703 20.1 
8 .996 648 15.9 

Condition U8 

1 .948 795 25.5 
2 .948 834 25.4 
3 .980 677 16.4 
4 .895 897 32.8 
5 .972 819 28.0 
6 .883 896 31.7 
7 .984 672 19.9 
8 .923 752 29.3 

Note. p(C) = probability correct; M = mean correct response time 
(ms); MSE = mean standard error. 
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U7. This observation is confirmed by statistical test. A two-way 
analysis of variance on the Colors 7 and 8 RT data using Condi- 
tion (U7 vs. U8) and Stimuli (7 vs. 8) as variables revealed a 
significant interaction, F(1,  60) = 9.58, MSE = 36,290.9, p 
< .005. This large effect of familiarity is consistent with the 
predictions of the EBRW and suggests that current versions of 
decision boundary theory do not provide the sole explanation 
of classification response time. 

Our expectation was that the largest effects of the familiarity 
manipulation would be seen early in the transfer phase. Once a 
novel stimulus is classified repeatedly during transfer, it is no 
longer unfamiliar. Nosofsky (1986), for example, suggested 
that through internal feedback, novel stimuli that are classified 
repeatedly during transfer are used to augment the original cate- 
gory representation established at the end of training. The mean 
correct response times for Colors 7 and 8 are plotted as a func- 
tion of blocks of transfer in Figure 10. To remove noise from 
the data, we plot the response times averaged over the conditions 
in which each stimulus was familiar or unfamiliar. It is clear 
from inspection that our expectation was confirmed: The largest 
effects of the familiarity manipulation occurred during the first 
four transfer blocks. Nevertheless effects are seen even during 
Blocks 5-8 .  

EBRWfits. Our next goal was to quantitatively model the 
classification response times in terms of the EBRW. Because 
response times are highly variable, we decided to model the 
data averaged over all eight blocks of transfer (Table 3). The 
EBRW was fitted to the data by searching for the free parameters 
that minimized the sum of squared deviations between predicted 
and observed response times for each of the individual colors 
across the two conditions. (Attempts to jointly fit both the re- 
sponse time and accuracy data are reported in Appendix C.) 
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Figure 11. Scatterplot of observed response times (ms) for each color 
against the predicted response times from the exemplar-based random 
walk model, Experiment 2. Condition U7 is depicted by squares; Condi- 
tion U8 is depicted by circles. 

The free parameters used for fitting the data were the sensitivity 
parameter c, the attention-weight Wl, the step-time constant a, 
the category criteria A and - B ,  and the regression constants k 
and #~. Because overall response times in Condition U7 were 
somewhat shorter than in Condition U8, we allowed separate 
sensitivity parameters across the two conditions. 

The observed mean response times are plotted against the 
predicted mean response times in Figure 11. The best-fitting 
parameters were Cu7 = 2.11, CuB = 1.90, w~ = .577, a = 2.21, 
A = 3, B = 4, k = 40.34, and #R = 244.41. The EBRW achieved 
a correlation of .959 with the observed data. The model predicts 
correctly the major qualitative effects of interest. In particular, 
the model predicts correctly that Colors 7 and 8 are classified 
more quickly than Colors 1 -6  and also predicts correctly the 
fast response times for Color 3. Most important, the EBRW 
predicts correctly the fundamental crossover interaction re- 
suiting from the familiarity manipulation: Color 7 is classified 
more quickly than Color 8 in Condition U8, but the reverse 
occurs in Condition U7. 

RT-distance model. The RT-distance model was also fitted 
to the response time data, using the same assumptions and meth- 
ods described in Experiment 1. The model yielded a correlation 
with the data of only .60. An extended version of the model that 
allowed separate/3 parameters across Conditions U7 and U8 and 
that allowed for differential category response bias improved the 
fit to .84, which is still far worse than the fit yielded by the 
EBRW (r = .956). The main shortcoming of the pure version 
of the RT-distance model is that it has no mechanism for pre- 
dicting the large effect of the familiarity manipulation on the 
response times for Colors 7 and 8. 
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Discussion 

In this experiment we verified the fundamental qualitative pre- 
diction of the EBRW that large differences in familiarity should 
influence classification response time. Holding essentially fixed 
the distance of two critical transfer stimuli from a theoretically 
optimal decision boundary, we observed faster classification re- 
sponse times when a transfer stimulus was familiar than when it 
was unfamiliar. The EBRW also yielded good quantitative predic- 
tions of the classification response times for each of the individual 
stimuli across the different familiarity conditions. Nosofsky 
(1991b) provided previous evidence that familiarity affects 
speeded classification response times. In this previous experi- 
ment, however, only a single dimension was relevant for classify- 
ing the objects, and the unfamiliar stimuli were several standard 
deviations further away from the decision boundary than any 
other objects experienced during training. Thus, the present study 
lends generality to the conclusion that individual object familiarity 
can play an important role in speeded perceptual classification. 
Furthermore, it demonstrates that the EBRW is capable of quanti- 
tatively predicting the joint effects of distance-from-boundary and 
familiarity on classification response time. 

One question that arises is whether the familiarity effect in 
this experiment may have reflected a pure "surprise" effect. 
Of course, the EBRW predicts that the unfamiliar stimuli will 
be "surprising." However, it posits that the main locus of the 
surprise effect is in slowing processing during the classification 
decision-making stage. In a follow-up study intended to address 
this question, we used the same training conditions as in the 
present experiment; however, rather than requiring participants 
to classify the colors during the speeded test phase, they were 
required simply to detect the colors. An exponentially distrib- 
uted random foreperiod was used on each trial so that partici- 
pants would be unable to simply time their responses without 
actually detecting the colors. In all other respects, the two exper- 
iments were identical. Furthermore, roughly the same number 
of participants were tested. Whereas the familiarity effect in the 
present classification experiment averaged 67.5 ms during the 
eight speeded test blocks, it averaged only 7.5 ms in the detec- 
tion experiment and did not approach statistical significance. 
Although pure surprise may have played some role in the present 
classification experiment, the minuscule effect in the detection 
experiment supports our interpretation that lack of familiarity 
mainly slowed classification decision making, as predicted by 
the EBRW. Moreover, it should be remembered that in the pres- 
ent classification experiment, the familiarity effect lasted 
throughout the entire eight blocks of transfer, which places fur- 
ther strain on the pure surprise hypothesis. 

Although extant versions of the decision boundary theory 
(Ashby et al., 1994; Ashby & Maddox, 1994) do not predict 
the familiarity effects a priori, various approaches may exist for 
extending this alternative modeling framework. For example, 
perhaps instead of assuming optimal decision boundaries, mech- 
anisms may be proposed for how decision boundaries are 
learned. Depending on which stimuli are experienced during 
training, decision boundaries with different forms may arise. 
Alternatively, perhaps the psychological distributions used for 
representing each stimulus in the decision boundary theory are 

affected by the familiarity manipulations. We leave these inter- 
esting possibilities as issues for future research. 

Exper iment  3: Model ing  Performance in Garner ' s  
(1974)  Speeded  Classif icat ion Tests 

One of the classic paradigms involving speeded perceptual 
classification performance is the set of converging tests intro- 
duced by Garner and his colleagues for distinguishing between 
integral and separable dimensions (Garner, 1974, 1976; Gar- 
ner & Felfoldy, 1970; Gottwald & Garner, 1975; Pomerantz & 
Garner, 1973). The set-up of the paradigm is illustrated sche- 
matically in Figure 12. There are four stimuli varying along two 
dimensions, with two values per dimension, and the dimension 
values are roughly equally discriminable. We start by consider- 
ing three types of tasks of major interest. In all of the tasks, the 
requirement is to classify each stimulus into its assigned cate- 
gory as rapidly as possible without making errors. In the control 
task, on each trial, one of two possible stimuli is presented that 
vary along just one dimension. An example is to classify Stimu- 
lus A into Category 1 and Stimulus B into Category 2 (see 
Figure 12). The key aspect of the control task is that a single 
dimension is relevant for classifying each object (Dimension 1 
in the A vs. B example), and values on the irrelevant dimension 
are held constant. In the filtering task, any one of the four stimuli 
in the complete set is presented on each trial. As is the case in 
the control task, a single dimension is relevant for classifying 
the objects, but now values along the irrelevant dimension vary. 
An example is to classify Stimuli A and C into Category 1, and 
Stimuli B and D into Category 2. In the correlated task, one of 
two stimuli is presented on each trial, but they differ along both 
dimensions. An example is to classify Stimulus A into Category 
1 and Stimulus D into Category 2. 

