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ABSTRACT 

Retrieval processes provide ways of using memory. We describe three important ways of 

using memory, with a focus on using memory to make decisions about visual objects.1 

Discrimination is deciding if an object is distinct from another object experienced at the same 

time or moments ago, recognition is deciding if an object is the same as an object experienced 

some time in the past, and classification is deciding what kind of object something is. All three 

require comparing the representation of a currently perceived object with representations 

retrieved from memory to drive a decision process. We discuss the component mechanisms for 

discrimination, recognition, and classification as formally instantiated in computational models 

and discuss      relationships between model mechanisms and brain mechanisms as revealed by 

neuropsychology and brain imaging. 

 

KEYWORDS 

dimensions, features, similarity, exemplars, prototypes, decision making,  

evidence accumulation models, computational modeling, dissociations, fMRI 

  

                                                        
1 While we focus on memory retrieval processes given visual objects, much of what we discuss 
can likely be generalized, at least to some degree, to visual patterns and visual scenes, to other 
sensory modalities, like audition and somatosensation, and to certain multisensory percepts; we 
cannot say whether any of what we discuss generalizes to gustation or olfaction.  
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1. INTRODUCTION 

 Imagine your morning routine ends with a walk through the park on your way to the 

lecture hall for class. One morning, as you reach the park’s central esplanade, a happy dog 

barrels toward you stopping just short of crossing your path. You can discriminate one dog from 

another dog: Is that the same dog that moments ago ran around a park bench to reach you? You 

can recognize the dog: Is that the dog you saw in this same park last week? You can classify the 

dog: You know it is a dog. You also know it is an animal. Is this dog, in particular, a Border 

Collie or another kind of herding dog?  

 These thoughts are examples of common types of memory decisions we make about our 

everyday experiences (Figure 5.1.1). They all involve some kind of comparison of a current 

perceived experience – in this chapter we focus on visual experiences with objects – with some 

form of representation of past experiences retrieved from memory that provide evidence to drive 

a decision process. Discrimination2 is deciding whether the current object is distinct from an 

object experienced moments ago. Recognition3 is deciding whether the current object is the same 

                                                        
2 Here we focus on deciding whether one object and another object are the same or different (or 
more generally, whether one stimulus and another stimulus are the same or different), 
discriminating one object from another, sometimes classically characterized as an AX 
discrimination task. An ABX discrimination (or AXB discrimination) task presents three objects 
and asks the observer if X is the same as A or the same as B; even more complex variants of 
discrimination tasks have been used. Whereas discrimination involves deciding whether two 
objects are the same or different, “detection” involves deciding whether an object is present or 
absent (in a background of internal or external noise). Relations between discrimination and 
other concepts in psychology (e.g., classical and operant conditioning) are beyond the scope of 
this chapter and this volume. 
3 “Recognition” typically has a specific meaning in the memory literature as deciding whether a 
current experience (here, an object) is old (seen before) or new (not). In the vision science 
literature, by contrast, “object recognition” often refers broadly to the array of processes 
involved in creating a visual representation of an object (Palmeri & Gauthier, 2004; Palmeri & 
Tarr, 2008). Here we use “recognition” exclusively in the sense of memory and refer to 
perceptual processes involved in creating a representation of an object using other terms. 
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as one experienced some time in the past. Classification is deciding what kind of object 

something is. Kinds can range in abstraction from the highly specific identification of a 

particular individual (my dog Max), to a subordinate type (Yellow Labrador Retriever), to a basic 

kind (a dog), to a superordinate class (an animal, a living thing). 

 On the surface, these seem like very different memory decisions dependent on very 

different retrieval processes. Discrimination retrieves a specific immediate past experience 

whereas recognition can involve a sense of familiarity with a host of past experiences.4 

Discrimination involves a specific individual whereas classification involves generalization over 

a broad category. Recognition is memory based on episodic experiences whereas classification 

reflects semantic knowledge about a category. Indeed, as we review in the following sections, 

certain theories of discrimination, recognition, and classification have viewed these as distinct 

memory processes relying on distinct forms of memory representation. But when performance in 

these memory tasks is formalized in computational models that instantiate memory 

representations and mechanistic processes in mathematics and simulation, we can see many more 

similarities in representations and processes than might be apparent otherwise.  

 Discrimination, recognition, and classification are all broad topics for discussion. Other 

chapters in this volume discuss recognition memory (e.g., Dennis & Osth, Chapter 5.2; 

Yonelinas, Chapter 5.6) and entire volumes have been devoted to classification and concepts 

(e.g., Murphy, 2004) and formal models of classification (e.g., Pothos & Wills, 2011). We focus 

on formal models to illustrate the representations and component processes involved in 

discrimination, recognition, and classification in precise mechanistic detail, to describe ways in 

                                                        
4 Of course, recognition can involve the recollection of a specific past experience as well as an 
overall sense of familiarity.  
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which these might share aspects of representation and process, and to highlight the inferential 

power of computational modeling approaches (e.g., Farrell & Lewandowsky, 2018; Hintzman, 

1990). We highlight specific examples of neural evidence using a model-based cognitive 

neuroscience approach (e.g., Forstmann & Wagenmakers, 2015; Palmeri, Love, & Turner, 2017; 

Turner, Forstmann, Love, Palmeri, & Van Maanen, 2017), with other chapters in this volume 

discussing the neural basis of memory more generally (e.g., Davachi, Chapter 1.3; Helfrich, 

Knight & D’Esposito, Chapter 1.5; Montaldi, Chapter 5.8). 

  

2. MODELING DISCRIMINATION, RECOGNITION, AND CLASSIFICATION 

2.1 Components of Models 

At a minimum, any model of discrimination, recognition, or classification requires at 

least three key components to be specified: the perceptual representation of an object5, the 

memory representations that this perceptual representation is to be compared to, and the decision 

process that uses the evidence from the comparison to determine same versus different 

(discrimination), old versus new (recognition), one category versus other categories 

(classification).  

 

2.1.1 Perceptual Representations. Many models assume that objects are represented as 

multidimensional arrays of discrete features or continuous dimensions (Figure 5.1.2). For 

example, the dimensions of an object representation might correspond to its shape (square vs. 

triangle), color (black vs. white), and size (large vs. small) (e.g., Nosofsky, Gluck, Palmeri, 

                                                        
5 Recall that our focus is on discrimination, recognition, and classification of visual objects.  
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McKinley, & Glauthier, 1994); so [1 2 2] would then correspond to the perceptual representation 

of a small white square.  

In a model, the values along particular dimensions for particular objects might simply 

correspond to the direct physical manifestation of objects realized in an experiment or by 

previous psychophysical studies that carefully map physical properties of objects onto 

psychological representations.  

