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Chapter 20

Categorization

MICHAEL L. MACK, JENNIFER J. RICHLER, THOMAS J. PALMERI, AND ISABEL GAUTHIER

The survival of most organisms demands that they dis-
criminate predator from prey, edible from inedible, or fam-
ily from foe. Organisms have to be able to recognize things
as kinds of things, not as isolated instances, because what
is learned about one thing should generalize to other things
of the same kind. We call these kinds of things categories.
Recognizing something in the world as a kind of thing is
categorization. Organisms may also identify unique objects
as individuals, but arguably this identification can be con-
sidered a fine-grained form of categorization because
matching different views of the same object, or even the
same object changing over time, requires labeling different
experiences as belonging to the same category.

Once a thing is categorized or identified, all of the
knowledge we might have about that category can be
brought to bear. What's the most appropriate course of
action? Flee? Eat it? Pick up and dial?

Humans take categorization to dizzying degrees. First
there is the mundane. We easily categorize chairs from
tables, trees from shrubs, and birds from dogs. And there
is the remarkable. Experts from various domains may eas-
ily discriminate subspecies of particular kinds of plants or
animals, judge cancerous from noncancerous growths, or
distinguish Porsche models just by the shape of the head-
light. While this may seem impressive, remember that
many everyday categorizations prove remarkable when you
consider the processing demands involved. We easily iden-
tify the people we know at a glance. Yet structurally, people
may be as similar to one another as different chimpanzees.
For most people, all chimpanzees look the same but people
look much more different. Right now you are engaging in
another everyday categorization: With remarkable speed and
ease, the letters and words in this sentence are categorized
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as just the first step of comprehending (at least we hope) our
written language. Face and letter perception are examples
of domains in which most people have gained considerable
expertise and are very important domains of study.

This chapter mainly addresses how people categorize
visual objects. People can also categorize things based on
their sound, touch, taste, or smell. But outside of speech
perception, the majority of categorization research has
focused on the visual modality. More complex visual
events can also be categorized, such as “a nod” or “a
touchdown” or “an armstand back double somersault
tuck,” but this has been for the most part studied separately
from object categorization (e.g., Zacks, Speer, Swallow,
Braver, & Reynolds, 2007). In keeping with the aims of
this Handbook, in each section of this chapter we lay out
a variety of fundamental behavioral manifestations of
object categorization and review some of the key findings
from neurophysiology, electrophysiology, neuropsychol-
ogy, and functional brain imaging that have deepened our
understanding of object categorization. We also look to
computational cognitive neuroscience models grounded in
neuroanatomy and neurophysiology.

We begin our discussion with the issue of abstraction.
By its very nature, categorization is abstraction. We live
in a world of particular experiences. Yet recognizing an
object as not simply an isolated perceptual experience
but also as an instance of a kind of thing that has been
experienced before—as a member of a category—is to
abstract from the particular to the general. Does this ability
to abstract from particular experience mean that what we
know about an object category is itself an abstraction? At
first blush, it may seem like the answer is obviously yes.
How could we categorize objects abstractly if our knowl-
edge about categories was not itself abstract? But as we
will see, decades of behavioral research wrestled with this
basic issue and recent neuroscientific evidence has shed

important light on this question.

We then turn to two parallel issues that have dominated
much of the recent research on object categories: (a) The
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study of when different kinds of knowledge represen-
tations. abstract or not, come into play, and whether the
variety of categorization behaviors we can observe is best
explained by different learning and memory systems in
the brain: and (b) whether objects from different domains
may be categorized in different ways and by different brain
systems. For instance, there may be specialized systems
in the brain to process objects from especially important
categories such as letters and faces. Whether and how we
acquire such specialization through learning, or whether
we have evolved systems for some special categories, has
been a topic of debate.

ROLE OF ABSTRACTION
IN CATEGORIZATION

Categorization is abstraction. To begin with, we never see
the same object twice, even if it is the very same physi-
cal object. When an object is viewed from a different
position or under different lighting, the projection of that
object onto our retina will vary, often quite dramatically.
What is remarkable is that, despite the visual signal being
very different, we perceive the same object (Palmeri &
Gauthier, 2004; Palmeri & Tarr, 2008). Moreover, physi-
cally different objects can be perceived as very different,
yet even very young children know that they are the same
thing—not the same object, but the same kind of thing
(Quinn, 1999). Humans have developed complex systems
that permit objects to be categorized at multiple levels of
abstraction, from specific (e.g., “Gladys” or “American
White Pelican™), to basic level categories (e.g., “chair”
or “bird”), to extremely abstract superordinate categories
(e.g., “living thing™; Rosch, Mervis, Gray, Johnson, &
Boyes-Braem, 1976).

Categorization is a form of abstraction, but does this
necessarily imply that the mental representations and pro-
cesses involved are inherently abstract? Early theories of
object categorization took it as nearly an axiom that the
goal of visual cognition was to create an abstract represen-
tation of the varying world.

Early structural description theories of object recogni-
tion assumed that the goal of vision was to mentally recon-
struct the abstract three-dimensional structure of objects
(Marr & Nishihara, 1978). Recognition-by-components
(Biederman, 1987) assumes that objects are mentally
represented in terms of a small set of qualitative three-
dimensional primitives known as geons (Figure 20.1).
Geons are uniquely recovered by attending to various
configurations of view-invariant properties in the two-
dimensional retinal image. Objects are represented in
terms of their geon components and their relative spatial

Object Representations

Image fragments

Figure 20.1 Illustration of object representations in image-
based versus structural description models.

Note: (Top) Image-based models. The object (lamp) is represented in
terms of image-based fragments of intermediate complexity. (Bottom)
Structural description models. The object (lamp) is represented in terms
of geometric primitives (geons) and the spatial relations between them.

configuration. As a consequence of this reconstruction
into a geon-defined structure, many sources of variability
are eliminated entirely from a mental representation of an
object. Different views of the same object and different
exemplars within a category such as dog or lamp map onto
the same object representation.

Early concept models also assumed that our knowledge
about object categories is abstract. Semantic network models
(e.g., Collins & Quillian, 1969) conceptually organized one
kind of thing with another kind of thing through proposi-
tional structures. Knowledge is stored efficiently, so that
object properties that are true of a superordinate category
are only stored at the most general level and only properties
unique to subordinate categories or specific individuals are
stored at lower levels of the conceptual hierarchy (E. Smith,
Shoben, & Rips, 1974). According to this view, what we
know about particular object categories is also abstracted
away from our experience with objects. By such abstrac-
tionist views, categorization of an object requires applying
logical rules to object properties (e.g., Bruner, Goodnow, &
Austin, 1956; Johansen & Palmeri, 2002) or comparing an
object to an abstract category prototype or schema (e.g.,
Lakoff, 1987). Category abstraction is achieved because
our knowledge about categories is abstract.

However, later work showed that we do not need
viewpoint-invariant and instance-invariant representations
in order to achieve categorization that appears invariant
across viewing conditions and invariant across instances of
a category. Careful experimentation revealed that object cat-
egorization can be systematically affected by the particular
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viewpoints and category instances that have been experienced
(see palmeri & Gauthier, 2004; Palmeri & Tarr, 2008).

While there are conditions under which humans read-
ily recognize and categorize objects irrespective of view-
point (Biederman & Gerhardstein, 1993; Tarr & Biilthoff,
1998), numerous studies have found that if observers learn
to recognize novel objects from specific viewpoints, they
are both faster and more accurate at recognizing these same
objects from familiar viewpoints relative to unfamiliar view-
points (Biilthoff & Edelman, 1992 Tarr & Biilthoff, 1995;
Tarr & Pinker, 1989). Even the recognition of single geons,
originally proposed to support view-invariant performance
with more complex objects, is sensitive to changes in view-
point (Tarr, Williams, Hayward, & Gauthier, 1998). Instead,
human object recognition was proposed to rely on multiple
views, where each view encodes the appearance of an object
under specific viewing conditions, including viewpoint,
pose, configuration, and lighting (Tarr, 1995; Tarr, Kersten, &
Biilthoff, 1998) and a collection of such views constitutes the
enduring visual representation of a given abject.

