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Abstract

In this chapter, we provide a review of a process-oriented mathematical model of
categorization known as the exemplar-based random-walk (EBRW) model (Nosofsky & Palmeri,
1997a). The EBRW model is a member of the class of exemplar models. According to such
models, people represent categories by storing individual exemplars of the categories in
memory, and classify objects on the basis of their similarity to the stored exemplars. The
EBRW model combines ideas ranging from the fields of choice and similarity, to the
development of automaticity, to response-time models of evidence accumulation and
decision-making. This integrated model explains relations between categorization and other
fundamental cognitive processes, including individual-object identification, the development
of expertise in tasks of skilled performance, and old-new recognition memory. Furthermore, it
provides an account of how categorization and recognition decision-making unfold through
time. We also provide comparisons with some other process models of categorization.
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Introduction
A fundamental issue in cognitive psychology and

cognitive science concerns the manner in which
people represent categories and make classifica-
tion decisions (Estes, 1994; Smith & Medin,
1981). There is a wide variety of process-oriented
mathematical models of categorization that have
been proposed in the field. For example, accord-
ing to prototype models (e.g., Posner & Keele,
1968; Smith & Minda, 1998), people represent
categories by storing a summary representation,
usually presumed to be the central tendency of
the category distribution. Classification decisions
are based on the similarity of a test item to the
prototypes of alternative categories. According to
decision-boundary models (e.g., Ashby & Maddox,
1993; McKinley & Nosofsky, 1995), people
construct boundaries, usually assumed to be linear
or quadratic in form, to divide a stimulus space

into category response regions. If an object is
perceived to lie in Region A of the space, then the
observer emits a Category-A response. According
to rule-plus-exception models (e.g., Davis, Love, &
Preston, 2012; Erickson & Kruschke, 1998;
Nosofsky, Palmeri, & McKinley, 1994), people
construct low-dimensional logical rules for sum-
marizing categories, and they remember occasional
exceptions that may be needed to patch those rules.

In this chapter, however, our central focus is
on exemplar models of classification. According
to exemplar models, people represent categories
by storing individual exemplars in memory, and
classify objects on the basis of their similarity to
the stored exemplars (Hintzman, 1986; Medin &
Schaffer, 1978; Nosofsky, 1986). For instance, such
models would assume that people represent the
category of “birds” by storing in memory the vast
collection of different robins, sparrows, eagles (and
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so forth) that they have experienced during their
lifetimes. If a novel object were similar to some of
these bird exemplars, then a person would tend to
classify it as a bird.

Although alternative classification strategies are
likely to operate across different experimental
contexts, there are several reasons why we chose
to focus on exemplar models in this chapter. One
reason is that models from that class have provided a
successful route to explaining relations between cat-
egorization and a wide variety of other fundamental
cognitive processes, including individual-object
identification (Nosofsky, 1986, 1987), the develop-
ment of automaticity in tasks of skilled performance
(Logan, 1988; Palmeri, 1997), and old-new
recognition memory (Estes, 1994; Hintzman, 1988;
Nosofsky, 1988, 1991). A second reason is that,
in our view, for most “natural” category structures
(Rosch, 1978) that cannot be described in terms
of simple logical rules, exemplar models seem to
provide the best-developed account for explaining
how categorization decision-making unfolds over
time. Thus, beyond predicting classification choice
probabilities, exemplar models provide detailed
quantitative accounts of classification response
times (Nosofsky & Palmeri, 1997a). We now briefly
expand these themes before turning to the main
body of our chapter.

One of the central goals of exemplar mod-
els has been to explain relations between cate-
gorization and other fundamental cognitive pro-
cesses, including old-new recognition memory (Estes,
1994; Hintzman, 1988; Nosofsky, 1988, 1991;
Nosofsky & Zaki, 1998). Whereas in categoriza-
tion people organize distinct objects into groups, in
recognition the goal is to determine if some indi-
vidual object is “old” (previously studied) or “new.”
Presumably, when people make recognition judg-
ments, they evaluate the similarity of test objects to
the individual previously studied items (i.e., exem-
plars). If categorization decisions are also based on
similarity comparisons to previously stored exem-
plars, then there should be close relations between
the processes of recognition and categorization.

A well-known model that formalizes these ideas
is the generalized context model (GCM; Nosofsky,
1984, 1986, 1991). In the GCM, individual
exemplars are represented as points in a mul-
tidimensional psychological space, and similarity
between exemplars is a decreasing function of the
distance between objects in the space (Shepard,
1987). The model presumes that both classifi-
cation and recognition decisions are based on

the “summed similarity” of a test object to the
exemplars in the space. By conducting similarity-
scaling studies, one can derive multidimensional
scaling (MDS) solutions in which the locations of
the exemplars in the similarity space are precisely
located (Nosofsky, 1992). By using the GCM in
combination with these MDS solutions, one can
then achieve successful fine-grained predictions of
classification and recognition choice probabilities
for individual items (Nosofsky, 1986, 1987, 1991;
Shin & Nosofsky, 1992).

A significant development in the application of
the GCM has involved extensions of the model to
explaining how the categorization process unfolds
through time. So, for example, the exemplar model
not only predicts choice probabilities, but also
predicts categorization and recognition response
times (RTs). This development is important because
RT data often provide insights into cognitive
processes that would not be evident based on exam-
ination of choice-probability data alone. Nosofsky
and Palmeri’s (1997a,b) exemplar-based random-
walk (EBRW) model adopts the same fundamental
representational assumptions as does the GCM.
However, it extends that earlier model by assuming
that retrieved exemplars drive a random walk process
(e.g., Busemeyer, 1985; Link, 1992; Ratcliff, 1978).
This exemplar-based random-walk model allows
one to predict the time course of categorization and
recognition decision making.

In this chapter, we provide a review of this
EBRW model and illustrate its applications to
varieties of categorization and recognition choice-
probability and RT data. In the section on The
Formal EBRW Model of Categorization RTs we
provide a statement of the formal model as applied
to categorization. As will be seen, the EBRW
model combines ideas ranging from the fields of
choice and similarity, to the development of auto-
maticity, to RT models of evidence accumulation
and decision making. In the section Effects of
Similarity and Practice on Speeded Classification,
we describe applications of the model to speeded
perceptual classification, and illustrate how it cap-
tures fundamental phenomena including effects of
similarity and practice. In the section Automaticity
and Perceptual Expertise we describe how the
EBRW accounts for the development of automatic
categorization and perceptual expertise. In the
section Using Probabilistic Feedback Manipulations
to Contrast the Predictions From the EBRW Model
and Alternative Models we describe experimental
manipulations that have been used to try to
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Fig. 7.1 Schematic illustration of the ideas behind the exemplar-based random-walk model. Panel a: Exemplars are represented as
points in a multidimensional psychological space. Similarity is a decreasing function of the distance between objects in the space.
Presentation of a test probe causes the exemplars to be “activated” in accord with how similar they are to that probe. The activated
exemplars “race” to be retrieved. Panel b: The retrieved exemplars drive a random-walk process for making categorization decisions.
Each time that an exemplar from Category A is retrieved, the random walk takes unit step towards the Category-A response threshold,
and likewise for Category B. The retrieval process continues until one of the response thresholds is reached.

distinguish between the predictions of the EBRW
model and some other major models of speeded
categorization, including decision-boundary and
prototype models. Finally, in the section Extending
the EBRW Model to Predict Old-New Recognition
RTs, we describe recent developments in which the
EBRW model has been used to account for old-
new recognition RTs. We then provide conclusions
and questions for future research in the section
Conclusions and New Research Goals.

