
Chapter 15
Inhibitory Control in Mind and Brain:
The Mathematics and Neurophysiology
of the Underlying Computation

Gordon D. Logan, Jeffrey D. Schall and Thomas J. Palmeri

Abstract We develop desiderata for a computational theory of response inhibition
that links mathematical psychology with neuroscience. The theory must be explicit
mathematically and computationally, and grounded in behavior and neurophysiol-
ogy. The theory must provide quantitative accounts of complexities of behavior in
response inhibition tasks and must predict the neural activity that underlies perfor-
mance. We evaluate three current theories of response inhibition in the stop signal
paradigm using these desiderata, and we find that one theory fulfills the desiderata
better than the others.

15.1 Introduction

Yawning, Goldilocks walked into the bedroom and saw three beds. “This one’s too big,” she
said. “This one’s too small. But this one’s just right.” She crawled under the covers, fell fast
asleep, and dreamed of unimagined wonders.

We are lucky to live in an era in which the dreams we dared to dream are coming
true. Mathematical psychology and neuroscience are merging, and the merger is
yielding amazing insights into the mind and brain that were unimaginable 20-years-
ago. Mathematical psychology has provided us with precise, explicit descriptions of
mental processes that are linked tightly to behavior, making strong predictions about
behavior that stand up to rigorous empirical tests. Accurate prediction of response
time (RT ) distributions for correct and error responses is now commonplace, and it is
the standard by which models are judged. Neuroscience has opened the black box and
shown us how the neural processes underlying behavior interact and unfold in real
time. Analysis of spike trains from single neurons, local field potentials from groups
of neurons, and electroencephalographic activity at the dura, skull, and scalp have
revealed the time-course of information processing. Studies of anatomy, lesions, and
brain imaging have shown us the networks of neurons that process information. In
recent years, we have seen a proliferation of theories that merge the insights from
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mathematical psychology and neuroscience, identifying the computational mecha-
nisms in mathematical models with individual neurons and systems of neurons that
implement the computation, and testing the identification rigorously by fitting both
behavioral and neural data. In all these models, the fundamental insight that made
the dream come true is the idea that mind and brain are the computers that produce
behavior, and the computation is one and the same.

15.2 Imagining the Dream

We dreamed of a theory that applies that fundamental insight to response inhibition,
especially in the stop-signal or countermanding task [13]. We dreamed of a theory
that was formulated explicitly in mathematics or computer simulation, grounded in
behavior, computation, and neurophysiology. The theory should accurately predict
important behavioral phenomena with models that are connected to the extensive
theory of stochastic accumulation to a threshold. The theory should specify linking
propositions that connect the mathematical description to neurons, groups of neurons,
or brain regions [22, 23]. The linking propositions identify the points of contact
between theory and neural data, and specify the aspects of the data that are relevant
to the theory. In the stop-signal task, a theory of response inhibition must provide
a quantitative account of the probability of inhibiting a response and explain how it
varies with the time available to stop (stop-signal delay, or SSD). The theory must
provide a quantitative account of RT distributions for error and correct responses. In
the stop-signal task, this means accounting for the relation between failures to inhibit
(signal-respond or non-cancelled trials) and successful responses to the go task (no-
stop-signal or cancelled trials), and accounting for changes in the signal-respond RT
distribution with SSD.

Our dream theory provides a list of desiderata that we have used to guide our own
modeling: The theory must account for behavior, neurophysiology, and computation,
it must be explicit mathematically or computationally, and it must fit the data better
than plausible alternatives. In this chapter, we use these desiderata to evaluate current
theories of response inhibition in the stop-signal task. The theories are formulated
at three different levels of analysis. The highest level addresses networks of brain
regions that participate in response inhibition, specifying the interactions within and
between regions. The middle level addresses firing rates in systems of neurons that
participate in response inhibition, specifying excitatory and inhibitory connections.
The lowest level addresses spiking neurons, specifying the connections between
spike trains and the underlying biochemistry. Like Goldilocks, we will conclude that
one of these levels is too big, one is too small, and one is just right. But we are getting
ahead of ourselves. Let us begin by describing behavior in the stop-signal task and
the independent race model that accounts for it.