These ideas are instantiated in image-based models of
object recognition (e.g., Edelman, 1997, 1999; Poggio &
Edelman, 1990). Rather than assume that the goal of vision
is to reconstruct the three-dimensional world, image-based
models stress the importance of generalizing from past
experiences to the present experience (Shepard, 1987,
1994). This is done by remembering past views of objects
and generalizing based on similarity to those stored views.
Such models account well for patterns of interpolation and
extrapolation to new views. Furthermore, since physically
similar objects in the world viewed under similar condi-
tions will be similar to the same set of stored views, gen-
eralization to new objects can occur without any explicit
representation of three-dimensional shape. For purposes
of object recognition and categorization, representation of
three-dimensional shape may not be necessary. Instead,
such information may be stored in parts of the brain
involved in acting on objects (Goodale & Milner, 1992).
Similar computational principles are also at work in
exemplar-based models of object categorization. The core
principle of these models is that object categories are men-
tally represented in terms of the specific category exemplars
that have been previously experienced (Kruschke, 1992;
Medin & Schaffer, 1978; Nosofsky, 1936). Categorization
is based on the relative similarity of an object to these
stored exemplars. In that sense, you judge that a certain
object is a cell phone because of its similarity to many
other cell phones in memory. While no abstraction occurs,
exemplar models can readily account for a range of proto-
typicality effects that might at first blush appear to dem-
onstrate abstract prototype representations for categories
(Busemeyer, Dewey, & Medin, 1984; Hintzman, 1986:
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Exemplar-based

Feature A

Figure 20.2 Top: Exemplar-based models of categorization
assume that object categories are represented by storing category
exemplars that were previously experienced. Middle: Prototype
models assume category knowledge is based on a stored pro-
totype abstracted from the experienced category examples.
Bottom: Rule-based models represent category knowledge with
logical rules along individual features.

Note: (Top) Exemplars are represented as points in multidimensional psy-
chological space, with similarity a function of distance in that space, and the
generalization gradient around an object indicated by the graded shading
around each exemplar. The exemplars on the left (darker circles) represent
one category and the exemplars on the right (lighter circles) represent a dif-
ferent category. A probed object (question mark) is categorized based on the
relative similarity to stored exemplars in each category. (Middle) A probed
object (question mark) is categorized based on the relative similarity to the
different category prototypes. (Bottom) These rules partition psychological
space into different regions. A probed object (question mark) is categorized
according to what region it lies within relative to the category rule.

Nosofsky, 1988; Shin & Nosofsky, 1992; see Figures 20.2
and 20.3). These models also account for a range of cat-
egory exemplar effects (Nosofsky, Kruschke, & McKinley,
1992) and the time course of categorization (Lamberts,
2000; Nosofsky & Palmeri, 1997; Palmeri, 1997).
Neurophysiological evidence supports many important
assumptions underlying a host of image-based and exemplar-
based models of object categorization (refer to Figure 204
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Figure 20.3 Exemplar-based models can account for two
important phenomena that on the surface seem to challenge
exemplar-based models.

Note: A: The top panel illustrates prototypicality effects. Category pro-
totypes are usually categorized as well as and sometimes better than cat-
egory exemplars, even if the category prototypes have never been seen
before (far right graph). This result is typically viewed as strong evidence
for prototype abstraction. How else could an object that's never been seen
before be classified as well as objects that have been trained on, unless
that unseen prototype is in fact abstracted during learning and stored just
like an experienced exemplar? But assuming that categorization is based
on similarity to stored exemplars only, this prototypicality effect falls out
quite naturally. The left and middle figures illustrate how category exem-
plars and the category prototype might be represented in a psychological
space, with the prototype in the middle, the exemplars around the proto-
type, and distance between objects related to their psychological similar-
ity; the cloud around each point represents the generalization gradients
around each stored exemplar. As shown in the left figure, the prototype
to be classified (indicated by ?) is similar to many exemplars, yielding a
lot of evidence in favor of category membership. By contrast, as shown in
the middle figure, an individual category exemplar to be classified (indi-
cated by 7) may only be similar to a subset of exemplars, yielding smaller

category evidence compared to that for an unseen prototype. B: The
bottom panel illustrates dissociations between categorization and recog-
nition memory. As discussed in the text, whereas amnesic individuals and
controls show similar performance on categorization, amnesic individu-
als are significantly impaired at recognition memory (far right graphs).
This behavior dissociation suggests a functional dissociation between
categorization and recognition. As in the top panel, individual exemplars
are represented as points in a psychological space with the clouds around
each point representing the generalization gradients. Following Nosofsky
and Zaki (1998) we assume here that amnesic individuals have far poorer
exemplar memories than controls, as indicated by the far more diffuse
gencralization gradients because of impaired memory for amnesic indi-
viduals. For categorization, all of the category exemplars are crowded
together in the same general region of psychological space. Having finely
tuned or diffuse exemplar memories has little impact on categorization
because all of the category members are in the same part of the psycho-
logical space. However, having finely tuned or diffusion exemplar memo-
ries does have significant impact on recognition because the space of old
and new patterns is distributed uniformly throughout psychological space;
having more diffuse memories makes it far more difficult to discriminate
between old objects than have been seen and stored, albeit poorly, from
new objects.
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Figure 20.4 Stages of processing in object recognition and
categorization according to a range of models.

Note: Low-level features such as edges are processed in early visual
areas. Object representations are created by processing object feature
units in the V4, lateral occipital cortex (LOC), and/or inferotemporal cor-
tex (IT) and by processing viewpoint in anterior inferotemporal cortex
(AIT). Category representations arise from rule-based units in the ante-
rior cingulate (AC) and prefrontal cortex (PFC), or from exemplar units
in the anterior inferotemporal cortex (AIT), the basal ganglia (BG), and
the hippocampus (Hipp). Information from the category representations
is passed to decision units in PFC, which determines category member-
ship and initiates the selection of the appropriate category response in
the premotor cortex for execution by the motor cortex. Low-level pro-
cessing, object representations, and category representations can all be
modulated by factors such as attention and various task demands via top-
down control.

for brain areas discussed in this section). The responses of
inferotemporal (IT) neurons to objects depends on stimu-
lus size and viewpoint (Perrett, Oram, & Ashbridge, 1998;
K. Tanaka, 1996). Even accepted notions of retinal position
invariance in IT (Tovee, Rolls, & Azzopardi, 1994) have
been challenged (DiCarlo & Maunsell, 2003; Op de Beeck
& Vogels, 2000). Surprisingly few neural responses in IT are
invariant to position, size, or viewpoint (DiCarlo & Maunsell.

/ Top-Down -
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2003; Logothetis & Sheinberg, 1996; but also see Booth &
Rolls, 1998). When trained on particular object views, mon-
keys recognize novel object views according to their similar-
ity to experienced views, and neurons respond in a similarly
graded fashion to particular trained views (Logothetis &
Pauls, 1995; Logothetis, Pauls, Biilthoff, & Poggio, 1994;
Logothetis, Pauls, & Poggio, 1995). Perrett et al. (1998) pro-
vided one suggestion for how object recognition could take
the form of an accumulation of evidence across all neurons
selective for aspects of a given object. By assuming a neu-
ral variant of stochastic accumulation of evidence models
(Nosofsky & Palmeri, 1997; P. Smith & Ratcliff, 2004) and
by assuming that the rate of accumulation depends on the
similarity between visible features in the presented viewpoint
and those to which individual neurons are tuned, systematic
effects of object recognition time and accuracy with changes
in viewpoint can be well accounted for.

When monkeys are trained to categorize objects, their
behavior is consistent with exemplar generalization and
not with the abstraction of a prototype (Sigala, Gabbiani, &
Logothetis, 2002). IT neurons will respond selectively to
specific exemplars that have been studied, not to an aver-
age category prototype that was never studied (Freedman,
Riesenhuber, Poggio, & Miller, 2003; Op de Beeck,
Wagemans, & Vogels, 2001, 2008; Vogels, Biederman,
Bar, & Lorincz, 2001). Furthermore, many exemplar mod-
els of object categorization assume that similarity between
objects is heavily influenced by matches or mismatches
along dimensions that are diagnostic of category member-
ship (Gauthier & Palmeri, 2002; Kruschke, 1992; Lamberts,
2000; Nosofsky, 1984, 1986), and neural responses are
modulated by dimensional diagnosticity in a similar man-
ner (Sigala & Logothetis, 2002).

While responses of IT neurons can be specific to par-
ticular exemplars that have been experienced, IT neurons
do not seem to respond in a category-specific manner.
Instead, category-specific, but not exemplar-specific, neural
responses are observed in the prefrontal cortex (Freedman
et al., 2003; Jiang et al., 2007; Rotshtein, Henson, Treves,
Driver, & Dolan, 2003). These neurophysioiogical results
may seem at odds with the apparent category specificity
observed using functional magnetic resonance imaging
(FMRI) and in the patterns of deficits in category-specific
agnosia due to focal brain injury, which we discuss later in
this chapter. One way to reconcile these results is to first
consider the vast differences in spatial resolution between
single-unit recordings and fMRI or brain lesions. Although
individual neurons may respond in a way that highlights
exemplar-specific (not category-specific) information,
neighboring regions of the cortex may respond to similar
objects or objects that are processed in a similar fashion.
So objects in the same category may recruit the same area
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of the cortex as measured by fMRI or may be impaired in
a category-specific fashion by brain injury, yet the under-
lying neural activity may respect exemplar-specific and
view-specific coding, not category-specific coding per se.

