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Time Course of Perceptual Categorization

THE TIME COURSE OF PERCEPTUAL CATEGORIZATION

Perceptual categorization is a fundamental aspect of human cognition. Any time we decide that
some visually presented object is a dog rather than a cat, a bottle rather than a jar, or a tree rather than a
shrub, we are making a categorization decision based on the perceptual attributes of that object (see
Sloman & Malt, this volume). The goal of this chapter is to review a class of theories of perceptual
categorization with particular emphasis on how these theories account for the time course of these
judgements. A key assumption of these theories is that perceptual categorization depends on the
underlying perceptual similarity relations among objects. As should be apparent from the other chapters
in this volume, this general assumption is not without some controversy (see Ahn, this volume; Hampton,
this volume; Markman, this volume; Sloman & Malt, this volume).

Considerable progress has been made over the past two decades developing and testing formal
models of categorization. A formal model takes a significant step beyond mere verbally stated theories by
well specifying, in either mathematical or computational detail, the hypothesized psychological processes
thought to underlie a particular behavioral phenomenon. In the case of perceptual categorization, this
requires specifying the details of a variety of hypothesized cognitive processes thought to be involved in
making a categorization judgment. Some of these include specifying what perceptual information is
provided by the sensory system and how that information is represented, how that perceptual information
is compared with what has been previously learned, how this previously learned category information is
represented in memory, and how a categorization decision is made based on the comparison of perceptual
information with the stored category representations. For example, is perceptual information represented
in terms of features or dimensions, is the comparison of perceptual information to what has been learned
based on similarities to stored category representations or is some other matching process used, are
categories represented in terms of rules, abstract prototypes, or exemplars, and so on.

A complete review of the various formal models of perceptual categorization which have been
proposed is clearly beyond the scope of the present chapter (see Ashby, 1992; Cohen & Massaro, 1992;

Estes, 1994; Komatsu, 1992; Lamberts, 1997; Nosofsky, 1992a, 1992b; E.E. Smith & Medin, 1981).
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However, it is probably fair to say that, until quite recently, nearly every formal model of perceptual
categorization has attempted to account for categorization choice probabilities (which category will a
given stimulus be classified into), but has not addressed the time course of such judgements. There are a
number of very good reasons for theories of perceptual categorization to attempt to account for the time to

make a category choice.

REASONS TO INVESTIGATE THE TIME COURSE OF CATEGORIZATION

By far, the most common psychological measures of cognitive phenomenon involve accuracy and
response time. Clearly, a complete theory of a complex cognitive phenomenon such as perceptual
categorization must provide a specification of the time required for each sub-process which is engaged
during a task (from which can be generated response time predictions) as well as provide an account of
the particular responses that are produced (from which can be generated accuracy predictions).

Generally, testing models of perceptual categorization that only account for response probabilities
requires the use of experimental paradigms in which subjects make errors. Subjects are only provided
limited amounts of training — the amount of training is carefully calibrated to raise subjects to only an
intermediate level of expertise (e.g., Medin & Schaffer, 1978) — or subjects learn category structures with
high degrees of overlap which cannot be learned perfectly — errors are required by how the categories are
defined (e.g., Ashby & Gott, 1988). In real world situations, errors may often be observed in novices (e.g.,
young children or newcomers to a specialized domain of expertise), when categorization decisions are
difficult because of some degree of category overlap (e.g., telling a Cabernet from a Merlot), when
subjects are placed under extreme speed stress to make quick categorization decisions (e.g., classifying
objects when driving at high speeds), or when perceptual information is unavailable (e.g., classifying a
partially occluded object). However, in many experimental paradigms and natural settings, categories are
well learned and errors may be quite rare. Yet, relatively large differences in the time needed to make a

categorization judgment can be observed. As a classic example, although subjects rarely make errors in
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judging whether a robin is a bird or whether a chicken is a bird, subjects are significantly faster to judge

the former statement than the latter one (E.E. Smith, Rips, & Shoben, 1974).

Another reason to investigate the time course of categorization judgments is that, in many cases,
it has proven quite difficult to distinguish between formal process models based on response probability
data alone. In some situations, models which make quite different assumptions about the underlying
processes involved in a categorization decision have proved to be nearly indistinguishable based solely on
their ability to account for response probabilities (¢.g., Maddox & Ashby, 1993; McKinley & Nosofsky,
1995). Yet, once these models have been provided with the processing dynamics required to account for
response times as well, they can and do make different predictions which are testable (e.g., Nosofsky &
Alfonso-Reese, in press; Nosofsky, Alfonso-Reese, & Palmeri, 1997; Nosofsky & Palmeri, 1997a,
1997b).

This chapter discusses a class of recent models of categorization that have aimed to account for
both categorization accuracy and response times. Of the numerous theoretical approaches to
categorization which have been offered, only decision boundary models (e.g., Ashby, Boynton, & Lee,
1994; Ashby & Maddox, 1994; Maddox & Ashby, 1996) and exemplar-based models (e.g., Lamberts,
1995, 1998; Nosofsky & Palmeri, 1997a; Palmeri, 1997a, 1999a) have been extended to account for
response time data. Largely because the theme of this volume is on the role of similarity in categorization,

this chapter will focus exclusively on the recent exemplar-based approaches (see also Heit, this volume).

A FORMAL MODEL OF CATEGORIZATION: THE GENERALIZED CONTEXT MODEL

Although other formal models have been proposed which are based on prototypes (e.g., Homa,
1984; Homa, Sterling, & Trepel, 1981), rules (e.g., Nosofsky, Palmeri, & McKinley, 1994; Nosofsky &
Palmeri, 1998; Palmeri & Nosofsky, 1993, 1995; Erickson & Kruschke, 1998), decision boundaries (e.g.,
Ashby & Gott, 1998; Maddox & Ashby, 1993), and association weights in connectionist networks (e.g.,
Gluck & Bower, 1988), exemplar models have been some of the most successful and most rigorously

tested theories (e.g., Estes, 1994; Nosofsky, 1992a, 1992b), have had some of the most applicability in
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other domains of cognition (¢.g., Goldinger, 1998; E R. Smith & Zarate, 1992; Valentine & Endo, 1992),
and, most importantly for present purposes, have made the furthest inroads into developing a complete
account of the time course of categorization (e.g., Lamberts, 1995, 1998; Nosofsky & Palmeri, 1997a;
Palmeri, 1997a, 1997b, 1999a; but see Markman, this volume, for a critique of traditional laboratory
methods used to test theories of categorization).