Alternatively, the values along dimensions for particular objects could be determined by 

techniques like multidimensionsional scaling (MDS) (e.g., Shepard, 1980; Nosofsky, 1992a), 

where a matrix of similarity ratings between all possible pairs of objects are obtained and are 

used to construct a multidimensional psychological space, with individual objects represented as 

points in that space, with objects positioned within that space so that distances between objects 

are proportional to their judged dissimilarity. MDS can confirm that physical manipulations of 

dimensions correspond to expected psychological dimensions of simple objects (e.g., Nosofsky, 

1991; Nosofsky & Palmeri, 1997) or can be used to reveal multidimensional representations for 

more complex objects (e.g., Nosofsky, Sanders, & McDaniel, 2018; Palmeri & Nosofsky, 2001). 

Multidimensional arrays can also be simulated to capture the statistical similarity 

structure of objects used in an experiment without any particular simulated array meant to 

correspond to any specific item from an experiment. For example, multidimensional arrays 

simulating individual objects could be samples from a multivariate normal distribution (e.g., 

Ross, Deroche, & Palmeri, 2014). Multidimensional random samples could be drawn in such a 

way to reflect statistically experimental factors like between-item similarity, within- and 

between-category similarity (e.g., Hintzman, 1986; Nosofsky, 1988), and the relative frequency 

of individual features (e.g., Shiffrin & Steyvers, 1997). In a simulation, while a model may not 
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predict at the level of individual items, it may predict at the level of factors like relative item 

similarity, category typicality, category similarity, and frequency that are reflected in the 

sampled multidimensional item arrays. 

All of the above simulate perceptual dimensions without instantiating a model of 

perception itself. While people in an experiment view images of objects, the models view 

multidimensional arrays, not images. Researchers have also explored using models of object 

recognition and computer vision as a perceptual front end to create within the simulation 

perceptual representations directly from the same images used in experiments with human 

participants (e.g., Annis, Gauthier, & Palmeri, 2020; Mack & Palmeri, 2010; Ross et al., 2014; 

Sanders & Nosofsky, 2018). 

 

2.1.2 Memory Representations. Certainly the simplest model assumption is that an experienced 

perceptual representation gets stored as a complete memory representation. While many failures 

of memory can be attributed to failures of retrieval, many models also assume that storage is 

imperfect and that there is some parameterized probability that features in the perceptual 

representation are encoded as part of a memory representation (e.g., Hintzman, 1988; Shiffrin & 

Steyver, 1997). Models can also assume that memory representations decay in strength over time 

(e.g., Estes, 1994; Nosofsky & Palmeri, 1997) and that the quality of memory representations 

can vary across individuals due to brain damage on one extreme (e.g., Nosofsky & Zaki, 1998) to 

cases of domain expertise on the other extreme (e.g., Annis & Palmeri, 2019). 

 While memory for individual episodic experiences is commonly modeled as the storage 

of individual episodic representational arrays in memory (e.g., Hintzman, 1988; Shiffrin & 

Steyver, 1997), models vary in how knowledge about categories and other forms of semantic 
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knowledge are represented in memory. Models that are instance-based or exemplar-based 

assume that abstract knowledge for purposes of classification emerges from retrieval of the very 

same episodic experiences that underlie recognition memory (e.g., Hintzman, 1986, 1988; 

Jacoby & Brooks, 1984; Logan, 1988; Nosofsky, 1988). Other models assume that knowledge 

about a category is inherently abstract and that memory representations responsible for 

classification involve the abstraction of a prototype (e.g., Posner & Keele, 1968; Smith & Minda, 

2002), that classification involves learning simple rules combined with memory for exceptions to 

those rules (e.g., Nosofsky, Palmeri, & McKinley, 1994; Palmeri & Nosofsky, 1995; Sakamoto 

& Love, 2004), or that semantic knowledge is stored in more complete representational arrays in 

memory from those that encode incomplete episodic experiences (e.g., Shiffrin & Steyvers, 

1997). 

Finally, especially in the case of models of recognition memory, it is common to assume 

that a representational array, whether for a probe item or a stored memory, includes not only the 

perceptual features of the object but also features associated with the context in which an object 

was experienced (e.g., Hintzman, 1988; Murdock, 1982; Shiffrin & Steyvers, 1997; see also 

Dennis & Osth, Chapter 5.2; Manning, Chapter 5.12).  

 

2.1.3 Similarity. To discriminate, recognize, or classify an object, its perceptual representation 

needs to be matched with retrieved memory representations. Common to many models of 

discrimination, recognition, and classification is that this match is based on similarity.6  

                                                        
6 There are models and theories of classification that are not based on similarity, or at least not 
entirely, and are dependent on more abstract knowledge representations like rules (e.g., 
Nosofsky, Palmeri, & McKinley, 1994), causal relations (e.g., Rehder, 2003), or theories (e.g., 
Murphy, 2004; Murphy & Medin, 1985). We focus on similarity-based models of classification 
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If objects are represented as multidimensional arrays of discrete features or continuous 

dimensions, there are many natural ways to formalize mathematically the similarity between two 

representational arrays. If representational arrays are vectors of unit length (or if the length is 

proportional to the strength rather than the content of the representation), then cosine similarity, 

which is the dot product of the two vectors normalized by their length, is a possible measure. If 

the vectors contain discrete features, then the contrast model (Tversky, 1977), which is a 

weighted sum of both common and distinct features, is a possible measure (see also Nosofsky, 

1991). A match can also be based on likelihoods as part of a Bayesian decision process (e.g., 

Anderson, 1990; Nosofsky, 1990; Shiffrin & Steyvers, 1997). 

If objects are represented as points in a multidimensional psychological space, then a 

simple, and arguably most common, assumption (Figure 5.1.2) is that similarity, sij, between two 

objects, i and j, is a decreasing function of distance, dij, 

𝑑"# = %& 𝑤(|𝑖( − 𝑗(|-
.

(/0

1

0/-

	

where M is the number of dimensions in the representational array, im is the value of object i 

along dimension m, and r reflects the distance metric. The familiar Euclidean distance metric 

results when r=2, and a city-block distance metric results when r=1; it is common to assume the 

Euclidean metric for integral dimensions and city-block for separable dimensions (Garner, 1974; 

Shepard, 1987).7 Dimensions are weighted, wm, according to their relative diagnosticity for the 

                                                        
to highlight the relationships between these models and models of discrimination and 
recognition. 
7 As the name suggests, integral dimensions are often said to be perceived unitarily, as part of an 
integrated whole, such as the hue, saturation, and brightness of colors. Separable dimensions, by 
contrast, are often said to be perceived, attended, and processed independently, such as the shape 
and color of objects. 
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current task demands (Nosofsky, 1984; see also Carroll & Wish, 1974; Kruschke, 1992; 

Lambert, 2000); the importance of these weights will be highlighted later.  