Waking just enough to notice the world around us, we realize there are other dream-
ers and other dreams. In the other dreams, Goldilocks might prefer a bigger or smaller
level of theorizing, fulfilling desiderata that emphasize large networks or biochem-
istry. Rolling over, we snuggle back into our own dream for the rest of this chapter.
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Fig. 15.1 Inhibition Function from a memory-search experiment in which the number of items
in the memory set was varied. The probability of responding given a stop signal increases as
stop-signal delay (SSD) increases and decreases as response time (RT) in the go task increases
(RT1 < RT2 < RT3)

15.2.1 Response Inhibition in the Stop-Signal Paradigm

The ability to inhibit our responses voluntarily is a paradigm case of cognitive control.
It shows we have “the freedom to do otherwise,” which is a hallmark of free will. It
reveals itself in many behavioral paradigms, but it is revealed most clearly, simply,
and directly in the stop-signal paradigm (for reviews, see [12, 13, 26]). In this
paradigm, subjects perform a “go” task, in which they make a speeded response
to an imperative stimulus. On some trials, a “stop signal” is presented that tells
subjects to inhibit their response to the go signal. Whether or not they are able to is
the main datum of interest. Many studies show that the ability to inhibit responses
is probabilistic, and the probability of inhibition depends primarily on SSD (see
Fig. 15.1). Stop-signal delay controls the amount of time available to detect the stop
signal and countermand the go response before the go response is executed; response
inhibition is more likely when more time is available. Signal-respond RT is also an
important datum. It is usually faster than RT on trials with no stop signal, as if it
comes from the faster tail of the go RT distribution (see Fig. 15.2).

These effects have been observed in several species, including rats, monkeys,
and humans, in several subject populations, including children, adolescents, young
adults, and the elderly. These effects have been observed in several psychiatric
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Fig. 15.2 Distributions of response time on no-stop-signal trials and on signal-respond trials with
stop signal delay (SSD) equal to 231, 364, and 496 ms. Signal-respond distributions are faster than
no-stop-signal distributions. They begin with a common minimum and end with a shorter maximum

disorders, including attention deficit hyperactivity disorder and schizophrenia, and
in several neurological disorders, including stroke and Parkinson’s disease. They
have been observed in different stimulus and response modalities, in different tasks,
in different experimental conditions, and with different strategies. The patterns are
the same qualitatively, but they differ quantitatively, and the quantitative differences
reveal important changes or deficits in cognitive control.

15.2.2 Independent Race Model

Two facts led Logan and Cowan [13] to propose the independent race model of
stop signal performance: (1) The probability of response inhibition depends on
the time available to detect the stop signal before the go response is executed, and
(2) signal-respond RTs are faster than RTs on no-stop-signal trials. These facts
suggested that response inhibition depends on the outcome of a race between a go
process, initiated by the go stimulus, and a stop process, initiated by the stop signal.
If the stop process finishes before the go process, the response is inhibited, producing
a signal-inhibit trial. If the go process finishes before the stop process, the response
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Fig. 15.3 Predictions of the independent race model, assuming SSRT is constant. Onset of Go
Signal followed by onset of Stop Signal after a stop-signal delay. Vertical line across the distribution
represents the finishing time of the stop process. Probability of responding is area to left of line;
probability of inhibiting is area to right of line. Top panel: standard condition. Middle panel: Stop-
signal delay increases, so probability of responding increases. Bottom panel: Go response time
increases, so probability of responding decreases

is not inhibited, producing a signal-respond trial. The model assumes that the
finishing times for the stop and go processes are independent random variables, and
demonstrates that the fundamental results in the stop-signal paradigm follow from
these assumptions (see Fig. 15.3).

The independent race model provides a measure of the latency of the stop process,
called stop-signal reaction time (SSRT ). This is an important contribution because
the stop process is not directly observable. If the stop process finishes before the
go process, there is no response whose latency can be measured. If the stop process
finishes after the go process, we know SSRT must have been longer than signal-
respond RT, but we do not know how much longer. The independent race model
provides several converging methods for estimating SSRT from the observed data.
These measures of SSRT have been important in documenting differences in the
ability to inhibit responses across lifespan development, between clinical and con-
trol groups, and between neurological patients and controls. They have also been
important in understanding the neurophysiology of response inhibition. Neural pro-
cesses that cause response inhibition must modulate before SSRT; neural processes
that are consequences of response inhibition modulate after SSRT.

Since it was formulated in 1984, the independent race model has been used in
virtually every stop-signal experiment. It provides important measures of cognitive
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control, like SSRT, and it provides a benchmark against which other models can
be evaluated. Its prevalence results from its generality: It is formulated in terms of
generic finishing time distributions for the stop and go processes. It makes no commit-
ment to the underlying computational or neural processes that generate these finishing
times. It expresses relationships that must hold for any and all distributions, regard-
less of the process that generates them. This is important because the independent
race model provides an important check for the models we consider here that address
the computations performed by the underlying neural processes: these models must
predict the empirical relationships predicted by the independent race model.