Exemplar models assume that categories are represented in terms of the individual instances of a
category which have been experienced and stored in memory (see Heit, this volume, for applications of
exemplar models to experimental paradigms encouraging the use of pre-experimental background
knowledge). Classifying an object into some category is based on how similar that object is to the stored
exemplars of that category relative to the object's similarity to exemplars in other categories. Exemplar
models are unique from most other formal models of categorization in that little abstraction takes place in
the creation of the category representation. They can be contrasted with prototype models, rule-based
models, and decision boundary models which all assume the creation of some sort of summary
representation of a category which is stripped of information about the particular instances which have
been experienced. This is not to suggest that exemplar models cannot allow abstraction to occur. People
can certainly form an "image" or a description of the “prototypical” cat, dog, or flower — according to
exemplar models these abstractions do not occur at the time of storage, rather they occur on-line in the
service of some particular task (Barsalou, 1990). Arguably, there may be an adaptive advantage to storing
exemplars rather than creating abstractions. Creating abstractions requires that the organism be prescient
to what information will be required at a later time for survival. By contrast, retaining detailed
information about particular instances allows the organism to generate flexible abstractions online which
may have been unanticipated when the categories are first acquired.

While a number of variants of exemplar models have been proposed (¢.g., Estes, 1986; Hintzman,
1986; Myers, Lohmeier, & Well, 1994), I will begin by summarizing the well known generalized context
model (GCM; Nosofsky, 1984, 1986), a generalization of the context model of Medin and Schaffer

(1978) which builds on classic models relating stimulus identification and categorization (e.g., Shepard,
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1957, 1958, Shepard & Chang, 1963; Shepard, Hovland, & Jenkins, 1961). This model serves as the basis

for the models of the time course of perceptual categorization outlined later in this chapter.

Formal Specification of the GCM

The GCM assumes that objects are represented as points in a multidimensional psychological
space. These dimensions may represent such characteristics of an object as its size, shape, or color, as
illustrated in Figure 1. When applying the model, these multidimensional representations serve as the
inputs to the GCM. In some circumstances, the psychological dimensions are rather obvious and can be
specified a priori, such as those shown in Figure 1 (see also Nosofsky, Gluck, Palmeri, McKinley, &
Gauthier, 1994). In other cases, the psychological dimensions of the stimuli are less obvious, but may be
determined using techniques such as multidimensional scaling (MDS; Shepard, 1980).1

Presented items and the stored exemplars are represented as points in this multidimensional
psychological space. The coordinates of that point specify the values that object has on each of the
psychological dimensions. Similarity between an item 1 and stored exemplar j is a function of distance, djj,

in the psychological space. Formally, this distance is given by

1/r
j , (D

where X, is the coordinate value of stimulus i on dimension m, w,, is a selective attention weight on

xim - xjm

M
dl.j = [Z; w,

dimension m (discussed later), and r specifies the distance metric. The well-known Euclidean distance
metric is specified when r = 2, which is typically the case for relatively integral dimensions such as the
saturation and brightness of colors; a city-block metric is specified when r = 1, which is typically the case
for relatively separable dimensions such as form and color (see Garner, 1974; Shepard, 1964, 1991).
Similarity is a decreasing function of distance. Items that are close together in psychological
space are similar to one another, those far apart are dissimilar. Formally, the similarity between item i and

exemplar J, sjj, is an exponentially decreasing function of distance
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Sy = exp(—c dl.].), )

where ¢ is a scaling parameter (Shepard, 1987; see Tversky, 1977, Markman, this volume, Keane &
Smyth, this volume, and Pothos & Chater, this volume, for alternative conceptualizations of similarity).

A critically important assumption of the GCM is that dimensions can be differentially attended to
depending on their diagnosticity in a particular categorization context. For example, if all members of
category A are black and all members of category B are white, then an optimal strategy (Nosofsky, 1984,
in press) would be to attend more to the color of the items than to other dimensions. This is instantiated
by stretching dimensions that are attended to and shrinking dimensions that are not attended to. This
increases distances along the attended dimension and decreases distances along the unattended dimension,
causing commensurate changes in similarities. Figure 1 illustrates the situation where color is attended to
more than shape or size, causing the space to stretch along the color dimension and shrink along the
unattended dimensions. Selective attention is formalized as weights, wy, in the distance metric given in
Equation 1. A relatively larger weight on a dimension reflects relatively more attention to that dimension;
a weight of zero would make differences along that dimension completely irrelevant for purposes of
similarity computations.

The evidence that an item is a member of a particular category is found by summing the
similarities to all exemplars of that category (and may include other exemplars from background
knowledge of related categories as well, see Heit, this volume). The more an item is similar to exemplars

of a category, the greater the evidence that it belongs to that category. Formally, the evidence, Ea;, that an

item 1 belongs to category A is given by

E,= Zsik s 3)

ked
where k indices all members of category A and s is the similarity between item 1 and exemplar k defined

above.
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The probability of judging item i as a member of category A depends on how much evidence
there is for category A relative to the other category options. Formally, in the case of two categories, A

and B, the probability of classifying item 1 as a member of category A, P(Al), is given by

N bA (EAi +ﬂy
P = 7 BY vo,(5y + BY @

where by is the response bias for category A, B is a background noise term which acts like a guessing
term when evidence for any category is low, and y is a response scaling parameter. Increasing y makes
response more deterministic’ (McKinley & Nosofsky, 1996, Maddox & Ashby, 1993); while this
response scaling parameter was initially a post hoc addition to the GCM, it has recently been provided a
specific process interpretation, as discussed later (Nosofsky & Palmeri, 1997a). Without bias, background
noise, or response scaling, Equation 4 reduces to

E,
P(A|i):ﬁ; %)

Ai Bi
the probability of classifying item 1 as a member if category A is simply given by the ratio of the evidence
for category A to the total evidence for any category.