Similarity is a decreasing function of distance, with the most common general form being 

𝑠"# = 𝑒𝑥𝑝8𝑑"#
9 :	

where q=1 gives an exponential function and q=2 a Gaussian function. Shepard (1987) described 

the exponential (q=1) as a law of generalization based both on empirical data and Bayesian 

principles; cases where a Gaussian (q=2) provide a better account than an exponential (e.g., 

Nosofsky, 1986) may reflect the presence of sensory-perceptual noise (e.g., Kahana & Sekuler, 

2002) when stimulus differences approach just-noticeable differences (e.g., Ennis, 1988). 

 

2.1.4 Evidence for Discrimination, Recognition, and Classification. For a given task, we can 

define the evidence (E) in favor of one decision over other decisions as a function of the 

similarity between the representation of the probe object p and representations in memory. 

 For discrimination, we are asking if probe p is the same as item j that was just 

experienced. So the evidence for a “same” response (𝐸<=(>|?) can be defined most simply8 as 

𝐸<=(>|? = 𝑠?#	

 For recognition memory, it is common to assume that the evidence for an “old” response 

(𝐸@AB|?) is based on the overall familiarity of probe p, formalized mathematically in its simplest 

form as the summed similarity between p and all items in memory (with a match of context cues 

                                                        
8 Most accounts of discrimination bypass the important question of how the right memory 
representation of the first object is retrieved so it can be compared with the second object, or 
there is the tacit assumption that the context is so overwhelming that memories from objects on 
other discrimination trials do not intrude (but see Cohen & Nosofsky, 2000). 
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used to limit the relevant stored memories to a particular list or other such experimental context 

defining the appropriate recognition decision) 

𝐸@AB|? =&𝑠?C
C

	

where k indexes all instances in memory. Evidence of this sort is an example of a global 

matching model of recognition (e.g., Dennis & Osth, Chapter 5.2; Gillund & Shiffrin, 1984; 

Hintzman, 1988). Such familiarity-based matching process is often, but not always, one of the 

components of dual-process models of recognition memory (e.g., Yonelinas, Chapter 5.6). 

 For classification, evidence that probe p belongs to Category A (𝐸D|?) depends on the 

similarity between probe p and the memory representation of Category A.9 If knowledge about a 

category is represented in terms of stored exemplars, we can compute the evidence based on the 

nearest neighbor to probe p (most similar stored exemplar of Category A to probe p), average 

similarity of probe p to stored exemplars of Category A (e.g., Reed, 1972), or summed similarity 

of probe p to stored exemplars of Category A. Summed similarity is the most common (and most 

successful) variant assumed by the exemplar-based Generalized Context Model (GCM) 

(Nosofsky, 1984, 1986; see also Medin & Schaffer, 1978) 

𝐸D|? = &𝑠?C
C∈D

	

where k indexes all instances of Category A in memory. Alternatively, if knowledge about a 

category is represented in terms of an abstracted prototype, then the evidence that probe p is a 

member of Category A is simply given by the similarity between probe p and the stored 

prototype for Category A, PA. 

                                                        
9 Again, we are focusing on similarity-based models of classification here. Classification based 
on abstract rules or knowledge would involve very different mechanisms. 
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2.1.5 Decision Rules. The evidence is used to make a decision, responding “same” or “different” 

in a discrimination task, “old” or “new” in a recognition task, “Category A” or “Category B” in a 

classification task. 

In the case of discrimination and recognition, a simple deterministic decision rule would 

be to respond “same” (or “old”) if the evidence (𝐸<=(> or 𝐸@AB) is greater than some criterion 

(𝑘<=(>	or 𝑘@AB) 

𝐸 > 𝑘	

and respond “different” (or “new”) otherwise. Of course, the criterion (or the evidence) could be 

noisy, in which case the decision rule would be 

𝐸 > 𝑘 + 	𝜀	

where 𝜀 is a sample from a normal distribution with mean zero and standard deviation 𝜎. 

Decisions about discrimination and recognition are based on whether the match (discrimination) 

or familiarity (recognition) are sufficiently strong (relative to some criterion). 

 In the case of classification, a relative decision rule is needed instead. An object p is 

classified as a member of Category A if its summed similarity to exemplars of Category A (𝐸D) is 

greater than its summed similarity to exemplars of Category B (𝐸K), again allowing for there to 

be noise in the decision rule (or evidence) 

𝐸D > 𝐸K + 	𝜀	

There can also be response bias (𝛽) (see Nosofsky, 1991) irrespective of the relative evidence 

𝐸D > 𝐸K + 𝛽 + 	𝜀	

In the extreme, as 𝛽 grows larger and larger, the likelihood      of ever responding Category A 

grows smaller and smaller. Of course, discrimination and recognition decisions can also be 
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biased, but, mathematically, adding a bias term would be non-identifiable (any bias parameter 

would be additive with the criterion parameter). 

 In the case of deterministic decision rules, the probability (or frequency) of responding 

(“same”, “old”, “Category A”) would need to be determined by Monte Carlo simulation (or by a 

mathematical derivation of the long-run probability given the specified deterministic decision 

rule). 

 Models can also be specified using a probabilistic decision rule. For discrimination, the 

probability of deciding “same” given a probe p is 

𝑃<=(>(𝑝) =
𝐸<=(>|?

𝐸<=(>|? + 𝑘<=(>
	

For recognition, the probability of deciding “old” given a probe p is 

𝑃@AB(𝑝) =
𝐸@AB|?

𝐸@AB|? + 𝑘@AB
	

For classification, the probability of deciding “Category A” given a probe p is 

𝑃D(𝑝) =
𝛽D𝐸D|?

𝛽D𝐸D|? + 𝛽K𝐸K|?
	

Again, while the response biases (𝛽D and 𝛽K) are explicit for classification models (because of 

the relative decision rule), they are implicit (not uniquely identifiable) within the values of the 

criteria for discrimination and recognition models.  

And whereas discrimination and recognition are inherently two-choice decisions, 

classification can be multi-choice. In that case, the decision rule for classification can be 

extended to 

𝑃(𝑝) =
𝛽D𝐸D|?

∑ 𝛽Q𝐸Q|?Q∈R
	

where K is the set of possible categories under consideration (see also Palmeri, 1997). 
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A range of decision rules from probabilistic to deterministic can be formalized by raising 

the evidence to a power (Ashby & Maddox, 1993) 

𝑃(𝑝) =
(𝐸D|?)S

(𝐸D|?)S + (𝐸K|?)S
	

(leaving out the bias terms for simplicity) with 𝛾 = 1 giving the probabilistic decision rule and 

𝛾 → ∞ giving a deterministic decision rule without noise. Ashby and Maddox (1993) 

demonstrated formally the mathematical relationships between the probabilistic decision rule and 

deterministic decision rule.10 While there are cases where humans (and animals) engage in 

probability matching in ways that suggest a purely probabilistic decision rule, in most cases of 

object classification, humans (and animals) tend to respond more deterministically than predicted 

by a purely probabilistic decision rule. 