The Formal EBRW Model of
Categorization RTs

The EBRW model and the GCM build upon
classic theories in the areas of choice and similarity
(Shepard, 1957, 1987). As described in the intro-
duction, in the model, exemplars are represented
as points in a multidimensional psychological space
(for an illustration, see Figure 7.1a). The distance
between exemplars i and j (dij) is given by the
Minkowski power model,

dij =
[

K∑
k=1

wk
∣∣xik− xjk

∣∣ρ] 1
ρ

, (1)

where xik is the value of exemplar i on psychological
dimension k; K is the number of dimensions that
define the space; ρ defines the distance metric of
the space; and wk (0 < wk,

∑
wk = 1) is the

weight given to dimension k in computing distance.
In situations involving the classification of holistic

or integral-dimension stimuli (Garner, 1974), which
will be the main focus of the present chapter, ρ is
set equal to 2, which yields the familiar Euclidean
distance metric. The dimension weights wk are free
parameters that reflect the degree of “attention”
that subjects give to each dimension in making
their classification judgments (Carroll & Wish,
1974). In situations in which some dimensions are
far more relevant than others in allowing subjects
to discriminate between members of contrasting
categories, these attention-weight parameters may
play a significant role (e.g., Nosofsky, 1986, 1987).
In the experimental situations considered in this
chapter, however, all dimensions tend to be relevant
and the attention weights will turn out to play a
relatively minor role.

The similarity of test item i to exemplar j
is an exponentially decreasing function of their
psychological distance (Shepard, 1987),

sij = exp(− c ·dij), (2)

where c is an overall sensitivity parameter that mea-
sures overall discriminability in the psychological
space. The sensitivity governs the rate at which
similarity declines with distance. When sensitivity is
high, the similarity gradient is steep, so even objects
that are close together in the space may be highly
discriminable. By contrast, when sensitivity is low,
the similarity gradient is shallow, and objects are
hard to discriminate.
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Each exemplar j is stored in memory (along with
its associated category feedback) with memory-
strength mj . As will be seen, the precise assumptions
involving the memory strengths vary with the specific
experimental paradigm that is tested. For example,
in some paradigms, we attempt to model perfor-
mance on a trial-by-trial basis, and assume that the
memory strengths of individual exemplars decrease
systematically with their lag of presentation. In
other paradigms, we attempt to model performance
in a transfer phase that follows a period of extended
training. In that situation, we typically assume
that the memory strengths are proportional to the
frequency with which each individual exemplar was
presented in common with given category feedback
during the initial training phase.

When a test item is presented, it causes all
exemplars to be “activated” (Figure 7.1a). The
activation for exemplar j, given presentation of item
i, is given by

aij =mjsij. (3)

Thus, the exemplars that are most highly activated
are those that have the greatest memory strengths
and are highly similar to the test item. In modeling
early-learning behavior, we also presume that
“background” elements exist in memory at the start
of training that are not associated with any of the
categories. These background elements are presumed
to have fixed activation b, independent of the test
item that is presented.

Borrowing from Logan’s (1988) highly influen-
tial instance theory of automaticity, the EBRW
assumes that presentation of a test item causes
the activated stored exemplars and background
elements to “race” to be retrieved. For mathematical
simplicity, the race times are presumed to be inde-
pendent exponentially distributed random variables
with rates proportional to the degree to which
exemplar j is activated by item i (Bundesen, 1990;
Logan, 1997; Marley, 1992). Thus, the probability
density that exemplar j completes its race at time t,
given presentation of item i, is given by

f (t)= aij · exp(− aij · t). (4)

This assumption formalizes the idea that although
the retrieval process is stochastic, the exemplars that
tend to race most quickly are those that are most
highly activated by the test item. The exemplar
(or background element) that “wins” the race is
retrieved.

Whereas in Logan’s (1988) model the response is
based on only the first retrieved exemplar, in the
EBRW model exemplars from multiple retrievals

drive a random-walk evidence accumulation process
(e.g., Busemeyer, 1982; Ratcliff, 1978). In a two-
category situation, the process operates as follows
(for an illustration, see Figure 7.1b): First, there is a
random-walk counter with initial setting zero. The
observer establishes response thresholds representing
the amount of evidence needed to make either a
Category-A response (+A) or a Category-B response
(–B). Suppose that exemplar x wins the race on
a given step. If x received Category-A feedback
during training, then the random-walk counter is
increased by unit value in the direction of +A,
whereas if x received Category-B feedback, the
counter is decreased by unit value in the direction
of –B. (If a background element wins the race, the
counter’s direction of change is chosen randomly.)
If the counter reaches either threshold +A or –B,
the corresponding categorization response is made.
Otherwise, the races continue, another exemplar is
retrieved (possibly the same one as on the previous
step), and the random walk takes its next step.

Given the processing assumptions outlined ear-
lier, Nosofsky and Palmeri (1997a) showed that,
on each step of the random walk, the probability
(pi) that the counter is increased in the direction of
threshold +A is given by

pi = (SiA+b)/(SiA+SiB+2b), (5)

where SiA denotes the summed activation of all
currently stored Category-A exemplars given pre-
sentation of item i (and likewise for SiB). (The
probability that the counter is decreased in the
direction of Category B is given by qi = 1-pi.) Thus,
as the summed activation of Category-A exemplars
increases, the probability of retrieving Category-A
exemplars, and thereby the probability of moving
the counter in the direction of +A, increases. The
categorization decision time is determined jointly
by the total number of steps required to complete
the random walk and by the speed with which those
individual steps are made.

Given these random-walk processing assump-
tions, it is straightforward to derive analytic
predictions of classification choice probabilities and
mean RTs for each stimulus at any given stage of the
learning process (Busemeyer, 1982). The relevant
equations are summarized by Nosofsky and Palmeri
(1997a, pp. 269–270, 291–292). Here, we focus on
some key conceptual predictions that follow from
the model.

A first prediction is that rapid classification
decisions should be made for items that are
highly similar to exemplars from their own target
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category and that are dissimilar to exemplars from
the contrast category. Under such conditions, all
retrieved exemplars will tend to come from the
target category, so the random walk will march
consistently toward that category’s response thresh-
old. For example, if an item is highly similar to
the exemplars from Category A, and dissimilar to
the exemplars from Category B, then the value pi
in Eq. 5 will be large, so almost all steps in the
random walk will move in the direction of +A. By
contrast, if an item is similar to the exemplars of
both Categories A and B, then exemplars from both
categories will be retrieved; in that case, the random
walk will meander back and forth, leading to a
slow RT.

A second prediction is that practice in the
classification task will lead to more accurate re-
sponding and faster RTs. Early in training, before
any exemplars have been stored in memory, the
background-element activations are large relative to
the summed-activations of the stored exemplars (see
Eq. 5). Thus, the random-walk step probabilities
(pi) hover around .5, so responding is slow and
prone to error. As the observer accumulates more
category exemplars in memory, the summed activa-
tions SiA and SiB grow in magnitude, so responding
is governed more by the stored exemplars. A second
reason that responding speeds up is that the greater
the number of exemplars stored in memory, the
faster the “winning” retrieval times tend to be (cf.
Logan, 1988). The intuition is that the greater the
number of exemplars that participate in the race,
the higher is the probability that some particular
exemplar will finish quickly. Therefore, as more
exemplars are stored, the speed of the individual
steps in the random walk increases.

As discussed later in this chapter, many more
fine-grained predictions follow from the model,
some of which are highly diagnostic for distinguish-
ing between the predictions of the EBRW model
and alternative models. We describe these predic-
tions in the context of the specific experimental
paradigms in which they are tested.

One other important formal aspect of the model
involves its predictions of classification choice
probabilities. In particular, in the special case in
which the response thresholds +A and −B are
set an equal magnitude γ from the starting point
of the random walk, the model predicts that the
probability that item i is classified in Category A
is given by

P(A|i)= (SiA+b)γ /[(SiA+b)γ +[(SiB+b)γ ]. (6)

This equation is the descriptive equation of choice
probability that is provided by the GCM, one of
the most successful formal models of perceptual
classification (for discussion, see, e.g., Nosofsky,
1986; Wills & Pothos, 2012).1 Thus, besides
providing a formal account of classification RTs, the
EBRW model provides a processing interpretation
for the emergence of the GCM response rule.

Effects of Similarity and Practice on
Speeded Classification

In their initial tests of the EBRW model,
Nosofsky and Palmeri (1997a) conducted a speeded
classification task using the category structure
shown in Figure 7.2. The stimuli were a set of 12
Munsell colors of a constant red hue varying in
their brightness and saturation2. As illustrated in
the figure, half the exemplars were assigned by the
experimenter to Category A (squares) and half to
Category B (circles). On each trial, a single color
was presented, the observer classified it into one of
the two categories, and corrective feedback was then
provided. Testing was organized into 150 blocks
of 12 trials (30 blocks per day), with each color
presented once in a random order in each block.
(See Nosofsky and Palmeri, 1997a, pp. 273–274
for further methodological details.)

