MEMORY SYSTEMS AND PERCEPTUAL
CATEGORIZATION

Thomas J. Palmeri and Marci A. Flanery

I. Introduction

Do perceptual categorization and explicit memory depend on independent mem-
ory systems? Well-known exemplar models assume that judging whether some
object belongs in a particular category—a categorization decision—and judg-
ing whether some object has been seen before—an explicit recognition memory
decision—depend on the same underlying memory representations (e.g., Estes,
1994; Hintzman, 1986; Medin, 1986; Nosofsky, 1988, 1991; Nosofsky & Zaki,
1998). By contrast, many neuropsychological accounts assume that there are
functionally independent memory systems subserving perceptual categorization
and explicit memory (e.g., Squire & Zola, 1996). Evidence for multiple memory
systems primarily comes from dissociations between categorization and explicit
memory performance in studies of normals and amnesics. We review evidence
from a variety of paradigms in which amnesics are reported to categorize at levels
comparable to normals but are significantly impaired at explicit memory. Such
dissociations appear to imply that separate systems may exist and seem to pose
serious problems for theories that assume a single underlying memory system,
such as exemplar models.

The evidence is clear that amnesics have impaired explicit memory. The focus of
this paper is on whether data from studies testing amnesics provide similarly clear
evidence for completely intact memories for newly learned perceptual categories.
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We will also discuss whether models assuming a single memory system can account
for observed dissociations between categorization and explicit memory. We will
review some of the behavioral evidence for multiple independent memory systems
and in each case will describe some recent work that challenges the conclusions
of these various studies.

II. Dot Pattern Classification Studies

A classic methodology for studying categorization and recognition has been the
Posner and Keele (1968, 1970) dot pattern paradigm (e.g., Homa, 1984; Knowlton
& Squire, 1993; Nosofsky & Zaki, 1998; Palmeri & Nosofsky, 2001; Shin &
Nosofsky, 1992). To create a dot pattern, a small number of dots are randomly
scattered on a grid. To create a category, one pattern is randomly generated and
designated the category prototype. Category members are generated by randomly
distorting the prototype by moving each dot in the prototype in a random direction
by an amount proportional to the degree of distortion desired (Posner, Goldsmith,
& Welton, 1967). Figure 1 displays a category prototype, a low-level distortion, a
high-level distortion, and a randomly generated nonmember.

A. A DISSOCIATION BETWEEN CATEGORIZATION AND RECOGNITION

Knowlton and Squire (1993) adapted a variant of this paradigm to test amnesics
and normals on categorization and recognition. In the categorization task, subjects

Prototype Low Distortion

.... .. :
High Distortion Random
M .
e . .

Fig. 1. Examples of a prototype, low distortion, high distortion, and random dot pattern used in
dot pattern classification studies. (Stimuli from Knowlton & Squire, 1993.)
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Knowlton & Squire (1993)
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Fig. 2. Categorization and recognition memory data for controls and amnesics from Knowlton
and Squire (1993). The left panel displays the observed probability of endorsing prototypes (Proto),
low distortions (Low), high distortions (High), and random patterns (Rand) as members of the studied
category. The right panel displays the observed probability of endorsing old and new items as old
stimuli. (From Palmert, T. J., and Flanery, M. A. (1999). Learning about categories in the absence
of training: Profound amnesia and the relationship between perceptual categorization and recognition
memory. Psychological Science, 10, pp. 526-530.)

were initially exposed to 40 high-level distortions of the category prototype. An
implicit learning task was used in which subjects were simply asked to point to
the center dot of each pattern. After a 5-min delay, subjects were told that the
patterns all belonged to the same category and were asked to judge new patterns
as members or nonmembers of that category. Category members consisted of 4
repetitions of the category prototype, 20 low-level distortions, and 20 high-level
distortions. Nonmembers were 40 randomly generated patterns. Dot patterns were
presented one at a time, in random order, and subjects were asked to judge each
pattern as a member or nonmember of the previously viewed category without
corrective feedback. The left panel of Fig. 2 displays the probability of endorsing
the prototypes, low distortions, high distortions, and random patterns as category
members for amnesics and age-matched normal controls. Knowlton and Squire
observed that amnesics were not significantly worse at categorization than normal
controls. :

In the recognition memory task, subjects were exposed to five randomly gen-
erated patterns eight times each (thus equating for the number of exposure trials
used in the categorization task). As in the categorization task, subjects were asked
to point to the center dot of each pattern without being told that they would later
be tested on their memory for the dot patterns. After a 5-min delay, subjects
were asked to discriminate between the five old patterns and five new patterns.
Again, no corrective feedback was provided. As shown in Fig. 2, a behavioral
dissociation was observed in that amnesics were significantly impaired at dis-
criminating old from new patterns in the recognition memory task, but were
not significantly impaired at discriminating members from nonmembers in the
categorization task.
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This pattern of results has been.used as evidence for two independent memory
systems: an explicit hippocampal-dependent declarative memory system subserv-
ing recognition memory, which is impaired in amnesia, and an independent implicit
categorization system, which is spared in amnesia. Knowlton and Squire (1993,
p. 1748) concluded that “single-factor models in which classification judgments
derive from, or in any way depend on, long-term declarative memory do not account
for the finding that amnesic patients perform well on the classification tasks.”

B. A SINGLE-SYSTEM EXEMPLAR ACCOUNT

Although these results seemed to demonstrate the existence of independent systems
for categorization and recognition, Nosofsky and Zaki (1998) reported theoretical
analyses that showed a single-system exemplar model capable of accounting for
this empirical dissociation in a fairly straightforward manner. By simply assuming
that amnesics had poorly discriminated memory traces (low memory sensitivity)
compared to normals, which was instantiated by variation in a single parameter of
the model, the exemplar model was able to account for the observed dissociation
between recognition and categorization (see also Nosofsky, 1988). As shown in
Fig. 3, simulations with a high value of memory sensitivity (high c¢) generated
predictions comparable to observed behavior by normal controls and simulations
with a low value of memory sensitivity (low c) generated predictions comparable
to observed behavior by amnesics.