 These deterministic and probabilistic decision rules only predict response probabilities. 

To extend these frameworks to response times as well as response probabilities, the evidence is 

used to drive an accumulation process (see Heathcote, Trueblood, & Starns, Chapter 5.10). The 

first such model of classification was the Exemplar-based Random Walk (EBRW) model (Figure 

5.1.3; Nosofsky & Palmeri, 1997, 2015; Palmeri, 1997), which combined elements of the 

exemplar-based GCM model of classification (Nosofsky 1984, 1986), the instance theory of 

automaticity (Logan, 1988), and a random walk model of decision making (e.g., Busemeyer, 

1985; Link, 1992; Ratcliff, 1978).  

                                                        
10 While theoretically the form of a category representation (exemplar vs. prototype) and the 
nature of the decision rule (deterministic vs. probabilistic) are conceptually independent, it has 
been shown that considering both factors is critical for contrasting alternative models. For 
example, Nosofsky and Zaki (2002) showed that certain instantiations of a prototype model are 
sufficiently flexible to allow for a range of probabilistic vs. deterministic decision rules to be 
embedded within them non-identifiably whereas an exemplar model must have the probabilistic 
vs. deterministic nature of the decision rule expressed explicitly. 
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 Time enters into EBRW in two ways. First, following instance theory, repetitions of the 

same item are assumed to create new memory representations of that item. When a probe p is 

presented, instances race to be retrieved from memory. Based on instance theory, more 

repetitions of the same item in memory mean that the winner of the race for retrieval will get 

faster with more experience. This property allows instance theory, and hence EBRW, to predict 

speed-ups with experience (see also Palmeri & Cottrell, 2009; Palmeri, Wong, & Gauthier, 

2004). One thing that distinguishes EBRW from instance theory is that memory retrieval rates 

depend on the similarity between probe p and stored exemplar j. If retrieval times are 

exponentially distributed, then it can be shown that the probabilities of retrieving exemplar j 

(relative to all stored exemplars of Category A and Category B) is given by 

𝑃(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒	𝑗) =
𝑠?#

∑ 𝑠?CC∈D +	∑ 𝑠?CC∈K
	

 and the probability of retrieving any exemplar from category A is simply 

𝑃(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒	𝐴) =
∑ 𝑠?CC∈D

∑ 𝑠?CC∈D +	∑ 𝑠?CC∈K
	

which is the GCM. 

 Rather than base a decision on a single retrieval (like GCM), EBRW assumes that each 

retrieval drives a random walk decision process.11 Like other evidence accumulation models 

(Heathcote et al., Chapter 5.10), EBRW assumes that evidence is accumulated towards an upper 

boundary associated with a Category A decision and a lower boundary associated with a 

Category B decision (see Palmeri, 1997, for a generalization to multiple categories). This 

accumulation over time is the second way time enters the EBRW. If a Category A exemplar wins 

                                                        
11 As the time for each step and the size of each step go to zero (appropriately) in the limit, a 
discrete random walk approaches a continuous diffusion process (Feller, 1968). 
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the retrieval race, the random walk takes a step towards the A threshold (𝜃D), if a Category B 

exemplar wins, it takes a step towards the B threshold (𝜃K). Which threshold is hit first 

determines both what response is made (A or B) and when it is made (like other evidence 

accumulation models, EBRW also assumes non-decision time associated with perceptual 

processing and motor execution). 

 Interestingly, if the response thresholds are set equal to one another (𝜃D = 𝜃K = 𝜃∗), it 

can be shown (Nosofsky & Palmeri, 1997) that predicted response probabilities from EBRW are 

𝑃(𝐴|𝑝) =
(∑ 𝑠?CC∈D )^∗

(∑ 𝑠?CC∈D )^∗ + (∑ 𝑠?CC∈K )^∗
	

which is identical to the 𝛾 decision rule outlined earlier. 

 While the EBRW was originally developed to account for response probabilities and 

response times in classification tasks, its principles have been extended to account for a range of 

speeded discrimination and recognition paradigms as well (e.g., Annis et al., 2020; Annis & 

Palmeri, 2019; Mack & Palmeri, 2010; Nosofsky, Cao, Cox, & Shiffrin, 2014; Nosofsky & 

Palmeri, 2015). Further extensions of these models consider the dynamics of how object features 

are sampled and how these representational dynamics influence the time-course of 

discrimination, recognition, and classification (e.g., Cohen & Nosofsky, 2003; Cox & Criss, 

2019; Lamberts, 2000). 

 

2.2 Relations Between Discrimination, Recognition, and Classification 

 Having outlined a formal mathematical framework for modeling discrimination, 

recognition, and classification in the same language, we now highlight a few examples of work 

examining relationships between these memory retrieval processes. As noted elsewhere, the 
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literature      on each of these processes is vast, so the following can only hope to be illustrative 

rather than exhaustive. 

 

2.2.1 Relations Between Identification and Classification. Classification involves knowledge 

in memory generalized over a broad category of objects, for example deciding that some object 

is a kind of thing called a “dog” not a “cat”. Identification involves knowledge in memory about 

a specific individual object, for example deciding that some object is an individual named 

“Brownie” not “Max” or “Chelsea”. Identification is like discrimination (why we discuss 

identification here) in that they both involve a specific individual whereas classification involves 

generalization over a class. 

 An early theory of identification bears important similarities to the class of theories 

described earlier. The Similarity-Choice Model (SCM) of identification (Luce, 1963; Shepard, 

1957) assumes that identification confusions, the probability of identifying stimulus i with the 

label associated with stimulus j, is given by  

𝑃(𝑆") =
𝛽#𝑠"#

∑ 𝛽C𝑠"CC
	

The evidence that stimulus i should be given the label associated with stimulus j is given by the 

similarity between i and j, just like the evidence for a same-different discrimination described 

earlier; the primary difference is that in identification, relative evidence is required to decide on a 

particular label to apply to an object, whereas, in discrimination, absolute evidence is required to 

decide if an object is the same or different as a previous object. 