The GCM has successfully accounted for a wide variety of fundamental categorization
phenomenon (e.g., Nosofsky, 1984, 1986, 1988a) and has successfully described relations between
categorization and other processes, such as stimulus identification and recognition memory (e.g.,
Nosofsky, 1986, 1987, 1988b, 1991; Nosofsky & Zaki, 1998; but see Palmeri & Flanery, in press, Palmeri
& Nosofsky, 1995). A connectionist instantiation of the GCM, ALCOVE (Kruschke, 1990), has supplied
a mechanism which learns the selective attention weights and associations between exemplars and
categories. ALCOVE has accounted for a category learning data in a number of paradigms (e.g.,
Kruschke, 1992; Nosofsky et al., 1994; Nosofsky, Kruschke, & McKinley, 1992; Nosofsky & Palmeri,
1996; Palmeri, 1999b).

Although the GCM has been so successful, it is limited in not providing an account of the time

course of categorization decisions. Two recent extensions of the GCM have addressed this shortcoming



Time Course of Perceptual Categorization

by incorporating dynamic assumptions of the evolution of perceptual representations (Lamberts, 1995,
1998), making assumptions about the time needed to retrieve and compare perceptual information with
exemplars stored in memory (Nosofsky & Palmeri, 1997a; Palmeri, 1997a), and by incorporating a

process account of categorization decision making (Nosofsky & Palmeri, 1997a).

THE EXTENDED GENERALIZED CONTEXT MODEL

Categorization decisions can vary according to the amount of time pressure one is put under. For
example, although I may know that a dolphin is a mammal, under conditions in which I must make an
extremely rapid judgement, I might instead classify a dolphin as a fish. This section will review some
recent empirical and theoretical work by Lamberts (1995, 1998) which has extensively investigated the
effects of time pressure on perceptual categorization.

As a static model, the GCM does not specify the time course of how perceptual representations
come to be generated over time. Sensory and perceptual processes are clearly time-dependent (¢.g. P.L.
Smith, 1995), and it seems reasonable to suppose that some perceptual information might become
available sooner than other information. The Extended Generalized Context Model (EGCM; Lamberts,
1995, 1998) specifies how perceptual representations evolve over time. The model has successfully
accounted for experimental paradigms in which subjects must classify objects under varying amounts of
speed stress.

As with the GCM, EGCM assumes that similarity between item i and exemplar j is a decreasing

function of distance in psychological space. Formally, combining Equations 1 and 2,

1/r
s, () = exp| — ‘{Z inc,,(Du, |x,, —x,, rj > (0)

where s;i(t) is now a time-varying similarity measure. Whereas the GCM assumed a single selective
attention weight for dimension m, w,,,, the EGCM breaks this parameter up into two independent

components, a time varying parameter, inc,(t), which specifies whether dimension m has been included
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(1) or not (0) at time t, and a constant parameter, u,,,, which is the utility (diagnosticity) of dimension m
(akin to the original attention weights in the GCM). The remainder of the EGCM is identical to the
original GCM (i.¢., Equations 3 and 4)

The main unique aspect of the EGCM is its assumption that perceptual information is provided in
a time-dependent manner. The perceptual representation of an object is not available instantaneously, nor
is all the perceptual information about an object provided at once. Rather, some dimensions may be
processed more rapidly than others. For example, especially salient dimensions may be available earlier

than less salient dimensions. The inclusion parameter, incy,(t), indicates whether or not a particular

perceptual dimension has been made available to later processing systems.

The EGCM assumes that the probability of including dimension m at time t, given that it was not
yet included before time t, is a constant inclusion rate, g. The probability that an event occurs at time t
given that it has not yet occurred is termed the hazard function of the process (Luce, 1986). The only
probability density function with a constant hazard function is the exponential distribution. Therefore, the
cumulative inclusion probability that dimension m is included at or before time t is given by

i, (1) =1—exp(=q,1). ™
where q, is the inclusion rate for dimension m.

It must be emphasized that the inclusion probabilities and utility values can be entirely
independent of one another. Although a highly salient dimension may be included much more rapidly
than another dimension, that salient dimension may be completely nondiagnostic for determining
category membership. This independence allows the EGCM to predict reversals in categorization choice
probabilities as a function of the amount of time provided to the subject to perceptually process that
object. Under extreme time pressure (via response deadlines or rapid stimulus presentations), subjects
may classify an object on the basis of the most salient dimensions, albeit inappropriately. With more

processing time, subjects will have all dimensions available to them and may classify an object on the

10
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basis of the most diagnostic dimensions (se¢ also Busemeyer & Townsend, 1993; Goldstein &
Busemeyer, 1992).

To illustrate predictions of the EGCM, I will describe a general pattern of results Lamberts has
observed across a series of experiments using varying stimuli, category structures, and experimental
designs. Consider the category structure shown in Table 1 (Lamberts & Freeman, 1999a, 1999b). Stimuli
in these experiments were realistic computerized renderings of lamps that varied in the shape of the base,
upright, shade, and top. Abstract value 0 along each dimension is associated with category A, while
abstract value 1 is associated with category B. The exception to this is stimulus A5 (1111) which is
actually the modal prototype of category B. Other category structures Lamberts has tested contain such
exceptional stimuli as well (e.g., Lambert, 1995).

Lamberts and Freeman (1999a) had subjects learn to classify the stimuli in Table 1 into the
correct category. Later, in a second stage, the same stimuli were presented again to be classified, but only
for a short period of time (between 100 and 300 ms in Experiment 1, between 33 and 200ms in
Experiment 2). One of the most theoretically challenging result from these studies was the finding that the
exception stimulus (A5 in the present example) was classified into the wrong category under extreme
speed stress but the correct category under little or no speed stress. Note that if subjects had simply not
learned to correctly classify the exception, which is clearly the most difficult stimulus to learn, then
subjects would classify it incorrectly regardless of speed stress. These results are theoretically important
because if stimulus information from all perceptual dimensions were available at the same time, such as is
implicitly assumed by the GCM and other models, then there is absolutely no way to predict a
categorization crossover without assuming that other parameters change systematically as function of
time (see Lamberts, 1995).

By contrast, if dimensions are gradually sampled over time, as is assumed by the EGCM, then a
categorization reversal can be predicted. In the present example, contrast the effects of processing time on
classifying A1 (0001) versus A5 (1111). For A1, so long as more than just the shade (dimension 3) and

the top (dimension 4) have been included (perceptually sampled), subjects will tend to classify that
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stimulus as a member of category A. Stimulus Al can be classified greater than chance quite rapidly, with
minimal perceptual information, and so no category reversal would be expected as a function of
presentation time or response deadline. Stimulus A5, on the other hand, must be sampled completely
before it can be correctly classified. If three or fewer dimensions are sampled, then AS would match
exemplars in category B, and be classified incorrectly. The EGCM predicts just such patterns of
categorization reversals, as were empirically observed.