C. AN EXTREME DISSOCIATION

One important factor that allows the exemplar model to successfully account for
the Knowlton and Squire (1993) results is that amnesics had poor but above-chance

Nosofsky & Zaki (1998)
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Fig. 3. Categorization and recognition memory predictions for an exemplar model with varying
levels of memory sensitivity (high ¢ versus low ¢) from Nosofsky and Zaki (1998). The left panel dis-
plays the predicted probability of endorsing prototypes (Proto), low distortions (Low), high distortions
(High), and random patterns (Rand) as members of the studied category. The right panel displays the
predicted probability of endorsing old and new items as old stimuli.
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Squire & Knowiton (1995)
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Fig.4. Categorization and recognition memory data for controls and the profound amnesic E.P. from
Squire and Knowlion (1995). The left panel displays the observed probability of endorsing prototypes
(Proto), low distortions (Low), high distortions (High), and random patterns (Rand) as members of the
studied category. The right panel displays the observed probability of endorsing old and new items as
old stimuli. (From Palmeri, T. J., and Flanery, M. A. (1999). Learning about categories in the absence
of training: Profound amnesia and the relationship between perceptual categorization and recognition
memory. Psychological Science, 10, pp. 526-530.)

recognition memory; as shown in Fig. 3, the model predicted very small deficits
in categorization but far larger deficits in recognition memory. Other evidence
reported by Squire and Knowlton (1995) may be more challenging to single-
system models. They tested E.P., a profoundly amnesic individual, on tasks very
similar to those used by Knowlton and Squire (1993). As shown in Fig. 4, as
with other amnesic individuals, E.P. was able to categorize as well as normals.
However, E.P. was completely unable to recognize old versus new patterns better
than chance. In summarizing these results, Squire and Zola (1996) concluded that

these results suggest that category knowledge can develop independently of and in the absence of
normal declarative memory . . . the information supporting classification learning must be distinct
from declarative knowledge about the specific items presented for training. Models in which
classification judgments derive from, or in any way depend on, long-term declarative memory
do pot account for the finding that amnesic patients can acquire category knowledge as well as
normal subjects. (pp. 13,517-13,518)

Indeed, as illustrated later, it may prove quite chalienging for a single-system
exemplar model to account for this extreme dissociation without some augmen-
tation (see Nosofsky & Zaki, 1998); in order for the exemplar model to predict
chance recognition memory performance, it must predict chance categorization
performance as well.

D. REEVALUATING THE EXPERIMENTAL PARADIGM

Squire and Knowlton’s (1995) findings may appear devastating to the single-system
models. However, we have argued that the experimental procedures used to test
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Fig. 5. Example sequences of recognition trials (top row) and categorization trials (bottom row)
from Knowlton and Squire (1993). For recognition, Trials 1, 3, and 5 show old patterns, and Trials 2,
4, and 6 show new patterns. For categorization, Trials 1, 4, and 5 show nonmembers, and Trials 2, 3,
and 6 show category members; Trial 2 shows a high-level distortion of the prototype, Trial 3 shows
the prototype, and Trial 6 shows a low-level distortion of the prototype. (From Palmeri, T. J., and
Flanery, M. A. (1999). Learning about categories in the absence of training: Profound amnesia and the
relationship between perceptual categorization and recognition memory. Psychological Science, 10,
pp. 526-530.)

E.P. and other amnesics may be fundamentally flawed in that prior exposure to train-
ing stimuli is unnecessary to accurately perform the categorization task (Palmeri
& Flanery, 1999). To illustrate, the top row of Fig. 5 displays a sequence of recog-
nition memory test trials from Knowlton and Squire (1993). Not surprisingly, it
is impossible to judge which of these patterns are old or new without ever having
seen the training patterns. The bottom row of Fig. 5 displays a sequence of cate-
gorization trials. Recall that category members are the prototype, low distortions
of the prototype, and high distortions of the prototype, and that nonmembers are
a set of entirely random patterns. As may be apparent from the figure, without
any prior exposure to the category, it is possible to discover that a set of very
similar patterns all belong to the same category and that a set of very dissimilar
patterns are all nonmembers of that category. In fact, such judgments should be
possible in the absence of much if any long-term memory for the patterns. Thus, a
profound amnesic, such as E.P., who has otherwise normal cognitive functioning,
apart from his profound declarative memory deficit, may be able to judge category
membership without much if any memory for the previously studied patterns.

1. Learning about Categories in the Absence of Training

Palmeri and Flanery (1999) investigated whether prior exposure was even neces-
sary to categorize the test items. Again, one explanation for above-chance catego-
rization by amnesics is that it may be possible to group test items that look similar
(the prototype and its distortions) into the member category and group test items
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Fig. 6. Categorization and recognition data for stimulated amnesics from Palmeri and Flanery
{1999). The left panel displays the observed probability of endorsing prototypes (Proto), low distortions
{Low), high distortions (High), and random patterns (Rand) as category members. The right panel
displays the observed probability of endorsing old and new items as old stimuli. (From Palmeri, T. J.,
and Flanery, M. A. (1999). Learning about categories in the absence of training: Profound amnesia and
the relationship between perceptual categorization and recognition memory. Psychological Science,
10, pp. 526-530.)

that do not look similar (random patterns) into the nonmember category. By con-
trast, it is impossible to tell apart old from new patterns without memory. Palmeri
and Flanery tested this possibility by producing a state of profound amnesia in
normal subjects. As a ruse, subjects were told that patterns had been subliminally
presented during an initial word identification task. In fact, no dot patterns were
ever really presented. Subjects then completed the same categorization and recog-
nition tests used by Knowlton and Squire (1993). As shown in Fig. 6, like E.P,,
our simulated profound amnesics showed chance recognition, as expected. Yet,
our subjects showed above-chance categorization. Indeed, our simulated profound
amnesics were 60.4% correct at categorizing dot patterns, performance that was in
close correspondence to that observed by amnesics (59.9%, Knowlton & Squire,
1993), by E.P. (61.1%, Squire & Knowlton, 1995), and by college students after a
1-week delay (57%, Nosofsky & Zaki, 1998). Apparently, our subjects were able
to categorize members versus nonmembers by picking up on the category structure
clearly embedded within the categorization test. They had no prior memories for
training items to rely on. Indeed, when debriefed at the end of the experiment,
some of our subjects insisted that they must have seen dot patterns during the
“subliminal exposure” phase of the categorization task since they were able to
categorize the test items with such confidence.