The mean RTs observed for one of the par-
ticipants are shown in Figure 7.3. The top panel
illustrates the mean RT for each individual color,
averaged across the final 120 blocks. The diameter
of the circle enclosing each stimulus is linearly
related to the stimulus’s mean RT. To help interpret
these data, the figure also displays a dotted bound-
ary of equal summed-similarity to the exemplars
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Fig. 7.2 Schematic illustration of the category structure tested
by Nosofsky and Palmeri (1997a, Experiment 1).
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Fig. 7.3 Data from Experiment 1 of Nosofsky and Palmeri
(1997a). (Top) Mean RTs for individual colors (RT proportional
to the size of the circle). (Bottom) Mean RTs averaged across all
colors as a function of grouped blocks of practice.

of Category A and Category B. Points falling to
the upper right have greater summed similarity to
Category A, and points falling to the lower left have
greater summed similarity to Category B. As can
be seen, the mean RTs tend to get faster as one
moves farther away from the boundary of equal
summed similarity. The bottom panel of Figure
7.3 provides another perspective on the data. This
panel plots the overall mean RT for all 12 colors for
each “grouped-block” of practice in the task, where
a grouped-block corresponds to five consecutive
individual blocks. It is evident that there is a
speed-up with practice, with the lion’s share of the
speed-up occurring during the early blocks.

To apply the EBRW model to these data, we first
derived a multidimensional scaling (MDS) solution
for the colors by having the participant provide
extensive similarity ratings between all pairs of the
colors. A two-dimensional scaling solution yielded a
good account of the similarity ratings. The solution
is depicted in the top panel of Figure 7.3, where the
center of each circle gives the MDS coordinates of
the color. We then used the EBRW model in combi-
nation with the MDS solution to simultaneously fit
the mean RTs associated with the individual colors
(Figure 7.3, top panel) as well as the aggregated
mean RTs observed as a function of grouped-blocks
of practice (Figure 7.3, bottom panel). Specifically,
the MDS solution provides the coordinate values
xik that enter into the EBRW model’s distance
function (Equation 1). For simplicity, in fitting the
model, we assumed that on each individual block
of practice, an additional token of each individual
exemplar was stored in memory with strength equal
to one. (To reduce the number of free parameters,
we set the background-element activation b equal
to zero.) The first step in the analysis was to
use the model to predict the mean RT for each
individual color in each individual block. Then,
for each individual color, we averaged the predic-
tions across Blocks 31–150 to predict the overall
individual-color mean RTs. Likewise, we averaged
the predicted mean RTs over all colors in each
grouped-block of practice to predict the speed-up
curves. We fitted the model by searching for the free
parameters that minimized the total sum of squared
deviations between predicted and observed mean
RTs across both data sets. These free parameters
included the overall sensitivity parameter c; an
attention-weight parameter w1(with w2 = 1 – w1);
and a response-threshold parameter +A (with +A =
|–B|). In addition, we estimated a mean residual-
time parameter μR; a scaling constant v for
transforming the number of steps in the random
walk into ms; and an individual step-time constant
α (see Nosofsky & Palmeri, 1997a, pp. 268–270 for
details).

The model-fitting results for the individual-
color RTs are displayed in Figure 7.4, which plots
observed against predicted mean RTs for each
individual color. The model provides a reasonably
good fit (r = 0.89), especially considering that it
is constrained to simultaneously fit the speed-up
curves. The model predicts these results because col-
ors far from the exemplar-based boundary (e.g., 2,
4, 7, and 10—see top panel of Figure 7.3) tend to be
similar only to exemplars from their own category.
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Fig. 7.4 Scatterplot of observed individual-color mean RTs
against the predictions from the EBRW model.

Thus, only exemplars from a single category are
retrieved, and the random walk marches in rapid
fashion to the appropriate response threshold. By
contrast, colors close to the boundary (e.g., 3, 9,
and 12) are similar both to exemplars from their
own category and to the contrast category. Thus,
exemplars from both categories are retrieved and the
random walk meanders back and forth, leading to
slow mean RTs.

The fits to the speed-up curves are shown along
with the observed data in the bottom panel of
Figure 7.3. Again, the model captures these data
reasonably well (r = 0.931). It predicts the speed-up
for essentially the same reason as in Logan’s (1988)
model: As practice continues, an increased number
of exemplars are stored in memory. The greater
the number of exemplars that race to be retrieved,
the faster are the winning retrieval times, so the
individual steps in the random walk take place more
quickly.3

Automaticity and Perceptual Expertise
The EBRW provides a general theory of cate-

gorization, automaticity, and the development of
perceptual expertise (Nosofsky & Palmeri, 1997a;
Palmeri, 1997; Palmeri, Wong, & Gauthier, 2004).
In some real-world domains, novices learn to
categorize objects by first learning to use a set
of explicit verbal rules. This novice categorization
can be a relatively slow, deliberate, attention-
demanding process. With experience, as people
develop perceptual expertise, categorization often

becomes fast and automatic. Logan (1988) gen-
erally attributed the development of automaticity
in cognitive skills to a shift from strategic al-
gorithmic processes to exemplar-based memory
retrieval. Palmeri (1997) specifically examined the
development of automaticity in categorization as a
shift from a rule-based process to an exemplar-based
process assumed by EBRW (see also Johansen &
Palmeri, 2002).

In Palmeri (1997, 1999), subjects were told to
use an explicit rule in a dot-counting categorization
task.They were asked to categorize random patterns
containing between six and eleven dots according to
numerosity and did so over multiple sessions. RTs
observed in the first session increased linearly with
the number of dots, as shown in Figure 7.5A. The
dot patternswere repeated across multiple sessions,
giving subjects an opportunity to develop auto-
maticity in the task. Indeed, RTs observed in the
13th session were flat with numerosity, a signature
of automaticity. In a subsequent transfer test, shown
in Figure 7.5B, new unrelated test patterns had
categorization RTs that were a linear function of
numerosity, just like the first session, and old
training patterns continued to be categorized with
the same RTs irrespective of numerosity, just like
the last session. Dot patterns of low or moderate
similarity to the training patterns were categorized
with RTs intermediate to the new unrelated and old
training patterns.

Categorization RTs over sessions and numerosity
were successfully modeled as a horse race between
an explicit dot-counting process, whose stochastic
finishing time increased linearly with the number
of dots in the pattern; and an exemplar-based
categorization process determined by the similarity
of a dot pattern to stored exemplars of patterns
previously categorized—an elaboration of EBRW.4

When few patterns have been experienced, catego-
rization is based entirely on the finishing times of
the explicit counting process, predicting increased
RTs with increased numerosity (Figure 7.5C). With
experience, the memory strength mj (Eq. 3) of
exemplars in EBRW increases, causing a faster
accumulation of perceptual evidence to a response
threshold. Faster categorizations based on exemplar
retrieval imply increased likelihood that those
categorizations finish more quickly than explicit
counting. With sufficient experience, EBRW fin-
ishes before counting for nearly all categorizations,
predicting flat RTs with numerosity. The similarity-
based retrieval in EBRW also predicts the transfer
results, as shown in Figure 7.5D.

148 b a s i c c o g n i t i v e s k i l l s



(A) Observed Data

Numerosity
6 7 8 9 10 11

Numerosity
6 7 8 9 10 11

Numerosity
6 7 8 9 10 11

Numerosity
6 7 8 9 10 11

R
es

po
ns

e 
T

im
e 

(m
s)

500

1000

1500

2000

2500

3000

13
10
6

5

4

3

2

1

(B) Observed Data

R
es

po
ns

e 
T

im
e 

(m
s)

500

1000

1500

2000

2500

3000

Session 13

Session 1

Old

Low

Moderate

Unrelated

(C) EBRW Predictions

R
es

po
ns

e 
T

im
e

500

1000

1500

2000

2500

3000

10
13

6
5
4

3

2

1

(D) EBRW Predictions

Pr
ed

ic
te

d 
R

es
po

ns
e 

T
im

e

500

1000

1500

2000

2500

3000

Old

Moderate

Low

Unrelated

Fig. 7.5 Data from Experiment 1 of Palmeri (1997). Subjects categorized dot patterns varying in numerosity over thirteen training
sessions and these were followed by a transfer test. (A) Response time (ms) as a function of numerosity in each training session (1-13).
(B) Response time (ms) as a function of numerosity during transfer for old patterns, new unrelated patterns, and patterns of low and
moderate similarity to old patterns. (C and D) EBRW predictions.