Some recent neurally plausible computational models
have instantiated this division of labor between learned
object representations in IT and learned category represen-
tations elsewhere in the brain. For example, the theoreti-
cal work of Riesenhuber and Poggio (2000) represents a
recent instantiation of a tradition of image-based models
of object recognition (Edelman, 1997; Poggio & Edelman,
1990). This model builds on classical models where com-
plex cells are built from simple cells in early visual areas,
extending this hierarchy of processing throughout the
higher-level visual cortex to view-tuned and exemplar-
tuned units. At each level of the hierarchy, these units
have Gaussian-shaped receptive fields (radial-basis func-
tions) that respond preferentially to a particular stimulus
property, whether that be edges or junctions at the lowest
level, or views or exemplars at the highest level. Category-
specific units that can represent knowledge of the basic-
level category of an object or the subordinate-level identity
of an object are thought to reside in the prefrontal cortex.
Other computational models have proposed a similar divi-
sion of labor between exemplar-like object representations
in IT and category representations elsewhere, implicating
brain structures such as the basal ganglia as well as the
prefrontal cortex in mapping object-specific representa-
tions to category-specific representations (Ashby, Ennis, &
Spiering, 2007; but see Love & Gureckis, 2007).

The hierarchical object representations instantiated in
such models make us reflect on one key difference between
classic structural description and image-based theories:
Under the cartoon view of the world, structural descriptions
represent objects in terms of viewpoint-independent three-
dimensional parts and their spatial relations (Biederman,
1987), and views represent objects in terms of holistic images
of the entire object (Edelman, 1997). However, intuition and
empirical evidence (e.g., Garner, 1974, Stankiewicz, 2002;
Tversky, 1977) suggest that we often represent complex
objects in a compositional manner—objects are decom-
posable into parts. In addition, most exemplar-based and
related models of object categorization assume that objects
have parts, features, or dimensions that can be selectively
attended according to how diagnostic they are for categori-
zation decisions. Is there a way to marry the best qualities
of image-based theories with the compositional representa-
tions seen in structural-description theories?

Some studies attempt to uncover image features that are
most informative for classification, based on the mutual
information (or mutual dependence) of features and specified
categories (Schyns & Rodet, 1997; Ullman, Vidal-Naquet,

& Sali, 2002). Some of this work has found that features of
“intermediate complexity” are best for basic-level classifi-
cation (see Figure 20.1). For faces, what features emerge
from this analysis are those we would generally call the
“parts of a face” such as the eyes or the nose, even though
the features are not selected a priori to correspond to mean-
ingful parts per se; and for cars, parts such as the wheels or
the driver’s side window emerge. In this context, we mean
“emerge” in the sense that these features are uncovered by
a computational analysis of hundreds of images as they
relate to categories of objects without any kind of interven-
tion from a human teacher. It is tempting to speculate about
the relationship between such “ad hoc” image-based fea-
tures to the observed feature selectivity of neurons in IT
(K. Tanaka, 1996, 2003). The best responses for individual
IT neurons are elicited by somewhat odd patterns that do not
correspond to what we might typically think of as distinct
object parts. These appear to be ad hoc. And they appear to
be of intermediate complexity. So representations of object
parts, as well as objects themselves, seem to be tuned by
specific experience with objects in the world; object parts
are not general-purpose parts such as those instantiated in
models like recognition-by-components.

MEMORY AND LEARNING SYSTEMS THAT
SUPPORT CATEGORIZATION

The role of abstraction in categorization defined much
of the early research and debates about categorization
(Murphy, 2002). Initial accounts assumed that categories
are represented by abstracting logical rules (Figure 20.2)
that define the necessary and sufficient conditions for cat-
egory membership (Bourne, 1970; Bruner et al., 1956;
Levine, 1975; Trabasso & Bower, 1968). While rule-based
accounts described well how people learned categories
defined by explicit rules, natural categories were found
to have a graded structure that suggested instead notions
like “family resemblance” and “similarity” as core con-
structs (Barsalou, 1985; Rosch, 1973; Wittgenstein, 1953).
It is easier to categorize a robin as a bird than a penguin
as a bird, the argument goes, because a robin is more
similar to the prototypical bird (Rosch & Mervis, 1975).
Such results suggested that prototypes (Figure 20.2), not
rules, define natural categories and that prototypes aré
learned by abstracting core properties of the category from
experience with category members (Homa, Cross, Cornell,
Goldman, & Schwartz, 1973; Posner & Keele, 1968;
1. D. Smith & Minda, 1998). But as discussed earlier, later
work showed that models assuming specific exemplar
representations (Figure 20.2), instead of abstract proto-
type representations, can account well for prototype effects,
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a whole host of other behavioral effects, and are consis-
tent with a significant amount of the neurophysiological
data (Figure 20.3). Arguably, most successful models of
categorization have an exemplar model as a critical com-
ponent (Erickson & Kruschke, 1998; Palmeri, 1997) or
fall on a continuum between prototype abstraction mod-
els and pure exemplar models (Ashby & Waldron, 1999;
Love, Medin, & Gureckis, 2004: Rosseel, 2002). Much of
this early work was grounded in an assumption—a per-
fectly reasonable parsimonious assumption—that all kinds
of categories are represented the same way at all stages of
learning. Categories are represented by rules or prototypes
or exemplars. More recent work has instead asked whether
different kinds of category representations are used for
learning different kinds of categories, under different kinds
of conditions, and at different stages of learning. Some
kinds of categories can be learned using rules, but oth-
ers cannot. Perhaps people try to use rules when they first
learn a category, but make use of other less explicit kinds
of category knowledge with experience. The burgeoning
interest in cognitive neuroscience over the past decade has
led researchers quite naturally to ask how categories are
represented in the brain. If categories can be represented in
different ways at different points in learning under different
conditions, it is likely that there are multiple memory and
learning systems in the brain that support categorization.
We should note that in this context we use the term sys-
tem in the broadest possible sense: A system could reflect
functionally independent kinds of representations and pro-
cesses, or interacting systems, or different critical subcom-
ponents of a single processing architecture (e.g., Palmeri &
Flanery, 2002; Roediger, Buckner, & McDermott, 1999).

Categorization and Rules

Despite the success of exemplar models of categorization,
there have always been some lingering concerns about the
processing and storage requirements that come with theo-
ries that demand individual memory traces of each and
every experience with an object (e.g., Logan, 1988). One
response to this criticism has been to view pure exemplar
models as a sort of theoretical ideal point, whereas in real-
ity categories may be represented by a subset of the space
of experienced exemplars that produces a sufficient level of
performance (e.g.. Ashby & Waldron, 1999: Kruschke,
1992: Rosseel, 2002). But an alternative response has been
to reconsider whether people might use simple rules to cat-
egorize objects.

What possessed researchers to reconsider an idea that
was largely abandoned decades earlier? To begin with,
many subjects asked to learn novel categories will say
they are forming rules, even if the rules they verbalize
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do not account all that well for their own categorization
behavior. In addition, it is clear that novices are often
taught categories using rules. For example, field guides
for identifying birds, butterflies, or mushrooms certainly
include many pictures but they also include lists of critical
features for distinguishing different species. In the case of
mushrooms, these explicit rules can be particularly import-
ant because edible and poisonous mushrooms often look
quite similar. One important factor driving this theoretical
shift was the finding that when subjects were told to use
a particular categorization rule, exemplar-based models
could not account for the observed categorization behavior
(e.g., Nosofsky, Clark, & Shin, 1989). The RULEX model
(Nosofsky, Palmeri, & McKinley, 1994) posits that even
when people are not given a rule or are not told to create
a rule they form simple rules anyway when learning a cat-
egory. What distinguishes RULEX from earlier rule-based
models is that it is a rule-plus-exception model, hence the
name RULEX: People form simple rules that may work
pretty well and then store in memory any exceptions to
those rules (see also Nosofsky & Palmeri, 1998; Palmeri &
Nosofsky, 1995; Sakamoto & Love, 2004). RULEX
accounts extremely well for a wide array of phenomena
that are also consistent with prototype and exemplar mod-
els: and under some conditions individual subject behavior
is more consistent with RULEX than exemplar or proto-
type models (Johansen & Palmeri, 2002; Nosofsky et al.,
1994). RULEX was perhaps the first of a class of hybrid
categorization models combining rules with other nonana-
lytic forms of category representations (Ashby, Alfonso-
Reese. Turken, & Waldron, 1998; Erickson & Kruschke,
1998: Goodman, Tenebaum, Feldman, & Griffiths, 2008;
Nosofsky & Palmeri, 1998; Palmeri, 1997). The success of
a model like RULEX provides just one illustration of how
difficult it can be to distinguish abstract rule-based from
exemplar-based (or more generally similarity-based) mod-
els of categorization (see also Johansen & Palmeri, 2002;
Nosofsky & Johansen, 2000). What are arguably polar
extremes of the representational continuum can produce
remarkably similar behavioral predictions.