2. Experiment 1: How Much Information Can Be Acquired
in the Absence of Training?

So, even without memory for the category members, it may be possible to cor-
rectly categorize members versus nonmembers in the particular type of dot pattern
paradigm used by Knowlton and Squire (1993; Squire & Knowlton, 1995).
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Our first study demonstrated that subjects achieved around 60% accuracy at judg-
ing members versus nonmembers without the benefit of any prior exposure to the
category. Although comparable to the performance of amnesics and normal indi-
viduals reported in other studies, one might argue that the amount of information |
that can be acquired in the absence of prior exposure to category members might be
relatively meager, permitting classification performance that is barely better than
chance. As a way of maximally assessing how much information could possibly be
extracted from the categorization test sequence, a particularly well-motivated and
informed subject (the second author) participated in 10 categorization test sessions,
with a new computer-generated set of stimuli used within each session. These cat-
egorization tests had the exact same abstract structure as those used by Knowlton
and Squire (1993). However, in our experiment, the subject did not receive any
prior exposure to category members. Although she was aware of how the category
members and nonmembers were defined abstractly, she had absolutely no prior
knowledge of the particular prototypes and distortions that were to be used within
a given test session—that is, she needed to discover which patterns were members
or nonmembers without the benefit of any prior exposure and without the benefit of
any corrective feedback. It is important to emphasize that even with a complete un-
derstanding of the procedures for how old patterns and new patterns were generated
in a recognition test, it would be absolutely impossible to recognize old from new
patterns better than chance without having seen old patterns before. From the per-
spective of a potential subject without any prior exposure, even one who is particu-
larly motivated and well informed, the patterns used during a recognition memory
test are assigned as “old” or “new” patterns in a completely arbitrary manner.

As shown in Fig. 7, without any prior exposure to category members, this subject
was able to correctly categorize the prototypes perfectly, the low distortions nearly
perfectly, and the high distortions and random patterns extremely well, achieving
an overall accuracy of 81.3% correct. As we expected, there is a tremendous
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Fig. 7. Categorization data for a single motivated subject who completed the categorization test
without prior exposure to category members (Experiment 1). The figure displays the observed prob-
ability of endorsing prototypes (Proto), low distortions (Low), high distortions (High), and random
patterns (Rand) as members of the category.
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amount of information in the sequence of categorization trials for a particularly
well-motivated subject to use to accurately categorize the test stimuli from the
Knowlton and Squire (1993) paradigm without any prior exposure to category
members. This result is troublesome because in testing the relative independence
or nonindependence of categorization and recognition, it is critical that the tasks
be equated for how much they actually depend on memory for training patterns
presented earlier in the experiment. The proper categorization test would mirror
the recognition memory test in that accurate performance would be impossible
without prior exposure to category members.

3. Experiment 2: What about Prior Training?

The above studies clearly demonstrate accurate categorization in the absence of
training. But what happens when our subjects are actually given prior exposure to
high-level distortions of a category prototype? A straightforward hypothesis is
that subjects who receive prior exposure to category members should be able to
classify significantly more accurately than subjects who receive no prior exposure.
However, such a finding could seriously undermine our claim that simulated am-
nesics can be used to understand the classification abilities of true amnesics. Our
claim is that amnesics may base their categorization responses on information ac-
quired during the testing session. Yet, amnesics do not classify significantly worse
than normal individuals, who presumably can use their memory for the category
members that they were shown just a few minutes earlier.

We directly compared the performance of subjects who were actually exposed
to the study items (Exposure) to that of simulated amnesics (None). That is, half
of the subjects were given subliminal exposure, as in Palmeri and Flanery (1999),
and were then tested on categorization or recognition memory; the other half were
given actual exposure, as in Knowlton and Squire (1993), and were then tested on
categorization or recognition memory. Figure 8 displays response accuracy in the
categorization and recognition conditions in this experiment and displays average
results from the experiments with amnesics and normal controls for comparison.
As expected, the exposure group could recognize items well above chance but
the no-exposure group could only guess. Replicating Palmeri and Flanery (1999),
subjects in a no-exposure group could categorize well above chance. Interestingly,
subjects receiving no exposure did not categorize significantly worse than sub-
jects who were actually exposed to category items. Apparently, in this particular
paradigm, prior exposure to a category does not provide much, if any, benefit for
categorizing items later. Although perhaps surprising, we should remind readers
that the study items in this particular paradigm were all high-level distortions of
the category prototype. These items do not look very similar to the category pro-
totype nor do they look similar to one another. Indeed, in most experiments using
this paradigm, high-level distortions are typically rated for category membership
at levels around 50%.



150 Palmeri and Flanery

Knowiton & Squire (1993) Squire & Knowilton (1995)

90
0 o—= Exposure 1_ ——= Control —= Control
0.80 {==== None === Amnesic {=== E.P.
8 0.70 - |
& 7
&) ] ] _
= 0.60 "
0.50 1 g - a
0.40 L1 ¥4 . 4 ] |
Categ Recog Categ Recog Categ Recog
Task Condition

Fig. 8. Percentage correct categorization and recognition from Experiment 2, Knowlton and Squire
(1993), and Squire and Knowlton (1995). The Palmeri and Flanery results display categorization and
recognition accuracy as a function of prior exposure to category members or old items, respectively.
The Knowlton and Squire results display categorization and recognition memory accuracy for controls
and amnesics. Correct categorization decisions were defined as judging the prototype, low distortions,
and high distortions as members and judging random patterns as nonmembers. Correct recognition
decisions were defined as judging old patterns as old and new patterns as new.

4. Experiment 3: Examining Different Kinds of Prior
Category Exposure

One potential criticism of the studies described above is that the ruse used to
induce amnesia may actually place subjects in a very different cognitive set from
that of subjects who were actually exposed to category members. In other words,
our “profound amnesics” may realize that they never saw any patterns at all and
may think that the task is to discover the hidden category structure, something
they appear to do quite ably. So, one goal of the following experiment was to
use a different paradigm for demonstrating that subjects may categorize based on
information they acquire during the categorization test. As described later, in this
experiment, we surreptitiously switched the test stimuli for some subjects to that
of an unstudied category in order to see if they would categorize test stimuli based
on what they had studied earlier or if they would instead categorize test stimuli
based on the information presented within the categorization test.