A shift from rules to exemplars is just one
common characteristic of the development of
perceptual expertise that EBRW can help explain
(see Palmeri et al., 2004; Palmeri & Cottrell,
2009). As one other brief example, consider
the well-known basic-level advantage. The seminal
work of Rosch, Morris, Gray, Johnson, & Boyes-
Braem (1976) showed that people are faster to
verify the category of an object at an intermediate
basic level of abstraction (“bird”) than at more
superordinate (“animal”) or subordinate (“Northern
Cardinal”) levels. With expertise, subordinate-level
categorizations are verified as quickly as basic-level
categorizations (Tanaka & Taylor, 1991). One
explanation for the basic-level advantage and related
findings in novices is that basic-level categorizations

reflect an initial stage of visual processing, perhaps
as early as object segmentation (Grill-Spector &
Kanwisher, 2005; see also Jolicoeur, Gluck, & Koss-
lyn, 1984). For novices, subordinate categorizations
are slow because basic-level categorizations must
be made first. For experts, the stage of basic-level
categorization is somehow bypassed.

EBRW provides an alternative account (see
Mack & Palmeri, 2011; Mack, Wong, Gauthier,
Tanoka, & Palmeri, 2007). Faster or slower
categorization at different levels of abstraction
need not reflect stages of processing but may
instead reflect differences in the speed of evidence
accumulation in the random walk. Mack et al.
(2007) simulated basic-level and subordinate-level
categorization by novices and experts. For these
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simulations, subordinate categories were simply
assumed to be individual identities of objects within
clusters that were the basic-level categories. For
moderate levels of the sensitivity parameter, c,
which reflects the overall discriminability in the
psychological space (Eq. 2), a basic-level advantage
was predicted. But for high levels of sensitivity, re-
flecting the greater discriminability that may come
with perceptual expertise, equivalent RTs for the
subordinate and basic levels were predicted. Further
empirical evidence has supported the hypothesisthat
differences in RTs at different levels of abstraction
reflect how quickly perceptual evidence accumulates
rather than differences in discrete visual processing
stages (e.g., Mack, Gauthier, Sadr, & Palmeri, 2008;
et al., 2009; Mack & Palmeri, 2010).

Using Probabilistic Feedback
Manipulations to Contrast the Predictions
from the EBRW Model and Alternative
Models

One the major alternative modeling approaches
to predicting multidimensional classification RTs
arises from a general framework known as “decision-
boundary theory” (e.g., Ashby & Townsend, 1986).
According to this framework, people construct
decision boundaries for dividing a perceptual space
into category response regions. Test items are
assumed to give rise to noisy representations in the
multidimensional perceptual space. If a perceived
representation falls in Region A of the space, then
the observer classifies the item into Category A.

Most past approaches to generating RT predic-
tions from decision-boundary theory have involved
applications of the RT-distance hypothesis (Ashby,
Boynton, & Lee, 1994). According to this hypoth-
esis, RT is a decreasing function of the distance of a
stimulus from the decision boundary. More recent
models that formalize the operation of decision
boundaries posit perceptual-sampling mechanisms
that drive random-walk or diffusion processes,
similar to those of the EBRW model (e.g.,
Ashby, 2000; Fific, Little, & Nosofsky, 2010;
Nosofsky & Stanton, 2005). For example, in
Nosofsky and Stanton’s (2005, p. 625) approach,
on each step of a random walk, a percept is
sampled randomly from the perceptual distribution
associated with a presented stimulus. If the percept
falls in Region A (as defined by the decision
boundary), then the random walk steps toward
threshold A, otherwise it steps toward threshold –
B. The perceptual-sampling process continues until
either threshold is reached. Such models provide

process interpretations for why RT should get faster
(and accuracy should increase) as distance of a
stimulus from a decision boundary increases.

According to the EBRW model and decision-
boundary models, the nature of the memory
representations that are presumed to underlie cat-
egorization are dramatically different (i.e., stored
exemplars versus boundary lines). Despite this dra-
matic difference, it is often difficult to distinguish
between the predictions from the models. The
reason is that distance-from-boundary and relative
summed-similarity tend to be highly correlated in
most experimental designs. For example, as we
already described with respect to the Figure 7.3
(top panel) structure, items far from the boundary
tend to be highly similar to exemplars from their
own category and dissimilar to exemplars from the
contrast category. Thus, both the distance-from-
boundary model and the EBRW model tend to
predict faster RTs and more accurate responding as
distance from the boundary increases.

In one attempt to discriminate between the RT
predictions of the models, Nosofsky and Stanton
(2005) conducted a design that aimed to decouple
distance-from-boundary and relative summed simi-
larity (for a related approach, see Rouder & Ratcliff,
2004). The key idea in the design was to make use
of probabilistic feedback manipulations associated
with individual stimuli in the space. The design
is illustrated in Figure 7.6. The stimuli were
again a set of 12 Munsell colors of a constant
hue, varying in their brightness and saturation.
As illustrated in the figure, Colors 1–6 belonged
to Category A, whereas Colors 7–12 belonged to
Category B. To help motivate the predictions, we
have drawn a diagonal linear decision boundary
for separating the two categories of colors into
response regions. Given reasonable assumptions
(for details, see Nosofsky & Stanton, 2005), this
boundary is the optimal (ideal-observer) boundary
according to decision-boundary theory. That is, it
is the boundary that would maximize an observer’s
percentage of correct categorization decisions. In
generating predictions, decision-bound theorists
often assume that observers will use a boundary
with an optimal form. However, we will consider
more general possibilities later in this section.

The key experimental manipulation was that,
across conditions, either Stimulus Pair 4/8 or
Stimulus Pair 5/9 received probabilistic feedback,
whereas all other stimuli received deterministic
feedback. Specifically, in Condition 4/8, Stimulus 4
received Category-A feedback with probability 0.75
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but received Category- B feedback with probability
0.25; whereas Stimulus 8 received Category- B
feedback with probability 0.75 and Category- A
feedback with probability 0.25. Analogous proba-
bilistic feedback assignments were given to Stimuli
5 and 9 in Condition 5/9. In each condition, we
refer to the pair that received probabilistic feedback
as the probabilistic pair and to the pair that received
deterministic feedback as the deterministic pair.

The key conceptual point is that, because of
the symmetric probabilistic assignment of stimuli
to categories, the optimal boundary for partitioning
the space into response regions is the same diagonal
linear decision boundary that we have already
illustrated in Figure 7.6. There is no way to
adjust the boundary to achieve more accurate
responding in the face of the probabilistic feedback
assignments. Furthermore, because the probabilistic
and deterministic pairs are an equal distance from
the decision boundary, the most natural prediction
from that modeling approach is that RTs for
the probabilistic and deterministic pairs should be
the same.

By contrast, the EBRW model predicts that the
probabilistic pair should be classified more slowly
(and with lower accuracy) than the deterministic
pair. For example, in Condition 4/8, in cases
in which stimulus 4 is presented and tokens of
exemplar 4 are retrieved from memory, 0.75 of
the steps in the random walk will move in the
direction of threshold +A, but 0.25 of the steps will
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Fig. 7.6 Schematic illustration of the category structure used
in Nosofsky and Stanton’s (2005) probabilistic-feedback exper-
iment.

move in the direction of threshold –B. By contrast,
presentations of the deterministic pair will result in
more consistent steps of the random walk, leading
to faster RTs and more accurate responding.

Across two experiments (in which the instruc-
tions varied the relative emphasis on speed versus
accuracy in responding), the qualitative pattern
of results strongly favored the predictions from
the EBRW model compared to the distance-from-
boundary model. In particular, in both experi-
ments, observers responded more slowly and with
lower accuracy to the probabilistic pair than to
the deterministic pair. These results were observed
at both early and late stages of testing and were
consistent across the majority of the individual
participants. As a converging source of evidence,
the EBRW model also provided better overall
quantitative fits to the individual-subject choice-
probability and RT data than did the distance-
from-boundary model, including versions of the
latter model in which the slope and y-intercept of
the linear boundary were allowed to vary as free
parameters.