Researchers have more recently looked to cognitive
neuroscience data for evidence for a rule-based mode of
categorization. Motivated by hypotheses about the under-
lying neural systems supporting different kinds of catego-
rization, Ashby, Maddox, and colleagues have conducted a
series of behavioral experiments that attempt to selectively
influence rule-based versus similarity-based categoriza-
tion. For example, introducing certain Kinds of secondary
distractor tasks during category learning can selectively
interfere with rule-based but not similarity-based catego-
rization (Waldron & Ashby, 2001, but see Nosofsky &
Kruschke. 2001), whereas delaying corrective feedback
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can selectively interfere with similarity-based but not rule-
based categorization (Maddox, Ashby, & Bohil, 2003).
Neuropsychological evidence also suggests a role for
rule-based categorization and provides clues as to the spe-
cific brain structures involved. For example, patients with
prefrontal cortex lesions are impaired at the Wisconsin
Card Sorting Test (WCST), a task that requires sorting
cards according to logically defined rules (Milner, 1963;
Robinson, Heaton, Lehan, & Stilson, 1980). Parkinson’s
disease patients also seem to show selective impairment in
rule-based but not similarity-based categorization (Ashby,
Noble, Filoteo, Waldron, & Ell, 2003; Brown & Stubbs,
1988: Cools, van den Bercken, van Spaendonck, & Berger,
1984; Downes et al., 1989). Parkinson’s disease has been
linked to basal ganglia damage, specifically in the head
of the caudate nucleus, which has reciprocal connections
to the prefrontal cortex. Additional evidence for a rule-
based system comes from neuroimaging data in healthy
adults. One early study contrasted similarity-based ver-
sus rule-based categorization strategies (Allen & Brooks,
1991) that seemed to recruit different networks of brain
areas as revealed by PET (E. E. Smith, Patalano, & Jonides,
1998). fMRI during rule-based categorization reveals
activation in the right dorsal-lateral prefrontal cortex
(Konishi et al., 1998; Seger & Cincotta, 2005) and the
head of the right caudate nucleus (Konishi et al., 1998;
see also Lombardi et al., 1999; Monchi, Petrides, Petre,
Worsley, & Dagher, 2001; Seger & Cincotta, 2005). A vari-
ety of computational cognitive neuroscience models have
implicated an interactive role for the prefrontal cortex and
the basal ganglia (specifically the caudate nucleus of the
striatum) in important aspects of various cognitive tasks
(Ashby et al., 1998; Frank & Claus, 2006; Houk & Wise,
1995), but these models differ in important details regard-
ing whether the basal ganglia is the core locus of learning
or plays a more modulatory role. Overall, the converging
results from behavioral, neuropsychological, neuroimag-
ing, and computational studies suggest the existence of a
network of brain areas, including the prefrontal cortex and
the caudate, that are critically involved in rule-based cat-
egorization (Ashby & O’Brien, 2005).

Categorization as a SKkill

While some categorizations require explicit rules—and
sometimes complex rules at that—other categorizations are
made quickly and effortlessly, and perhaps without con-
scious intention. Such categorization has a qualitatively dif-
ferent flavor from rule use and can be considered something
more like a habit or a skill that can be executed automati-
cally. Palmeri (1997) explored how categorizations as skills
can become automatized through an elaboration of Logan’s

(1988) instance theory of automaticity. Instance theory is a
general theory of automaticity of cognitive skills that pos-
its a shift from more algorithmic or rule-based processing
early in learning to memory retrieval of specific experi-
enced instances later in learning (for some fMRI evidence
consistent with instance theory, see Dobbins, Schnyer,
Verfaellie, & Schacter, 2004; see also Logan, 1990, 2002;
Palmeri, Wong, & Gauthier, 2004). Palmeri (1997) concep-
tualized the development of automaticity as a race between
a rule-based categorization process and an exemplar-based
categorization process (Nosofsky & Palmeri, 1997). Early
in learning, rules are executed faster than category exem-
plars can be retrieved. But as more and more exemplars are
experienced and are stored as part of the category repre-
sentation, the exemplar-based categorization process even-
tually wins the race. Categorization is automatic when it’s
based on exemplar retrieval instead of rule use.

Ashby et al. (2007) proposed a computational cogni-
tive neuroscience model called Subcortical Pathways
Enable Expertise Development (SPEED) that shares some
important computational principles with instance theory
and exemplar-based models of categorization (Nosofsky
& Palmeri, 1997; Palmeri, 1997). Like exemplar models,
SPEED is a member of a family of computational theo-
ries called “nonparametric classifiers” (Ashby & Alfonso-
Reese, 1995). These models are nonparametric in the
sense of a contrast with so-called “parametric classifiers”
like prototype theories that assume a specific (often nor-
mal) distribution of category members (Ashby, 1992). But
SPEED specifically assumes a shift from category repre-
sentations mediated by cortico-striatal loops to category
representations mediated by direct cortico-cortico connec-
tions. Cortico-striatal loops appear to play an important
role in category learning (Ashby et al., 1998), even if more
permanent long-term category knowledge may ultimately
rely on direct cortical representations.

Significant evidence suggests an important role for the
basal ganglia, specifically the striatum, in categorization—
at least for certain kinds of categorization and at certain
points in learning (Shohamy, Myers, Kalanithi, & Gluck,
2008). Huntington’s disease (HD) and Parkinson’s disease
(PD) are characterized by damage to the basal ganglia (for
HD there is direct damage to the striatum whereas for PD
there is damage to the substantia nigra that interacts criti-
cally with the striatum). HD and PD are classically char-
acterized by their severe motor impairments, but it has
long been known that these diseases also more generally
impair motor skill learning and other procedural learn-
ing tasks (e.g., Mishkin, Malamut, & Bachevalier, 1984;
Saint-Cyr, Taylor, & Lang, 1988). HD and PD also impair
certain kinds of category learning as well, such as those
involving a probabilistic association of cues to categories
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(e.g., Knowlton, Mangels, & Squire, 1996; Knowlton,
Squire, et al., 1996) and those involving an integration
of information across muitiple stimulus dimensions (e.g.,
Ashby et al., 2003; Filoteo, Maddox, & Davis, 2001;
Maddox, Aparicio, Marchant, & Ivry, 2005; Maddox &
Filoteo, 2001). These patterns of deficits in HD and PD
implicate an important role of the striatum in novel cat-
egory learning (Ashby & O’Brien, 2005). In addition to
such neuropychological studies, a body of fMRI data also
implicates the basal ganglia, specifically the striatum, in
these kinds of novel category learning tasks (Poldracket al.,
2001; Poldack, Prabhakaran, Seger, & Gabrieli, 1999;
Poldrack & Rodriguez, 2004; Seger & Cincotta, 2005).

Categorization and Episodic Memory

Having an episodic memory allows us to recognize when
we have seen particular objects in particular situations. For
example, in order to recognize that you have previously
seen a yawning, orange cat sitting on a green bench in a
grassy park, you must be able to access a coherent memory
trace that includes all of the characteristics of this scene.
The relationship, both computational and neuroanatomical,
between the memories used to support explicit recognition
of objects and the representations used to support object
categorization has been vigorously debated. On the one
hand, exemplar-based models propose that the same exem-
plar memories used to support categorization are used to
support explicit recognition as well (e.g., Nosofsky, 1991,
1992). On the other hand, some have argued that while
exemplar memories may be used to support some relatively
ad hoc categories (Ashby & O’Brien, 2005), they play lit-
tle or no role in most kinds of categorization (e.g., Ashby
et al., 2007). The primary source of evidence against any
close relationship between episodic memory and catego-
rization and their underlying neural underpinnings comes
from studies testing individuals with anterograde amnesia,
a condition characterized by profound explicit memory
deficits caused by damage to the hippocampus and neigh-
boring medial temporal brain areas.

Specifically, Knowlton and Squire (1993; Squire &
Knowlton, 1995; see also Reed, Squire, Patalano, E. E. Smith,
& Jonides, 1999) observed a behavioral dissociation
between recognition and categorization, whereby indi-
viduals with anterograde amnesia who are significantly
impaired at explicit recognition memory perform normally
at categorization. According to Knowlton and Squire, this
behavioral dissociation between categorization and rec-
ognition provided a direct falsification of exemplar-based
models. But dissociations, and even double dissociations,
are only weak evidence in favor of modular theories (Plaut,
1995: Shallice, 1988). A direct instantiation of an exemplar
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model, whereby simulated individuals with amnesia have
significantly degraded exemplar memories compared to
simulated controls, predicts the very dissociation Knowlton
and Squire claimed as a falsification of exemplar models
(Nosofsky & Zaki, 1998; Palmeri & Flanery, 2002). Other
research supporting a functional dissociation between cate-
gorization and recognition (Filoteo et al., 2001; Reed et al.,
1999; J. D. Smith & Minda, 2001) suffers from a variety
of theoretical, statistical, and methodological problems
(Kinder & Shanks, 2001; Palmeri & Flanery, 1999, 2002;
Zaki, 2005; Zaki & Nosofsky, 2001, 2004). Moreover,
there is research showing that individuals with explicit
memory deficits show impairments in categorization as
well (Graham et al., 2006; Hopkins, Myers, Shohamy,
Grossman, & Gluck, 2004; Zaki, Nosofsky, Ramercad, &
Unverzagt, 2003; see also Meeter, Myers, Shohamy,
Hopkins, & Gluck, 2006).