In applications of the EGCM to experimental data, Lamberts and colleagues have not only
accounted for qualitative patterns of results such as those described above, but have rigorously fitted the
model to complete sets of classification probabilities for training and transfer stimuli at a variety of
exposure durations and response deadlines. For example, using a variety of category structures, Lamberts
(1995, 1998) trained subjects to classify a set of stimuli and later tested them on the training stimuli and
on new transfer stimuli under a wide range of response deadlines (ranging from very quick deadlines of
100ms, to moderate deadlines of 600ms, to no deadline at all). Levels of response deadlines were either
blocked separately (Lamberts, 1995) or mixed together within a block (Lamberts, 1998). By allowing
separate inclusion rate parameters and utility parameters for each dimension, the EGCM was able to
provide an excellent account of classification probabilities under the entire range of response deadlines,
with all parameters remaining fixed across all manipulations of deadline in various experiments. The
EGCM accounted for changes in response probability as a function of response deadline because of
differential dimensional sampling as a function of time.

The original GCM confounds dimensional utility and dimensional salience in weighting
psychological dimensions in computations of perceptual similarity. In fits of the GCM to experimental
data, the best-fitting value of a selective attention weight could reflect the relative diagnosticity of that
dimension, or the salience of that dimension, or both. As a further test of the independence of utility and
salience assumed by the EGCM, Lamberts (1995, 1998) varied the assignment of physical dimensions to
abstract dimensions in a category structure. Dimensional utility should be entirely a function of the

abstract category structure — dimensions that are highly diagnostic for determining category membership
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should have high utility regardless of how they are physically instantiated. Dimensional salience should
be entirely a function of the physical instantiation of the stimuli — dimensions that are easy to process
should have high salience, hence faster inclusion rates, regardless of their diagnosticity for determining
category membership. In experiments reported by Lamberts (1995, 1998), two different groups of
subjects learned the same abstract category structure, with the same type of stimuli, but with different
mappings of physical dimensions onto abstract dimensions. For example, while dimension 1 may be
highly diagnostic for both groups, thereby having high dimensional utility, dimension 1 might be highly
salient for one group (say the shape of the shade of a lamp), but might be less salient for the other group
(say the shape of the base of a lamp). Lamberts (1995, 1998) successfully fitted the EGCM to data from
both groups simultaneously, constraining all parameter values for the two groups of subjects to be the

same (with inclusion rates specified for the particular mapping of physical to abstract dimensions for each

group).

Other Evidence for the Time-Varving Nature of Perceptual Processing

The key assumption of the EGCM is that similarity changes systematically over time because of
the time-dependent sampling of perceptual dimensions. Other evidence also suggests that perceptual
similarity varies systematically as a function of time. For example, Sergent and Takane (1987) carried out
multidimensional scaling analyses on reaction time data obtained in same-different judgements from a
variety of stimulus set: colors varying in saturation and brightness, circles varying in size and orientation
of a radial line, parallelograms of varying size and tilt, and rectangles varying in height and width. Under
tachistoscopic presentation and instructions stressing both speed and accuracy, Sergent and Takane
revealed that the psychological space of the various stimulus sets were quite different from those derived
under conditions of unlimited viewing and unspeeded instruction. Divergence from unspeeded conditions
occurred at the level of dimensionality of the space, distance metric, and dimensional orientation.
Similarly, Klein (1982) found that stimulus variables which had no effect on perceived similarity under

unlimited viewing conditions had significant effects when viewing time (exposure) was limited.

13



Time Course of Perceptual Categorization

Goldstone and Medin (1994) investigated how similarities of scenes were influenced by the kind
of correspondence between features of objects in the scenes and by the amount of time provided to make
a similarity judgment. To borrow an example they provided, suppose in scene A there is a boy in a white
shirt throwing a football, and in scene B there is a boy in a brown shirt throwing a baseball. The match

between the feature brown of the football in scene A and the feature brown of the shirt of the boy in scene

B constitutes a match out of place (MOP). The objects these features belong to do not correspond because
they are dissimilar and play different thematic roles in the scene. Suppose that the boys in both scenes
wore green pants. The match between the features green in both scenes constitutes a match in place
(MIP). While MIPs should increase similarity between scenes more than MOPs, time is required to
develop the appropriate correspondences between the various objects in a scene to determine whether
matches between features constitute a MIP or a MOP. Hence, MOPs may have some influence on
similarity when time is quite limited, but their influence should decrease as more time is allowed.
Experimental work demonstrated that both MIPs and MOPs increase the similarity between scenes, but
MIPs increased similarity more. With sufficient time, MOPs became much less influential, and MIPs
became more influential. Under time pressure, however, MOPs could have more influence than MIPs
under certain circumstances (see Markman, this volume, for further discussion of the role of relational
properties in judgments of similarity).

Finally, research on decision making under risk and under uncertainty has shown that judgments
and preferences change under conditions of time pressure as well (see Svenson & Maule, 1993). For
example, Ben Zur and Breznitz (1981; see also Wright, 1974) had subjects choose gambles under three
different levels of time pressure. When decision time was limited, subjects chose the less risky alternative
(a high probability of a small gain) over a risky one (a low probability of a large loss). In concert with
claims made by Lamberts (1995, 1998), one could argue that large losses, and other extremely negative
consequences, are very salient properties of a gamble, even though they have a very low probability of
occurrence (see also Svenson & Edland, 1987). Under time constraints, highly salient negative

consequences are processed quite rapidly and loom large in subjects' decision making. Similar claims for
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the importance of dimensional salience in probabilistic inference were made by Wallsten and Barton
(1982). In making inferences, subjects under time pressure used only the most salient subset of
dimensions used by subjects not under pressure. They proposed a model of in which features were

processed in order from most to least salient (see also Busemeyer & Townsend, 1982).