In situations involving moderately discriminable stimuli and 
relatively inexperienced participants, a well-known pattern of 
results emerges in these tasks (see Garner, 1974, 1976, for a 
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Figure 12. Schematic illustration of the stimulus set used in Garner's 
(1974) speeded classification tasks. 
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review). To a first approximation, for highly separable dimen- 
sion stimuli, response times are basically identical across the 
control, filtering, and correlated tasks. However, for highly inte- 
gral dimension stimuli, there is marked interference in the filter- 
ing task and marked facilitation in the correlated task. In other 
words, for integral dimension stimuli, response times in the 
filtering task are slower than in the control task, whereas re- 
sponse times in the correlated task are faster than in the control 
task? The interference in the filtering task is interpreted as a 
failure of selective attention. Intuitively, optimal performance in 
the filtering task is achieved if the observer attends only to the 
relevant dimension and ignores variations along the irrelevant 
dimension. People can attend selectively to integral dimensions 
to some degree, but the process is far less efficient than occurs 
for separable dimension stimuli (Foard & Kemier Nelson, 1984; 
Garner, 1974; Lockhead, 1972; Melara & Marks, 1990; Nosof- 
sky, 1987; Shepard & Chang, 1963). 

The results of these speeded classification tasks are among 
the fundamental converging operations used by Garner (1974, 
1976) for distinguishing among alternative dimensional interac- 
tions. Until recently, however, no formal theoretical foundations 
have been offered for why these performance patterns emerge. 
Ashby and Maddox (1994) recently proposed some theoretical 
foundations by combining the RT-distance hypothesis with con- 
cepts from the general recognition theory of Ashby and Town- 
send (1986). Maddox and Ashby (1996) successfully fitted 
models derived from the theory to response time distributions 
and accuracy data in control, filtering, and correlated tasks in- 
volving separable dimension stimuli. In this section, we ask 
whether the main patterns of results obtained in these speeded 
classification tasks are consistent with the predictions of the 
EBRW. We then conduct our own experiment involving these 
tasks to provide initial tests of the model 's ability to quantita- 
tively fit the data. 

Applying the EBRW to explain the pattern of results for sepa- 
rable dimension stimuli is straightforward. We assume that parti- 
cipants attend selectively to the single dimension that they are 
instructed is relevant for classifying the objects. In the extreme 
case in which all attention weight is placed on this single dimen- 
sion (Equation 1 ), the two-dimensional space collapses onto a 
one-dimensional space, and the structures of the control, filter- 
ing, and correlated tasks are identical. 

Regarding integral dimension stimuli, why is there facilitation 
in the correlated task? Note that the stimuli in the correlated 
task (e.g., A and D) are less similar than are the stimuli in the 
control task (e.g., A and B; see Figure 12). According to the 
EBRW, the greater discriminability of the stimuli in the corre- 
lated task causes less competition in the random walk process. 
For example, when Stimulus A is presented, it will rarely cause 
exemplars of the highly dissimilar Stimulus D to be retrieved. 
Thus, the random walk counter will move in consistent fashion 
to its appropriate response criterion. The counter wanders to a 
greater extent in the control task because of the higher similarity 
of the exemplars from contrasting categories. 

Why is there interference in the filtering task? One reason, 
according to the EBRW, is that for any given item that is pre- 
sented, there are twice as many exemplars in memory that are 
identical to that item in the control task as there are in the 

filtering task. (For example, in the control task, Stimulus A is 
presented on half the trials, whereas in the filtering task it is 
presented on one fourth of the trials.) A test item is most likely 
to retrieve exemplars to which it is identical. The greater the 
number of these exemplars in memory, the faster the winning 
retrieval times tend to be, so the random walk finishes more 
quickly. 

This line of reasoning about the basis for interference in the 
filtering task assumes equal memory strengths for all exemplars. 
A more plausible assumption is that memories for previous 
exemplars get weaker each time a subsequent test item is pre- 
sented. Introducing this assumption, however, yields the same 
interference 15redictions. In the control task, an exemplar that is 
identical to the test item will be presented on half of the immedi- 
ately preceding trials; however, in the filtering task, identical 
exemplars are presented on only one fourth of the immediately 
preceding trials. Because the activation rates with which exem- 
plars race are influenced by their memory strengths (Equations 
3 and 5), the retrieval of identical exemplars is more efficient 
in the control task than in the filtering task. Introducing these 
assumptions about reductions in memory strength also allows 
the EBRW to explain stimulus repetition effects in the Garner 
tasks, a point we elaborate on in the Discussion section. 

In Experiment 3 we collected a battery of response time data 
in the control, filtering, and correlated tasks by using integral 
dimension stimuli. To develop further constraints for model fit- 
ting, we also tested participants in stretch-filtering and conden- 
sation tasks. In the stretch-filtering task, the amount of variation 
along the irrelevant dimension is increased. The EBRW predicts 
somewhat more interference in the stretch-filtering task than in 
the standard filtering task. Because of its similarity-based re- 
trieval assumptions, the EBRW predicts that, with some proba- 
bility, a test item will retrieve exemplars to which it is not 
identical. For example, if the test item is A, Exemplars B and 
C will be retrieved with some probability. Retrieving an exem- 
plar from the same category moves the random walk counter in 
the correct direction, whereas retrieving an exemplar from the 
opposite category moves the counter in the wrong direction. 
The probability of beneficial same-category retrievals decreases 
as within-category similarity decreases. Thus, performance in 
the stretch-filtering task should be worse than in the standard 
filtering task. This prediction was confirmed recently in experi- 
ments by Melara and Mounts (1994). 

In the condensation task, Stimuli A and D are classified into 
one category, and Stimuli B and C are classified into the opposite 
category (see Figure 12). It is well-known that performance in 
the condensation task is very poor. Note that both dimensions 
are needed for purposes of classification in this task, so selective 
attention to a single dimension is not possible. Furthermore, any 
given test item is similar to two exemplars from the opposite 

8 Our summary statement regarding separable dimension stimuli is 
intended only as a first approximation for describing the general pattern 
of results. For example, facilitation effects in the correlated task are 
also sometimes observed for separable dimension stimuli, especially 
under conditions of low discriminability or extensive training (e.g., Gar- 
ner & Felfoldy, 1970; Maddox & Ashby, 1996). 
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category. Thus, as will be seen, the EBRW predicts correctly 
the poor performance in this task. 

M e ~ o d  

Participants. The participants were 26 graduate and undergraduate 
students associated with the Indiana University Department of Psychol- 
ogy. All participants were paid $7.50 plus up to a $4.00 bonus depending 
on performance. 

Stimuli and apparatus. The stimuli were tones varying in pitch and 
loudness. Previous work indicates that such stimuli lie toward the inte- 
gral side of the integral-separable dimension continuum (Gran & 
Kemler Nelson, 1988; Melara & Marks, 1990). The stimulus set is 
illustrated schematically in Figure 13. Most of the tasks involved only 
Stimuli A-D,  which were created by combining orthogonally frequency 
values of 900 and 950 Hz and intensity values of 60 and 70 dB. Previous 
work reported by Melara and Marks (1990) and Melara and Mounts 
(1994) indicates that the loudness and pitch differences used here are 
roughly equally discriminable. The stretch-filtering tasks also used Stim- 
uli E - F  (frequency of 1000 Hz) and G-H (intensity of 80 dB; see 
Figure 13 ). The stimuli were square waves generated by a SoundBlaster 
AWE32 soundboard and presented through SONY Digital Reference 
MDR CD350 stereo headphones. Each tone was presented for 500 ms. 
Intensity levels were measured with a Bruel and Kjoer Precision Sound 
Level Meter Type 2203. The experiments were controlled by IBM-com- 
patible 486 computers. Participants entered responses by pressing appro- 
priate buttons on the computer keyboard. Response times were measured 
by using the internal ms-accuracy PC timer. 

Procedure. The experiment was organized into 13 conditions as 
shown in Table 4. 9 The stimuli that were eligible for presentation in 
each condition, as well as their division into categories, are reported in 
column 2 of the table. The ordering of conditions was balanced according 
to 2 Latin squares. Each condition consisted of 96 trials, with each 
eligible stimulus presented with equal frequency. Ordering of stimulus 
presentations was randomized for each individual participant and condi- 

Table 4 
Experimental Conditions Tested in Experiment 3 

Condition Stimuli 

Control pitch 1 A vs. B 
Control pitch 2 C vs. D 
Control loudness 1 A vs. C 
Control loudness 2 B vs. D 
Correlated 1 A vs. D 
Correlated 2 B vs. C 
Filter pitch A, C vs. B, 
Filter loudness A, B vs. C, 
Stretch pitch A, G vs. B, 
Stretch loudness A, E vs. C, 
Condensation A, D vs. B, 
Focus (25%) A vs. B, 
Focus (50%) A vs. B, 

D 
D 
H 
F 
C 
C,D 
C,D 

tion. Participants initiated trials by pressing the space bar. Following an 
error response, the feedback, Wrong, was displayed on the computer 
screen for 2 s. There was no feedback following correct responses. 

At the start of each condition, instructions were presented on the 
computer screen regarding the category distinctions for that task. Partici- 
pants were then allowed to listen to the stimuli associated with each 
response by pressing the Category 1 and Category 2 keys. They were 
allowed to engage in this preliminary training as long as they wished. 
Participants pressed the space bar when they were ready to start the 
task. At the end of each condition, participants were informed as to their 
accuracy and mean response time. 