 One early hypothesis assumed that similarity between objects was invariant over task 

demands. In that case, the object similarities that would govern identification of a unique 

individual should also govern classification as a member of a broad category. In its simplest 
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form, the identification confusions of objects within a category should simply sum together to 

predict the probability that an object is classified as a member of that category. But this mapping 

hypothesis (Nosofsky, 1986) between identification and classification fails (e.g., Shepard, 

Hovland, & Jenkins, 1961; see also Nosofsky, 1984). Classification performance cannot be 

predicted from identification performance if object similarities are assumed to be invariant across 

tasks. Indeed, Shepard et al. (1961) suggested from these failures that classification must involve 

some form of abstract knowledge learning, such as rule formation (see also Nosofsky et al., 

1994), whereas identification involves some form of stimulus-response association learning. 

 Nosofsky (1984, 1986) instead allowed for similarities to vary across tasks in a principled 

way. While the locations of objects in multidimensional space would remain invariant across 

tasks, the weights applied to psychological dimensions, the wm terms included in the distance 

metric described earlier, could vary across tasks (see also Kruschke, 1992). In particular, 

dimensions that were diagnostic for classification (or identification or recognition) would receive 

large weights while dimensions non-diagnostic for the task would receive small weights, thereby 

stretching the psychological space along diagnostic dimensions and shrinking the space along 

non-diagnostic dimensions. When attention weights are added to the modeling framework, 

classification can indeed be predicted from identification (Nosofsky, 1984, 1986, 1987). The 

same object representations, memory representations, and kinds of processes can govern 

identification and classification. 

 

2.2.2 Relations Between Recognition and Classification. Many classic theories argued that 

recognition and classification depend on distinct memory systems. Recognition is episodic while 

classification is semantic (Tulving, 1972, 2002). Recognition is declarative while classification 
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is non-declarative (Squire & Zola, 1996). Some of these claims are based on neuropsychological 

and (more recently) brain imaging results (but see Section 3 of this Chapter), but certain 

empirical results also suggested dissociations between recognition and classification. 

 In experiments where participants learn novel objects belonging to novel categories and 

are tested both on their classification of old and new objects and their recognition memory for 

old and new objects, there is often little correlation between classification confidence and 

recognition memory performance (e.g., Anderson, Kline, & Beasley, 1979; Hayes-Roth & 

Hayes-Roth, 1977; Metcalfe & Fisher, 1986). Intuitively, it seems reasonable to presume that if 

memory for specific exemplars drove both classification and recognition that objects classified 

with high confidence should also be well recognized. A failure to find a correlation between 

classification and recognition seems problematic for a single-system exemplar model. 

 Yet exemplar models account quite naturally for these observed cases of a lack of 

correlation (e.g., Nosofsky, 1988, 1991, 1992b). Even though according to models like the GCM, 

both classification and recognition are assumed to be based on similarity to the same stored 

exemplars in memory, classification depends on the relative summed similarity to exemplars in 

one category versus another category whereas recognition depends the absolute summed 

similarity to all exemplars in memory. An      object could be similar to many stored exemplars, 

causing it to be recognized as “old”, but those similar exemplars could belong to different 

categories, making classification confidence      low; alternatively, an object could be dissimilar 

to most stored exemplars, causing it to be recognized as “new”, but it could be similar to only 

exemplars in one category, making classification confidence quite high.  
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2.2.3 Effects of Learning and Expertise on Discrimination, Recognition, and Classification. 

Learning, experience, and expertise affect      perceptual representations that aid discrimination, 

enhance      perceptual and memory representations that aid recognition, and build      

representations that enable increases in performance at classification at various levels of 

abstraction (e.g., Gauthier, Tarr, & Bub, 2009; Palmeri et al., 2004).  

 Early in learning to classify objects, people may be given explicit rules (e.g., Palmeri & 

Nosofsky, 1995; Palmeri, 1997) or generate rules on their own      (e.g., Ashby, Alfonso-Reese, 

& Waldron, 1998; Nosofsky et al., 2004). Imperfect category rules can be supplemented with 

exceptions stored in memory (e.g., Davis, Love, & Preston, 2012; Nosofsky et al., 2004; 

Nosofsky & Palmeri, 1998; Sakamoto & Love, 2004). According to instance theory (Logan, 

1988) and EBRW (Nosfsky & Palmeri, 2015; Palmeri, 1997), performance in a task like 

classification involves a race between applying a categorization rule and retrieval of memories 

for past experiences performing the classification. Early in learning, the rule tends to dominate 

performance because it wins the race. Assuming that memory storage is obligatory (Logan, 

1988) and that additional stored memories speed up the memory retrieval process, later 

performance, after some experience, is based on memory retrieval (Palmeri, 1997; see also 

Johansen & Palmeri, 2002), leading to automaticity and expertise (Palmeri et al. 2004; see also 

Healy, Proctor, & Kole, Chapter 11.4). 

 Often accompanying classification learning of new object categories are changes to the 

perceptual representations of objects that belong to those learned categories as revealed by 

changes in discrimination performance. Beyond the kind of dimensional stretching of diagnostic 

psychological dimensions during object classification, as reflected by changes to the wm 

parameter in the formula for the distance metric, there can often be longer-term changes in 
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perceptual discriminability along those diagnostic dimensions. As a consequence of learning 

novel categories, people show increased perceptual discrimination for basic form and color 

dimensions (e.g., Goldstone, 1994) as well as along more complex dimensions of complex 

objects (e.g., Folstein, Gauthier, & Palmeri, 2012; Goldstone & Steyvers, 2001) that are relevant 

to learned categories. 

 And finally, learning and expertise with object classification can affect recognition 

memory for objects in an expert domain. Real-world perceptual expertise in a domain, say for 

birds or cars or medical images, is often accompanied by increases in visual short-term memory 

(e.g., Curby, Glazek, & Gauthier, 2009) and long-term memory (e.g., Evans, Cohen, Tambouret, 

Horowitz, Kreindel, & Wolfe, 2011; Herzmann & Curran, 2011). Annis and Palmeri (2019) 

observed increases in short-term and long-term memory for birds as a function of perceptual 

expertise at classifying birds and via an extension of EBRW showed that these increases in 

memory performance were best explained by a combination of an increase in the quality of the 

perceptual representations of birds and the memory strength for bird memories as a function of 

real-world expertise (see also Healy, Proctor, & Kole, Chapter 11.4). 

 

2.2.4 Other Theoretical Perspectives. In the above discussion, we have intentionally focused 

on one particular family tree of computational models (SCM, GCM, EBRW) because they 

allowed us to illustrate potential theoretical connections between discrimination, recognition, and 

classification. Of course, there are other theoretical perspectives in this active area of research. 