THE EXEMPLAR-BASED RANDOM WALK MODEL

While the EGCM focused on the temporal aspects of perceptual processing and its influence on
similarity computations, the Exemplar-Based Random Walk Model (EBRW; Nosofsky & Palmeri, 1997a;
Palmeri, 1997a) introduced dynamics into the memory retrieval and decision making components of the
GCM. The basic architecture of the EBRW is quite similar to that of the GCM, so this section will
highlight those elements of the EBRW that are unique. It should be noted that the EBRW assumes the
same static perceptual process as the GCM; although perceptual processing is not assumed to occur
instantancously, the EBRW has assumed that perceptual processing takes the same amount of time for all
stimulus attributes, and thereby assumes that all perceptual information is available at the same time.
Given Lamberts' work, this is clearly a limitation of the EBRW.

The EBRW assumes that objects are represented as points in a multidimensional psychological
space, that categories are represented in terms of stored exemplars, and that similarity between an item
and an exemplar is a decreasing function of distance in the space. Within the EBRW, these assumptions,
which are borrowed from the GCM, are merged with assumptions about the time course of memory
retrieval as a function of practice, which are borrowed from the instance theory of automaticity (Logan,
1988, 1990, 1992; see Palmeri, 1997a). The EBRW goes beyond either of these models by incorporating
a random walk process to generate categorization decisions (Link, 1975; Link & Heath, 1975; Luce,
1986).

I will provide a brief summary of how categorization decisions are made by the EBRW and then
discuss each component in some detail. According to the EBRW, when an object is presented to be

categorized, all stored exemplars in memory race to be retrieved with rates proportional to their similarity
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to the presented object. Although highly similar exemplars are most likely to be retrieved, because of the
stochastic nature of the retrieval process, dissimilar exemplars may be retrieved with some nonzero
probability as well. In a binary-choice context, the category label associated with the retrieved exemplar
provides incremental evidence for either a category A or category B decision. In general, categorization is
not based on a single retrieval, however. Rather, this incremental evidence drives a random walk decision
process. As shown in Figure 2, a random walk accumulates evidence over time for one of the two possible
category options. If a category A exemplar is retrieved, the random walk counter moves up one step
toward the A barrier; otherwise, if a category B exemplar is retrieved, the counter moves down toward the
B barrier. The time to take each step of the random walk, AT, is a function of the memory retrieval time.
If a retrieval causes the counter to reach one of the barriers, then a response is made, otherwise another
memory retrieval is made. As will be discussed in some detail, response times generated by the EBRW
are a function of how quickly exemplar information can be retrieved from memory and how consistently
the random walk counter moves toward only one of the threshold barriers.

I will begin by discussing the dynamics of the memory retrieval component of the EBRW, which
necessitates briefly describing Logan's (1988, 1992) instance theory of automaticity, upon which many of
these assumptions were based. I will then discuss the random walk component of the model, and how
memory retrieval interfaces with this decision process. Finally, I will summarize a number of

experimental results which support the EBRW.

Instance Theory of Automaticity

Instance theory (Logan, 1988, 1990, 1992) aims to explain the behavioral changes that are
observed during the acquisition of a cognitive skill. Automatic processes are typically characterized as
being unconscious, fast, require few processing resources, take place without intention, and are generally
contrasted with strategic, or intentional processes (¢.g., Kahneman & Treisman, 1984; Logan, 1985;
Shiffrin, 1988). Traditional accounts of the development of automaticity posited a decrease in the demand

for limited processing resources as the source for seemingly automatic behavior (e.g., LaBerge &
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Samuels, 1974; Posner & Snyder, 1974; Shiffrin & Schneider, 1977). Instance theory, by contrast, aimed
to understand the deployment of automaticity in processing terms.

Instance theory assumes that the development of automaticity is largely a memory phenomenon.
Tasks that are not well learned require conscious application rules, strategies, or algorithms for their
completion. For example, a novice searching the woods for prized Chanterelle mushrooms must make
regular reference to a set of complex rules for telling them apart from the highly similar, yet quite
poisonous, Jack O'Lantern mushroom. Although these rules may come to be internalized, rather than
requiring reference to a field manual or some other external aid, categorization still involves a deliberate
use of rule-based knowledge. An expert, by contrast, is generally able to recognize a Chanterelle and
ignore the Jack O'Lantern with little or no effort, and seemingly without recourse to rules. According to
instance theory, this automatic categorization is a result of remembering previous instances that have been
stored in memory.

Although this example makes obvious the usefulness of the instance theory for understanding
categorization, historically, the areas of categorization and automaticity shared fairly little
communication. One reason for this is possibly methodological. Whereas most categorization studies
have focused on accuracy, most automaticity studies have focused on response time; whereas most
categorization studies have manipulated similarities between stimuli, most automaticity studies have not;
whereas most automaticity studies have manipulated the amount of processing resources available for
accomplishing some test, most categories studies have not. One of the unique aspects of the EBRW is that
it provides a unified account of both perceptual categorization and automaticity (Palmeri, 1997a, 1997b,
1999a).

Instance theory assumes that strategic processes and memory retrieval occur simultancously.
While a person has a choice over what particular strategies they may employ to solve a particular task,
memory retrieval occurs without intention. In processing terms, strategic processing and memory retrieval

race to completion, with the winner determining the response. The development of automaticity is seen as
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a shift from the need to use slow, effortful, strategic processes to the ability to rely on direct retrieval of
instances from memory.

Instance theory assumes that practice at a task does not causes the algorithm to speed up. Every
time a task, such as perceptual categorization, is performed on some object, an instance of the object and
its solution are stored in memory. When an object is again presented, stored instances of that object race
to be retrieved from memory. As more instances of a particular object are stored, retrieval gets faster and
faster (see Logan, 1988, 1992). This is because memory retrieval is also conceptualized as a race;
probabilistically, for every additional runner that enters a race, the winning time gets marginally faster.
Eventually, memory retrieval becomes fast enough to complete before the strategic processes can be
executed. Therefore, according to instance theory, the development of automaticity is due to the storage
of additional instance information in memory, which causes retrieval to eventually dominate performance.
As acknowledged by Logan (1988), one shortcoming of instance theory was that it did not incorporate

similarity-based retrieval. Rather, only identical instances could be retrieved from memory.