In addition, we clearly do not want to draw the erroneous conclusion that
people always ignore information about a previously studied category in favor of
information presented during a categorization test. Therefore, a second goal was
to show that when initial exposure provides clear evidence for a category struc-
ture, subjects will use that information to make category decisions irrespective of
the makeup of the categorization test. To demonstrate this, we adapted additional
aspects of the paradigm used by Squire and Knowlton (1995). In one condition,
subjects were initially exposed to 40 high distortions of the prototype (40H),
exactly as was done in all of the earlier studies. In another condition, subjects were
instead exposed to 40 repetitions of the category prototype (40P). We reasoned
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that subjects in the 40P condition should have acquired clear knowledge of the
category structure and should protest any surreptitious changes during a catego-
rization test. By contrast, subjects in the 40H condition should have acquired little
knowledge of the category structure and should go along with our surreptitious
changes.

First, in order to verify that different exposure conditions had a significant
effect on performance, we tested subjects in the same way as we did in our ear-
lier studies after a 1-week delay. Overall, 40P subjects achieved 77.2% accuracy
and 40H subjects achieved 64.0% accuracy. As expected, categorization accuracy
was significantly influenced by the type of information presented during initial
category exposure, as was reported by Squire and Knowlton (1995) for normal
subjects. Overall performance of our 40H subjects was quite comparable to what
we and others have observed in this paradigm; performance of the 40P subjects
was significantly better than what we have observed before (but was comparable
to the performance by our single motivated subject in Experiment 1 described
in Section I1.D.2). So, information presented during initial exposure can have a
significant effect on categorization performance, as we predicted.

As a way of simulating amnesia, we tested these subjects after an additional
delay of several weeks (see Nosofsky & Zaki, 1998). But now we tested just half
of the subjects on items generated from the prototype used to generate items they
had seen before (Same condition) and tested the other half of the subjects on items
generated from a novel prototype (Different condition). Thus, each subject was
assigned to one of four conditions: 40P-Same, 40P-Different, 40H-Same, and 40H-
Different. Because all subjects were given different randomly generated stimuli,
we can characterize subjects in the Different condition as mistakenly receiving a
categorization test that was intended for another individual.

As illustrated in Fig. 9, we found that subjects in the 40P-Same condition per-
formed quite well, correctly categorizing over 70% of the items. However, sub-
jects in the 40P-Different condition were completely at chance categorizing the
test items. We suspect that these subjects tried to use the category information
they had clearly acquired earlier and could not apply that knowledge when given
a test comprised of entirely novel items. By contrast, for subjects in the 40H con-
ditions, there was no significant difference in performance between subjects who
were tested on the same category structure they were initially exposed to and sub-
jects who were tested on a completely novel category structure. Consistent with
our previous results, these subjects appear to be making categorization decisions
based on information acquired during the categorization test, not on what they may
have acquired during earlier phases of the experiment.

5. Summary

The dissociation between categorization and recognition reported by Knowlton
and Squire (1993; Squire & Knowlton, 1995) initially appeared to present strong
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Fig. 9. Percentage correct categorization as a function of studied category (40P versus 40H) and as
a function of categorization test (Same versus Different) from Experiment 3. 40P subjects studied 40
repetitions of the prototype. 40H subjects studied 40 high distortions. Same-condition subjects were
tested on stimuli generated from the prototype used to generate their studied category items. Different-
condition subjects were tested on stimuli generated from a novel prototype. Correct categorization
decisions were defined as judging the prototype, low distortions, and high distortions presented during
the test as members and judging random patterns presented during the test as nonmembers.

evidence supporting multiple memory systems theory. Our experiments reported
how the observed dissociation between categorization and recognition using dis-
torted dot patterns may be explained as aresult of the particular methodologies used
to test these individuals. We showed that very good categorization performance
can be achieved in the absence of any prior exposure to the category members,
and that this performance is comparable to that of subjects who had been provided
prior exposure. We also showed that very good categorization performance can be
achieved when people are tested on items that are different from what they had
actually studied. But this seems to only occur when subjects have been initially
exposed to a very diffuse category structure consisting of high distortions that are
not very similar to one another, which was also true of the experiments used by
Knowlton and Squire (1993; Squire & Knowlton, 1995). When subjects have been
exposed to a clear category structure through repetition of a single prototype, they
attempt to categorize items based on that acquired category knowledge, not on
information presented during the categorization test.

III. Theoretically Modeling Dot Pattern Classification

Our focus will now shift to examining how formal models of categorization have
attempted to account for the dissociation between categorization and recogni-
tion observed by Knowlton and Squire (1993). For this discussion, we will just
make the assumption that subjects acquire information about a category dur-
ing an initial study session and then utilize that acquired category knowledge
during the categorization test. We will forgo considerations of how category
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information may be acquired during the categorization test itself until later in this
section.

A. AN EXEMPLAR-BASED INTERPRETATION

According to exemplar models, categories are represented in terms of stored cate-
gory exemplars (Hintzman, 1986; Medin & Schaffer, 1978; Nosofsky, 1986). For
example, in order to theoretically model behavior in the Knowlton and Squire
(1993) paradigm, the studied category is assumed to be represented in terms of the
40 high distortions (the exemplars) of the category prototype. The total evidence
that an item presented during the categorization test is a member of that studied cat-
egory is given by the summed similarity to the stored exemplars of the category. As
described by Nosofsky and Zaki (1998), when just a single category is learned, the
probability of classifying item i as a member of the studied category M is given by

Z Sim
P(M | i) = —m<M (1)

Z Sim + k¢

meM

where sj, is the similarity between item i and stored exemplar m, and k¢ is the
response criterion for categorization. According to this equation, if the summed
similarity is greater than k¢, then the probability of classifying item / as a member
of category M will be greater than .50.