The independent race model is like a dream: it captures the essence but not the
details. It formulates the constraints that any model of response inhibition must
follow, but it does not provide the structure that seems necessary to explain recent
developments in stop-signal research. For example, many studies have shown that
go RT is slower when stop trials occur more frequently, as if the go process changes
to balance the competing demands of stopping and going. Many other studies have
shown that go RT is slower on trials following stop signals than on trials before
them, suggesting that a stop trial results in some kind of strategic adjustment to the
go process. To explain how these adjustments occur, we need a more detailed model
of the go process that tells us which parts can support this strategic adjustment. The
independent race model provides no model of the underlying process. It can describe
these effects, but it cannot explain them.

15.3 Feeding the Dream

Developments in mathematical psychology and neuroscience around the turn of the
twenty-first century set the stage for the development of models that link mind and
brain. Mathematical psychologists developed a variety of stochastic accumulator
models that explained RT distributions for correct and error responses as resulting
from processes that accumulate information until a threshold for responding is
reached. Many studies evaluated the strengths and weaknesses of random walk,
diffusion, race, and leaky competitive accumulator models, using increasingly
sophisticated methods for assessing goodness of fit and increasingly stringent
comparative tests of one model against another e.g. [20]. Models must fit large
amounts of data with a small number of free parameters, and they must fit better than
plausible alternatives when model complexity is taken into account. Researchers
either compare one model architecture against another or compare different models
in the same architecture to determine which parameters are necessary and sufficient
to account for the data. These models and the approach they took to modeling
inspired more specific models of response inhibition with greater explanatory power.

At the same time, neuroscientists were training animals to perform the stop-signal
task and recording from their brains as they performed it. Hanes and Schall [7] showed
that monkeys performed a saccadic version of the stop signal task much like humans.
The probability they would inhibit their eye movements depended on SSD and their
signal-respond RTs were faster than their no-stop-signal RTs. Hanes, Patterson and
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Schall [8] recorded from frontal eye fields in monkeys performing the saccadic stop
signal task, isolating neurons involved in gaze shifting and gaze holding that repre-
sent a larger circuit of such neurons that extends from cortex through basal ganglia
and superior colliculus to brainstem. They found that these neurons modulated on
stop-signal trials, modulating just before SSRT when the monkey stopped success-
fully. Paré and Hanes [15] reported similar results in superior colliculus. Meanwhile,
studies of humans with lesions in frontal cortex revealed deficits in stop-signal inhi-
bition, and functional magnetic resonance imaging (fMRI) on healthy young adults
suggested the involvement of a circuit including frontal cortex, basal ganglia, and sub-
thalamic nucleus [1]. These rich neural data sets demand computational explanations
that are more detailed than the description the independent race model provides.

15.4 Dreaming the Dream

In recent years, many theories of response inhibition have been developed. We focus
on three models that account for behavior, computation, and neurophysiology in
the stop-signal task. One focuses on brain regions, one focuses on processes that
generate spikes and spike trains, and one focuses on firing rates in single neurons.
Like the Goldilocks in our dream, we conclude that one is too big, one is too small,
and one is just right. Of course, other Goldilocks’ in other dreams may reach different
conclusions.

15.4.1 Single Neurons: The Interactive Race Model

Boucher et al. [5] formulated an interactive race model to address a paradox
they encountered in linking models to neurons: How can a model that assumes
independent stop and go processes explain behavior that is supported by interacting
circuits of mutually inhibitory gaze-holding and gaze-shifting neurons? They
addressed this question by instantiating the stop and go processes as mutually
inhibitory leaky competitive accumulators ([25]; see Fig. 15.4). The go accumulator
begins after an afferent delay, Dgo, accumulating activation until it reaches a
threshold, whereupon a response occurs. The stop accumulator begins after an
afferent delay, Dstop, inhibiting the go response in proportion to its activation. If the
stop accumulator becomes active soon enough (if SSD + Dstop < go RT), it prevents
the go accumulator from reaching threshold and the response is inhibited. If the
stop process becomes active too late (if SSD + Dstop > go RT), the go accumulator
reaches threshold and the response is not inhibited.