Retrieval Assumption in the EBRW

Following the GCM, categories are represented in terms of stored exemplars. Following instance
theory, practice causes additional exemplars to be stored in memory, and the addition of these exemplars
causes memory retrieval times to speed up.3 Every time an instance is categorized, a trace of that instance
with its category label is stored in memory. When item 1 is presented, all exemplars race to be retrieved
with rates proportional to their similarity to that item, s;j. Largely for reasons of analytic tractability, the
retrieval times are assumed to be exponentially distributed.* Therefore, the probability density that
exemplar ] is retrieved at time t given probe item 1 is given by

f)= Sy eXp(_Sij 1), ()

where s;j is the similarity computed using Equation 2.
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The assumption of exponentially distributed retrieval times leads to some interesting
mathematical results (see Bundesen, 1993; Townsend & Ashby, 1983). Assume there are n independent
exponentially distributed memory retrieval processes racing in parallel with rates sii, si2, ..., sin. We are
interested in determining the probability that a particular exemplar wins this race (i.¢., is retrieved from
memory) and the probability density that this exemplar wins this race at time t. First, the probability that

exemplar ] wins the race given probe item 1 is simply given by

S
PGl = Zi’ , ©)
ik

k

where k indices all exemplars taking part in the race. This formula may be recognizable as a form of
Luce's (1963) choice rule. As Bundesen (1993) noted, Luce's choice rule emerges as a natural
consequence of assuming a race among exponentially distributed processes.

The minimum of a race among n exponentially distributed retrieval times (i.e., the retrieval time
density function of the winner of the race) is exponentially distributed with a rate equal to the sum of the
individual retrieval rates. The expected completion time for an exponentially distributed random variable

with rate s;j is given by

E[T |i]= % . (10)

Therefore, the expected completion time for the winner of a race among n exponentially distributed

random variables with rates s;; is given by

E[T|i]:%. (11)

Z Sik
k=1
Consider the case where some stored exemplars belong to category A and some belong to

category B. Then, we can rewrite Equation 11 as

ET|i]= (12)

1
Zsik +Zsik ’

ked keB
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which from Equation 3 can be rewritten as

1

Ai Bi
The retrieval time is inversely proportional to the total summed similarity of an item to exemplars as
memory. As an object becomes more familiar, information is retrieved more rapidly.

Equation 9 gave the probability of retrieving a particular exemplar when presented with object 1.
We are interested in the probability of retrieving an exemplar from category A or category B when
presented with object 1, which will be used to determine the direction the counter in the random walk will

move. Because retrievals are independent, the probability that an exemplar from category A wins the race

is simply given by

Zsz'j Zsz'j

PAI)=Y Pl =E—=a" , (14)
> DSk 2SSy
k jeAd jeB

which, using Equation 3, can be rewritten as

P(A] i) = EjE , 15)

Ai Bi
which is Equation 3, the simplified response rule from the GCM. Hence, the probability that the random
walk counter moves in a particular direction is a function of the relative similarity of the probe item i to

the stored exemplars of category A.

Random Walks Component of the EBRW

According to the EBRW, the results of memory retrieval provides evidence for a random walk
decision process (Link, 1975; Luce, 1986). Random walks, and their continuous-time relatives, diffusion
processes, have been very successful as models of choice reaction time in a variety of cognitive
phenomenon (e.g., Busemeyer, 1985; Diederich, 1997, Link, 1975; Link & Heath, 1975; Ratcliff, 1978;

Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, & McKoon, 1996; P.L. Smith, 1995; Strayer & Kramer,
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1994a, 1994b). In a random walk, evidence gradually accumulates over time for one of the category
choices. As shown in Figure 2, accumulated evidence is given by the position of a counter along the
vertical axis and time is given by the position along the horizontal axis. A response is made when the
random walk counter reaches one of the threshold barriers (A or -B). Although the random walk
discussed here is formulated for the two-category case, there are ways of extending it to multiple-category
cases as well (e.g., Palmeri, 1997a; Ratcliff & McKoon, 1997).

In an unbiased random walk, the probability of moving up toward A or down toward B would be
equal. However, in most categorization contexts, there will be some tendency to move toward one
category barrier rather than the other. According to the EBRW, movement of the random walk counter is
driven by information retrieved from memory. If a category A exemplar is retrieved, the counter moves
up, if a B exemplar is retrieved, the counter moves down. The probability of moving up or down is given
by Equation 15. The time to make each step of the random walk is a function of the retrieval time.
However, it should be apparent that as more and more exemplars are added to memory, the mean retrieval
time gets smaller and smaller; that is, in Equation 13, E[T|i] goes to zero as the number of exemplars in

memory approaches infinity. Therefore, in the EBRW, the time to make each step is given by

AT:a+E[T|i]:a+¥, (16)
+ K

Ai Bi
where a is a constant time associated with each step of the random walk.

Loosely borrowing the terminology used with continuous-time diffusion processes, I will refer to
the speed with which the counter moves toward one particular category barrier as the drift rate of the
random walk. Panel A of Figure 3 illustrates a case in which there is only a slight drift toward the A
barrier, while Panel B illustrates a case in which there in a relatively large drift. As the certainty that an
item belongs to category A increases, drift rate increases, which causes response times to increase.

Figure 3 also illustrates a very beneficial property of the random walk. In many cases, to insure

reasonable levels of accuracy, the location of the barriers will be set relatively far from the starting point,

as shown by the solid lines in the figure. If speed is stressed, however, then the barriers are moved in
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closer to the starting point. This is in keeping with the notion that under speed stress less information is
required before a response is made. If the barriers are moved in, as shown by the dashed lines in Figure 3,
the likelihood of errors increases. Especially when drift rate is low, as shown in Panel B, the probability
of making an error increases (the counter hits the B barrier before it can return to the correct A barrier).
Note, also, that if the barriers are places sufficiently far from the starting point, errors can be made to be
exceedingly rare, yet significant differences in response times are still produced.

In addition, the random walk also correctly predicts the shapes of response time distributions
which are typically observed. As shown in Figure 3, the predicted response time distributions start at zero,
are skewed to the right, and have a long right hand tail which extends out to positive infinity. Other
response time models, such as counter models (Pike, 1966, 1968), have often been criticized because they
make erroneous predictions of the shape of the response time distributions (Ratcliff, 1978).