In contrast to multiple memory systems theories, a fundamental assumption
of exemplar models is that categorization and recognition depend on the same
underlying exemplar memories. So, analogously, the probability of judging an
item as being an old item in the recognition memory task is found by summing
the similarity to the studied exemplars and comparing this summed similarity to
a recognition criterion. Specifically, the probability of judging item ¢ to be an old
item is given by

Z Sim
P(old | i) = 2= (2)

Z Sim + KR

meold

where kg is the response criterion for recognition.
In the full version of the generalized context model (N osofsky 1984, 1986), the
similarity between item i/ and stored exemplar m is given by

Sim = eXP(_C * dim) (3)
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where d;, is the distance between item i and exemplar m in similarity space, and
c is the sensitivity parameter. In previous applications of the exemplar model to
dot pattern experiments, multidimensional scaling has been used to derive the dis-
tances, di,, between patterns in psychological space (e.g., Palmeri & Nosofsky,
2001; Shin & Nosofsky, 1992). Unfortunately, with 40 training items and 84 test
items, it would require thousands of pairwise similarity ratings to derive the un-
derlying similarity space. So, for obvious practical reasons, Nosofsky and Zaki
(1998) just obtained a subset of similarity ratings between different types of pat-
terns from each individual subject. Specifically, they obtained average similarity
ratings between old high distortions and the prototype, low distortions, new high
distortions, and random patterns; to model the recognition memory results, they
also obtained average similarity ratings between pairs of random patterns (recall
that all old and new items in the recognition memory experiment were random
patterns). As a simple approximation, they assumed that the true psychological
similarity between different types of patterns was given by a power transform of
their rated similarity

Sr'm = [rating(ia m)]P (4)

where rating(i, m) is the average rated similarity between an item of type i and
an item of type m. Moreover, using the relation that exp(—c - d) = [exp(—d)]°,
Nosofsky and Zaki (1998) noted that increases in the value of the sensitivity
parameter, ¢, could be modeled by increases in the value of exponent p in Eq. (4),
a point that will be critical in the ensuing discussion.

Combining the above equations, the probability of classifying item i as a member
of category M is given by

40 x [rating(i, h)]?

5
40 x [rating(i, h)]? + k¢ )

P(M |i)=

where rating(i, k) is the average similarity rating between an item of type i and an
old high distortion. The probability of judging old item i as an old item is given by

8! 4 4 x [rating(r, r)]?
8F + 4 x [rating(r, r)]? + kg

P,(old | i) = (6)

where §;; is the self-similarity between old item i and its own stored representation
(a free parameter) and rating(r, r) is the average similarity rating between two ran-
dom patterns. And the probability of judging new item i as an old item is given by

) 5 x [rating(r, r)}?
P, (old = : 7
nen(01d 17) 5 x [rating(r, r)]? + kg )
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The key insight by Nosofsky and Zaki (1998) was to consider the possibility
that the observed behavioral dissociation, in which amnesics could categorize quite
well but were significantly impaired at recognition memory, could reflect a single
parameter difference between amnesics and normals. Impaired memory in amnesia
could be simulated by a difficulty in discriminating between exemplars in memory.
Conceptually, in the similarity calculations given by Eq. (3), a relatively high value
of ¢ (high memory sensitivity) causes memories to be easily discriminated from
one another, but a low value of ¢ (low memory sensitivity) causes memories to be
much less discriminable from one another. Specifically, Nosofsky and Zaki (1998)
found that the power parameter p (which reflects values of memory sensitivity) in
Eq. (4) was larger for simulated normals than for simulated amnesics, indicating
a lower level of memory sensitivity in amnesia. As shown previously in Fig. 3,
Nosofsky and Zaki (1998) demonstrated that this single parameter difference be-
tween amnesics and normals allowed a single-system exemplar model to account
for the dissociation between categorization and recognition reported by Knowlton
and Squire (1993).

B. A PROTOTYPE-BASED INTERPRETATION

By contrast, Knowlton and Squire (1993) interpreted the dissociation between cat-
egorization and recognition in terms of independent memory systems. Recognition
judgments are determined by a declarative memory system based on the storage of
individual exemplars, which is clearly damaged in amnesia. Categorization judg-
ments are determined by an implicit memory system based on the formation of
abstract prototypes, which is apparently spared in amnesia.

In support of the multiple memory systems view, Smith and Minda (2001) re-
cently provided an extensive critique of the Nosofsky and Zaki (1998) article. The
emphasis of their critique was that Nosofsky and Zaki collected direct similarity
ratings between dot patterns after they had completed both category training and
transfer. Smith and Minda instead proposed using an “objective” measure of sim-
ilarity between two patterns based on physical distances between the individual
dots in the two patterns (Posner et al., 1967). Specifically, assume that Dy, is the
average physical Euclidean distance between the dots in presented item i and the

‘dots in stored item m. Smith and Minda then assumed that this average distance
was log transformed according to dj, = log(Diy, + 1). The similarity between
item i and stored item m is then given by s, = exp(—c - di), which is just Eq. (3).
In fitting the exemplar model, Eq. (1) was used. In fitting a multiplicative prototype
model, an analogous equation was used

. Sip
P(M = 8
(M| i) — (8)

where s;p is the similarity between item i and the category prototype P. In fitting
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ke prototype model to the observed data, Smith and Minda assumed that the stored
category protolype was the population-based prototype. The population-based
prototype was the original prototype vsed to generate ali the category membérs
(bt was never presented dering training) and was the prototype that was presented
during the categorization test. This point will be critical in our later discussion.
Smith and Minda (2001) fitted the protoiype model and the exemplar model
by Ainding parameters {¢ and k¢} that minimized the som of squared deviations
between observed data and medel predictions. The best-fitting predictions are
shown in Fig. 10, As shown in the two left panels, the prototype modei provided
excellent accounits of the observed data for both controls and amnesics. By contrast,
as shown m the two might pancls, the exemplar mode] provided an exceedingly
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poor account of the observed data, quite unlike the fits reported by Nosofsky
and Zaki (1998). Smith and Minda argued that the prototype model naturally
predicts the steep typicality gradients from prototype to low distortions to high
distortions, whereas the exemplar model was constrained to incorrectly predict a
relatively flat typicality gradient. On these grounds, Smith and Minda claimed that
the Knowlton and Squire (1993) results indeed provide support for a prototype-
based, presumably implicit, categorization system that is entirely independent from
an explicit, exemplar-based declarative memory system.