Boucher et al. [5] specified the stochastic differential equations that govern the
stop and go accumulators and used them to drive computer simulations. They fit the
simulations to behavioral data from two monkeys, who also provided neural data
from the same test sessions, manipulating the mean and standard deviation of go and
stop accumulation rates and the mutual inhibition from stop to go and go to stop to
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Fig. 15.4 Interactive race model. Arrows represent excitatory connections; dots represent inhibitory
connections. The GO unit receives input after an afferent delay (DGO) and the STOP unit receives
input after stop-signal delay (SSD) plus an afferent delay (DSTOP). GO and STOP units inhibit each
other. Inhibition from STOP to GO is much greater than inhibition from GO to STOP. A go response
occurs if GO activation reaches threshold. The go response is inhibited if inhibition from the STOP
unit prevents it from reaching threshold

optimize goodness of fit. The model fit the data well, providing accurate quantitative
accounts of the inhibition function, no-stop-signal RTs, and signal-respond RTs at
several SSDs (see [5], Fig. 6). Thus, the model fulfills the behavioral side of the
desiderata of our dreams.

Boucher et al. then simulated the growth and modulation of activation of the go
and stop accumulators, using the parameters that produced the best fits to the behav-
ioral data, and matched the simulated patterns of activation to measured patterns of
activity in gaze-holding and gaze-shifting neurons that were recorded while monkeys
performed the stop signal task. To assess the match between simulated and recorded
activity, Boucher et al. had to decide which aspect of the recorded activity to assess.
The pattern of activation for an individual neuron has many idiosyncrasies, but all
patterns show some general characteristics. In order to fit the “signal” and not the
“noise,” Boucher et al. focused on distributions of cancel times, which are the times
at which neural activity modulates on trials on which subjects stop successfully, rela-
tive to SSRT. They assessed this in the simulated data in the same way they assessed
it in neural data, by determining the point at which activation on successful stop
trials first differed significantly from activation on latency-matched no-stop-signal
trials. In the neural data, this point ranges from 50 ms before to 50 ms after SSRT,
with a mean 5–10 ms before SSRT. The model predicted distributions with the same
range (see [5], Fig. 7). Note these are genuine predictions. They were generated with
a fixed set of parameters that provided the best fit to the behavioral data, without
any further adjustment to optimize the fit to neural data. Thus, the model fulfills the
neural side of the desiderata of our dreams.

The final desideratum is comparative model fitting. Boucher et al. [5] compared
the interactive race model with a version of the independent race model in which the
stop and go process were modeled as leaky accumulators with no competition. After
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their respective afferent delays (Dstop and Dgo) they accumulate activation until one
of them reaches a threshold. If the stop process finishes first, the response is inhib-
ited; if the go process finishes first, the response is executed. Boucher et al. found
that the independent race model fit the behavioral data as well as the interactive race
model, suggesting mimicry. Normally, parsimony would favor the simpler indepen-
dent race model over the more complex interactive race model. However, Boucher
et al. argued that the interactive race model accounted for the neural data, predicting
modulation of go activation on stop-signal trials and predicting cancel time distri-
butions accurately, while the independent race model did not. They argued that this
favored the interactive race model. Thus, the interactive race model fulfills all of the
desiderata of our dreams: it is computationally explicit, it explains the underlying
processes computationally and neurally, it provides accurate quantitative accounts
of behavioral and neural data, and it won in competitive tests against a plausible
alternative. If Goldilocks were a mathematical psychologist, we believe she would
find our model just right.

What about the paradox? The interactive race model assumes an interaction
between gaze-holding and gaze-shifting units, like the interaction between gaze-
holding and gaze-shifting neurons that underlies eye movements. How can it account
for data that are described just as well by the independent race model? The answer
lies in the values of the best-fitting parameters: In order to fit the behavioral data,
Dstop had to be long—almost as long as SSRT—and inhibition from the stop process
on the go process had to be much stronger than the inhibition from the go process
on the stop process. Thus, the stop process and the go process were independent
for most of their durations, and response inhibition resulted from late and potent
inhibition just before a go response occurred.

15.4.2 Spikes and Spike Trains: The Spiking Neuron Model

Lo et al. [10] implemented the Boucher et al. [5] interactive race model in Lo and
Wang’s [9] spiking cortico-basal ganglia circuit model of RT (see Fig. 15.5). The
model assumes hundreds of units representing populations of movement neurons,
fixation neurons, and inhibitory interneurons, and a control unit that turns the fixation
neurons on and off. Each population produces Poisson spike trains that depend on
the ratio of parameters representing NMDA and AMPA inputs. The model addresses
fixation activity at the beginning of a trial and the transition from fixation to movement
as well as the rise in movement activation to threshold. The model produces the
transition from fixation to movement, and ultimately RT, by turning off the control
unit that excites fixation units, thereby releasing tonic inhibition on the movement
units and allowing their activity to rise to threshold.