As suggested by Nosofsky and Stanton (2005,
p. 623), the results were particularly intriguing
because they pointed toward a stubborn form
of suboptimality in human performance: In the
Figure 7.6 design, subjects would perform optimally
by simply ignoring the probabilistic feedback and
classifying objects based on the linear decision
boundary. Nevertheless, despite being provided
with monetary payoffs for correct responses, sub-
jects’ behavior departed from that optimal strategy
in a manner that was well predicted by the
EBRW model. Similar forms of evidence that favor
the predictions from the EBRW model have been
reported in related studies that manipulated the
overall familiarity of individual study exemplars
rather than probabilistic feedback assignments (e.g.,
Nosofsky & Palmeri, 1997a; Verguts, Storms, and
Tuerlinckx, 2003).

Although the focus of Nosofsky and Stanton’s
(2005) study was to contrast predictions from
the EBRW model and decision-bound models, the
designs also yielded sharp contrasts between the
EBRW model and prototype models.5 Specifically,
Nosofsky and Stanton (2005, p. 610) formulated a
prototype-based random-walk (PBRW) model, anal-
ogous in all respects to the EBRW model, except
that the category representation was presumed to
correspond to the central tendency of each category
distribution rather than to the individual exemplars.
It turns out that for the stimulus spacings and
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probabilistic stimulus-category assignments used in
the Figure 7.6 design, the central tendency of each
category is equidistant to the probabilistic and
deterministic stimulus pairs. Thus, the PBRW
model predicted incorrectly that those pairs would
show identical choice probabilities and RTs. Not
surprisingly, therefore, the PBRW yielded far worse
quantitative fits to the full sets of choice-probability
and RT data than did the EBRW model.

Extending the EBRW Model to Predict
Old-New Recognition RTs
Overview

As noted in the introduction, a central goal of ex-
emplar models is to explain not only categorization,
but other fundamental cognitive processes such
as old-new recognition. The GCM has provided
successful accounts of old-new recognition choice
probabilities in wide varieties of experimental
situations. When applied to recognition, the GCM
assumes that each item from a study list is stored
as a distinct exemplar in memory. The observer is
presumed to sum the similarity of a test item to
these stored exemplars. The greater the summed
similarity, the more familiar is the test item,
so the greater is the probability with which the
observer responds “old.” Indeed, the GCM can
be considered a member of the general class of
“global matching” models of old-new recognition
(e.g., Clark & Gronlund, 1996; Gillund & Shiffrin,
1984; Hintzman, 1988; Murdock, 1982). Within
this broad class, an important achievement of the
model is that it predicts fine-grained differences
in recognition probabilities for individual items
based on their fine-grained similarities to individual
exemplars in the study set (e.g., Nosofsky, 1988,
1991; Nosofsky & Zaki, 2003).

Just as has been the case for categorization, a
major development in recent years has involved
extensions of the GCM in terms of the EBRW
model to allow it to account for recognition RTs
(Donkin & Nosofsky, 2012a,b; Nosofsky, Little,
Donkin, & Fific, 2011; Nosofsky & Stanton,
2006). In this section we describe these formal
developments and illustrate applications to variants
and extensions of the classic Sternberg (1966) short-
term probe-recognition paradigm. In this paradigm,
subjects are presented on each trial with a short list
of items (the memory set) and are then presented
with a test probe. The subjects judge, as rapidly
as possible, while minimizing errors, whether the
probe occurred in the memory set. Fundamental
variables that are manipulated in the paradigm

include the size of the memory set; whether the test
probe is old (a “positive” probe) or new (a “negative”
probe); and, if old, the serial position with which
the positive probe occurred in the memory set.

Whereas in the standard version of the Sternberg
paradigm the to-be-recognized items are generally
highly distinct entities, such as alphanumeric char-
acters, recent extensions have examined recognition
performance in cases involving confusable stimuli
embedded in a continuous-dimension similarity
space (e.g., Kahana & Sekuler, 2002). We focus
on this type of extended similarity-based paradigm
in the initial part of this section; however, we will
illustrate applications of the EBRW model to the
more standard paradigm as well.

The Formal Model
The EBRW-recognition model makes the same

representational assumptions as does the categoriza-
tion model: (a) Exemplars are conceptualized as
occupying points in a multidimensional similarity
space; (b) similarity is a decreasing function of
distance in the space (Eqs. 1 and 2); (c) activation
of the exemplars is a joint function of their memory
strength and their similarity to the test probe
(Equation 3); and (d) the stored exemplars race
to be retrieved with rates proportional to their
activations (Eq. 4).

In our previous applications to categorization,
a single global level of sensitivity (c in Eq. 2)
was assumed that applied to all exemplar traces
stored in long-term memory. In application to
short-term recognition paradigms involving high-
similarity lures, however, allowance is made for a
form of exemplar-specific sensitivity. In particular,
an observer’s ability to discriminate between test
item i and a nonmatching exemplar-trace j will
almost certainly depend on the recency with
which exemplar j was presented: Discrimination
is presumably much easier if an exemplar was just
presented than if it was presented in the distant past.
In the version of the model applied by Nosofsky
et al. (2011), a separate sensitivity parameter cj
was estimated for each individual lag j on the
study list, where lag is counted backward from
the presentation of the test probe to the memory-
set exemplar. For example, for the case in which
memory set-size is 4, the exemplar in the fourth
serial position has Lag 1, the exemplar in the third
serial position has Lag 2, and so forth.

Likewise, the memory strengths of the individual
exemplars (mj) were also assumed to depend on
lag j: Presumably, the more recently an exemplar
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was presented on the study list, the greater its
memory strength (e.g., McElree & Dosher, 1989;
Monsell, 1978). (Although the effects are smaller, in
modeling short-term recognition with the EBRW,
allowance is also typically made for a primacy effect
on memory strength. The memory strength of the
item in the first serial position of the memory set
is given by PM · mj , where mj is the memory
strength for an item with lag j, and PM is a
primacy-multiplier parameter.)

To adapt the EBRW model to the domain of
old-new recognition, it is assumed that the observer
establishes what are termed “criterion elements” in
the memory system. These elements are similar to
the “background elements” used for modeling the
early stages of category learning. Just as is the case
for the stored exemplars, upon presentation of a test
probe, the criterion elements race to be retrieved.
However, whereas the retrieval rates of the stored
exemplars vary with their lag-dependent memory
strengths and their similarity to the test probe,
the retrieval rates of the criterion elements are
independent of these factors. Instead, the criterion
elements race with some fixed rate β, independent
of the test probe that is presented. The setting of β
is presumed to be, at least in part, under the control
of the observer.

Finally, the retrieved exemplars and criterion
elements drive a random-walk process that governs
old-new recognition decisions. The observer sets
response thresholds +OLD and –NEW that estab-
lish the amount of evidence needed for making an
“old” or a “new” response. On each step of the
random walk, if an old exemplar wins the retrieval
race, then the random-walk counter takes a step
in the direction of the +OLD response threshold;
whereas if a criterion element wins the race, then the
counter takes a step in the direction of the –NEW
threshold. The retrieval process continues until one
of the thresholds is reached.

Given the processing assumptions outlined ear-
lier, then on each step of the random walk, the
probability that the counter steps in the direction
of the +OLD threshold is given by

pi = F i/(F i+β), (7)

where Fi gives the summed activation (“familiarity”)
of the test probe to all old exemplars on the study
list (and β is the fixed setting of criterion-element
activation). Note that test probes that match
recently presented exemplars (with high memory
strengths) will cause high summed familiarity (Fi),
leading the random walk to march quickly to the

+OLD threshold and resulting in fast old RTs.
By contrast, test probes that are highly dissimilar
to the memory-set items will not activate the
stored exemplars, so only criterion elements will
be retrieved. In this case, the random walk will
march quickly to the –NEW threshold, resulting in
fast new RTs. Through experience in the task, the
observer is presumed to learn an appropriate setting
of the criterion-element activation β, such that
summed activation (Fi) tends to exceed β when the
test probe is old, but tends to be less than β when
the test probe is new. In this way, the random walk
will tend to step toward the appropriate response
threshold on trials in which old versus new probes
are presented.