The experiment was conducted in a single session that lasted 60-90 
rain. The experiment was self-paced and participants were allowed to 
take breaks between conditions. Participants were instructed to respond 
as quickly as possible without making errors and were told that their 
bonuses were determined jointly by the speed and accuracy of their 
responses. 

8 0  
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Results  and Theoretical Analysis  

The first 24 trials of  each condition were considered practice. 
Only the final 72 trials of  each condition were included in the 
analyses. Response times greater than three standard deviations 
above the mean were eliminated, which led to the removal of  
less than .1% of  the total observations. 

Observed data. The mean correct response times and accu- 
racy rates for each type of  task are summarized in Table 5. 
Although pitch turned out to be slightly more discriminable than 
loudness, for simplicity in our theoretical analyses we model the 
data averaged over pitch and loudness conditions. These aver- 
aged data for the control, correlated, filtering, stretch-filtering, 
and condensation tasks are reported in Table 6. As expected, 
mean response time in the correlated condition was significantly 
faster than in either control condition, indicating facilitation: 
pitch, t (25)  = 4.93, p < .001, and loudness, t (25)  = 5.24, p 

i ~ 0~00 900 950 1 

Frequency (Hz) 

Figure 13. Pitch and loudness values of the auditory stimuli used in 
Experiment 3. 

9 Because of certain theoretical complexities involving asymmetric 
placement of the response criteria and speed-accuracy trade-offs, we 
do not analyze the data in the two focusing conditions, however. The 
model can fit the mean response time data, but there are nearly as many 
free parameters added as there are degrees of freedom in the data sets. 
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Table 5 
Accuracy, Response Times (ms), and Standard Errors for 
Each Condition in Experiment 3 

Condition p(C) M MSE 

Control pitch .968 397 2.79 
Filter pitch .959 435 3.32 
Stretch pitch .941 466 3.72 
Control loudness .966 420 2.07 
Filter loudness .952 446 3.21 
Stretch loudness .955 466 3.82 
Correlated .981 370 1.53 
Condensation .876 1,066 14.46 

Note. p(C) = probability correct; M = mean correct response time 
(ms); MSE = mean standard error. 

< .001. Mean response time in the filtering conditions was 
significantly slower than in the control conditions, indicating 
interference: pitch, t (25)  = 3.73, p < .005, and loudness, t (25)  
= 2.39, p < .05. For pitch, mean response time in the stretch- 
filtering condition was significantly slower than in the standard 
filtering condition, indicating greater interference as within-cate- 
gory similarity decreased, t (25)  = 2.81, p < .05. The results 
were marginally significant for increased interference in the 
stretch-loudness condition, t (25)  = 1.78, p = .088. Finally, 
mean response time in the condensation task was far slower 
than in any other condition. These results replicate well-known 
findings already reported in the literature, but they provide a 
data source suitable for quantitative fitting because all conditions 
were tested under the umbrella of a single experiment. 

Modeling analyses. Because our goal in these initial tests 
of the EBRW was to fit the main quantitative trends in the 
averaged response time and accuracy data, we assumed for sim- 
plicity that Stimuli A - D  resided along the four comers of a unit 
square: A = (0, 0) ,  B = (1, 0) ,  C = (0, 1), and D = (1, 1). 
We further assumed a linear relation between psychological and 
physical distances, meaning that the additional stimuli used in 
the stretch-filtering conditions had the following psychological 
coordinates: E = (2, 0) ,  F = (2, 1 ), G = (0, 2) ,  and H = ( 1, 
2). Finally, for ease of the ensuing discussion, we assume that 
the relevant dimension in each of the unidimensional classifica- 
tion tasks (control, correlated, filtering, stretch-filtering) is Di- 
mension 1. 

Rather than doing extensive parameter searching, we set most 
of the parameters at values deemed reasonable on the basis of 
model fitting conducted in the earlier experiments. We set c = 
1.5 and a = .30. In the unidimensional conditions, in which 
perfect classification can be achieved by attending to just  Dimen- 
sion 1, we set the attention weight at wj = .75 (with w2 = 
.25). This intermediate value of w~ is intended to represent the 
imperfect selective attention allowed by these integral dimension 
stimuli. In the condensation condition, in which both dimensions 
are needed and are equally relevant for purposes of classifica- 
tion, we set the attention weights at w~ = w2 = .50. 

Although not needed for fitting the main data sets reported 
in Tables 5 and 6, we assumed for reasons of theoretical plausi- 
bility, as well as to potentially account for certain sequential 

effects, that memory strengths for previously stored exemplars 
decreased with each subsequent test item. Following previous 
research in which exemplar models were fitted to sequential 
learning data (Estes, 1994; Estes & Maddox, 1995; Nosofsky, 
Kruschke, & McKinley, 1992), on the trial on which an individ- 
ual exemplar was initially presented and stored, its memory 
strength was set at one; on each subsequent trial, the memory 
strength was multiplied (decreased) by the factor 3' (3' < 1). 
We arbitrarily set 3' at .95. 

Holding these parameters fixed, we conducted model fits by 
varying the value of only the response criterion (A and - B  in 
Figure 1 ). Because of the symmetry in the category structures, 
we assumed A = B. The predictions are based on averaging 
over the results of  1,000 randomly generated 96-trial sequences 
(with the first 24 trials deleted, as was done when computing 
the observed data). We searched for a value of the response 
criterion parameter that yielded reasonable predictions of the 
accuracies in the four unidimensional conditions and then plot- 
ted the relation between the predicted and observed response 
times. In this sense, the predicted ordering of response times is 
parameter free. 

The results of the model fits with the response criterion set 
at A = 4 are shown in Figure 14 (solid symbols).  Consider 
first the four unidimensional tasks. The EBRW is in the right 
range as far as predicting the accuracy data (see parenthesized 
values by each response time point).  More critically, the model 
also correctly orders the mean response times, predicting facili- 
tation in the correlated task, interference in the filtering task, 
and increased interference in the stretch-filtering task. Our 
model-fitting explorations suggest that these predictions of mean 
response time are robust over a wide range of parameter settings. 

The EBRW makes the correct qualitative prediction that the 
condensation task is more difficult than any of the unidimen- 
sional tasks. However, inspection of Figure 14 reveals that the 
model has some quantitative shortcomings, with observed per- 
formance in this task even slower than predicted. Inspection of 
the figure also reveals, however, that with the present parameter 
settings, the model underpredicts the accuracy rate obtained in 
this task: predicted, p ( C )  = .83; observed, p ( C )  = .88. Thus, 
a sensible explanation of these results is that a speed-accuracy 
trade-off may have occurred: Because of the extreme difficulty 
of the condensation task, participants needed to expand their 
response criteria, gathering more evidence so as to perform with 

Table 6 
Accuracy, Response Times (ms), and Standard Errors for 
Each Condition, Averaged Across Pitch and 
Loudness, in Experiment 3 

Condition p(C) M MSE 

Correlated .981 370 1.53 
Control .967 409 1.38 
Filter .956 441 2.31 
Stretch .948 466 2.66 
Condensation .876 1,066 14.46 

Note. p(C) = probability correct; M = mean correct response time 
(ms); MSE = mean standard error. 
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Figure 14. Scatterplot of observed mean correct response times (ms) 
in each type of speeded classification task against the predicted mean 
correct response times from the exemplar-based random walk (EBRW) 
model, Experiment 3. Values in parentheses are the predicted proportions 
of correct responses in each task, according to the EBRW. The solid 
square for the condensation task is the prediction with the response 
criterion set at A = 4, whereas the open square for the condensation 
task is the prediction with the response criterion set at A = 6. Circle = 
correlated task; triangle (up) = control task; diamond = filtering task; 
triangle (down) = stretch-filtering task; square = condensation task. 

acceptable accuracy. We searched for a value of the response 
criterion parameter that yielded predicted accuracy close to the 
observed accuracy for the condensation condition. The results 
with A = 6 are shown in Figure 14 (open square). Now, the 
quantitative prediction of the response time in the condensation 
task is fairly good. 

Discussion 

The main purpose of this section was to demonstrate that 
the EBRW accounts for some fundamental patterns of results 
involving the classic Garner speeded categorization tasks. In 
summary, for stimuli varying along integral dimensions, the 
model predicts facilitation in the correlated task relative to the 
control task; interference in the filtering task relative to the 
control task; increased interference in the filtering task as within- 
category similarity decreases; and performance in the condensa- 
tion task that is far worse than in all of the other tasks. 