C. A CRITIQUE OF THE CRITIQUE

Nosofsky, Zaki, and Palmeri (2001) responded by pointing out a number of seri-
ous problems with Smith and Minda’s analyses. Nosofsky et al. first questioned
the use of gross physical measures of similarity in lieu of more psychologically
valid measures of similarity, such as those obtained from subjective similarity
ratings. Simply calculating the average distances between individual dots ignores
any higher-order relational information (e.g., symmetry, density, coincidence) that
would clearly play a major role in determining the similarity between dot patterns.
Indeed, Palmeri and Nosofsky (2001) conducted experiments specifically aimed at
demonstrating the importance of using psychological measures of similarity, such
as multidimensional scaling, and not using physical measures of similarity, such as
distances between dots. Specifically, Palmeri and Nosofsky showed that in some
cases the physical central tendency of category exemplars (what would typically
be considered the “category prototype’) may be represented as an extreme point
in psychological space rather than a central tendency in the psychological space.
Although dot distances may capture some of the first-order similarities between
patterns (e.g., that low distortions are more similar to a prototype than high distor-
tions), they cannot be valid measures of the true psychological similarity between
specific pairs of patterns.

Yet, even granting the use of dot distances as valid measures of psychological
similarity, Nosofsky et al. (2001) also pointed out two serious flaws in the theoreti-
cal analyses reported by Smith and Minda (2001). First, recall that in the Knowlton
and Squire (1993) dot pattern paradigm, the category prototype was a randomly
generated dot pattern and the studied category members were 40 high-level dis-
tortions of the prototype. Prototype models generally assume that people learn
categories by abstracting a prototype from the studied category members. This
sample-based prototype (averaged across category members) is then used to clas-
sify new patterns during the subsequent categorization test. Yet, Smith and Minda
erroneously assumed that the population-based prototype, which was originally
used to generate the high-level distortions for the training session and which was
presented for classification during the categorization test, but was never presented
during training, was the enduring category representation. Although experience
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with an infinite number of distortions causes the sample-based prototype to con-
verge onto the population-based prototype, the sample-based prototype is typically
not identical to the population-based prototype, even with 40 training examples. In
order to be theoretically sensible, the sample-based prototype should be assumed
as the category representation because there is no way that a subject could dis-
cover the true population-based prototype given the limited number of category
exemplars that were presented to them during training.

More critically, Nosofsky et al. (2001) noted that assuming the population-
based prototype gives the prototype model an unfair advantage in accounting
for the observed categorization responses. As shown in Fig. 10, one of the key
empirical findings in the Knowlton and Squire (1993) experiments was a large
prototype enhancement effect in which the prototypes were endorsed as category
members over 10% more often than the low distortions. By assuming that the
enduring category representation is the very same population-based prototype that
is presented during the categorization test, the model is guaranteed to predict a
large prototype enhancement effect since the presented prototype and the stored
prototype are identical, and thus have a physical distance of zero. Again, there is
no way for a human subject (nor a statistical learning algorithm) to induce the true
population-based prototype given the examples that are experienced, so the large
prototype enhancement effect predicted by this population-based prototype model
cannot be based on any plausible psychological (or mathematical) principles.

Finally, and most critically, Nosofsky et al. (2001) also raised a serious concern
with how Smith and Minda (2001) calculated physical distances between a crit-
ical subset of the dot patterns. For each pair of patterns, the Euclidean distance
between each corresponding dot in the two patterns is computed, with the average
distance serving as the measure of distance between the two patterns. But, what
are the corresponding dots? For prototypes, low distortions, and high distortions,
the correspondence problem is straightforward. The modeler knows which dot in
a distortion corresponds with which dots in the prototype since the distortions
were generated from the prototype. By extension, the modeler also knows which
dot in one distortion corresponds with which dot in another distortion since both
distortions were generated from the same prototype. But what about the random
patterns? Consider the two dot patterns shown in Fig. 11, a high distortion of a
prototype and a random pattern. Which dots in the random pattern correspond
with which dots in the high distortion for purposes of calculating the distance be-
tween those patterns? Coming up with a solution to this correspondence problem
is the key to any reasonable use of physical dot distances as surrogate measures of
psychological similarity.

Smith and Minda (2001, p. 996) essentially argued that this apparently difficult
correspondence problem was not a problem at all: “The distribution of logarithmic
distance estimates is so narrow that any value from it would produce nearly identical
modeling results. This means that ambiguity about dot correspondences has no
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in the middle of the distribution. Indeed, the mean of the distribution shown in
Fig. 11 is 3.51 with a standard deviation of .15 and a 99% confidence interval
ranging from 3.09 to 3.79. But, the minimum of the distribution (for the “optimal”
correspondence) is just 2.60! To demonstrate the generality of this result, we gen-
erated high distortions from 1000 randomly generated prototypes and generated
1000 random patterns. The average mean distance between random patterns and
high distortions across all possible correspondences for all 1000 pairs of patterns
was 3.46, yet the average minimum distance was just 2.68. For comparison, across
1000 randomly generated stimulus sets, the average distances between the proto-
type, low distortions, and new high distortions and old high distortions were 2.16,
2.20, and 2.43, respectively (using the natural correspondence based on how the
distortions were generated). Indeed, using an arbitrary correspondence, as used by
Smith and Minda (2001), causes the exemplar model to predict a very flat typi-
cality gradient because the resulting distance measures between random patterns
and high distortions is so exorbitant (3.46 rather than 2.68). But using the much
more sensible minimum-distance correspondence allows the exemplar model to
instead predict a gradually rising typicality gradient because the distances (and
hence similarities) between presented items and stored exemplars (high distor-
tions) rise in an analogous manner. Thus, as further illustrated below, the main
failure of the exemplar model in Smith and Minda’s analyses does not stem from
a fundamental failure of exemplar representations but rather from an improper use
of arbitrary dot correspondences in calculating distances for a critical subset of the
patterns.