Some past debates, for example between exemplar models (Nosofsky & Smith, 1992) and 

decision boundary models, have given rise to more nuanced contrasts between exemplar 

(McKinley & Nosofsky, 1995) and exemplar-like models (e.g., Ashby & Waldron, 1999) that 
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make similar predictions about behavior but differ in their relations to neural processes (e.g., 

Ashby & Rosedahl, 2017). Object classification can be based on rules rather than similarity (e.g., 

Ashby et al., 1998; Erickson & Kruschke, 1998), perhaps supplemented by similarity to stored 

exemplars, especially those that represent exceptions to classification rules (e.g., Nosofsky et al., 

1994; Palmeri & Nosofsky, 1995). Or can be based on representations that can approximate 

rules, prototypes, or exemplars in a more flexible manner (e.g., Love, Medin, & Gureckis, 2004), 

or can reflect a combination of rules and exemplars whose combination might vary as a function 

of experience and expertise (e.g., Johansen & Palmeri, 2002; Palmeri et al., 2004). To the extent 

that representations supporting classification are more abstract than experienced exemplars, then 

multiple memory systems could be implicated in recognition and classification.  

 

3. NEURAL EVIDENCE 

The modeling framework detailed above highlighted one particular theoretical view that 

there is a common mechanistic substrate for discrimination, classification, and recognition 

through flexible retrieval of memory representations. Early patient and neuroimaging work, 

some of which we note below, supported a different view that there are multiple distinct learning 

and memory systems supported by separable neural mechanisms. More recent work leveraging 

sophisticated model-based cognitive neuroscience approaches has demonstrated common neural 

substrates for component processes involved in discrimination, recognition, and classification. 

Rather than a comprehensive review of the rich literature on related neuroscience research, we 

highlight these studies that integrate computational and neuroscientific methods.  
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3.1 Neural Representations, Similarity, and Attention 

 The computational framework we describe is based on feature-based representations of 

experiences and similarity processes that compare current experiences to stored representations 

to make discrimination, recognition, and classification decisions. Neural evidence for these 

mechanisms has existed for as long as the field has studied the brain. For example, seminal 

neurophysiological studies in monkeys showed that firing rates for neurons in inferotemporal 

(IT) cortex exhibit sensitivity to features diagnostic for newly-learned classification (Sigala & 

Logothetis, 2002; Freedman et al., 2003) while retaining coding for item-specific features (Op de 

Beeck et al., 2001). Similarly, early studies leveraging functional magnetic resonance imaging 

(fMRI) in humans demonstrated that activation of brain regions along the ventral visual pathway 

discriminate between categories of visual content (Kanwisher et al., 1997; Epstein & Kanwisher, 

1998; Gauthier et al., 1999) and do so according to a gradient of feature similarity (e.g., Gauthier 

et al., 1997b). 

 The advent of multivariate techniques that enable researchers to quantify patterns of 

neural activity across cell populations and multiple voxels provided the opportunity to more 

precisely assess the content of neural representations when making different types of decisions. 

For example, real-world categories of visual content are distinctly represented in activation 

patterns across ventral visual cortex (e.g., Haxby et al., 2001; Connolly et al., 2012; Kriegeskorte 

et al., 2008) and the medial temporal lobe (e.g. Liang et al., 2013; LaRocque et al., 2013). Work 

specifically targeting the contribution of visual and semantic features to neural representations 

for naturalistic and novel visual objects has converged on two central findings: 1) the more 

features two objects share, the more similar their neural representations, and 2) there exists a 

gradient of feature type along the ventral visual pathway with more visual features dominating 
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representations in occipital and posterior temporal regions and more conceptual features 

dominating medial and anterior temporal regions (Martin et al., 2018; Clarke & Tyler, 2014; 

Erez et al., 2016; Davis & Poldrack 2014). Interestingly, item- and category-specific patterns of 

activation elicited when viewing or encoding visual content are also present during memory 

retrieval (Chadwick et al., 2016; Kuhl, Rissman, & Wagner, 2012; Mack & Preston, 2016; 

Polyn, Natu, Cohen, & Norman, 2005; Staresina, Henson, Kriegeskorte, & Alink, 2012; 

Tompary, Duncan, & Davachi, 2016), a finding consistent with the proposal for a common 

neural substrate underlying classification and recognition.   

 Model-based cognitive neuroscience approaches (e.g., Forstmann & Wagenmakers, 2015; 

Palmeri, Love, & Turner, 2017; Turner, Forstmann, Love, Palmeri, & Van Maanen, 2017), in 

which latent representations and processes from computational models are leveraged to 

interrogate brain function, have recently significantly advanced our understanding of the neural 

underpinnings of discrimination, recognition, and classification. One such study (Mack, Preston, 

& Love, 2013) looked to neural representations of fMRI activity present during classification as 

evidence to adjudicate between exemplar- and prototype-based models of classification. The 

logic followed that the evidence guiding classification decisions (EA|p) would be evident in neural 

activation patterns. Given the differences in the nature of their underlying representations, 

exemplar and prototype models predict unique signatures of classification evidence. Thus, the 

better correspondence between neural activation and a model’s latent quantity of classification 

evidence, the better that model formalizes the representations and processes of classification. 

This approach showed that in a classic classification task using what is known as the “5-4” 

category structure (Medin & Schaffer, 1978), almost all participants were better fit by a 

classification model using exemplar representations rather than prototype representations.  
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These findings were recently extended (Bowman & Zeithamova, 2018) with a 

classification task defined by category structures that encourage more abstract or prototype-like 

representation (Zeithamova, Maddox, & Schnyer, 2008), finding stronger evidence in neural 

activation for classification evidence as predicted by a prototype model. Interestingly, both 

studies demonstrated that attention to different stimulus features as predicted by the 

computational models was consistent with the similarity between neural representation in 

multiple brain regions associated with visual processing (lateral occipital and parietal cortices), 

memory (hippocampus and medial temporal lobe cortex), and decision making (ventromedial 

and rostrolateral prefrontal cortex) (see also, Davis, Goldwater, & Giron, 2017). In other words, 

the similarity of activation patterns for different objects during classification behavior matches 

the attention-weighted similarity computation formalized in computational models. These 

highlighted studies offer compelling neural evidence for the model mechanisms outlined in the 

prior section, specifically multidimensional representations based on feature combinations, 

feature-based attention that distorts and shapes representations (e.g., Goldstone & Styvers, 2001; 

Nosofsky, 1986), and similarity-based processes (Shepard, 1987). And, collectively, this work 

supports the notion that the nature of memory representations underlying any given type of 

discrimination, classification, or recognition decision are adaptive with regard to prior 

experience and current task goals (Anderson, 1991; Love & Gureckis, 2007; Love, Medin, & 

Gureckis, 2004; Mack, Love, & Preston, 2016). In fact, emerging evidence from neural firing 

and synchrony in monkey lateral prefrontal cortex suggests both specific exemplar-like and 

generalized prototype-like representations are available through separable neural circuits during 

classification decisions (Wutz, Loonis, Roy, Donoghue, & Miller, 2018).  
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 The library of cognitive neuroscience research on discrimination, classification, and 

recognition is vast and we have highlighted only a fraction of relevant findings. By focusing on 

both seminal studies that first established how neural evidence supports flexible decisions based 

on memory representations and more recent studies that integrate computational modeling with 

neuroscience methods, we hope to provide the interested reader with helpful entry points into the 

rich literature.  