Experimental Tests
In Nosofsky et al.’s (2011) initial experiment for

testing the model, the stimuli were a set of 27
Munsell colors that varied along the dimensions of
hue, brightness, and saturation. Similarity-scaling
procedures were used to derive a precise MDS
solution for the colors.

The design of the probe-recognition experiment
involved a broad sampling of different list structures
to provide a comprehensive test of the model. There
were 360 lists in total. The size of the memory
set on each trial was either 1, 2, 3 or 4 items,
with an equal number of lists at each set size. For
each set size, half the test probes were old and half
were new. In the case of old probes, the matching
item from the memory set occupied each serial
position equally often. To create the lists, items
were randomly sampled from the full set of stimuli,
subject to the constraints described earlier. Thus, a
highly diverse set of lists was constructed, varying
not only in set size, old/new status of the probe,
and serial position of old probes, but also in the
similarity structure of the lists.

Because the goal was to predict performance at
the individual-subject level, three subjects were each
tested for approximately 20 one-hour sessions, with
each of the 360 lists presented once per session.
As it turned out, each subject showed extremely
similar patterns of performance, and the fits of the
EBRW model yielded similar parameter estimates
for the three subjects. Therefore, for simplicity, and
to reduce noise in the data, we report the results
from the analysis of the averaged subject data.

In the top panels of Figure 7.7 we report
summary results from the experiment. The top-
right panel reports the observed mean RTs plotted
as a function of: (a) set size, (b) whether the probe
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Fig. 7.7 Summary data from the short-term memory experiment of Nosofsky, Little, Donkin, and Fific (2011). (Top) Observed error
rates and mean RTs. (Bottom) Predictions from the EBRW model.

was old or new (i.e., a lure), and (c) the lag with
which old probes appeared in the memory set. For
old probes, there was a big effect of lag: In general,
the more recently a probe appeared on the study list,
the shorter was the mean RT. Indeed, once one takes
lag into account, there is little remaining effect of set
size on the RTs for the old probes. That is, as can be
seen, the different set size functions are nearly over-
lapping. The main exception is a persistent primacy
effect, in which the mean RT for the item at the
longest lag for each set size is “pulled down.” (The
item at the longest lag occupies the first serial posi-
tion of the list.) By contrast, for the lures, there is a
big effect of set size, with longer mean RTs as set size
increases. The mean proportions of errors for the
different types of lists, shown in the top-left panel of
Figure 7.7, mirror the mean RT data just described.

The goal of the EBRW modeling, however,
was not simply to account for these summary
trends. Instead, the goal was to predict the choice
probabilities and mean RTs observed for each
of the individual lists. Because there were 360
unique lists in the experiment, this goal entailed
simultaneously predicting 360 choice probabilities
and 360 mean RTs. The results of that model-fitting
goal are shown in the top and bottom panels of

Figure 7.8. The top panel plots, for each individual
list, the observed probability that the subjects
judged the probe to be “old” against the predicted
probability from the model. The bottom panel does
the same for the mean RTs. Although there are a
few outliers in the plots, overall the model achieves
a good fit to both data sets, accounting for 96.5%
of the variance in the choice probabilities and for
83.4% of the variance in the mean RTs.

The summary-trend predictions that result from
these global fits are shown in the bottom panels
of Figure 7.7. It is evident from inspection that
the EBRW does a good job of capturing these
summary results. For the old probes, it predicts
the big effect of lag on the mean RTs, the nearly
overlapping set-size functions, and the facilitation
in RT with primacy. Likewise, it predicts with good
quantitative accuracy the big effect of set size on the
lure RTs. The error-proportion data (left panels of
Figure 7.7) are also well predicted, with the main
exception that a primacy effect was predicted but
not observed for the size-2 lists.

The explanation of these results in terms of
the EBRW model is straightforward. According
to the best-fitting parameters from the model (see
Nosofsky et al., 2011, Table 2), more recently
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presented exemplars had greater memory strengths
and sensitivities than did less recently presented
exemplars. From a psychological perspective, this
pattern seems highly plausible. For example,
presumably, the more recently an exemplar was
presented, the greater should be its strength in
memory. Thus, if an old test probe matches the
recently presented exemplar, it will give rise to
greater overall activation, leading to faster mean
old RTs. In the case of a lure, as set size increases,
the overall summed activation yielded by the lure
will also tend to increase. This pattern arises
both because a greater number of exemplars will
contribute to the sum, and because the greater the
set size, the higher is the probability that a least
one exemplar from the memory set will be highly
similar to the lure. As summed activation yielded
by the lures increases, the probability that the
random walk takes correct steps toward the –NEW
threshold decreases, so mean RTs for the lures get
longer.

Beyond accounting well for these summary
trends, inspection of the detailed scatterplots in
Figure 7.8 reveals that the model accounts for
fine-grained changes in choice probabilities and
mean RTs depending on the fine-grained similarity
structure of the lists. For example, consider the
choice-probability plot (Figure 7.8, top panel) and
the Lure-Size-4 items (open diamonds). Whereas
performance for those items is summarized by a
single point on the summary-trend figure (Figure
7.7), the full scatterplot reveals extreme variability
in results across different tokens of the Lure-Size-
4 lists. In some cases the false-alarm rates associated
with these lists are very low, in other cases moderate,
and in still other cases the false-alarm rates exceed
the hit rates associated with old lists. The EBRW
captures well this variability in false-alarm rates. In
some cases, the lure might not be similar to any of
the memory-set items, resulting in a low false-alarm
rate; whereas in other cases the lure might be highly
similar to some of the memory-set items, resulting
in a high false-alarm rate.

The application reviewed earlier involved a
version of a short-term probe-recognition paradigm
that used confusable stimuli embedded in a
continuous-dimension space. However, the EBRW
model has also been applied successfully to more
standard versions of such paradigms that involve
easy-to-discriminate stimuli such as alphanumeric
characters. In those applications, instead of adopt-
ing MDS approaches, a highly simplified model
of similarity is used: The similarity of a probe to

itself is set equal to one, whereas the similarity
between a probe and any nonmatching item is
set equal to a free parameter s. Not only has
this simple version of the EBRW model captured
many of the classic patterns of results involving
mean RTs in such paradigms, it also accounts
successfully for the detailed RT-distribution data
that have been observed (Nosofsky et al., 2011;
Donkin & Nosofsky, 2012a,b).

Furthermore, applications of the EBRW model
to both continuous-similarity and discrete versions
of the probe-recognition paradigm have led to
the discovery of an interesting regularity involving
memory strength. As noted earlier, in the initial
tests of the model, separate-memory strength
parameters were estimated corresponding to each
individual lag on the study list. It turns out,
however, that the estimated memory strengths
follow almost a perfect power function of this lag.
For example, in an experiment reported by Donkin
and Nosofsky (2012a), participants studied 12-item
lists consisting of either letters or words, followed by
a test probe. Separate RT-distribution data for hits
and misses for positive probes were collected at each
study lag. (RT-distribution data for false alarms and
correct rejections for negative probes were collected
as well.) The EBRW model provided an excellent
quantitative account of this complete set of detailed
RT-distribution and choice-probability data.6 The
discovery that resulted from the application of the
model is illustrated graphically in Figure 7.9. The
figure plots, for each of four individual participants
who were tested, the estimated memory-strength
parameters against lag. As shown in the figure, the
magnitudes of the memory strengths are extremely
well captured by a simple power function. Inter-
estingly, other researchers have previously reported
that a variety of empirical forgetting curves are
well described as power functions (e.g., Anderson
& Schooler, 1991; Wickelgren, 1974; Wixted &
Ebbesen, 1991). For example, Wixted and Ebbesen
(1991) reported that diverse measures of forgetting,
including proportion correct of free recall of word
lists, recognition judgments of faces, and savings
in relearning lists of nonsense syllables, were well
described as power functions of the retention inter-
val. Wixted (2004) considered a variety of possible
reasons for the emergence of these empirical power-
function relations and concluded that the best
explanation was that the strength of the mem-
ory traces themselves may exhibit power-function
decay. The model-based results from Donkin
and Nosofsky (2012a,b) lend support to Wixted’s
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suggestion and now motivate the new research
goal of unpacking the detailed psychological and
neurological mechanisms that give rise to this
discovered power law of memory strength.