D. AN EXEMPLAR-BASED INTERPRETATION REVISITED

To begin with, we first attempted to replicate the model fits using procedures simi-
lar to those originally used by Smith and Minda (2001). In addition to the original
Knowlton and Squire (1993) experiment, Smith and Minda also fitted data from
replications and extensions of this paradigm reported in a second experiment by
Knowlton and Squire (1993) and in two experiments by Reber, Stark, and Squire
(1998a,b). In this article, we also report model fits to Squire and Knowlton (1995),
which was not included in the Smith and Minda analyses.! Table I displays sum-
mary fits of the population-based prototype model and the exemplar model using

'"The test stimuli used by Nosofsky and Zaki (1998) and Palmeri and Flanery (1999) were identical
to those originally used by Knowlton and Squire (1993) in that the very same set of dot patterns was
used. The composition of test stimuli used by Reber et al. (1998a) was identical in that there were 4
repetitions of the prototype, 20 low distortions, 20 high distortions, and 40 random patterns, but each
subject viewed a different set of randomly generated patterns. The second experiment of Knowlton
and Squire (1993) provided only four unique training exemplars but the composition of types of test
stimuli was identical to that used in their first experiment. The composition of test stimuli used by
Reber et al. (1998b) was different from the others in that there were 4 repetitions of the prototype, 16
low distortions, 16 high distortions, and 36 new patterns (4 repetitions of a novel prototype, 16 low
distortions of that prototype, and 16 high distortions of that prototype).
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TABLE 1

SUMMARY FITS OF POPULATION-BASED PROTOTYPE MODEL, SAMPLE-BASED PROTOTYPE
MODEL, AND EXEMPLAR MODEL USING ARBITRARY MAPPINGS BETWEEN RANDOM

PATTERNS AND CATEGORY REPRESENTATIONS

Source Model P L H R c k SSD

Knowlton & Squire (1993) Observed J8 .67 60 42
(Controls) Population prototype 78 .69 57 44 441 285  .0017
Sample-based prototype a5 7159 42 578 191 .0027
Exemplar 72 71 64 41 1030 1.633 .0069

Knowlton & Squire (1993) Observed a3 .60 57 46
(Amnesics) Population-based prototype .71 .64 55 46 303 414 .0024
Sample-based prototype 68 65 .57 45 388 319 .0051
Exemplar 66 65 60 45 680 4.628 .0088

Reber, Stark, & Squire (1998a) Observed 155 54 40
Population-based prototype .68 .60 51 .41 334 465 .0049
Sample-based prototype 66 62 52 40 429 348 .0084
Exemplar 63 62 56 .39 780 4.215 .0120

Reber, Stark, & Squire (1998b) Observed 85 66 .63 40
' Population-based prototype .82 .72 .58 42 539 219 .0077
Sample-based prototype g9 74 60 40 674 145 0115
Exemplar J5 .74 66 .39 1.203 951 .0171

Knowlton & Squire (1993) - Observed Je 71 .57 31
Experiment 2 Population-based prototype .81 .69 .52 .35 597 240 .0063
Sample-based prototype J4 072 59 30 1111 051 .0007
Exemplar 73 .71 .61 30 1461 060 .0030

Squire & Knowlton (1995) Observed J0 64 58 .37
(Controls) Population-based prototype .73 .64 53 41 396 375 .0043
Sample-based prototype 70 66 54 39 540 251 .0016
Exemplar 67 66 .59 37 1.010 2.091 .0014

Squire & Knowlton (1995) Observed J0 75 59 44
(E.P) Population-based prototype .76 .68 .57 46 383 316 .0081
‘ Sample-based prototype J4 70 59 44 521 215 .0032
Exemplar g1 70 .63 43 940 2075 .0048

Note. Data and predictions are probability of endorsing each item type as a category member. P = Prototype, L = Low distortion,

H=High distortion, R = Random pattern, ¢ = sensitivity, k = response criterion, SSD = sum of squared deviations.

arbitrary mappings between random patterns and the category representations (pro-
totypes or exemplars, respectively); for comparison, we also include fits of the
sample-based prototype model using arbitrary mappings. In all but one case, the
exemplar model fitted worse than either of the versions of the prototype model,
as was shown by Smith and Minda. It may be instructive to note that the relative
fits of the population-based versus sample-based prototype models was propor-
tional to the degree of prototype enhancement observed in each particular experi-
ment. For example, whereas the population-based prototype model better fitted the
Knowlton and Squire (1993) results, which showed large prototype enhancement
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effects (see Nosofsky et al., 2001), the sample-based prototype model better fitted
the Squire and Knowlton (1995) resuits, which showed far smaller or nonexistent
prototype enhancement effects. |

Next, we report fits of a sample-based prototype model and exemplar model
using minimum-distance mappings between random patterns and category rep-
resentations. Again, one of the issues that emerges when using average physi-
cal dot distance as a measure of similarity is how to sclve the correspondence
problem. One approach is to use the optimal correspondence that minimizes the
distance between two patterns for every possible pair of patterns. One potential
drawback of this approach is that the logical correspondence between different
patterns generated from the same prototype may differ simply because the min-
imization criterion is enforced (Nosofsky et al., 2001). In addition, solving for
the optimal minimal correspondence is very time consuming in that it requires
9! distance calculations for each pair of patterns. In some of the ensuing analy-
ses, we generated predictions by averaging over 100 randomly generated stimulus
sets—calculating all the necessary optimal distances between every tested item
and every stored item, when simulating the exemplar model would require hun-
dreds of billions of distance calculations, which is a practical hurdle in conducting
the simulations.

Instead, Nosofsky et al. (2001) proposed a compromise solution for calculating
distances when fitting the exemplar model. Before a random pattern is compared to
the stored exemplars, the optimal correspondence between the random pattern and
the sample-based prototype 1s first calculated. Then this particular correspondence
is used in calculating the distances between the random pattern and each high
distortion (the stored exemplars). We should emphasize that this method was not
meant to imply in any way that prototypes are represented as part of the category—
the sample-based prototype is only used to give a first approximation to an optimal
correspondence between a random pattern and each of the high distortions rather
than computing the optimal correspondence for each comparison individually.
That is, only 9! distance calculations are necessary instead of 40 x 9! distance
calculations—as an important practical consideration, this simplifying assumption
meant a difference of several days of simulation time rather than several months
of simulation time.