The most widely studied cases of anterograde amne-
sia are caused by damage to the hippocampus and associ-
ated medial temporal lobe (MTL) structures (e.g., Squire,
2004). So debates about the relationship between catego-
rization and episodic memory engender debates about the
role of the hippocampus in categorization. According to
some multiple memory systems theories, explicit episodic
memory is supported by the hippocampus whereas cat-
egorization involves implicit procedural memory that is
supported by the basal ganglia and cortex (Squire & Zola,
1996). Some computational cognitive neuroscience models
eschew entirely any role for the hippocampus in categori-
zation (e.g., Ashby et al., 1998, 2007; Ashby & O’Brien,
2005) or do not discuss whether the hippocampus has any
role (e.g., Riesenhuber & Poggio, 1999, 2002).

But evidence is building for a role of the hippocampus in
categorization. As discussed previously, hippocampal dam-
age in individuals with anterograde amnesia does lead to
significant categorization deficits. These results mirror
other neuropsychological findings that suggest the hippo-
campus is involved in purportedly implicit forms of mem-
ory (e.g., Chun & Phelps, 1999). In addition, functional
brain imaging provides evidence that the hippocampus is
recruited during categorization. Reber, Gitelman, Parrish,
and Mesulam (2003) found greater MTL activation when
healthy adults learned categories intentionally compared to
when they learn them implicitly. Poldracketal. (1999,2001;
see also Foerde, Knowlton, & Poldrack, 2006; Seger &
Cincotta, 2005) observed a trade off between hippocampal
and basal ganglia activation during novel category learning,
suggesting an interaction in the computations performed by
these two important neural systems (Poldrack & Rodriguez,
2004). The recruitment of the hippocampus appears to be
more pronounced early in learning novel categories. One
hypothesis is that the MTL helps set up the representations
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of novel stimuli that are then used by other brain areas
(such as the basal ganglia or prefrontal cortex) to assign
those stimuli to categories. This role as a novel repre-
sentational engine has been proposed in computational
models (e.g., Gluck & Myers, 1993; Meeter, Myers, &
Gluck, 2005). Specifically, SUSTAIN (Supervised and
Unsupervised STratified Adaptive Incremental Network;
Love et al., 2004) is a cognitive model of categorization
that shares properties with various exemplar, prototype,
and rule-based models, and has accounted for an array of
fundamental categorization phenomena. More recently, the
computational mechanisms within SUSTAIN have been
grounded in a network of brain areas, with the hippocampus
playing a critical role in encoding novel stimuli that cannot
be accommodated by the current category representations
(Love & Gureckis, 2007). Instead of linking specific brain
areas with particular kinds of cognitive tasks, whether epi-
sodic memory or categorization or priming, it seems more
fruitful to consider the computations performed by those
brain areas in the service of complex tasks (Palmeri &
Flanery, 2002; Turke-Browne, Yi, & Chun, 2006).

CATEGORY-SPECIFIC SYSTEMS
FOR CATEGORIZATION

Some arguments for multiple systems for categorization are
based on structural aspects of the categories to be learned
(e.g., whether they permit single rules or not), aspects of
the task (e.g., the timing and quality of feedback), and the
amount of learning. In the following section, we introduce
work from a different tradition that studies the organiza-
tion of the neural substrates responsible for the perception
of different object categories in the brain. In this work,
claims of multiple categorization systems have also been
made. Specifically, that some categories are special in that
they engage specialized brain areas. Specialized systems
dedicated to perception of specialized categories have been
claimed for faces (Kanwisher, McDermott, & Chun, 1996,
1997), places (Epstein, Harris, Stanley, & Kanwisher, 1999),
body parts (Downing, Jiang, Shuman, Kanwisher, 2001),
words (Cohen et al., 2000; Nobre, Allison, & McCarthy,
1994), letterstrings (Polk et al., 2002), and even single
letters(K.H.James,]ames,Jobard,Wong,&Gauthier, 2005).
We provide an overview of the evidence that has led
researchers to postulate category-specific perceptual sys-
tems and then discuss some alternative interpretations
of these results. To the extent that categorization stud-
ies are performed with visual stimuli such as faces (e.g.,
Goldstone & Styvers, 2001) or novel items that may be
animal-like (Allen & Brooks, 1991; Reed et al., 1999) or
not (Knowlton & Squire, 1993; Posner & Keele, 1968),

understanding the systems involved in their perception
may be crucial. We often use face processing as the main
example domain in what follows because it has been stud-
ied the most extensively.

Studies of patients with brain damage resulting in deficits
in the visual recognition of objects suggest that the visual
system, at least on a fairly coarse scale, may be organized
around categories. While most cases of brain damage to the
visual cortex result in deficits with virtually any category
tested, in relatively rare cases, category-specific deficits are
observed. These patients have difficulty identifying visu-
ally presented objects from certain categories, despite good
basic visual skills. For example, when shown a picture of a
banana, a patient may be unable to say “banana” or retrieve
semantic information about bananas, but they may be able
to describe its shape and identify that the object is yellow.
Category-specific agnosias have been found for biologi-
cal objects (e.g., Hillis & Caramazza, 1991; McCarthy &
Warrington, 1988; Warrington & Shallice, 1984) artifacts
(e.g., Hillis & Caramazza, 1991; Warrington & McCarthy,
1983, 1987), faces (e.g., Farah, 1996; Farah, Levinson, &
Klein, 1995; Henke, Schweinberger, Grigo, Klos, & Sommer,
1998), and words (e.g., Warrington & Shallice, 1980). One
patient presented with deficits in recognizing any object or
word, except for extremely well-preserved face recognition
skills (Moscovitch, Winocur, & Behrmann, 1997). At the
other end of the spatial scale, neurophysiology in the mon-
key reveals selectivity of single cells for particular objects,
such as faces, in several regions of the temporal lobe (€.g.,
Baylis & Rolls, 1987; Desimone, Albright, Gross, & Bruce,
1984; Gross, Bender, & Rocha-Miranda, 1969) and else-
where in the brain such as the amygdala (e.g., Rolls, 1992)
and the frontal cortex (e.g., Wilson, Scalaidhe, & Goldman-
Rakic, 1993) although the cells selective for any category
are only a fraction, typically about 20%, of the popula-
tion of neurons recorded from. Recent work, however,
suggests that when using single cell recording within the
face-selective patches localized with fMRI in the monkey
brain, virtually all neurons are selective for faces (Tsao,
Freiwald, Tootell, & Livingstone, 2006). Thus, neuropsy-
chology and neurophysiology together suggest category-
selective responses that are distributed over the ventral
cortex, with at least some categories showing a high degree
of spatial clustering.

Much of our knowledge about the organization of
the visual recognition system in the human brain comes
from much less invasive work using brain imaging in nor-
mal subjects. For instance, scalp recordings reveal face-
selective (e.g., Bentin, Allison, Puce, Perez, & McCarthy,
1996; Rossion et al., 2000) and letter-selective (e.g., Wong,
Gauthier, Woroch, DeBuse, & Curran, 2005) potentials
that peak about 170 ms after the presentation of the image.
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But the evidence that has perhaps received the most attention
comes from studies using fMRI, a technique with better
spatial resolution than event-related potentials (ERP), and
which reveals brain regions selectively engaged by faces
(Gauthier, Tarr, Moylan, Anderson, & Gore, 2000; fusiform
gyri, lateral occipital gyri, superior temporal sulcus; e.g.,
Kanwisher et al., 1997; Puce, Allison, Bentin, Gore, &
McCarthy, 1998; see also Sergent, Ohta, MacDonald, & Zuck,
1994), animals (lateral fusiform, e.g., Chao, Haxby, &
Martin, 1999; Martin, Wiggs, Ungerleider, & Haxby, 1996),
tools (left premotor area, medial fusiform gyrus; e.g., Chao
et al., 1999; Martin et al., 1996), words, letter strings, and
single letters (left fusiform, left occipito-temporal junction,
e.g., Cohen et al., 2000; Flowers et al., 2004; K. H. James
et al., 2005; Polk et al., 2002; Puce, Allison, Asgari,
Gore, & McCarthy, 1996). Categories that are even more
rarely selectively impaired in brain damage also reveal
similar specialization. For instance, a “place area” was
discovered in the parahippocampal gyrus that responds
strongly to scenes, buildings, and other spatial landmarks
(Aguirre, Zarahn, & D’Esposito, 1998; Epstein et al., 1999;
Epstein & Kanwisher, 1998). Regions of the lateral occipi-
totemporal cortex (Downing et al., 2001) and fusiform
gyrus (Peelen, Wiggett, & Downing, 2006) were found to
selectively respond to body parts and areas of the superior
temporal sulcus respond selectively to biological motion
(Grossman & Blake, 2002). The typical locus for some of
these areas is shown in Figure 20.5.