Lo et al. [10] fit data from one of the two monkeys Boucher et al. [5] modeled.
They fixed the number of units and many of the parameters across all conditions and
manipulated three parameters to maximize goodness of fit: The mean and standard
deviation of a Gaussian distribution for the time at which the control unit turned off,
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Fig. 15.5 Spiking neuron model. Arrows represent excitatory connections; dots represent inhibitory
connections. The MOVE units are excited by input from the go signal. The FIXATION unit is excited
by input from the fixation point and the stop signal and by control input. MOVE and FIXATION
units activate an INHIBITION unit that inhibits them all. The Control unit tonically excites the
FIXATION unit. A go response occurs when the Control unit releases excitation on the fixation
unit. The go response is inhibited if the stop signal excites the FIXATION unit before a MOVE unit
makes its response

and the time at which the stop signal turned the fixation units back on (analogous
to Dstop in [5]). Their fits to RT distributions for no-stop-signal and signal-respond
trials and their fits to inhibition functions were about as good as the fits Boucher et al.
[5] obtained. Like Boucher et al., Lo et al. found that Dstop had to be relatively long
to produce appropriate signal-respond RT distributions; inhibition of stop on go had
to be late and potent. The Lo et al. model also predicted modulation of movement
and fixation neurons and cancel time distributions qualitatively as well as Boucher
et al. [5], although these predictions were not assessed quantitatively.

Lo et al. [10] modeled the effects of changes in baseline activation in fixation and
movement units on the probability of successful inhibition. Successful inhibition was
less likely when movement units were more active during the baseline period and
more likely when fixation units were more active. They tested these predictions by
reanalyzing data from the Hanes et al. [8] and Paré and Hanes [15] countermanding
studies, and found lower baseline firing rates in movement neurons prior to successful
inhibition.

What about our dream? The Lo et al. [10] model fulfills our behavioral desidera-
tum, fitting the behavioral data as well as the Boucher et al. [5] model. The Lo et al.
model fulfills our neural desideratum as well, describing stop and go units as spik-
ing neurons and linking the computation to the biochemistry that generates spikes.
However, the model does not fulfill our computational desideratum very well. RT
depends on turning off a control unit that tonically excites fixation units, which re-
leases inhibition on movement units and allows their activity to rise to threshold. The
variability in RT depends primarily on the variability in the time at which the control
signal is turned off, which is determined arbitrarily by a Gaussian distribution whose
mean and standard deviation were free parameters that were adjusted to optimize
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goodness of fit (113 and 95 ms, respectively). The control unit is like a homunculus
outside the model that intervenes at the right time to produce the right effect. It is not
grounded in the physiology, like movement and fixation units. There are no linking
propositions [22, 23] that tie it to neurons or neural structures analogous to the linking
propositions that tie movement and fixation units to gaze-shifting and gaze-holding
neurons. We prefer models like the Boucher et al. [5] model, in which variability in
RT is produced by variable growth in stochastic accumulation [18, 19] over the Lo
et al. model, in which variability in RT is produced by an arbitrary control unit.

The Lo et al. [10] model partially fulfills our desideratum of comparative model
fitting. Lo et al. compared their fits to Boucher et al.’s [5] fits of the interactive race
model and the stochastic-rise-to-threshold version of the independent race model and
found that their model fit about as well. They discovered the importance of differences
in baseline activity in movement and fixation units in predicting the probability of suc-
cessful inhibition, but that is not likely to be a unique prediction of their model. Differ-
ences in baseline activation could be implemented in the Boucher et al. [5] model, and
would likely produce similar results. Thus, the Lo et al. model does not distinguish it-
self from plausible alternatives in comparative model fits, as our dream model would.

Lo et al. [10] modeled the underlying physiology at a finer grain than Boucher
et al. [5], modeling spikes and spike trains rather than firing rates. However, this
required many parameters (AMPA and NMDA ratios for each interaction between
units) in addition to the three parameters that were varied to optimize goodness of fit.
These parameters were fixed for the fitting, but they were tweaked to produce firing
rates in the desired range for movement and fixation cells before they were fixed.
From the perspective of mathematical psychology, where fitting large amounts of
data with a small number of parameters is desirable, this is not a virtue. If Goldilocks
were a mathematical psychologist, she would find the focus of this model (on spikes
and spike trains) too small.