The EBRW is consistent with some other important findings 
involving the Garner speeded classification tasks. For example, 
researchers have sometimes tested rotated stimulus sets, in 
which the configuration in Figure 12 is rotated, for example, 
45 °. Filtering performance is better for unrotated sets than for 
rotated ones (Grau & Kemler Nelson, 1988; Melara & Marks, 
1990). The interpretation of this result is that selective attention 
can be oriented along the direction of primary psychological 

dimensions but not in arbitrary directions in the psychological 
space. The EBRW models such a result because the attention 
weights (the set of wm parameters in Equation 1 ) can stretch the 
psychological space along the relevant, attended psychological 
dimensions but not in oblique directions in the space (Kruschke, 
1993; McKinley & Nosofsky, 1996). 

The memory decay assumption in the EBRW allows the model 
to predict the robust stimulus rePetition effects that exist in the 
Garner tasks. For example, in the filtering task, classification of 
Stimulus A on Trial n is most rapid if the preceding stimulus 
on Trial n - 1 was also Stimulus A. (In the present filtering 
experiments, the mean response time on stimulus repetition trials 
was 404 ms, whereas the mean response time on nonrepetition 
trials was 454 ms.) Indeed, Garner (1974, pp. 139-145) sug- 
gested that the main cause of interference in the filtering task 
relative to the control task is that there are twice as many repeti- 
tion trials in the control task. The stimulus repetition effect is 
predicted by the EBRW because a test item is most likely to 
retrieve exemplars to which it is identical, and the memory 
strength for an identical exemplar is greatest when it was pre- 
sented on the immediately preceding trial. 

Development of Automaticity in Skilled Performance 

The focus of our article has been on applications of the EBRW 
to predicting response times in tasks of speeded classification. 
A virtue of our proposed model, however, is that it promises 
also to provide detailed quantitative accounts of the development 
of automaticity and the acquisition of cognitive skills (Anderson, 
1982; Logan, 1988; Shiffrin, 1988). Indeed, by integrating and 
extending Nosofsky's (1986) GCM and Logan's (1988) in- 
stance model, the EBRW builds bridges between the domains 
of perceptual categorization and automaticity. In this section we 
briefly describe some of these applications. A full report is 
provided by Palmeri (1997). 

Our example of a task of skilled cognitive performance is the 
visual numerosity judgment task, which has been studied, for 
example, by Lassaline and Logan (1993). The stimuli are ran- 
dom dot patterns consisting of between 6 and 11 dots. On each 
trial, a dot pattern is presented, and the participant judges its 
numerosity as quickly as possible without making errors. There 
is extensive training, and the same dot patterns are judged multi- 
ple times. 

Lassaline and Logan (1993) found that early in training, 
response times increased linearly with the numerosity of the 
patterns. The straightforward interpretation was that participants 
engaged in a counting process, with each extra dot adding a 
noisy increment to the total response time. By the end of train- 
ing, however, after participants had seen each dot pattern on 
numerous occasions, mean response time was essentially a fiat 
function of numerosity. Lassaline and Logan's (1993) interpre- 
tation was that multiple instances of the dot patterns had been 
stored in memory, and participants simply retrieved memories 
of the correct answers associated with the instances to perform 
the task. This interpretation of the development of automaticity 
is supported by the instance-specific nature of participants' per- 
formance: When completely new dot patterns were presented 
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during a transfer stage, response times were as slow as at the 
start of training. 

A critical prediction of the EBRW, however, is that some 
generalized automaticity to new dot patterns should occur if 
there are fine-grained manipulations of similarity to the original 
patterns. Palmeri (1997) replicated Lassaline and Logan's 
(1993) task, except that at time of transfer, in addition to pre- 
senting old training patterns and unrelated new patterns, he also 
presented objects that were moderate distortions or high distor- 
tions of the original training patterns. [The classic statistical 
distortion paradigm introduced by Posner, Goldsmith, and Wel- 
ton [1967] was used for creating these patterns.] 

Palmeri's (1997) observed transfer data, collected following 
13 days of numerosity judgment training, are shown in the top 
panel of Figure 15. The figure plots mean response times as a 
function of numerosity for the old patterns and the moderate- 
distortion, high-distortion, and unrelated new patterns. For pur- 
poses of comparison, the figure also plots the response time 
function observed at the start of the training phase (Session 1 ). 
The major aspects of Lassaline and Logan's ( 1993 ) study were 
replicated, with the response time function for unrelated new 
patterns being essentially the same as at the start of training, 
and the response time function for old patterns being close to 
fiat. The important new finding is that the response time func- 
tions for the moderate-distortion and high-distortion new pat- 
terns lie systematically intermediate between these extremes, 
providing clear evidence of generalized automaticity. 

Palmeri (1997) used the EBRW to quantitatively fit these 
data. First, following Lassaline and Logan (1993), he assumed 
that on each trial participants engaged in a counting process. 
The time for each additional count was a normally distributed 
random variable with mean ~z and variance ~r 2. The EBRW 
process took place simultaneously with the counting algorithm, 
and the first process to finish determined the response. Applying 
the EBRW to the visual numerosity judgment task is straightfor- 
ward. A counter is established for each numerosity category. 
Anytime an exemplar from numerosity category j is retrieved, 
the j ' th  counter is incremented. The process finishes as soon as 
one of the counters is at least A units greater than all other 
counters. This model reduces to the form of the EBRW illus- 
trated in Figure 1 when there are just two categories. (A more 
in-depth discussion of variants of the EBRW applied to multiple- 
category tasks is provided by Palmeri [ 1997 ] and Nosofsky [in 
press ] .) 

The parameters used for simulating the EBRW included the 
step-time constant a, interexemplar similarity parameters for 
moderate-level and high-level distortions (Sm and Sh), and a 
residual similarity parameter for unrelated patterns (St). The 
response criterion parameter A was set at 3. In addition, the 
mean and variance parameters for the dot-counting process (tz 
and <72) were estimated. Palmeri (1997) started by fitting the 
model to the set of numerosity judgment training data obtained 
in the experiment. Then, holding all parameters fixed except for 
Sm and Sh (which could not be estimated from the training data), 
he used the model to fit the transfer data. The predictions of the 
model are illustrated in the bottom panel of Figure 15. The two- 
parameter model provides an excellent fit to the data, achieving 
a correlation of .961 with the observed numerosity judgment 

3000 

~2500  
m 

g 

.g 2000 
= 
c 

81500 
G 

1000 

500 

(A) Observed Data 

..... .~ Sesl ion 1 

• • . - 3 "  

Old / 
................ SesSion 13 

i _ ~ _ _ _ .  i i i i 

6 7 8 9 10 11 

Numerosity 

(B) EBRW Predictions 

3000 

.~ 2500 

c 

2000 

1500 

0 .  

1000! 

I 
500 

Unllated 

Hi0h I 
i 

Mo¢ .=rate 

: : -- ; O ld  
i i i i i i __  

6 7 8 9 10 11 

Numemsi~ 

Figure 15. In A, the observed mean response times (ms) as a function 
of numerosity and type of item (old, moderate distortion, nigh distortion, 
unrelated new) during the transfer phase of Palmeri's (1997) experi- 
ment. The dashed curve gives the mean response times as a function of 
numerosity during the first session of training. In B, predicted mean 
response times from the exemplar-based random walk (EBRW) model. 
Adapted from "Exemplar Similarity and the Development of Automatic- 
ity," by T. J. Palmeri, 1997, Journal of Experimental Psychology: Learn- 
ing, Memory, and Cognition, 22, p. 334. Copyright 1997 by the American 
Psychological Association. 

response times. The model predicts these results because simi- 
larities of the moderate and low distortions to the old instances 
cause these training instances to be retrieved, allowing for auto- 
matic numerosity judgments. 

In other experiments, Palmeri (1997) demonstrated that auto- 
maticity in visual numerosity judgment develops more rapidly 
when patterns have high within-category similarity and that such 
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automaticity develops more slowly when there is high between- 
category similarity. Again, the EBRW provided an excellent 
account of the time course of the development of automaticity 
as a function of these fundamental variables. Because, in the 
pure version of Logan's (1988) instance model, only instances 
that are identical to a test item are retrieved from memory, the 
similarity-based retrieval processes formalized in the EBRW are 
critical for explaining these data. 

Furthermore, Palmeri's (1997) finding that increased be- 
tween-category similarity slowed the numerosity judgment re- 
sponse times demonstrated that it is not enough only to add 
similarity-based retrieval to Logan's (1988) model. Because 
Logan's model is a pure, first-instance race model, it predicts 
faster response times as between-category similarity increases, 
albeit with more errors. The reason is that the more similar 
instances there are participating in the race, the faster any given 
instance would be retrieved, regardless of whether it belongs to 
the target category or a contrast category. A decision process 
such as the one in our random walk model, which causes exem- 
plars from competing categories to counteract one another, is 
able to explain such results (see also Strayer & Kramer, 1994, 
for additional evidence bearing on this point). 