These positive points of the random walk aside, one might question whether this complexity is
really necessary. Why not base a classification decision on the first exemplar retrieved from memory? Are
multiple samples really necessary? Consider the stimulus configuration shown in Figure 4. Consider
classification response times for stimuli A2, which is close to exemplars from category A, and for
stimulus A4, which is far from the exemplars of category B. One would certainly expect that A4 would be
classified more accurately than A2. According to the EBRW, when a stimulus is presented to be
classified, all exemplars stored in memory race to be retrieved with rates proportional to their similarity to
the presented item. As specified by Equation 15, given this probe stimulus, the probability of retrieving an
A exemplar is given by the relative summed similarity to exemplars of category A. Compared with A2,
A4 is far from the exemplars of category B. Therefore, the probability of retrieving an exemplar from
category A is greater for A4 than for A2. Hence, just a single exemplar retrieval can predict superior
classification of A4 than A2, without the need to posit a random walk. In fact, as discussed earlier, the
original GCM (without a response scaling parameter) can be given this process interpretation in terms of a

similarity-based race to retrieve of exemplars from memory.
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But, what about response times? Recall from Equation 13, that the retrieval times are given by
1/(EaitEpg;), the inverse of the absolute summed similarity of i to exemplars from both categories. A2 is
very similar to B1, B2, B3, Al, A2, and A3, so its absolute summed similarity will be quite high. By
contrast, A4 is really only similar to itself, so its absolute summed similarity will be quite low. Notice that
based on a single exemplar retrieval, A4 should be classified more slowly than A2, which seems quite
unlikely. So, how can the EBRW predict fast, accurate responses for A4 and slow, inaccurate response for
A2? Errors are relatively straightforward. A2 has a smaller drift rate than A4, so the probability of hitting
the correct barrier will be smaller for A2 than A4. Response times depend both on the time to retrieve
cach exemplar, which will be faster for A2 than A4, and on the number of steps required to reach a
barrier, which will be greater for A4 than A2. In general, all else being equal, the latter component will be
more important than the former, so A4 will be classified more quickly than A2.

As mentioned above, the original GCM can be provided a process interpretation in terms of a
single exemplar retrieval. Yet, the EBRW assumes multiple retrievals. Although the EBRW provides a
superior account of classification response times, might its account of classification accuracy be somehow
compromised? As revealed by Nosofsky and Palmeri (1997a), when the category barriers are equidistant
from the starting point, classification probabilities predicted by the EBRW are simple given by

, E,
P(A|i)y=—24 (17)
EL +E,

where v is the distance of the barriers from the starting point. With the addition of background noise (see
Nosofsky & Alfonso-Reese, in press), this becomes the general response rule used by the GCM (see
Equation 4). Work subsequent to the original publication of the GCM revealed that the y parameter was a
necessary, although largely post hoc, addition to the model. This parameter now has a process
interpretation in terms of the distance from the starting point in a random walk; Nosofsky & Palmeri

(1997a; see also Nosofsky, in press) found that values of y greater than one generally provided a superior
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fit to the experimental data reported in conjunction with the original development of the GCM (Nosofsky,

1986).

Tests of the EBRW

I will now briefly summarize a couple of experiments that have tested the ability of the EBRW to
account for experimental data. In the first experiment of Nosofsky and Palmeri (1997a), detailed response
time data was collected from three subjects in a speeded classification task over several sessions. Stimuli
were colors of constant red hue varying in saturation and brightness; the approximate Munsell color
configuration for the twelve colors is shown in Figure 5. Subjects learned to classify each of these colors
into category A (circle symbols) or category B (square symbols). On each trial, one of the twelve colors
was randomly displayed, the subject classified it as an A or a B, and then corrective feedback was
supplied. Subjects completed thirty blocks of trials for each of five sessions. Subjects also completed
three sessions of similarity ratings in which they made subjective similarity judgments of each pair of
colors.

The multidimensional scaling configuration for one of the subjects (Participant 3) is shown in
both panels of Figure 6. For this subject, as for the other subjects tested, the MDS configuration did not
map perfectly onto the idealized representation shown in Figure 5 (see Sergent & Takane, 1987).
Observed mean classification response times, averaged across the final four sessions, are proportional to
the size of the circle surrounding the stimulus number in the left panel of Figure 6. Small circles indicate
fast responses, large circles indicate slow responses. In general, response times were highly systematic.
Stimuli near the boundary between category A and B were classified quite slowly (e.g., stimuli 3 and 12),
whereas stimuli far from the boundary were classified quite rapidly (e.g., stimuli 7 and 10). Figure 7
displays mean classification response time as a function of training, averaged across all twelve stimuli.
The speed-up in observed response time followed the ubiquitous power law of practice (Newell &

Rosenbloom, 1981; see, however, Palmeri, 1999a).
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The EBRW was fitted to the observed response time data by minimizing the sum of squared
deviations between observations and predictions. The free parameters of the model were a dimensional
attention weight, w, from Equation 1, the scaling parameter, ¢, from Equation 2, the constant time
associated with each step of the random walk, o, from Equation 16, the distance of the barriers from the
starting point in the walk, A, a base response time, Tg, which reflects the mean residual times for stimulus
processing and response execution, and an intercept parameter, k, which scales the random walk times
into units of milliseconds. These six parameters were used to fit the 42 observed data points in Figures 6
and 7.

The right panel of Figure 6 displays the EBRW predictions using the same format as was used to
display the observed data. A simple comparison between the left (observed) and right (EBRW) panels of
Figure 6 reveals the excellent fit of the EBRW. According to the EBRW, when classifying stimuli which
are highly similar to both categories, such as stimuli 3 and 12, probes of memory tend to retrieve
exemplars from both categories. This causes the random walk to wander between the barriers before
threshold is reached, leading to relatively prolonged responses. By contrast, when classifying stimuli that
are similar only to a single category, such as stimuli 7 and 10, probes of memory tend to retrieve
exemplars from just one category. This causes the random walk to move in consistent fashion toward the
correct barrier, leading to relatively rapid responses. Figure 7 displays the speed-ups in response time
predicted by the EBRW, which were also highly consistent with the observed data. According to the
EBRW, with practice, more instances of each stimulus are stored in memory. Retrieval times get faster as
more repetitions of an instance are stored in memory (Logan, 1988, 1992), causing the random walk to
accumulate evidence more quickly.