 

3.2 A Common Neural Framework 

In the following sections, we specifically highlight cognitive neuroscience studies that 

have assessed the central proposal outlined above; namely, that discrimination, recognition, and 

classification share a core set of computational mechanisms and representations. 

 

3.2.1 Discrimination and Classification. A fundamental prediction of common mechanisms 

and representations for discrimination and classification is that memory representations and 

similarity computations that support successful classification should impact discrimination 

performance. In terms of the model framework proposed here, the same representations driving 

decision evidence to classify an object (EA|p) are at play in discriminating between that object and 

one seen just before it (Esame|p). Put simply, learning that two objects belong to different 

categories should change the perception of these two objects such that they appear more different 

even in perceptual tasks not related to classification. This increase in discrimination due to 

classification learning is known as acquired distinctiveness and has been a guiding hypothesis in 

many behavioral (e.g., Goldstone, 1994; Goldstone & Styvers, 2001; Notman, Sowden, & 

Özgen, 2005; Op de Beeck, Wagemans, & Vogels, 2003) and neural (e.g., De Baene, Ons, 
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Wagemans, & Vogels, 2008; Folstein, Palmeri, & Gauthier, 2013; Jiang et al., 2007; Li, 

Ostwald, Giese, & Kourtzi, 2007; Sigala & Logothetis, 2002) studies.  

 Although initial attempts to find neural evidence of acquired distinctiveness resulted in 

mixed findings, one notable study by Folstein and colleagues (2013) provided a      compelling 

demonstration of a neural link between classification and discrimination. Participants first 

learned to classify complex visual objects, cars, carefully constructed from a morph space of 3D 

car models into two categories (Figure 5.1.4). After successfully learning to classify the cars, 

participants performed a visual discrimination task during fMRI scanning in which they 

determined whether or not two sequentially-presented cars were positioned in the same location 

on the screen. Critically, car pairs were composed of the same car or two different cars that 

varied along a feature dimension that was either relevant or irrelevant for the classification task. 

This paradigm was designed to reveal fMRI adaptation (Grill-Spector, Henson, & Martin, 2006), 

an effect in which the second presentation of a visual stimulus results in lower activation since it 

is engaging the same population of neurons. The logic followed that if classification shapes 

neural representations such that features relevant for classification are selectively enhanced with 

richer representations, pairs of objects that differ along these classification-relevant features will 

exhibit less or no adaptation. In contrast, object pairs that differ along irrelevant features will 

have more overlap in neural representation resulting in greater adaptation effects. Indeed, this 

was exactly what was found: regions within the ventral visual stream including fusiform gyrus 

and occipital regions showed greater sensitivity to cars varying along classification-relevant 

features. This neural acquired distinctiveness was mirrored in behavior—participants were better 

able to discriminate small variations in cars that differed along relevant vs. irrelevant features. 

These findings demonstrate an important link between the neural substrate of discrimination and 
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classification. Learning to classify visual objects changes their neural representations and these 

learning-related changes impact the neural representations and behavior during subsequent 

discrimination tasks. 

 

3.2.3 Classification and Recognition. Some of the earliest work on the neuroscience of 

classification and recognition was conducted with individuals with amnesia (Knowlton & Squire, 

1993). This work demonstrated that in spite of catastrophic memory loss due to damage to key 

memory structures in the medial temporal lobe, individuals with amnesia were capable of 

learning new classification tasks. The compelling results stood in the face of the formal 

theoretical relationship between recognition and classification (e.g., Nosofsky, 1988; Love & 

Gureckis, 2007) by positing distinct neural mechanisms (Squire & Zola, 1996), a theoretical 

stance supported by fMRI evidence that distinct brain regions are recruited in service of the two 

tasks (Reber, Gitelman, Parrish, & Marsel Mesulam, 2003). However, it has been demonstrated 

that global similarity models that leverage common representations and computations for 

classification and recognition can successfully account for patient data in both types of tasks 

(e.g., Love & Gureckis, 2007; Nosofsky & Zaki, 1998; Palmeri & Flanery, 2002). Moreover, 

neuroimaging research from the past decade suggests that in addition to its role in memory, the 

MTL is in fact a critical player in classification (Bowman & Zeithamova, 2018; Davis, Love, & 

Preston, 2012a, 2012b; Mack et al., 2016; Mack, Love, & Preston, 2018; Poldrack et al., 2001; 

Seger, Braunlich, Wehe, & Liu, 2015; Zeithamova et al., 2008). Here, we highlight two studies 

that target a common mechanistic account of classification and recognition through an integrated 

approach combining computation models with neuroimaging. 
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 As we detail above in Section 2, decisions of classification and recognition rely on the 

same underlying evidence (i.e., summed similarity of the current stimulus to stored memory 

representations) compared to a task-specific criterion. Notably, this criterion is expected to 

qualitatively vary between classification and recognition (Nosofsky et al., 2012). For example, to 

make successful recognition decisions while minimizing false alarms to stimuli that are related 

but nonetheless novel, the current stimulus must match a specific prior experience to a high 

degree, thus necessitating a high criterion. In contrast, a classification decision relies on the 

relatively lax criterion of sufficient similarity to prior experiences with no need for exact 

matches. It follows that such differences in criterion may lead to different activation profiles 

across brain regions, in spite of the same computations and representations guiding decisions in 

the two tasks. Nosofsky, Little, and James (2012) tested this hypothesis by manipulating the 

criterion used by participants for recognition and classification during fMRI scanning. After 

matching criterion settings across the tasks, they found no discernable differences in brain 

activation. Moreover, an exemplar-based model of the two tasks accounted for both classification 

and recognition behavior. Finally, model-based predictions of criterion settings across the tasks 

corresponded with individual differences in BOLD activation in both the frontal eye field and 

anterior insula, two brain regions implicated in perceptual decision-making tasks. Thus, these 

findings support a common computational mechanism for classification and recognition with 

neural engagement that varies according to task demands. 

 A complementary study by Davis et al. (2014) examined a common role for similarity-

based comparisons to memory representations in recognition and classification. Specifically, 

they hypothesized that if the same representations and similarity-based computations underlie 

decision evidence for classification and recognition, similarity between neural representations 
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elicited during these two tasks should predict recognition and classification behavior. By 

analyzing activation patterns in the medial temporal lobe during classification and recognition, it 

was demonstrated that global neural pattern similarity (i.e., the summed similarity between the 

activation pattern for the current stimulus and all other stimuli) predicted both confidence in 

recognition memory decisions (e.g., Eold|p) and a latent model measure of classification evidence 

(e.g., EA|p). These findings suggest that not only is      MTL function      important for 

classification and recognition, MTL-based representations operate according to the formal 

principles of the computational framework that accounts for both classification and recognition. 