General Discussion 

Summary 

In this article we proposed and tested an exemplar-based 
random walk (EBRW) model of response times in tasks of 
speeded multidimensional perceptual classification. The EBRW 
integrates and extends two well-known exemplar models of cog- 
nitive processes: Nosofsky's (1986) generalized context model 
(GCM) of perceptual categorization, and Logan's (1988) in- 
stance-based model of automaticity. As is the case in the GCM, 
in the EBRW exemplars are represented as points in some multi- 
dimensional psychological similarity space. Selective attention 
processes systematically modify the structure of the space in 
which the exemplars are embedded. Classification decisions are 
based on the similarities of objects to these stored exemplars. 
The EBRW goes beyond the GCM by specifying a dynamic 
process by which these exemplar-similarity comparisons unfold 
over time. As is the case in Logan's instance model, test items 
cause stored exemplars to race among one another to be re- 
trieved from memory. However, whereas in Logan's model only 
exemplars that are identical to the test item race to be retrieved, 
in the EBRW all exemplars race, with rates determined by their 
similarity to the presented item. Furthermore, whereas in Lo- 
gan's model the first retrieved exemplar drives the response, in 
the EBRW the retrieved exemplars provide incremental informa- 
tion that feeds into a random walk decision process. 

To our knowledge, the EBRW may be the first rigorously 
formalized process model to provide quantitative predictions of 
response times in diverse tasks of speeded multidimensional 
perceptual classification. Our initial tests demonstrated some 
broad-based support for the model. First, we demonstrated that 
the EBRW predicts the distance-from-boundary effects reported 
by Ashby et al. (1994) in their experiments involving bivariate 
normal category distributions. Next, in Experiment 1, we dem- 

onstrated that the EBRW is capable of yielding accurate quanti- 
tative predictions of classification response times for individual 
objects based on their locations in a multidimensional similarity 
space. The model simultaneously characterized the roughly 
power-law decreases in mean classification response times that 
were observed as a function of extended practice in this task. 
In Experiment 2, we demonstrated that individual object famil- 
iarity can play a major role in speeded classification, as pre- 
dicted by the EBRW. Again, the EBRW was able to provide 
reasonably good quantitative predictions of response times for 
individual objects as a function of these familiarity manipula- 
tions. In Experiment 3, we demonstrated that the EBRW goes 
a long way toward explaining patterns of performance in the 
classic Garner speeded categorization tasks: For stimuli varying 
along integral dimensions, the model predicts correctly facilita- 
tion in the correlated task; interference in the filtering task; 
increased interference in the filtering task as within-category 
similarity decreases; and very poor performance in the conden- 
sation task. It also predicts the stimulus repetition effects ob- 
served in this paradigm. Finally, beyond its ability to account 
for speeded perceptual classification, an added virtue of the 
EBRW is its ability to account for similarity and response com- 
petition effects in the development of automaticity in tasks of 
skilled performance. 

Limitations and Extensions 

In this section we discuss some limitations of the EBRW and 
avenues of extension that will guide future research. 

RTdistributions. Our initial tests of the EBRW were limited 
to predicting mean response times for individual objects or tasks. 
To provide more rigorous tests of the model, in future work 
we need to fit it to entire distributions of response time data. 
Conducting these more rigorous tests will require us to extend 
the model by specifying properties of additional stages beyond 
the classification decision-making stage (which is modeled by 
the EBRW). Such stages include, for example, encoding and 
response execution stages. Nosofsky (in press) and Nosofsky 
and Palmeri (in press) have already demonstrated some signifi- 
cant progress along these lines: They fitted, with reasonably 
good success, an extended EBRW model to the detailed response 
time distribution data observed for individual stimuli in the color 
classification task and the Garner tasks described in Experiments 
1 and 3 of this article. Among the many issues that remain to 
be examined is the extent to which the EBRW can account for 
power-law reductions in the entire distribution of RTs as a func- 
tion of practice (e.g., Logan, 1992), as predicted by the pure 
single-instance version of Logan's theory. 

Speed-accuracy trade-off. It will also be important in fu- 
ture work to model speed-accuracy trade-off functions. A 
straightforward approach to using the EBRW to model speed- 
accuracy trade-offs is to assume variations in the locations of 
the response criteria. As the criteria move closer to the starting 
point of zero, response times get faster but accuracy should 
decline. 

Other more complex factors may also be involved in modeling 
speed-accuracy trade-offs, however. For example, Lamberts 
(1995a) used an extended version of the generalized context 
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model to account for patterns of classification performance un- 
der time pressure. He discovered that patterns of generalization 
depended systematically on whether participants were required 
to respond by short or long deadlines. The data could be well 
modeled by assuming that under short deadlines, overall sensi- 
tivity (c in Equation 2) was low and the attentional weights 
(the wm values in Equation 1) were determined primarily by 
the perceptual saliences of the dimensions. Without deadlines, 
however, overall sensitivity was high and the attention weights 
depended primarily on the formal category structure. Thus, us- 
ing the EBRW to provide a full account of speeded classification 
performance may require extending the model to account for 
dynamic changes in the values of the sensitivity and attention 
weight parameters over time (see Lamberts, 1995b, for a formal 
proposal along these lines). 

Probabilistic representations. In our applications of the 
EBRW in this article, each object was represented as a single 
point in the space. Numerous researchers have argued forcefully 
for the importance of probabilistic representations, in which 
each object is represented as a probability distribution of points 
(for reviews, see Ashby, 1992). We view the single-point repre- 
sentation in the EBRW as a simplification. Undoubtedly, the 
precise perceptual and memorial representation of an object 
varies from trial to trial, so a complete account of speeded 
classification will require modeling these fluctuations. It is 
straightforward to extend the EBRW to include assumptions 
about probabilistic representations. Nosofsky (in press), for 
example, proposed an extension of the EBRW with probabilistic 
memory representations that can reproduce some of the major 
phenomena observed in tasks of unidimensional absolute 
judgment. 

Response accuracy and training. Although the EBRW pre- 
dicts facilitation in response times with increased training, the 
version of the model presented in this article does not predict 
changes in response accuracy. There are various approaches to 
extending the model to account for improvements in response 
accuracy. Following Nosofsky et al. (1992) and Estes (1994), 
one idea is that background-noise elements exist in memory at 
the start of training. Retrieving a background element is assumed 
to move the random walk counter in a random direction toward 
either Category A or B. The background elements race exponen- 
tially with rate b, independent of the test item that is presented. 
Early in learning, before many category exemplars are stored 
in memory, the background elements would have a high proba- 
bility of winning the races and being retrieved, which would 
result in relatively poor classification performance. As more 
category exemplars are stored in memory, the probability of 
background elements winning the races declines, so response 
accuracy would improve. Another process that would lead to 
improvements in response accuracy is increases in the value of 
the overall sensitivity parameter (c) as a function of experience, 
evidence for which was provided by Nosofsky (1987). 

Probabilistic Versus Deterministic Response Rules and 
Overall Accuracy 

A shortcoming of the GCM is that, in designs involving prob- 
abilistic assignments of exemplars to categories, the model basi- 

cally predicts probability matching behavior (for more detailed 
discussion of this point, see Nosofsky et al., 1992). By probabil- 
ity matching, we mean that if an exemplar receives Category A 
feedback, for instance, with probability .70, then the observer 
tends to classify that exemplar into Category A with probability 
.70. Although probability matching is often observed in probabi- 
listic classification designs (Estes, 1976), research conducted 
by Ashby and his colleagues indicates that highly experienced 
individual observers often respond more deterministically (i.e., 
with probabilities closer to zero or unity) than predicted by a 
probability matching rule (Ashby & Gott, 1988; Ashby & Mad- 
dox, 1992). The EBRW predicts probability matching behavior 
in the special case in which the response criteria are set at 
magnitude one. (Recall that it is under such circumstances that 
the EBRW is formally identical to the GCM.) As the criteria are 
extended further away, and more and more exemplar evidence is 
recruited before a decision is made, the model predicts behavior 
that is more deterministic. 

More precisely, suppose that in the EBRW, the response crite- 
ria +A and - B  are set an equal magnitude K from the starting 
point of zero, A = B = K. Then it is straightforward to show 
that the response probability predictions of the EBRW (see 
Equations 16, 9, and 13) can be expressed as 

P (AI i )  = S~/(S~ + S~). (23a) 

When K = 1, this EBRW response rule is the same as in the 
GCM (Equation 4), whereas when K > 1, the model predicts 
responding that is more deterministic than that predicted by the 
GCM. Indeed, Maddox and Ashby (1993) proposed an extended 
version of the GCM with precisely this type of response rule 
to allow the model to potentially account for the deterministic 
responding exhibited by highly experienced individual partici- 
pants. ~° McKinley and Nosofsky (1995) found that this ex- 
tended response rule yielded fits to Maddox and Ashby's (1993) 
data that were far better than those of the GCM and as good as 
important representatives from the class of decision boundary 
models. Thus, at least in situations in which models are fitted 
to individual-participant accuracy data from highly experienced 
observers, the EBRW appears to provide a major improvement 
over the GCM. 