Although the EBRW predicts that stimuli far away from the contrast category will generally be
classified more quickly than stimuli close to the contrast category, distance from a "category boundary" is
not the only factor determining classification response times. According to the EBRW, if two stimuli are

equally distant from the contrast category, yet one of them is more familiar than the other, the familiar
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stimulus should be classified more quickly than the unfamiliar stimulus. This prediction is in stark
contrast to other recent models of perceptual categorization that assume that response times are solely a
function of distance from the category boundary (e.g., Ashby et al., 1994; Ashby & Maddox, 1994;
Maddox & Ashby, 1996); according to such models, similarity to particular category instances plays no
direct role in categorization judgments. The second experiment of Nosofsky and Palmeri (1997a) tested
the influence of stimulus familiarity on classification response times.

The stimuli used in this experiment were also colors varying in saturation and brightness. The
approximate Munsell configuration in shown in Figure 8. Subjects learned to classify these stimuli, with
feedback, during an initial set of training blocks. The critical stimuli were B7 and B8. For one group of
subjects, B7 was not presented during training (Condition U7); for another group, B8 was not presented
during training (Condition U8). Following training, subjects classified all eight stimuli as quickly as
possible without making errors. Note that while B7 and B8 are approximately the same distance from the
"category boundary", their level of familiarity is different in the two conditions. The EBRW predicts that,
within a condition, for two stimuli which are approximately the same distance from the category
boundary, the more familiar one will be classified more quickly. In addition, across conditions, a stimulus
will be classified more quickly in the condition in which it is more familiar.

The MDS solution obtained from similarity ratings of the color stimuli is shown in both panels of
Figure 9. The boundary of equal summed similarity to training exemplars in both categories is also
shown. Although this boundary is not identical across the two conditions (because the set of training
stimuli does differ between the two conditions), the differences in its location are extremely slight.
Therefore, distance from the "category boundary" for all stimuli can be considered to be equated across
the two conditions. Mean classification response time is proportional to the size of the circles in the
figure. As expected, stimuli close to the boundary were classified more slowly than stimuli far from the
boundary. However, in condition U7, in which stimulus B7 is unfamiliar, B8 was classified more quickly
than B7, and in condition U8, in which stimulus B8 was unfamiliar, B7 was classified more quickly than

BS. In addition, across conditions, B7 and B8 were classified more quickly in the condition in which they
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are the familiar stimulus. These results are consistent with the predictions of the EBRW, but inconsistent
with the predictions of models that assume that distance from the boundary is the only important factor in

determining categorization response times (Ashby et al., 1994).

SUMMARY

This chapter reviewed two recent models of the time course of perceptual categorization that
extend the well-known exemplar-based generalized context model of categorization (Nosofsky, 1984,
1986). The EGCM (Lamberts, 1995, 1998) provides a dynamic account of how similarities between
exemplars systematically change over time; the model successfully accounted for changes in
categorization probabilities as a function of the time provided to make a categorization judgment. The
EBRW (Nosofsky & Palmeri, 1997a; Palmeri, 1997a) provides a dynamic account of the memory
retrieval and decision-making components of categorization; the model successfully accounted for
categorization response times in a variety of tasks. Clearly, given the common genealogy of these two
models, one important goal for future research will be to combine these two theoretical approaches in a

way that results in a comprehensive, yet testable, theory of the time course of perceptual categorization.
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FOOTNOTES
1. MDS techniques elicit similarity judgements from subjects for each pair of stimuli used in an
experiment. Given the pairwise similarity matrix, MDS generates a multidimensional configuration of the
stimuli which can best account for the collected similarity ratings under the assumption that judged
similarity is monotonically related to distance in the space. Statistical arguments can be used to determine

the minimal number of psychological dimensions which are required.

N

. As vy approaches infinity, P(A[1)=1 if Ex;>Ep;i, otherwise P(A]i)=0.

|2

. Also borrowed from the instance theory is the notion that in applications in which performance is
initially governed by a set of rules, memory-based processes (as instantiated by the random walk

component) races against the completion of the rule-based process (Palmeri, 1997a, 1999a).

4. Instance theory assumed retrieval times to be distributed as Weibulls (Logan, 1988, 1992).
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Table 1.

Category structure used by Lamberts and Freeman (1999a, 1999b).

Category Stimulus Base Upright Shade Top
A Al 0 0 0 1
A2 0 0 1 0
A3 0 1 0 0
A4 1 0 0 0
A5 1 1 1 1
B B1 1 1 1 0
B2 1 1 0 1
B3 1 0 1 1
B4 0 1 1 1
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FIGURE CAPTIONS

Figure 1. Schematic illustration of stimuli varying along three psychological dimensions (shape, size, and
color). The change from the configuration in Panel A to that in Panel B illustrates the role of selective

attention in modifying similarities among exemplars.

Figure 2. Schematic illustration of the Exemplar-Based Random Walk Model.

Figure 3. Example traces of the accumulation of evidence by a random walk. Panel A illustrates a
relatively low drift rate (probability of moving toward the A barrier equals 0.55), Panel B illustrates a
high drift rate (probability of moving toward the A barrier equals 0.75). Above each A barrier, in both
panels, is a histogram of the times to hit that barrier. In both pangls, the dashed line illustrates barrier

positions under conditions of speed stress.

Figure 4. A multidimensional representation of an example category structure discussed in the text.

Figure 5. Illustration of the approximate Munsell color configuration used in Experiment 1 of Nosofsky

and Palmeri (1997a)

Figure 6. Multidimensional scaling solution of the color stimuli for Participant 3 from Experiment 1 of
Nosofsky and Palmeri (1997a). The center of each circle represents the MDS coordinate of the color. The
size of the circle is proportional to the mean classification response time for the color. The dashed line is a

boundary of equal summed similarity to the exemplars in each category.

Figure 7. Mean response time to classify the colors averaged across blocks of trials for Participant 3 in
Experiment 1 of Nosofsky and Palmeri (1997a). The circle symbols indicate the observed data. The solid

line indicates the EBRW predictions.
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Figure 8. Illustration of the approximate Munsell color configuration used in Experiment 2 of Nosofsky

and Palmeri (1997a)

Figure 9. Multidimensional scaling solution of the color stimuli from Experiment 2 of Nosofsky and
Palmeri (1997a). The center of each circle represents the MDS coordinate of the color. The size of the
circle is proportional to the mean classification response time for the color. The solid line in each panel is
a boundary of equal summed similarity to the exemplars in each category. The left panel is data from
condition U7, in which stimulus B7 was unfamiliar. The right panel is data from condition U8, in which

stimulus B8 was unfamiliar.
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