 

4. FINAL COMMENTS 

Discrimination, recognition, and classification span a wide range of behaviors with 

seemingly distinct psychological and neural mechanisms. However, converging behavioral and 

neural evidence motivated by a rich theoretical history, the highlights of which were covered in 

this chapter, suggests that these different types of decisions may arise from common 

representations and processes, or at least that a common set of computational principles may 

govern forms of representations and kinds of processes, even if those representations and 

processes may be distributed across different brain areas (Bowman & Zeithamova, 2018; 

Zeithamova et al., 2019). The central component of this integrative framework is the flexible 

retrieval of memory representations. Whether deciding if the object in front of you is the same as 

what you experienced just moments ago, is a specific kind of animal, or is familiar based on a 

host of past experiences, the same memory representations serve as evidence for your final 

decision. Looking forward, we expect that future research will elaborate on this common 

framework by targeting how factors of experience impact decisions across these different types 
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of flexible retrieval. For example, how does perceptual expertise that relies on extensive 

semantic knowledge (e.g., expert bird watchers) impact memory for experiences related and 

unrelated to that expertise (e.g., Annis & Palmeri, 2019)? And, what are the neural mechanisms 

that support flexible encoding and retrieval of memory representations across changing task 

goals (e.g., Bowman & Zeithamova, 2018; Davis et al., 2017; Mack et al., 2016; Mack et al., 

2020).  

Finally, it is worth noting the value of computational modeling in arriving at the field’s 

current understanding of discrimination, recognition, and classification. Only by formalizing the 

computations and representations implicit in verbal descriptions of these different decisions has 

it been possible to disconfirm some theories and strongly support others. Moreover, the recent 

boom in model-based and computationally-sophisticated neural approaches to investigating 

discrimination, recognition, and classification has significantly broadened the theoretical scope 

and impact of findings. Such an approach offers the unique opportunity to localize 

quantitatively-defined model representations and computations to specific brain regions (e.g., 

Davis et al., 2012a; Kragel et al., 2015; Mack et al., 2016) and to adjudicate among competing 

formal theories with brain measures (e.g., Davis et al., 2012b; Mack et al., 2013; Bowman & 

Zeithamova, 2018). Indeed, it is compelling and persuasive evidence to demonstrate that the 

neural representations of stimuli match one model’s representational predictions more than 

another (e.g. Mack et al., 2013) or that trial-by-trial fluctuations in neural signal from a specific 

brain region correspond with the dynamics of a latent model component (e.g., Davis et al., 

2012a). A promising avenue for future work will be a focus on how individuals or patients differ 

in terms of computational model predictions (e.g., differences in feature dimension attention 
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weights) and how these model-based quantities are linked to individual differences in neural 

function and representation.  

This integrative approach also promises to motivate the development of more 

comprehensive mechanistic theories that bridge levels of analysis to account for both behavior 

and brain function. For example, one exciting new direction in the field (Gureckis & Love, 2007; 

Mack et al., 2018; Zeithamova et al., 2020) is a theoretical push to marry the computational 

framework we have highlighted here with the brain-based accounts of episodic memory such as 

the influential Complementary Learning Systems theory (McClelland et al., 1995; Norman & 

O’Reilly, 2003; Schapiro et al., 2017). This work extends the perspective of common functions 

and representations underlying classification and recognition behavior to formalize how 

functions of memory encoding (e.g., pattern separation in the hippocampus) may form distinct 

exemplar-like representations of our experiences. Such representations can then be flexibly 

retrieved for a variety of decisions through selective attention and goal-based strategies ascribed 

to cortex (e.g., Hutchinson et al., 2014; Mack et al., 2020) and potentially leveraged to support 

the formation of representations in other brain regions.  

Looking forward, key questions remain: How is selective attention tuned to diagnostic 

feature dimensions and how are these weights applied across changing task demands? How does 

learning shape the nature of representations necessary for classification and what impact does 

this have on recognition? How does recent experience interact with prior knowledge in making 

flexible discrimination, classification, and recognition decisions? Future research that integrates 

computational theory with brain measures will undoubtedly answer these questions to shed light 

on the cognitive and neural dynamics underlying how we perceive, learn, and remember. 
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FIGURE CAPTIONS 

Figure 5.1.1: Example discrimination, recognition, and classification decisions for a single 

visual object. Photograph by Sebastian Lehmann. 

 

Figure 5.1.2: Am example modeling framework that accounts for discrimination, recognition, 

and classification decisions. Objects are composed of multiple features which are represented as 

vectors of feature values. In this depiction, features are assumed to be present or absent (i.e., a 

value of 1 or 0); however features can also have continuous values. These representations of 

experiences are stored in a memory matrix with each row representing a memory trace consisting 

of features from a prior experience. A similarity measure can be used to query the match 

between a current object, p, and a memory trace. Similarity is often formalized as the exponential 

of a Minkowski distance. These models components can be leveraged to make decisions about 

discrimination, recognition, and classification. Photograph by Anna Blumenthal. 

 

Figure 5.1.3: The EBRW model was the first classification model to formalize how similarity 

processes acting on multidimensional memory representations can account for both response 

probabilities and response times. A) In EBRW, a probe item (P) activates stored exemplars (1-8) 

proportional to their similarity. B) This similarity drives a race between activated exemplars to 

be retrieved from memory. C) Retrieved exemplars then drive an evidence accumulation process 

towards a decision. Figure adapted from Nosofsky et al. (2014), Figure 7. 

 

Figure 5.1.4: Illustration of the morph space from Folstein et al. (2013). Two sets of parent car 

models were first morphed to create two perceptual dimensions (parent A to B and parent C to 
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D). The full morph space was then created by factorially blending these two perceptual 

dimensions. Participants learned to classify the cars into two categories defined by the vertical 

dashed line. After classification learning, participants then performed an unrelated perceptual 

task in which pairs of morph cars were presented in sequence. Relevant pairs varied along the 

perceptual dimension relevant for the classification learning, irrelevant pairs varied along the 

other dimension. Folstein et al. (2013) found that relevant pairs were associated with a greater 

release from repetition suppression than irrelevant pairs in subregions of lateral occipital and 

ventral temporal cortex. These findings suggest that neural representations of the car stimuli 

were shaped by classification learning selectively to the dimension relevant for classification. 

Figure adapted from Folstein et al. (2013), Figure 1. 

  

 