In situations in which models are fitted to averaged participant 
data of relatively inexperienced observers, however, the GCM 
has generally yielded extremely good predictions of classifica- 
tion response probabilities (e.g., Nosofsky, 1987). Of course, 
the EBRW can match these predictions if the response criterion 
parameter is set at K = 1. Unfortunately, however, if K = 1, 
the EBRW becomes a pure single-instance race model, which 
we have argued often produces implausible predictions of classi- 
fication response times. 

A critical question, therefore, is whether or not an EBRW 

10 In the response rule proposed by Maddox and Ashby (1993), which 
did not involve any processing considerations pertaining to classification 
response time, the K parameter was real-valued, whereas in the EBRW 
it is integer-valued. In the EBRW, if one allows probability mixtures in 
the setting of K across trials, the real-valued version of the response 
rule can be well approximated. 
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model with K > 1 can match the response probability predic- 
tions yielded by the GCM (when the goal is to fit averaged data 
collected from inexperienced participants). Because the EBRW 
with K > 1 predicts accuracies that are higher (i.e., more deter- 
ministic) than those predicted by the GCM, one idea is to add 
sources of processing noise to the model to bring back down 
the predicted accuracies. The assumption that background-noise 
elements participate in the exemplar retrieval process, which 
we discussed in the previous section, provides a straightforward 
possibility along these lines. Combining the assumptions about 
background elements introduced by Nosofsky et al. (1992) and 
Estes (1994) with the processing machinery proposed in this 
article, the response rule in the EBRW becomes: 

P(AI i )  = (SiA + b)K/[(SiA + b) K + (SiB + b)K], (23b) 

where b is a free parameter representing the rate at which the 
background elements race to be retrieved. 

In preliminary tests, we fitted the Equation 23b model to 
six sets of categorization response probability data reported by 
Nosofsky (1987, Tables 4 and 5), using the same methods as 
described previously for the GCM in that article. We set K = 
3 and searched for the value of b that produced the best fits to 
each data set in combination with the other model parameters 
(c and w~ from Equations 1 and 2). The EBRW yielded fits to 
these data sets that were slightly better overall than those pro- 
duced by the GCM (see Appendix E). An additional free param- 
eter (b) was involved, so we are not arguing that the EBRW is 
an improvement over the GCM in this regard. Rather, we are 
simply demonstrating that versions of the EBRW with K > 1 
can produce fits to accuracy data as good as those produced by 
the GCM in previously reported studies. An important direction 
for future research is to test more rigorously the ability of the 
EBRW to simultaneously model how accuracy and response 
time data evolve with increased classification experience. 

Perceptual  Expert ise 

The GCM has sometimes been criticized on grounds that it 
is highly implausible that in making classification decisions, 
observers would sum the similarity of an object to all category 
exemplars ever experienced. While retaining the exemplar-based 
category representation of the GCM, the EBRW requires that 
only a relatively small subset of exemplars be retrieved for any 
given classification decision. Furthermore, it predicts that this 
process should become more and more efficient as learning 
proceeds because a greater number of exemplars race to be 
retrieved from memory. 

This conception of the efficient retrieval of multitudes of 
exemplars stored in memory may shed light on the nature of 
expert perceptual classification. A paradigm case of our ideas 
comes from the work on chess mastery conducted by De Groot 
(1965) and Chase and Simon (1973). This research suggested 
that differences in chess skill emerge not only from differences 
in the quality of operational thinking but also from differences 
in memory and perception. Apparently, the chess master stores 
a vast warehouse of meaningful chunks and patterns that are 
immediately recognized: The chess master just "sees" the right 

move. Indeed, investigations involving a simulation program 
known as the Memory-Aided Pattern Perceiver led Simon and 
Gilmartin (1973) to estimate that master players have between 
10,000 and 100,000 chess chunks stored in long-term memory. 

The role of exemplar similarity in expert perceptual classifi- 
cation has also been well documented by the work of Brooks, 
Norman, and Allen (1991; Allen, Norman, & Brooks, 1992). 
Using expert dermatologists as participants, these researchers 
presented slides of dermatological cases for initial diagnoses 
and then, several weeks later, presented new slides that were 
similar or dissimilar to the originals. The experts correctly diag- 
nosed the similar slides significantly more often than the dissim- 
ilar ones, even though a simple rule was available for all cases. 

We can well imagine that expertise in all forms of perceptual 
classification is closely related to extensive exemplar-based ex- 
perience. Thus, the expert radiologist, rather than relying solely 
on conscious, analytic, rule-based strategies such as may be 
taught in a medical textbook, may just "see" the proper diagno- 
sis. The vast warehouse of prior examples that this expert classi- 
fier has stored in memory all race to be retrieved and drive his 
or her categorizations. 

Finally, although our emphasis in this article has been on 
exemplar retrieval processes, we expect that the human observer 
makes extensive use of simple analytic rules as well (e.g., No- 
sofsky et al., 1994). Recall that in the domain of skilled perfor- 
mance, Logan (1988) hypothesized that simple algorithms are 
executed in parallel with the instance retrieval process, with 
the first to finish determining the response. Analogously, in the 
domain of perceptual categorization, simple analytic rule sys- 
tems may coexist with the exemplar retrieval system. Our hy- 
pothesis is that exemplar retrieval processes come to play a 
more dominant role as the human observer gains increased ex- 
pertise in a given perceptual domain. Achieving a comprehensive 
model of perceptual categorization, however, will require a 
deeper understanding of both rule-based and exemplar-based 
knowledge representations, and of how they interact with one 
another in novice and expert observers. 
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A p p e n d i x  A 

A p p l y i n g  the  E B R W  to E x p e r i m e n t  1 o f  Ashby ,  B o y n t o n ,  and  L e e  ( 1 9 9 4 )  

As described in the text, the EBRW was used to simulate data from 
the Experiment 1 design of Ashby et al. (1994). Tables A1-A3 present 
the obtained rank-order correlations between the predicted response 
times of the EBRW and the distance-from-boundary and familiarity mea- 
sures described by Ashby et al. (1994). The distance-from-boundary 
measure calculates the distance between an item and the optimal popula- 
tion classification decision boundary. The familiarity measure calculates 
the summed similarity between an item and all 300 exemplars in the 
two category distributions. Unfortunately, some complications arise be- 
cause the summed-similarity computation depends on the value of the 
sensitivity parameter (c) in Equation 2. Ashby et al. (1994) searched 
for the value of c that yielded the most negative rank-order correlations 
between the familiarity measure and the response times for each individ- 
ual participant. These estimated values differed widely across conditions 
and individual participants. The familiarity correlations reported in Ta- 
bles AI -A3  assume the median values of c that Ashby et al, (1994) 
estimated for each overlap condition. Note that the values of c used for 

computing familiarity were not the same as the value of c used to 
simulate the EBRW. 

The results of the EBRW simulations shown in Tables A1-A3 were 
based on the following parameter settings: c = .01, w~ = w2 = .50, and 
A = B = 15. Similar qualitative results are obtained for a wide range 
of parameter settings. The step-time constant a in Equation 6 was varied 
in increments of .1 from 0.0 to 2.0. 

As can be seen in the tables, except for values of a near zero, the 
following results were obtained. First, the rank-order correlation between 
predicted response times and the distance-from-boundary measure 
ranged between - .25 and -.55. A similar range of rank-order correla- 
tions was observed by Ashby et al. ( 1994, Table 6). In the moderate- 
overlap and high-overlap conditions, the rank-order correlations be- 
tween predicted response times and the familiarity measure ranged be- 
tween 0 and. 15, whereas the familiarity correlations were slightly nega- 
tive in the low-overlap condition. Again, similar results were observed 
by Ashby et al. (1994, Table 8). 

Table A 1 
EBRW-Predicted Correlations Between Response Time and 
Distance-From-Boundary Measure (r °) and Familiarity 
Measure (r r) as a Function of Step-Time Constant for 
Low-Overlap Condition of Ashby et al. (1994) 

Table A2 
EBRW-Predicted Correlations Between Response Time and 
Distance-From-Boundary Measure (r °) and Familiarity 
Measure (r r) as a Function of Step-Time Constant for 
Medium-Overlap Condition of Ashby et al. (1994) 

T D r F ~ r D F F 

0.000 -0.254 -0.349 0.000 -0.236 -0.155 
0.100 -0.297 -0.229 0.100 -0.433 0.095 
0.200 -0.260 -0.202 0.200 -0.473 0.179 
0.300 -0.252 -0.062 0.300 -0.474 0.115 
0.400 -0.323 -0.021 0.400 -0.465 0.146 
0.500 -0.338 -0.089 0.500 -0.516 0.026 
0.600 -0.279 -0.115 0.600 -0.460 0.117 
0.700 -0.292 -0.132 0.700 -0.484 0.166 
0.800 -0.204 -0.118 0.800 -0.415 0.083 
0.900 -0.257 -0.222 0.900 -0.461 0.133 
1.000 -0.284 -0.135 1.000 -0.547 0.148 
1.100 -0.360 -0.116 1.100 -0.501 0.130 
1.200 -0.394 -0.132 1.200 - 0.503 0.134 
1.300 -0.355 -0.081 1.300 -0.441 0.090 
1.400 -0.260 -0.150 1.400 -0.454 0.111 
1.500 -0.296 -0.111 1.500 -0.547 0.162 
1.600 -0.310 -0.094 1.600 -0.490 0.209 
1.700 -0.360 -0.041 1.700 -0.530 0.180 
1.800 -0.379 -0.013 1.800 -0.437 0.154 
1.900 -0.319 -0.105 1.900 -0.491 0.166 
2.000 -0.362 -0.166 2.000 -0.557 0.169 

Note. EBRW = exemplar-based random walk; a = step-time constant. Note. EBRW = exemplar-based random walk; a = step-time constant. 