15.4.3 Brain Regions: The Frontal Cortex-Basal Ganglia Model

Wiecki and Frank [28] formulated a model of inhibitory control that extends Frank’s
[6] model of basal ganglia to include cortical structures. The new model describes
interactions between units in frontal cortex (dorsolateral prefrontal cortex, right infe-
rior frontal gyrus, frontal eye fields), basal ganglia (striatum, globus pallidus external
segment, substantia nigra pars compacta, substantia nigra pars reticulata, subthalamic
nucleus), and superior colliculus (see Fig. 15.6). It addresses the stop-signal task and
an anti-saccade task in which a peripheral target is presented and subjects must inhibit
their natural tendency to look directly at it and shift their gaze to a position opposite
to it. The model explains stop-signal performance by assuming that the stop signal
activates right inferior frontal gyrus, which activates subthalamic nucleus, which ac-
tivates substantia nigra pars reticulata, which then inhibits superior colliculus. If the
superior colliculus is inhibited before its activation reaches threshold, the response
is inhibited, producing a signal-inhibit trial. If superior colliculus reaches threshold
before it is inhibited, the response is executed, producing a signal-respond trial.
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Fig. 15.6 Cortico-basal ganglia model. Arrows represent excitatory connections; dots represent
inhibitory connections. DLPFC dorsolateral prefrontal cortex; FEF frontal eye fields; rIFG right
inferior frontal gyrus; STN subthalamic nucleus; GPe globus palladus external segment; SNc sub-
stantia nigra pars compacta; SNr substantia nigra pars reticulate; SC superior colliculus. Response
inhibition occurs when rIFG activates STN, which activates SNr, which inhibits SC

Wiecki and Frank [28] simulated performance on the stop-signal task but did not
fit their model to the data. They simulated inhibition functions and RT distributions
on no-stop-signal and signal-respond trials but did not compare the simulated func-
tions quantitatively to observed data. The only observed data they reported were RT
distributions taken from one of the monkeys studied by Boucher et al. [5] and Lo et al.
[10], and their simulations overestimate the variability in the observed distributions
(see their Fig. 12.). They reported simulated activation for units in striatum, substan-
tia nigra pars reticulata, subthalamic nucleus, and dorsolateral prefrontal cortex, but
did not compare the changes in activation with observed neural data.

What about our dream? The model fulfills our computational desideratum,
explaining the mathematics and computations that occur within and between units,
but it does not fulfill the other desiderata as well as we would like. The lack of quan-
titative fits falls short of fulfilling our behavioral desideratum. Every model of the
stop-signal task predicts inhibition functions and RT distributions for no-stop-signal
and signal-respond trials, so the model’s predictions of the shapes of these functions
are far from unique. Moreover, other models predict these functions quantitatively,
and the models rise and fall on the accuracy of their quantitative fits. In fact, the
independent race model [13] predicts these effects without specifying any of the
underlying computations, so it is not clear that the machinery in the Wiecki and Frank
[28] model is doing any of the work. We view this as a shortcoming of their model.

The Wiecki and Frank [28] model promises to fulfill our neural desideratum but
also falls short. It is clear that stop-signal performance depends on the integrated
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action of many brain structures, and the model includes the relevant structures.
However, the linking propositions that connect model units to brain structures and
interactions between model units to interactions between brain structures are not
evaluated very rigorously. The model provides a framework in which these desiderata
could be fulfilled, but does not go as far as we would like toward fulfilling them.
Quantitative comparisons of critical features of the data (e.g., cancel times) would
be steps in the right direction.

The Wiecki and Frank [28] model of the stop task does not fulfill our desideratum
of competitive model testing very well. It demonstrates that the model could work,
but it does not pit the model against plausible alternatives. Wiecki and Frank evaluate
the effects of lesioning model structures and manipulating motivation, comparing
different versions of their model, but the evaluation is qualitative, not quantitative.
They also apply the model to related tasks, like the antisaccade task, again evaluating
the fit qualitatively.

From the perspective of mathematical psychology, this model does not fare well.
There are many parameters and essentially no data points. If Goldilocks were a math-
ematical psychologist, she would find to focus of this model (on brain regions and
not on quantitative data) too big. If Goldilocks were a computational neuroscientist
with Wiecki and Franks’ perspective, she would find this theory just right.

15.5 Waking Up

It is the dawn of a brand new day. We dreamed our dream and still want more. The
integration of mathematical psychology and neuroscience has only just begun. We
still dream of a grand model that integrates it all, from spikes to brains, and fits a
large amount of data with a small number of parameters. In our view, the frontal
cortex-basal ganglia model may be too big, the spiking neuron model may be too
small, and the interactive race model may be just right, but we dream of a model
that integrates all three. The models have moved us significantly forward, but much
remains to be done. In the remaining pages, we sketch out our future dreams and
some cold, hard realities that we must face.