There are several possible explanations for the appar-
ent category specialization in the brain. One option is to
take the compartmentalization observed in fMRI maps at
face value and conclude that there may be separate mod-
ules responsible for processing different object catego-
ries. In this context, modularity does not simply refer to
an anatomically distinct neural area, but instead invokes
a Fodorian (Fodor, 1983) sense of modules as special-
ized, encapsulated mental subsystems that handle spe-
cific information—they are domain-specific entities that
function independently of one another and of background
beliefs of the subject. Modular claims are found through-
out psychology and cognitive neuroscience and it is rare
that they do not lead to heated debates. We briefly sum-
marize some of the evidence that has led researchers to
question the idea that category specialization in the ventral
visual system represents modular organization.

Modular Accounts

Modular accounts of category specialization often suggest
that evolutionary pressures caused the creation of specific
modules for processing categories that are relevant to sur-
vival, like animals, plants, and conspecifics, more quickly
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Figure 20.5 Typical location of some category-selective peak
activations shown on a ventral view of brain.

Note: An individual brain was segmented and then inflated so as to make
the sulci (dark grey) as well as the gyri (light grey) visible. 1 = Right
fusiform face area (Gauthier, Skudlarski, et al., 2000); 2 = Left fusiform
face area (Gauthier, Skudlarski, et al., 2000); 3 = Right occipital face area
(Gauthier, Skudlarski, et al., 2000); 4 = Visual word form area (K. H. James
etal., 2005); 5 = Single letters (K. H. James et al., 2005); 6 = Letterstrings
(K. H. James et al., 2005); 7, 8, and 9 = Animals (Chao et al., 1999);
10=tools (Chao et al., 1999); 11 = Left parahippocampal place area
(Epstein etal., 1999); 12 = Right parahippocampal area (Epstein et al.,
1999): 13 = Fusiform body area (Peelen et al., 2006); 14 = Left extrastriate
body area (Peelen et al., 2006); 15 = Right extrastriate body area (Peelen
etal., 2006); 16 = Left biological motion area (Grossman & Blake, 2002);
17 = Right biological motion area (Grossman & Blake, 2002).

(Caramazza & Shelton, 1998): Is that animal a potential
predator, a potential food source, or a potential mate? Is
this plant poisonous, edible, or medicinal? Similarly, if you
are walking alone at night, recognizing the face of the per-
son coming toward you as either a friend or an enemy is a
decision you would want to make rapidly and accurately.
A specialized processing module for important categories
of objects would confer survival advantage. It is clear,
however, that for some domains of apparent modularity,
such as reading, it begs reason to suggest that such special-
ization would be innate. Therefore, modules, if they exist,
can be either innate or learned.

Generally, modular accounts do not predict that there is
a module in the brain for every object category we interact
with. Instead, a few categories are thought to have a special
status either because of evolutionary pressures or experi-
ence. For instance, there is a double dissociation between
living and nonliving things, with some patients showing an
impairment for living but not nonliving things (e.g., Farah,
McMullen, & Meyer, 1991; Hillis & Caramazza, 1991;
McCarthy & Warrington, 1988; Sheridan & Humphreys,
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1993) and other patients show the opposite deficit (e.g.,
Hillis & Caramazza, 1991; Sacchett & Humphreys, 1992;
Warrington & McCarthy, 1983, 1987). However, the cases of
deficits recognizing living things far outnumber the reported
cases of deficits recognizing nonliving things. This suggests
that it is the processing of living things that is specialized, or
at least more localized (Caramazza & Shelton, 1998).

A similar double dissociation has been observed with
faces and objects, where patients with either acquired or
congenital deficits with a condition known as prosopagno-
sia are impaired at recognizing faces, although recognition
of other objects is relatively unimpaired (e.g., Duchaine,
2000; Farah, 1996; Farah et al., 1995). In very rare cases,
when object recognition is impaired, face recognition can
be spared (Moscovitch et al., 1997; Rumiati & Humphreys,
1997). Though rare, the existence of patients who show a
selective impairment in a domain that is more frequently
preserved is crucial to the modularity argument: Their
existence refutes the idea that one domain (e.g., face per-
ception) may simply be more difficult than another domain
(e.g., object perception).

Distributed Representations

Modular explanations of the mind and the brain capture
the imagination and capture the attention of the press. The
apparent discovery of brain modules responsible for rec-
ognizing body parts (Downing et al., 2001), intelligence
(Duncan et al.,, 2000), and moral reasoning (Greene,
Sommerville, Nystrom, Darley, & Cohen, 2001) are cov-
ered by the press in much the same way as the discovery
of a new dinosaur skeleton, a new planet, or a new bird
species. Yet, neuropsychologists have long recognized sig-
nificant challenges for inferring modularity from patterns
of behavioral deficits caused by brain damage: Deficits
result from large lesions that vary considerably between
patients and the behavioral dissociations are rarely all that
“clean.” For example, in the case of the living/nonliv-
ing dissociation, the majority of patients present deficits
that cross the living/nonliving boundaries (Bukach, Bub,
Masson, & Lindsay, 2004; Warrington & McCarthy, 1987;

Warrington & Shallice, 1984). Similarly, prosopagnosic

patients, whether acquired by brain damage or through
congenital defect, often present with problems in non-
face perception (Behrmann, Avidan, Marotta, & Kimchi,
2005; Gauthier, Behrmann, & Tarr, 1999). A common
interpretation of this pattern of results is that the lesions
in most patients extend beyond the boundaries of a single
module (e.g., Farah, 1990). And even if this is correct,
it is clear that dissociations may be caused by a differ-
ent modular organization from what might be apparent at
first blush. For example, the living/nonliving dissociation

may actually represent modular organization along visual
features versus functional features (Farah & McClelland,
1991; Warrington & Shallice, 1984). But another inter-
pretation of double dissociations based on rare patients
is that these rare patients are simply outliers who are not
representative of the underlying population of brain struc-
tures. Unfortunately, brain insults happen on a daily basis.
Yet, category-specific deficits occur in just a tiny frac-
tion of cases. Simulated brain damage in neural networks
that have no modular organization whatsoever can yield
a small number of cases that appear to suggest modular-
ity (Plaut, 1995). If modules exist, then we should expect
double dissociations. But double dissociations are not suf-
ficient to prove the existence of modules (Shallice, 1988).
This makes it necessary to use converging evidence from
many techniques to help interpret patterns of deficits.

Category representations can be fairly distributed and
overlapping in the brain yet brain damage can produce,
in some rare cases, quite selective deficits that suggest
modularity. There is now considerable evidence that the
representations of different categories are distributed
and overlapping. In a classic study, Haxby et al. (2001)
found that objects from different categories elicit replica-
ble (and partly overlapping) patterns of activation across
the entire ventral temporal cortex, rather than selective
activation in a localized region. Subjects in the scanner
were shown images of objects from various categories
such as faces, houses, bottles, cats, and shoes. The pattern
of activity for these categories over thousands of voxels
was found to replicate between two halves of the data set,
demonstrating how one could decode what a subject is see-
ing from the brain activity alone. This demonstration led
many scientists to consider the importance of more distrib-
uted patterns of cortical activity. Some of the most excit-
ing methods for analyzing fMRI data were inspired by that
work (Kamitani & Tong, 2005; Norman, Polyn, Detre, &
Haxby, 2006). Nonetheless, other researchers still empha-
size the significance of the maximal response elicited in a
specific brain area rather than the distributed pattern (Op
de Beeck, 2008; Spiridon & Kanwisher, 2002). While the
finding of distributed and partly overlapping maps for dif-
ferent categories is generally accepted, what remains vig-
orously debated is whether all categories are represented
in this manner or if some special categories, such as faces,
are much more localized (Hanson & Halchenko, 2008;
Spiridon & Kanwisher, 2002).

That category representations are distributed within the
visual system may seem even less surprising when con-
sidering evidence that categories are in fact distributed
over the whole brain. For instance, according to Barsalou’s
(1999) perceptual symbol systems theory (Barsalou, 2008;
Martin, 2007), concepts are represented in the collection




of modal systems for perception and action, rather than
amodal symbols. Concepts, even abstract concepts, are
thought to recruit a distributed representation across the
brain because information from different sensory modali-
ties is stored in modality-specific systems. When partici-
pants engage in a verbal conceptual task with words from
different categories (e.g., animals and tools), the result-
ing activation is highly similar to the patterns evoked by
the presence of physical objects from different categories
(Chao et al., 1999). Modality-specific information associ-
ated with a concept appears to be automatically engaged,
regardless of the task.