(Appendixes continue on next page) 
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Table A3  

EBRW-Predicted Correlations Between Response Time and 
Distance-From-Boundary Measure (r o) and Familiarity 
Measure (r e) as a Function of  StepoTime Constant for 
High-Overlap Condition of Ashby et al. (1994) 

O~ r D r F 

0.000 -0 .027  0.083 
0.100 -0 .520  0.031 
0.200 -0 .521 0.149 
0.300 -0 .510  0.113 
0.400 -0 .509  0.019 
0.500 -0 .525  0.113 
0.600 -0 .499  0.104 
0.700 -0 .509  0.150 
0.800 -0 .514  0.134 
0.900 -0 .504  0.050 
1.000 -0 .472  0.069 
1.100 -0 .468  0.095 
1.200 -0 .476  0.087 
1.300 -0 .502  0.152 
1.400 -0 .477  0.146 
1.500 -0 .584  0.054 
1.600 -0 .433  0.078 
1.700 -0 .580  0.112 
1.800 -0 .523 0.014 
1.900 -0 .502  0.054 
2.000 -0 .552  0.172 

Note. EBRW = exemplar-based random walk; a = step-time constant. 

Appendix B 

RGB Values 

The RGB values used to construct the colors in Experiments 1 and 2 are reported in Tables B 1 and B2, respectively. 

Table  B 1 

Red (R), Green (G), and Blue (B) Pixel Values for 
Each Stimulus in Experiment 1 

Table  B2  

Red (R), Green (G), and Blue (B) Pixel Values for 
Each Stimulus in Experiment 2 

Stimulus R G B Stimulus R G B 

1 236 172 172 
2 252 140 140 
3 220 136 136 
4 252 108 108 
5 188 124 124 
6 224 104 104 
7 252 44 44 
8 180 96 96 
9 212 60 60 

10 128 64 64 
11 160 24 24 
12 184 0 0 

1 144 36 28 
2 184 32 20 
3 252 20 0 
4 156 68 60 
5 200 76 64 
6 228 68 56 
7 180 112 108 
8 252 120 108 
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Appendix C 

Joint Fits of the EBRW to the Response Time and Accuracy Data in Experiments 1 and 2 

The EBRW makes predictions of accuracy as well as response time. 
A natural question, therefore, is whether or not it can simultaneously 
account for the response time and accuracy data observed for individual 
stimuli in our experiments. Our goal in these initial tests of  the EBRW 
was to focus on the time course of categorization. Therefore, we used 
readily discriminable stimuli and extensive training. As a result, most 
accuracies are near ceiling (see Tables 1 and 3),  and there is very little 
variability in the data. Under such circumstances, even rare idiosyncratic 
events and mental processes not part of  the EBRW (e.g., lapses of  
attention, fast guessing, etc.) can account for the lion's share of  the 
variance in the accuracy data, so it is unclear how well one should 
expect the main model to perform. 

Nevertheless, with these caveats in mind, we refit the EBRW simulta- 
neously to the individual color RT and accuracy data in Experiments 1 
and 2. Because the response times and accuracy data are measured on 
different scales and display vastly different amounts of  variability, any 
attempt to evaluate the joint fit requires some arbitrary method for 
combining the separate component fits. After preliminary exploration, 
the criterion of fit we chose was to minimize the total weighted sum of 

squared deviations between the predicted and observed mean response 
time and the predicted and observed percentages of correct choices, 
where the percentage correct data were given 100 times the weight of 
the response time data. Otherwise, the method of  fitting the EBRW was 
the same as described previously. 

E x p e r i m e n t  1 

The predicted response t imes and accuracies for each participant 
are shown alongside the observed data in Table C1, and the best- 
fitting parameters are reported in Table C2. The fits to the response 
time data are essentially the same as reported in the main text. About  
all that we can say about the accuracies is that the predicted data are 
certainly in the ballpark of the observed data, which we believe is 
all that one can reasonably expect, given the close-to-ceiling 
performance. 

It is worth noting that markedly improved fits to Participant l ' s  data 
can be achieved with the addition of  an extra free parameter. Participant 
l ' s  performance on Colors 1 and 12 was better than predicted by the 

Table  C 1 

Predicted and Observed Mean Response Times and Accuracies From the Exemplar-Based Random Walk Model in Experiment 1 

Mean response time Percentage correct 

Stimulus Pre Obs Pre Obs 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

% Var 

Participant 1, baseline model 

971.31 815.00 99.91 100.00 
831.36 795.00 100.00 98.30 

1,040.01 1,159.00 99.78 91.70 
797.84 725.00 100.00 100.00 
907.66 967.00 99.97 100.00 
945.15 1,068.00 99.94 97.50 
779.56 706.00 100.00 100.00 
908.97 931.00 99.97 97.50 

1,257.20 1,346.00 98.79 95.00 
767.66 744.00 100.00 100.00 
826.12 911.00 100.00 99.20 

1,341.97 1,208.00 98.10 96.70 

Mean response time Percentage correct 

78.4 -34 .3  

Participant 1, elaborated model 

Stimulus Pre Obs Pre Obs 

Participant 2 

1 995.36 982.00 94.49 91.70 
2 587.56 601.00 99.98 100.00 
3 980.50 1,007.00 94.93 99.20 
4 564.17 546.00 100.00 100.00 
5 614.85 665.00 99.95 100.00 
6 649.22 650.00 99.88 100.00 
7 552.68 529.00 100.00 100.00 
8 596.60 619.00 99.98 99.20 
9 744.79 734.00 99.34 98.30 

10 545.57 530.00 100.00 100.00 
11 585.13 577.00 99.99 100.00 
12 880.43 857.00 97.44 95.00 

1 852.39 815.00 99.72 100.00 
2 843.11 795.00 99.75 98.30 
3 1,182.00 1,159.00 95.92 . 91.70 
4 784.50 725.00 99.92 100.00 
5 970.68 967.00 98.95 100.00 
6 1,014.31 1,068.00 98.50 97.50 
7 747.21 706.00 99.97 100.00 
8 972.75 931.00 98.92 97.50 
9 1,303.63 1,346.00 92.99 95.00 

10 726.78 744.00 99.99 100.00 
11 837.91 911.00 99.77 99.20 
12 1,179.29 1,208.00 95.99 96.70 

% Var 95.3 59.9 

% Var 98.1 55.2 

Participant 3 

1 766.33 780.00 99.84 97.50 
2 740.77 709.00 99.93 100.00 
3 985.17 962.00 94.67 95.60 
4 706.54 661.00 99.99 100.00 
5 837.17 841.00 99.12 100.00 
6 753.02 749.00 99.88 100.00 
7 692.40 641.00 100.00 100.00 
8 827.37 834.00 99.26 98.40 
9 786.71 834.00 99.69 98.40 

10 684.81 697.00 100.00 100.00 
11 710.44 779.00 99.99 100.00 
12 1,003.30 1,007.00 93.78 93.40 

% Var 90.2 81.0 

Note. Pre = predicted; Obs = observed; % Var = percentage of  variance accounted for. 

(Appendixes continue on next page) 
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Table  C2  

Best-Fitting Parameters for  the EBRW When It Is Fitted Simultaneously to the Response Time and 
Accuracy Data in Experiments 1 and 2 

Experiment 1 

Parameter P 1 P 1 * P2 P3 Experiment 2 

c 2.855 2.212 1.957 2.196 cus = 1.396, co7 = 1.582 
wa 0.408 0.426 0.542 0.716 0.508 
a 1.906 1.889 1.080 0.242 2.097 
A 4 3 4 5 3 
B - -  4 - -  - -  4 
k 70.00 100.01 69.15 125.07 27.71 
#R 213.08 100.00 211.30 491.07 354.56 
6 - -  1.376 - -  - -  1.300 

Note. P 1 - P 3  = Participants 1-3 ,  respectively. Colunm PI* gives the best-fitting parameters for the extended version of 
the EBRW fitted to Participant l ' s  data. EBRW = exemplar-based random walk. c = sensitivity parameter; wl = attention 
weight on Dimension 1; a = step-time constant; A = Category A criterion; B = Category B criterion; k = scaling 
constant;/~a = mean residual response time. 6 = stimulus-specific sensitivity multiplier. 

model. Perhaps this participant devoted extra attention to these difficult- 
to-classify objects during the extensive test phase, or perhaps these 
colors were simply more discriminable from the remaining objects in 
the set than was revealed by the MDS analysis. To formalize this idea, 
we allow a stimulus-specific sensitivity parameter for Colors 1 and 12. 
In this elaborated model, the similarity of  Color i (i = 1 and i = 12) 
to each remaining Color j is given by s(i ,  j ) = e x p ( -  6 -c 'd l j ) ,  where 
6 is a stimulus-specific sensitivity multiplier (cf. Kruschke, 1992; Nosof- 
sky, 1991a). The predicted response times and accuracies for this elabo- 
rated model are shown in Table C1, with the best-fitting parameters and 
summary fits given in Table C2. 