15.5.1 Choice

Perhaps the most pressing problem is to deal with choice, both in the go task and
the stop task. Boucher et al. [5] considered only one accumulator for the go task.
Lo et al. [10] and Wiecki and Frank [28] proposed two accumulators, one for each
possible go response, but did not model activity in the competing accumulator. This
may be appropriate for saccadic stop-signal tasks, where choice errors are exceed-
ingly rare [7], but it is not appropriate for manual stop-signal tasks, which dominate
the literature [26]. The probability and latency of choice errors need to be modeled.
The alternative responses must be modeled as stochastic accumulators, and their
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interaction with the stochastic accumulator for the correct response must be spec-
ified. Race models, feed-forward inhibition models, and lateral inhibition models
are viable alternatives [18–20]. Choice tasks provide the opportunity to manipulate
several factors that affect the go process concurrently, and these factors may influ-
ence different parameters of the go process selectively. Selective influence provides
important leverage in modeling: Some parameters should stay constant across con-
ditions while others vary, and this adds important constraints in fitting data. We are
currently working on developing models that implement choice in the go task. We
recently extended the independent race model to deal with choice in the go task and
found some evidence for selective influence [14].

Choice is also possible in the stop process. Several investigators have studied
varieties of “selective inhibition,” in which some responses but not others must be
stopped when a stop signal occurs [2], or all responses must be stopped when a
stop signal occurs but not when another similar “ignore” signal occurs [4]. Selective
stopping may pose a significant challenge for modeling. Bissett and Logan [4] found
that selective stopping to one stimulus but not another often produces violations of
the independence assumptions of the race model. This is important because all of
the models we have discussed, from Logan and Cowan [13] to Wiecki and Frank
[28], assume that the stop process and go process are independent for much of
their duration. Independence makes modeling simpler. Non-independent stop and
go processes are much harder to characterize. We are beginning to work on models
of selective stopping.

15.5.2 Mechanisms of Response Inhibition

The models we discussed consider only one mechanism for inhibiting responses:
inhibiting the growth of activation in go accumulators. Other mechanisms have been
proposed in the literature and must be distinguished from this one [3, 13]. Salinas
and Stanford [21] note that the main computational requirement for a mechanism of
response inhibition is to halt or reverse the growth of activation in the go accumulator.
They propose a generic model that halts and reverses the growth but do not commit to
the underlying mechanism. In their view, it need not be inhibition. In our view, which
mechanism underlies inhibition is an empirical question, which we are invested in
answering.

Logan and Cowan [13]; also see [3] proposed a blocked input mechanism for
countermanding responses. They suggest that go responses are driven by input from
perceptual systems, and go responses can be countermanded by blocking the input
to the motor system. The input can be blocked in several ways. One possibility
is deleting the goal to act. In production system models, action depends on two
conditions: a goal and an appropriate stimulus. The action can be countermanded
by removing the goal, by removing the stimulus, or by removing both. Another
way to countermand responses is to suppress the input from perceptual systems. In
stochastic accumulator models, this involves setting the drift rate to zero (or less). A
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third possibility is to break the connection between perceptual and motor systems.
The mapping of go stimuli onto go responses is often arbitrary (e.g., “press the left
key if an X appears”) and must be maintained somewhere in the cognitive system
[11]. Disabling the mapping rules would prevent the growth of activation in the motor
system. In our model of visual search [18, 19], the connection between perceptual
and motor activity is controlled by a gate that prevents noise from accumulating in
stochastic accumulators. Responses could be countermanded by raising the gate to
a much higher level.

Boucher et al. [5] evaluated a blocked input model, in which the drift rate for the
go process was set to zero after the stop accumulator reached threshold. They found
it did not fit the data as well as their interactive race model. We have re-evaluated the
same model and several variants, and we do not replicate Boucher et al.’s findings.
In our simulations, the blocked input model fits the data as well as or better than the
interactive race model. We are currently working hard on this issue.

15.5.3 Model Mimicry

The models we discussed make very similar predictions for behavior and physiology.
Quantitative fits to behavior—inhibition functions and RT distributions for no-stop-
signal and signal-respond trials—were equivalent for the Boucher et al. [5] interactive
race model, the Boucher et al. stochastic accumulator version of the independent race
model, and the Lo et al. [10] spiking neuron model. Even the Wiecki and Frank [28]
frontal cortex-basal ganglia model produced the same qualitative trends. Perhaps
considering other data sets and more complex experimental designs can break this
mimicry. All of the models were fit to a single data set from one monkey from Hanes
et al. [8], (Boucher et al. also fit data from another monkey). In most applications of
mathematical psychology, this would not be sufficient. However, the goal of these
models is to predict behavior and neurophysiology simultaneously, and that requires
fitting data sets in which behavioral and neural measures were gathered in the same
session in the same subject. So far, the only data that meet this criterion are from
Hanes et al. [8] and Paré and Hanes [15]. We are currently working toward gathering
behavioral and neural data from monkeys performing a stop-signal task in which we
manipulate choice difficulty in the go task.