Such findings are relevant to the interpretation of stud-
ies where objects from different categories are contrasted.
Not only do objects from the same category look alike, but
they are likely associated with similar semantic knowledge.
These associations influence the pattern of brain activ-
ity observed in response to the presentation of the object.
This was demonstrated in a study where arbitrary seman-
tic information was associated with novel objects through
a short training task, and where these features appeared to
be engaged automatically upon object perception (T. W.James
& Gauthier, 2003). Outside of the scanner, objects were
first associated with verbal labels describing auditory fea-
tures (e.g., “whistles,” “hisses”) or motion features (e.g.,
“hops,” “crawls”). Later in the scanner, subjects performed
visual matching judgments on pairs of objects. Strikingly,
modality-specific cortices (the auditory cortex and an area
that responds to biological motion) were engaged automati-
cally based on prior associations that were completely irrel-
evant to the visual matching task. If these effects can emerge
after a short training procedure, there could be a challenge
in interpreting patterns of selectivity to visually presented
familiar objects that subjects have acquired a lifetime of
associations. Cats and faces and bottles have different
shapes and they are also associated with different semantic
information, making it difficult to know whether the distrib-
uted object maps in the visual system are maps of shape per
se or maps of other dimensions (Op de Beeck, 2008).

Experience and Expertise

Another alternative to a modular account for how different
categories are represented in the brain is that the observed
cortical representation of categories represents the interac-
tion between processing biases in the cortex and the varied
task demands associated with the objects. One specific
account, the process map hypothesis (Gauthier, 2000),
argues that category-selectivity reflects the automatiza-
tion of strategies that are learned during experience with
a category. Automatic strategies associated with category
membership could produce patterns of category-selectivity
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in the brain even if there were no maps of object shape
or of object categories. This could happen if the ventral
temporal cortex shows organization that reflects inter-
secting gradients in processing. For example, a gradient
of eccentricity exists over the topographic extent of the
visual cortex in the temporal lobe, and a continuum from
local parts to holistic representations has been proposed
(Hasson, Levy, Behrmann, Hendler, & Malach,2001;Lerner,
Hendler, Ben-Bashat, Harel, & Malach, 2001). Whatever
the nature of the underlying dimensions relevant to pro-
cessing (and they are largely unknown), the general idea
is that any point in such a map would be unique and best
suited to learn a specific visual categorization task. For
instance, faces have to be identified at the subordinate
level, and for that purpose, metric relations between parts
(also called configural information) appear to be particu-
larly useful (Tanaka & Sengco, 1997; Young, Hellawell, &
Hay, 1987). Training at the subordinate level encourages
participants to use a more “holistic” strategy (Diamond &
Carey, 1986), in which participants find it more difficult
to ignore task-irrelevant parts of the object (Young et al.,
1987). The process-map hypothesis suggests that faces
come to engage the fusiform face area (FFA) because it
is best suited for holistic processing, the default mode of
processing for faces, and predicts that other objects rec-
ognized using the same strategy, regardless of their shape,
should also engage the same area.

This prediction was first tested in a perceptual expertise
training study withasetofartificial stimuli called “Greebles.”
Greebles were designed to replicate some critical aspect of
faces, such as the fact that they share a small number of parts
in a common configuration (Figure 20.6). The training was
modeled after the constraints of face recognition and other
types of real-world expertise. That is, subjects learned to
categorize Greebles in families and to name individual
Greebles and to discriminate them from other visually sim-
ilar Greebles, as we do every day with faces. Training con-
tinued until subjects were as quick to categorize Greebles
at the individual level as they were at categorizing them at
a more abstract “family” level. Fast individuation is a hall-
mark of expertise in real-world domains (e.g., Tanaka &
Taylor, 1991). Behavioral studies of Greeble training
showed that these objects were processed more like faces
following training. In particular, Greeble experts pro-
cessed Greebles more holistically, finding it difficult to
selectively attend to part of these objects (Gauthier & Tarr,
1997; Gauthier, Williams, Tarr, & Tanaka, 1998). A com-
parison of brain activity before and after Greeble training
revealed an increase of activity for upright Greebles in face-
selective areas in the occipital lobe (what is now called occipi-
tal face area or OFA), the mid-fusiform face area (FFA;
Figure 20.6) and a face-selective region of the anterior
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Figure 20.6 (Figure C.28 in color section) A: Examples of the
Greeble objects used in the Gauthier and Tarr (1997), Gauthier
et al. (1998), Gauthier and Tarr (2002), and Gauthier, Behrmann, et al.,
(1999) expertise studies. B: Average fMRI results before and after
Greeble expertise training.

Note: (A) Greeble objects share a general configuration of parts, and
the set is organized hierarchically with two genders (defined by all parts
pointing up versus down) and several families (defined by body shapes).
Training required subjects to learn to discriminate Greebles of the same
gender and family (red arrow) as fast as they could discriminate two
objects from different families (yellow arrow). (B) The highlighted region
is centered on the FFA. Red and yellow areas responded more to upright
than upside-down stimuli, while blue to purple areas responded more
to upside-down images. Upright faces elicit more activity in this area
than upside-down faces. However, the same effect is only observed for
Greebles after expertise training with upright Greebles. From Gauthier,
Tarr, Anderson, Skudlarski, & Gore (1999). Adapted with permission.

temporal lobe (Gauthier, Tarr, Moylan, Anderson, & Gore,
2000). Later work showed that behavioral increases in con-
figural processing were correlated with changes of activ-
ity in the FFA across subjects (Gauthier & Tarr, 2002).
The Greeble work suggests that changes in the way that
a category is processed with the acquisition of perceptual
expertise are critical in recruiting specific areas of the ven-
tral temporal cortex for its processing.

The recruitment of the FFA in expert perception has
been confirmed in studies of real-world expertise with cars
or birds, where the degree of FFA activity in response to
images of cars, for example, shows a very strong correla-
tion with a behavioral measure of expertise over several
independent experiments (Gauthier, Skudlarski, Gore, &
Anderson, 2000; Gauthier, Curby, Skudlarski, & Epstein,

2005; Xu, 2005). As might be predicted based on such
results, individuals with Autism, who show abnormalities
in face processing that can be apparent early in develop-
ment (e.g., Klin & Jones, 2008), show reduced selectivity to
faces in the fusiform gyrus (e.g., Hubl et al., 2003; Pierce,
Muller, Ambrose, Allen, & Courshenes, 2001; Schultz
et al., 2000). Consistent with the idea that this hypoactiv-
ity is due to a lack of expertise, a boy with Autism who
acquired perceptual expertise with Digimon cartoon char-
acters showed specialization for Digimon but not faces in
the fusiform gyrus (Grelotti et al., 2005). Finally, consis-
tent with an expertise account of face-selective effects, the
N170 face-selective ERP component is larger in ampli-
tude for various nonface homogenous objects in expert
observers (Busey & Vanderkolk, 2005; Gauthier, Curran,
Curby, & Collins, 2003; Rossion, Gauthier, Goffaux, Tarr, &
Crommelinck, 2002; J. W. Tanaka & Curran, 2001).
However, extensive practice with a category does not
always recruit face-selective areas. A handful of fMRI
training studies with object categories have been con-
ducted and have led to inconsistent results in terms of the
specific regions engaged. With close examination of
the particulars of these studies, this inconsistency may
not be surprising given that the studies varied greatly on
several dimensions, including object geometry, amount of
training, and the specific training task practiced by sub-
jects (Jiang et al., 2007; Moore, Cohen, & Ranganath,
2006; Op de Beeck, Baker, DiCarlo, & Kanwisher, 2006;
Xue & Poldrack, 2007; Yue, Tjan, & Biederman, 2006).
Despite these differences, one region, the lateral occipital
complex, is a more consistent locus of change across stud-
ies, suggesting that it may be more sensitive to exposure
to a category than to the specific constraints of the train-
ing. Human ERPs and recordings in monkeys reveal that
responses to objects can change in the ventral occipital
cortex due to mere exposure (Peissig, Singer, Kawasaki, &
Sheinberg, 2007; Scott, Tanaka, Sheinberg, & Curran,
2006). In contrast, the FFA may be more important when
experts process objects holistically, a strategy that was
only assessed directly in the Greeble training study. The
adoption of a holistic strategy by subjects was suggested
in one study (Moore et al., 2006) where training led to an
inversion effect (inversion disrupts holistic processing with
faces; Tanaka & Sengco, 1997; Young et al., 1987) and in
that study, a small training effect was obtained in the FFA.
Clearly, there are domains of expertise with visual catego-
ries, such as print, that do not rely on configural perception
and lead to specialization outside of the face-selective sys-
tem (McCandliss, Cohen, & Dehaene, 2003). Thus, expo-
sure with objects may be enough to produce some changes
in the visual system (Freedman, Riesenhuber, Poggio, &



Miller, 2006) but there may also be a record of the manner
in which experience with a category is acquired, in terms
of the perceptual strategy and neural substrates that come
to be automatically engaged by category members.