Conclusions and New Research Goals
In sum, the EBRW is an important candidate

model for explaining how the process of catego-
rization unfolds over time. The model combines
assumptions involving exemplar-based category
representation and processes of evidence accumu-
lation within a unified framework to account for
categorization and recognition choice-probability
and RT data. As reviewed in this chapter, it accounts
successfully for a wide variety of fundamental effects
in these domains including effects of similarity,
distance-from-boundary, familiarity, probabilistic
feedback, practice, expertise, set size, and lag.
Although we were able to sample only a limited
number of example applications in this single
chapter, we should clarify that the exemplar model
has been applied in a wide variety of stimulus
domains and to varied category and study-list
structures. The stimulus domains include colors,
dot patterns, multidimensional cartoon drawings,
geometric forms, schematic faces, photographs of

faces, alphanumeric characters, words, and pictures
of real-world objects. The category structures
include small collections of continuous-dimension
stimuli separated by boundaries of varying de-
grees of complexity, normally distributed category
structures, high-dimensional stimuli composed of
discrete dimensions, and categories generated from
statistical distortions of prototypes (e.g., see Richler
& Palmeri, 2014). Furthermore, growing neural
evidence ranging from single-unit records to func-
tional brain imaging supports a number of the
processing assumptions embodied in models like
EBRW (see Box 1). Finally, as illustrated in our
chapter, a key theme of the theoretical approach is
that, despite the dramatically different task goals,
the processes of categorization and old-new recog-
nition may be closely related (but see Box 2 for dis-
cussion of a major theoretical debate regarding this
issue in the cognitive-neuroscience literature). A
likely reason for the model’s success is that it builds
on the strengths of classic previous approaches for
understanding processes of choice and similarity,
the development of automaticity, and evidence
accumulation in decision-making and memory.

Beyond accounting for categorization and recog-
nition, we believe that the EBRW model can serve
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Box 1 Neural Evidence Supports
Mechanistic Assumptions in EBRW.
EBRW proposes many mechanistic assump-
tions, such as exemplar representations, atten-
tion weights along relevant dimensions, and
accumulation of perceptual evidence. In most
modeling, these are supported by evaluating
predictions of behavioral data like accuracy and
RTs. But we can now evaluate particular mech-
anistic assumptions using relevant neural data
from brain regions hypothesized to instantiate
those mechanisms.

For example, Mack, Preston and Love,
(2013; see also Palmeri, 2014) turned to
patterns of brain activity measured with fMRI
to evaluate whether the brain represents cat-
egories using exemplars or prototypes. Sub-
jects learned to classify objects into one
of two categories and then in the scanner
were tested on training and transfer objects
without feedback (Medin & Schaffer, 1978).
Typical fMRI analyses would correlate brain
activity with stimuli or responses, for exam-
ple highlighting regions that modulate with
categorization difficulty. Instead, Mack and
colleagues first fitted exemplar and prototype
models to individual subjects’ categorization
responses; despite the fact that these models
made fairly similar behavioral predictions, they
differed in patterns of summed similarity to
their respective exemplar or prototype repre-
sentations. Mack and colleagues showed that
patterns of individual subjects’ brain activ-
ity were more consistent with patterns of
summed similarity predicted by an exemplar
model than those predicted by a prototype
model. According to exemplar models, learn-
ing to categorize objects can cause selective
attention to relevant psychological dimensions,
stretching psychological space to better allow
subjects to discriminate between members of
contrasting categories. Neurophysiology and
fMRI have suggested that category-relevant
dimensions can be emphasized in visual cortex.
After monkeys learned to categorize multidi-
mensional objects, neurons in inferotemporal
cortex were more sensitive to variations along
a relevant dimension than an irrelevant dimen-
sion (De Baene, Ons, Wagemans, & Vogels,
2008; Sigala and Logothetis 2002; see also
Gauthier & Palmeri, 2002). Similarly, after
people learned object categories, psychological

stretching of relevant dimensions was accompa-
nied by neural stretching of relevant dimensions
measured by fMRI (Folstein, Palmeri, &
Gauthier, 2013; see also Folstein, Gauthier, &
Palmeri, 2012).

Finally, mathematical psychology and systems
neuroscience have converged on accumulation
of perceptual evidence as a general theoret-
ical framework to explain the time course
of decision making (see Palmeri, Schall, &
Logan, this volume). Some neurons show
dynamics predicted by accumulator models,
other neurons show activity consistent with
encoded perceptual evidence to be accumulated
over time, and an ensemble of neurons predicts
the time course of decisions made by awake
behaving monkeys (e.g., Purcell, Schall, Logan,
& Palmeri, 2012; Zandbelt, Purcell, Palmeri,
Logan, Schall, 2014).

Box 2 The Exemplar Model Accounts
for Dissociations Between
Categorization and Recognition
Demonstrated in the
Cognitive-Neuroscience Literature.
Interestingly, in contrast to the theme empha-
sized in this chapter, the prevailing view in the
cognitive neuroscience literature is that separate
cognitive/neural systems mediate categorization
and recognition (Smith, 2008). The main
source of evidence involves the demonstration
of intriguing dissociations between categoriza-
tion and recognition. For example, studies
have demonstrated that amnesics with poor
recognition memory perform at normal levels
in categorization tasks involving the same
types of stimuli (e.g., Knowlton & Squire,
1993). Nevertheless, formal modeling analyses
have indicated that even these dissociations
are consistent with the predictions from the
exemplar model (e.g., Nosofsky, Denton,
Zaki, Murphy-Knudson, & Unverzagt 2012;
Nosofsky & Zaki, 1998; Palmeri & Flan-
ery, 1999, 2002; Zaki, Nosofsky, Jessup,
& Unverzagt, 2003). The general approach
in the modeling was to assume that am-
nesics have reduced ability to discriminate
among distinct exemplars in memory. This
reduced discriminability is particularly detri-
mental to old-new recognition, which may
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Box 2 Continued
require the observer to make fine-grained dis-
tinctions between old versus new items. How-
ever, the reduced discriminability is not very
detrimental in typical tasks of categorization,
which may require only gross-level assessments
of similarity to be made. A more direct chal-
lenge to the exemplar-model hypothesis comes
from brain-imaging studies that show that dis-
tinct brain regions are activated when observers
engage in recognition vs. categorization tasks
(Reber et al., 1998a,b). Exemplar theorists have
responded, however, by providing evidence
that these brain-imaging dissociations may not
reflect the operation of separate neural systems
devoted to categorization versus recognition per
se. Instead, the brain-imaging dissociations may
reflect changes in stimulus-encoding strategies
across task situations (Gureckis, James, &
Nosofsky, 2011), differences in the precise
stimuli that are tested (Nosofsky, Little, &
James, 2012; Reber et al., 2003), as well
as adaptive changes in parameter settings
that allow observers to meet the competing
task goals of categorization versus recognition
(Nosofsky et al., 2012).

as a useful analytic device for assessing human
performance. For example, note that Ratcliff ’s
(1978) diffusion model has been applied to analyze
choice behavior in various special populations,
including elderly adults, sleep-deprived subjects,
and so forth (see Chapter 2 of this volume).
The model-based analyses provide a deeper under-
standing of the locus of the cognitive/perceptual
deficits in such populations by tracing them to
changes in diffusion-model drift rates, response-
threshold settings, or residual times. The EBRW
model has potential to reveal even more fine-grained
information along these lines. For example, in
that model, the random-walk step probabilities
(i.e., drift rates) emerge from cognitive/perceptual
factors such as overall sensitivity, attention-weight
settings, and memory strengths of stored exemplars,
each of which can be measured by fitting the
model to data obtained in suitable categorization
and recognition paradigms. Although exemplar
models have been applied to help interpret the
behavior of amnesic subjects and patients with
mild memory-based cognitive impairment (see
Box 2), we have only scratched the surface of such
potential applications to many more clinical groups.