E x p e r i m e n t  2 

Achieving good fits to the accuracy data in Experiment 2 required 
use of a stimulus-specific sensitivity parameter for Color 3. Otherwise, 
the free parameters and methods of fitting the data are the same as 
described previously. The predicted mean response times and accuracies 
from this version of the EBRW are reported alongside the observed 
data in Table C3, with the best-fitting parameters and summary fits 
reported in Table C2. The fit to the response time data is as good as 
reported in the main text, and the model appears to give a good overall 
account of  the accuracy data. A shortcoming is that the unfamiliar 
stimuli have somewhat more errors than predicted. 

Table  C3 

Predicted and Observed Mean Response Times and 
Accuracies From the EBRW in Experiment 2 

Mean response time Percentage correct 

Stimulus Pre Obs Pre Obs 

Condition U8 

1 832.04 795.00 93.11 94.80 
2 854.77 834.00 91.38 94.80 
3 683.27 677.00 99.13 98.00 
4 872.08 897.00 92.48 89.50 
5 808.19 819.00 95.93 97.20 
6 861.96 896.00 93.12 88.30 
7 649.22 672.00 99.87 98.40 
8 741.07 752.00 98.57 92.30 

Condition U7 

1 775.63 750.00 96.29 96.40 
2 807.04 794.00 94.68 92.70 
3 654.88 648.00 99.55 99.20 
4 855.98 859.00 93.53 89.10 
5 778.24 740.00 97.18 98.80 
6 811.62 846.00 95.83 93.20 
7 705.01 703.00 99.37 94.40 
8 639.12 648.00 99.93 99.60 

% Var 92.6 27.8 

Note. EBRW = exemplar-based random walk; Pre = predicted; Obs 
= observed; % Var = percentage of variance accounted for. 
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Appendix D 

Optimal Classification Decision Boundaries 

Following Ashby and Lee ( 1991 ), we derive the optimal classification 
decision boundaries by assuming that there is a distribution of perceptual 
effects associated with each individual exemplar. Each distribution is 
bivariate normal. The means of the distributions along each dimension 
are given by the multidimensional scaling coordinates associated with 
each exemplar. All distributions are assumed to have the same variance, 
a 2, along both dimensions, and zero covariance. The likelihood of obser- 
vation x given Category A (B) is found by summing the likelihood of 
x given each of the exemplar distributions associated with A (B) ,  
weighted by their probability of occurrence (Ashby & Lee, 1991, p. 
155 ). Using Bayes's theorem, one then computes the likelihood of each 
category given observation x. A computer search algorithm is used to 
locate a set of points (x) for which the likelihood of Category A equals 
the likelihood of Category B. It is well-known that these likelihood- 
based boundaries are the optimal decision boundaries for partitioning 
the space into response regions in the sense that using such boundaries 
will maximize observers' percentage of correct classification choices. 
These estimated sets of points constitute the boundaries illustrated in 
Figure 9. They were computed while setting t72 arbitrarily equal to .25. 
Essentially the same boundaries arise for a wide range of  values of cr 2. 
Their shape changes substantially only when ~2 is extremely large rela- 

tive to the distance between the distribution means. (Moreover, essen- 
tially the same boundaries arise if one simply computes the set of points 
that have equal summed similarity to the exemplars of Category A and 
B, as we discussed in Experiment 1.) Note that these computations made 
the simplifying assumption that all distributions had the same variance 
and zero correlation between dimensions. Slightly different shaped 
boundaries would arise if individual exemplar distributions had unique 
variances and correlations. The critical point, however, is that these 
complicating factors would be unlikely to result in different shaped 
boundaries across Conditions U7 and U8. 

Suppose instead that participants use linear decision boundaries. 
Again, we assume that each exemplar is represented by a bivariate 
normal distribution, as discussed previously. The probability that a par- 
ticipant classifies an exemplar into Category A is found by integrating 
over the portion of the exemplar distribution that falls in the Category 
A response region defined by this linear boundary. The overall percent- 
age of correct classifications is then found by averaging over the percent- 
age of correct classifications for each individual exemplar. One then 
conducts a computer search to find the slope and y-intercept of the linear 
boundary that maximizes this overall percentage correct. These optimal 
linear boundaries are essentially identical across Conditions U7 and U8. 

Appendix E 

Fitting the EBRW to Nosofsky's (1987) Color Categorization Data 

In this appendix we briefly describe how the EBRW with background 
noise (Equation 23b) is fitted to the color categorization data reported 
by Nosofsky (1987, Table 4). Recall that the term S~A in Equation 23b 
is given by SiA = ZMjsu, where the sum is over all exemplars that 
belong to Category A, and likewise for Sin. The exemplars assigned to 
each category in Nosofsky's (1987) experiments, and that therefore 
enter into these sums, are shown in Figure 5 of Nosofsky (1987). To 
compute the similarity of item i to exemplar j, s~j, one makes use of the 
MDS solution for the colors reported by Nosofsky ( 1987, p. 95, Table 
3 ) and then applies Equations 1 and 2. Applying these equations requires 
estimating two free parameters for each condition, c and w~. Two ver- 
sions of both the GCM and the EBRW were fitted to the data. In the 
first version, all memory strengths in the equations for &A and Sis were 
set at Mj = 1. In the second version, the memory strengths were set 
equal to stimulus bias terms estimated in a separate experiment reported 
by Nosofsky (1987, Table 3). We present this second version because 
in Nosofsky's (1987) original article, the stimulus bias terms were 
included when fitting the GCM. In fitting each version of the EBRW, 
we set K = 3 in Equation 23b and searched for the values of c, w~, 
and the background-noise constant b that gave a best fit of the model 
to the data in each condition. In fitting the GCM, we set K = 1 and b 

= 0 in Equation 23b and searched for the best-fitting values of c and 
w~ in each condition. 

Following Nosofsky (1987), the EBRW and the G C M w e r e  fitted 
to the color categorization response probability data by searching for 
the free parameters that maximized the log-likelihood of the data (or, 
equivalently, that minimized the negative of  the log-likelihood). The 
results are shown in Table El ,  where a smaller value of - l n  L indicates 
a better fit. As auxiliary measures, we also report the root-mean- 
squared deviation between predicted and observed classification proba- 
bilities as well as the percentage of  variance accounted for in each 
condition. (The best-fitting parameters are available from the first 
author on request.) Both models provide excellent quantitative fits to 
the data. Regardless of  the specific version of  the models tested (with 
or without stimulus bias terms),  the EBRW gives a slightly better 
overall fit to the data across the six conditions than does the GCM. 
Again, as explained in the text, we are not claiming that the EBRW 
represents an improvement over the GCM in this regard because an 
additional free parameter (b)  is involved. The purpose of  this analysis 
is simply to demonstrate that versions of the EBRW can produce good 
fits to response probability data in situations in which the GCM has 
previously been successful. 

(Appendixes continue on next page) 
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Table E1 
Fits of the EBRW and the GCM to Nosofsky's (1987) 
Color Categorization Response Probability Data 

GCM EBRW 

Condition -In L RMSD % Var -In L RMSD % Var 

Models with stimulus bias terms 

Saturation A 44.6 .055 97.8 38.8 .041 98.8 
Saturation B 71.0 .050 98.0 49.6 .026 99.5 
Brightness 56.1 .023 99.7 56.6 .022 99.7 
Criss-cross 43.4 .035 99.1 46.4 .042 98.7 
Pink-brown 58.0 .035 99.1 49.0 .026 99.5 
Diagonal 66.9 .046 97.8 73.4 .048 97.6 

Models without stimulus bias terms 

Saturation A 46.0 .059 97.5 41.1 .046 98.5 
Saturation B 58.8 .041 98.7 43.4 .018 99.7 
Brightness 60.3 .026 99.7 45.1 .017 99.9 
Criss-cross 50.4 .042 98.7 52.9 .043 98.6 
Pink-brown 70.9 .045 98.6 70.6 .045 98.6 
Diagonal 99.6 .064 95.8 106.7 .068 95.2 

Note. EBRW = exemplar-based random walk; GCM = generalized context model; In L = log-likelihood; 
RMSD = root mean squared deviation; % Var = percentage of variance accounted for. 
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