Our ability to interpret patterns of differences across train-
ing studies is seriously limited by the fact that fMRI training
studies almost never compare two types of trainings with
the same object category. Wong (2007) trained two groups
of subjects with the same set of objects. One group learned
to individuate objects as in Greeble training, while the other
group was given equal exposure to objects but learned to
classify them rapidly at the basic level. Only the individu-
ation group demonstrated a switch to configural process-
ing and an increase of activity near the FFA, with the
behavioral and neural changes correlated across subjects.
In contrast, rapid basic-level processing led to changes in
more lateral areas of the occipito-temporal cortex, near
the standard visual word form area. This work is unique
in contrasting different types of experiences for the same
category, as the majority of fMRI studies contrast different
object categories, leading to effects that can be interpreted
as indicating that the pattern of selectivity in ventral tem-
poral cortex codes for variations in the shape of objects.
Although there is no question that objects with similar
shapes tend to recruit similar neural substrates in the same
subject, which part of the neural network is recruited for
objects with a given geometry in a given individual may
be to some extent determined by experience processing
objects from that category.

Computational modeling supports the claim that the
FFA is a subordinate-level, fine-grained visual discrimi-
nation area, whose main feature is performing transfor-
mations that magnify differences between highly similar
visual items (Joyce & Cottrell, 2004). Tong, Joyce, and
Cottrell (2007) first trained neural networks to discrimi-
nate several basic-level categories (e.g., cups, Greebles,
and cans). “Expert” networks were additionally trained
to discriminate items within one of these categories at the
subordinate level. In the second phase, the learned weights
from the first phase of training were saved, and both the
basic-level and expert-level networks were trained on new
subordinate-level discriminations. Results showed that
although in the first phase basic-level discriminations were
learned more quickly than subordinate-level discrimina-
tions, once the “expert” network was trained, learning new
subordinate-level discriminations occurred more rapidly
for the expert network than the basic-level network. This
suggests that a neural network trained to perform subor-
dinate-level discriminations on one class of objects shows
an advantage in learning a new class at the subordinate
level—because of extensive early experience with faces,
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the FFA becomes a skilled subordinate-level classifier
for faces that is later recruited by other domains of visual
expertise.

So far we have only considered the case of expertise
for objects in homogeneous categories such as faces, cars,
and birds, where the goal is rapid individuation. Recent
work has also explored expertise for letters and words.
In contrast to faces, birds, and cars, which are typically
individuated at the subordinate level by experts, for let-
ters the goal of experts is basic-level categorization (an
A is an A regardless of changes in font or style; Wong &
Gauthier, in press). However, to facilitate reading, one
wants to rapidly perceive a sequence of items to make a
word. This is made easier by regularity in font style—it
is easier to READ THIS than it is to rEaD tHiS (Sanocki,
1987, 1988). Furthermore, this effect is not limited to
Roman characters: Chinese readers are faster to serially
scan a matrix of Chinese characters for targets when the
characters are all in the same font, whereas subjects who
do not read Chinese do not show this sensitivity to style
(Gauthier, Wong, Hayward, & Cheung, 2006). Such sensi-
tivity to font is one example of a perceptual strategy that is
more useful for letter perception than for the processing of
most other categories.

Neurally, several brain regions have been implicated
in letter and word expertise: The visual word form area
(VWFA; Cohen et al., 2000) responds more to words and
pseudowords than nonpronounceable consonant strings.
Surprisingly, this area does not show visual selectivity for
letters or letter strings, for instance it is equally recruited
by strings of Chinese characters in non-Chinese readers
(K. H. James et al., 2005). In contrast, visual selectivity for
letter strings and single letters is obtained in other parts of the
left fusiform gyrus (Flowers et al., 2004; K. H. James et al.,
2005; Polk et al., 2002). These findings are not restricted
to one particular character set because Chinese-charac-
ter and Roman-character selective areas overlapped in
Chinese-English bilinguals (Baker et al., 2007; Wong,
Jobard, James, James, & Gauthier, submitted). The N170
ERP potential is also obtained for words or letter strings
(Bentin, Deouell, & Soroker, 1999) and for letters or other
characters of expertise (Wong et al., 2005). Because of its
selectivity for two very different types of expertise, the
N170 may be a general marker of expert processes that
can be localized in different brain areas. Scott et al. (2006)
compared different trainings with bird categories revealing
that both basic- and subordinate-level training enhanced the
early N170 component, but only subordinate-level training
amplified a later N250 component. Further comparisons
of trainings in both ERP and fMRI could lead to a better
understanding of the dynamics of perceptual expertise.
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High-Resolution Imaging
and Competition Studies

In recent years, two different lines of research offer new
data for interpreting category selectivity in the FFA. The
first uses high-resolution imaging in an attempt to separate
patterns of responses to faces and objects, while the second
attempts to measure neural (and behavioral) competition
that could result from functional overlap.

Standard fMRI has a resolution around 3 mm?. At that
resolution, each voxel (3D pixel) in the FFA yields a maxi-
mal response to faces and a nonzero response to nonface
objects. Recent work using higher resolution imaging
looked “inside the voxel” to reveal the functional organi-
zation of the FFA at a finer spatial scale (1-mm’; Grill-
Spector, Sayres, & Ress, 2006); this represents a 27-fold
increase in resolution. The results revealed that all voxels
were maximally selective to faces, but highly face-selective
voxels are intermingled with voxels that also showed com-
parable responses for at least some nonface category, such
as animals or cars. The reproducibility of face-selectivity
at a finer scale in the FFA is consistent with single-cell
recordings in macaque monkeys, within face-selective
regions identified by fMRI where 97% of cells are found
to be face-selective (Tsao et al., 2006). Analyses in a prior
expertise study with car and bird experts had revealed that
the single most face-selective FFA voxel at standard resolu-
tion showed a clear expertise effect (Gauthier, Skudlarski,
et al., 2000), which suggests that expert object responses
in the FFA would overlap with face-selectivity at high-
resolution, and perhaps even at the single-cell level.

If a considerable number of neurons in the fusiform
gyrus are selective for both faces and objects of exper-
tise, interference between these two domains may be
expected in some situations. There could also be inter-
ference between face and object perception even if there
were no shared neurons, as long as the two populations
were strongly interconnected. In other words, instead of
focusing on spatial overlap, one can address functional
overlap: Is face perception functionally independent from
the perception of nonface objects, especially for cases of
expertise where a face-like configural strategy is recruited?
In one study (Gauthier et al., 2003), subjects with a range
of car expertise saw a sequence of faces alternating with
cars. Each car or face was made out of two parts (top and
bottom) and subjects selectively attended to the bottom of
these images and made 1-back judgments for both catego-
ries; in this way, the degree of holistic processing could be
measured for both categories. In this dual task situation, car
experts processed cars more holistically then car novices
and processed faces /ess holistically in the context of cars:
Simultaneous processing of faces and cars by car experts

appears to create a competition for common resources.
This behavioral interference was correlated with the mag-
nitude of the N170 face-selective ERP potential (see also
Rossion, Kung, & Tarr, 2004; Rossion, Collins, Goffaux, &
Curran, 2007). In more recent work, competition between
car and face perception was also obtained in tasks where
the cars were completely task-irrelevant (McKeeff, Tong, &
Gauthier, 2007; Williams, 2007). Competition between face
perception and objects of expertise suggests one or more
functional bottlenecks in the brain for configural process-
ing, and because the FFA responds to both faces and objects
of expertise, it is tempting to assume that the FFA is one
such bottleneck. This is difficult to verify with fMRI at
standard resolution because the response to cars and faces
cannot be separated, but this could be addressed in future
work using high-resolution imaging.

SUMMARY

Understanding how objects are categorized is a complex
challenge that requires bridging the study of visual per-
ception and visual cognition and cannot be studied with-
out also considering how objects are perceived, identified,
and remembered (Palmeri & Tarr, 2008). To date, different
aspects of this problem, such as the format of visual object
representations and the principles that govern decisions
about the categories to which these objects belong, have
been explored in separate fields. But more than once, such
as on the issue of abstraction or modularity, these indepen-
dent lines of research have faced similar debates or reached
similar conclusions (Palmeri & Gauthier, 2004). The
advent of cognitive neuroscience, which provides evidence
and constraints from techniques as diverse as psychophys-
ics, brain imaging, neuropsychology, and neurophysiology,
may help blur old boundaries between approaches to pro-
duce more complete models of object categorization.
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