Neural measures exhibit mimicry too. The Boucher et al. [5] interactive race model
and the Lo et al. [10] spiking neuron model predict similar modulation of activity in
movement and fixation neurons and predict similar distributions of cancel times. Our
current investigations of blocked input models mimic these predictions. Moreover,
the stochastic accumulator version of the independent race model that Boucher et al.
investigated could predict similar modulation and cancel time distributions if the
measures were defined a little differently. The modulation of go activation could be
defined as the maximum value of the go accumulator on signal-respond trials. With
that definition, the independent race model would modulate much like the interactive
race model. It would stop before it reached threshold, and the level of activation
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would be lower the shorter the SSD, like the observed data. Similarly, cancel time
distributions could be generated for the independent race model by comparing the
maximum activation on signal-respond trials to the activation on latency-matched
no-stop-signal trials. These cancel times would fall in the range of observed cancel
times (i.e., SSRT ± 50 ms).

The mimicry in the neural measures may be broken by examining different neural
measures and examining activation and modulation quantitatively (e.g., [18, 19]).
For example, Pouget et al. [16] compared baseline, onset of growth, growth rate, and
threshold measures in neurons on trials that followed stop signal and no-stop-signal
trials to determine the cause of slowing after a stop signal. They found the onset
of growth changed, but none of the other measures did. Similar measures could be
taken for stop-signal and no-stop-signal trials to determine the cause of stopping.
The neural measures could be compared with measures taken from simulations of
the models to determine which model provides the best account of the physiology.
However, model simulations suggest that such measures may not always agree well
with the values of the parameters that generated them, especially if there is noise
in data and the model predictions, and there always is. Measured onsets do not
always correspond to non-decision times, measured rates of growth do not always
correspond to drift rates, and measured thresholds do not always correspond to model
thresholds [17].

15.5.4 Fitting Behavior and Physiology Simultaneously

Our strategy has been to fit models to behavioral data and then use the best-fitting
parameter values to generate predictions for neural measures. The virtue of this
strategy is that the predictions are genuine predictions. No further adjustment of the
parameters is required or allowed to generate the predictions. We find it impressive
that the predictions are so close to the observed data. However, this strategy requires
an arbitrary and artificial distinction between behavioral and neural data. One is used
to fit the model and the other is used to test its predictions about the dynamics of the
units embodying the model. We are currently searching for methods that allow us to
fit behavioral and neural data simultaneously, giving each equal weight in assessing
goodness of fit (e.g., [24]). Those methods promise a true integration of mathematical
psychology and neuroscience—a dream worth waking up to.

Exercises

1. In what sense does the stop signal paradigm measure response inhibition?
2. The independent race model addresses finishing time distributions without spec-

ifying the processes that generate the finishing time distributions. How is this an
advantage and how is this a disadvantage.
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3. The interactive race model does not describe neural activity at the beginning of
the trial when the eyes are fixated. During this period, fixation cells are active
and their firing rate is stable. After the target appears, activity in fixation-related
neurons drops and activity in movement-related neurons increases. Do you think
that including this fixation activity at the beginning of a trial in the modeling will
change the models’ predictions? How?

4. The spiking neuron model assumes a control process that removes inhibition
on the go process to generate a response. What problems do you see with this
assumption?

5. The cortico-basal ganglia model has not been tested with rigorous fits to data. Do
you think it would fit well if such fits were attempted?

Further Reading

Logan and Cowan [13] is a seminal paper in stop-signal modeling. Everyone who
works with the stop signal task should be familiar with this model and the approach.

Logan [12] is a “user friendly” introduction to the stop signal task that may be
more accessible to novice readers than Logan and Cowan [13].

Boucher et al. [5] is the first model to bring computational modeling and neuro-
physiology together in the stop-signal paradigm and is worth reading for its place in
history.

Verbruggen and Logan [26] provide a useful but brief review of recent research on
the stop signal task. Verbruggen and Logan [27] provide a review of recent modeling
work on the stop-signal paradigm.

Anything by Kurt Vonnegut Jr. or Robertson Davies.
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