Finally, an important theme in the categorization
literature is that there may be multiple systems of
categorization (e.g., Ashby, Alfonso-Reese, Turken,
& Waldron, 1998; Erickson & Kruschke, 1998;
Johansen & Palmeri, 2002; Nosofsky, Palmeri, &
McKinley, 1994). A classic idea, for example, is that
many categories may be represented and processed
by forming and evaluating logical rules. In some
modern work that pursues this avenue, researchers
have considered the RT predictions from logical-
rule models of classification. Furthermore, such
approaches have been used to develop sharp con-
trasts between the predictions of the ERBW model
and rule-based forms of category representation and
processing (Fific, Little, & Nosofsky, 2010; Lafond,
Lacouture, & Cohen, 2009; Little, Nosofsky,
& Denton, 2011). In domains involving highly
separable-dimension stimuli in which the category
structures can be described in terms of exceedingly
simple logical rules, evidence has been mounting
that the logical-rule models provide better accounts
of the detailed patterns of RT data than does
the EBRW model. An important target for future
research is to develop a deeper understanding of
these multiple forms of categorization, to learn
about the experimental factors that promote the
use of each strategy, and to explain the manner in
which exemplar-based and rule-based systems may
interact.
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Notes
1. In the context of the GCM, the parameter γ is referred to

as a response-scaling parameter. When γ =1, observers respond by
“probability-matching” to the relative summed similarities. As γ
grows greater than 1, observers respond more deterministically
with the category that yields the greater summed similarity
(Ashby & Maddox, 1993; McKinley & Nosofsky, 1995).

2. The version of the EBRW model described in this chapter
is applicable to “integral-dimension” stimuli, which are encoded
and perceived holistically. A common example of such
integral-dimension stimuli are colors varying in hue, brightness,
and saturation. Because there has been extensive previous
scaling work indicating that similarity relations among these
stimuli are extremely well described in terms of these
dimensions, we often use these stimuli in our tests of the EBRW
model. An extended version of the EBRW model has also been
developed that is applicable to separable-dimension stimuli
(Cohen & Nosofsky, 2003). In this version, rather than
encoding stimuli in holistic fashion, the encoding of individual
stimulus dimensions is a stochastic process, and similarity
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relations between a test item and the stored exemplars change
dynamically during the time course of processing (see also
Lamberts, 2000).

3. Because accuracies were near ceiling in the present
experiment, we focused our analysis primarily on the patterns of
RT data. However, in a follow-up study, Nosofsky and
Alfonso-Reese (1999) tested conditions that allowed
examination of how both speed and accuracy changed during
the early stages of learning. By including the
background-activation parameter b in its arsenal, the EBRW
model provided good quantitative fits to not only the speed-up
in mean RTs, but to the improvements in choice-accuracy data
as well. (As noted by Nosofsky and Palmeri, 1997a, p. 291, with
b=0, the EBRW model does not predict changes in response
accuracy.)

4. The original EBRW model (Nosofsky & Palmeri, 1997a)
applies to two-alternative forced- choice responses. There is a
single accumulator whose value increases or decreases as
evidence accumulates in the random walk until an upper or
lower response threshold is reached. Numerosity judgments in
Palmeri (1997) permitted six possible responses, so EBRW was
extended to allow multiple alternatives. Each response
alternative was associated with its own counter, so with six
numerosity responses there were six counters. Whenever an
exemplar was retrieved with the label associated with a particular
counter, the value of that counter was incremented. A response
was made whenever the value of one of the counters exceeded all
the rest by some relative amount. With only two alternatives,
this multiple counter model with a relative threshold response
rule generally mimics a standard random-walk model with one
accumulator with a positive and negative threshold.

5. There is a long history of debate, too extensive to be
reviewed in this chapter, between the proponents of exemplar
and prototype models. For examples of recent research that has
argued in favor of the prototype view, see Minda and Smith
(2001), Smith and Minda (1998, 2000) and Smith (2002). For
examples from the exemplar perspective, see
Nosofsky (2000), Nosofsky and Zaki (2002), Palmeri and
Flanery (2002), and Zaki and Nosofsky (2007).

6. The version of the exemplar-recognition model reported
by Donkin and Nosofsky (2012a) assumed a linear-ballistic
accumulation process (Brown & Heathcote, 2008) instead of a
random-walk accumulation process. However, the same
evidence for a power-law relation between memory strength and
lag was obtained regardless of the specific accumulation process
that was assumed. We should note as well that, in fitting
complete RT distributions for correct and error responses, such
as occurred in the Donkin and Nosofsky (2012a) experiment,
the exemplar model makes provision for drift-rate variability
and response-threshold variability across trials (e.g, Donkin &
Nosofsky, 2012a; Nosofsky & Stanton, 2006), in a manner
analogous to the approach used in Ratcliff ’s diffusion model
(e.g, Ratcliff, Van Zandt, & McKoon, 1999).

Glossary
Attention-weight parameters: a set of parameters in the
GCM and EBRW models that describe the extent to which
each dimension is weighted when computing distances
among objects.

Automaticity: ability to perform some task at a satisfactory
level without requiring conscious attention or effort and
without limits in capacity.

Background element: a hypothetical construct in the
GCM and EBRW models that describes initial background
noise in people’s memories for members of alternative
categories.

Basic-level of categorization: an intermediate level of a
category hierarchy that is hypothesized to lead to privileged
forms of cognitive processing.

Categorization: process in which observers classify distinct
objects into groups.

Criterion element: a hypothetical entity in the EBRW
recognition model. Retrieval of criterion elements leads the
random walk to step in the direction of the NEW response
threshold. Biases in the random-walk step probabilities are
determined by the strength of the criterion elements.

Decision-boundary model: model of categorization that
assumes that people form boundaries to divide a stimulus
space into category-response regions.

Exemplar model: model of categorization that assumes
that observers store individual examples of categories in
memory.

Exemplar-based random-walk (EBRW) model: an exten-
sion of the generalized context model that explains how the
processes of categorization and recognition unfold over time.
Exemplars stored in memory “race” to be retrieved, and the
retrieved exemplars drive a random-walk decision-making
process.

Exponential distribution: a probability distribution that
describes the time between events, in which the events
occur continuously and independently at a constant average
rate.

Generalized context model (GCM): a member of the class
of exemplar models. In the GCM, exemplars are represented
as points in a multidimensional psychological space, and
similarity is a decreasing function of distance in the space.

Integral-dimension stimuli: stimuli composed of individ-
ual dimensions that combine into unitary, integral wholes.

Memory strength parameters: parameters in the GCM
and EBRW models that describe the strength with which
the exemplars are stored in memory.

Minkowski power model: a model for computing dis-
tances between points in a space.

Multidimensional scaling: a modeling technique for rep-
resenting similarity relations among objects. The objects are
represented as points in a multidimensional psychological
space and similarity is a decreasing function of the distance
between the points in the space.

Prototype model: model of categorization that assumes
that observers represent categories by forming a summary
representation, usually assumed to be the central-tendency
of the category distribution.
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Glossary
Prototype-based random-walk (PBRW) model: a model
that is analogous in all respects to the EBRW model, except
that the category representation corresponds to the central
tendency of each category distribution rather than to the
individual exemplars.

Random walk: a mathematical model that describes a path
of outcomes consisting of a sequence of random steps.

Response thresholds: parameters in evidence-
accumulation models that determine how much
evidence is required before a response is initiated.

Recognition memory: process in which observers decide
whether objects are “old” (previously experienced) or
“new.”

Response-scaling parameter: a parameter in the GCM
that describes the extent to which observers respond using
probabilistic versus deterministic response rules.

RT-distance hypothesis: hypothesis that categorization
RT is a decreasing function of the distance of a stimulus
from the decision boundary.

Rule-plus-exception model: model of categorization that
assumes that people classify objects by forming simple
logical rules and remembering occasional exceptions to
those rules.

Sensitivity parameter: a parameter in the GCM
and EBRW models that describes overall discriminability
among distinct items in the multidimensional psychological
space.

Short-term probe-recognition task: task in which
observers are presented with a short list of to-be-
remembered items followed by a test probe. The observers
judge as rapidly as possible, while trying to minimize
errors, whether the probe is old or new.
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