Table II displays the summary fits for the sample-based prototype model and
the exemplar model using the minimum-distance mappings described above. The
fits to Knowlton and Squire (1993) are taken from Nosofsky et al. (2001). The
predictions for the Knowlton and Squire study were generated by calculating
the distances between the actual dot patterns used in those experiments; for the
remaining studies, predictions were generated by averaging across 100 simulated
sets of randomly generated dot patterns. As should be clear from Table 11, when
using a sample-based prototype rather than a population-based prototype and when
using minimum-distance mappings rather than arbitrary mappings, the difference
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TABLE 11

SUMMARY FITS OF POPULATION-BASED PROTOTYPE MODEL, SAMPLE-BASED
PROTOTYPE MODEL, AND EXEMPLAR MODEL USING MINIMUM-DISTANCE MAPPINGS
BETWEEN RANDOM PATTERNS AND CATEGORY REPRESENTATIONS

Source Model P L H R c k SSD

Knowlton & Squire (1993) Observed 78 67 60 42
(Controls) Sample-based prototype .73 .72 .61 41 2.048 506 .0047
Exemplar g3 71 62 41 1298 080 .0044

Knowlton & Squire (1993) Observed 73 .60 .57 46
(Amnesics) Sample-based prototype .67 .66 58 45 .82 180 .0074
Exemplar 67 65 59 45 1376 2022 .0071

Reber, Stark, & Squire (1998a) Observed J1 55 54 40
Sample-based prototype .67 62 49 43 590 283 .0107
Exemplar 65 63 51 41 1619 621 0112

Reber, Stark, & Squire (1998b) Observed 85 66 .63 40
Sample-based prototype .80 .74 55 45 926 .104 .0187
Exemplar 79 76 58 42 2586  .040 0168

Knowlton & Squire (1993) Observed 76 71 .57 31
Experiment 2 Sample-based prototype .77 .73 .50 .37 1935 011 .0092
Exemplar J4 71 52 38 2310 010 .0084

Squire & Knowlton (1995) Observed Jo0 64 58 .37
(Controls) Sample-based prototype .71 .66 50 43 716 203 .0095
Exemplar J0 67 52 40 2034 205 .0046

Squire & Knowlton {1995) Observed JO 75 59 44
(E.P) Sample-based prototype .75 .70 54 48 730 163 .0075
Exemplar J4 72 57 45 2064 158 .0025

Note. Data and predictions are probability of endorsing each item type as a category member. P = Prototype, L =Low
distortion, H = High distortion, R = Random pattern, ¢ = sensitivity, k = response criterion, SSD = sum of squared deviations.
Fits to Knowlton and Squire (1993) are from Nosofsky, Zaki, and Palmeri (2001).

between the prototype and exemplar models reported by Smith and Minda (2001)
simply disappears (in fact, the exemplar model provides a numerically better fit in
six of the seven datasets).

Nosofsky et al. (2001) did note that both the prototype model and the exemplar
model predict far smaller prototype enhancement effects than are oftentimes ob-
served in the experiments, and discussed some possible reasons for the elevated
enhancement effects. Given the recent work presented at the beginning of this
article, one plausible reason for the underpredicted prototype enhancement effect
is that subjects may be learning about the category during the categorization test.
In other words, the underlying category representation is not just a set of high
distortions of the prototype acquired during initial learning, but rather includes the
prototype (which is presented four times during the categorization test) and the
numerous low distortions that are all very similar to the prototype.
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Nosofsky et al. (2001) provided preliminary evidence that a simple enhanced
version of the exemplar model (using minimum-distance mappings) in which
category representations are augmented by information acquired during the cate-
gorization test does indeed predict a far larger prototype enhancement effect than
the basic exemplar model based only on stored training exemplars. As shown in
Fig. 12, this learning-during-transfer version of the exemplar model provided an
excellent account of the Knowlton and Squire (1993) results. For comparison,
the figure also shows a population-based version of the prototype model (using
minimum-distance correspondences) that also fitted that data well (although we
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Fig. 12. Categorization predictions for a prototype model (left column) and an exemplar model
(right column) for data from Knowlton and Squire (1993) for controls (top row) and amnesics (bottom
row) from Nosofsky, Zaki, and Palmeri (2001). The prototype model (Proto) assumed a population-
based prototype (see text). The exemplar model (Exem) assumed learning during transfer (see text).
Simulations of both the prototype model and the exemplar model assumed minimum-distance mappings
in distance calculations involving random patterns (see text). Each panel displays the observed (Obs)
and model predicted probability of endorsing prototypes (Proto), low distortions (Low), high distortions
(High), and random patterns (Rand) as members of the studied category.
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still contend that using a population-based prototype is theoretically unfounded).
The bottom-line result of these simulations is that the version of the dot pattern
paradigm developed by Knowlton and Squire (1993) and used by other investiga-
tors cannot distinguish between prototype and exemplar representations, although
other paradigms using dot pattern stimuli have indeed reported superior accounts
by exemplar models over prototype models (e.g., Busemeyer, Dewey, & Medin,
1984; Palmeri & Nosofsky, 2001; Shin & Nosofsky, 1992).

Finally, as we noted earlier in this article, the extreme dissociation observed
by Squire and Knowlton (1995) with the profound amnesic E.P. poses a clear
challenge to the basic version of the exemplar model described by Nosofsky and
Zaki (1998). To demonstrate this, we generated simulated predictions of catego-
rization accuracy and recognition accuracy averaged over 100 randomly generated
stimulus sets for values of the sensitivity parameter in a range of .0 <c¢ <4.51n
steps of .001.2 For each value of ¢, we found values of kc and kg that produced
unbiased responding (see Nosofsky & Zaki, 1998); in other words, these criteria
produced an equal proportion of member/nonmember judgments in categorization
and old/new judgments in recognition, respectively. Again, we used a minimum-
distance mapping in all comparisons that involved a random pattern (i.e., between
random patterns and high distortions in the categorization task and between all
patterns in the recognition task). Figure 13 displays recognition accuracy plotted
against categorization accuracy for all values of ¢ in the simulated range. Within
this range, as c increases, both recognition accuracy and categorization accuracy
increase. However, it should be readily apparent that increases in ¢ that produce
large increases in recognition accuracy produce relatively modest increases in
categorization accuracy. Indeed, it is this regularity which allowed the exemplar
model to successfully account for the Knowlton and Squire (1993) dissociation
as originally reported by Nosofsky and Zaki (1998). Yet, it should also be readily
apparent that in order to predict chance recognition, the model is also forced to pre-
dict chance categorization as well. Thus, an exemplar model that bases responses
on stored exemplars of the studied high distortions cannot account for the extreme
dissociation reported by Squire and Knowlton (1995) for the profound amnesic
E.P. These simulation results coupled with our experimental results argue for the
acquisition of category information during the categorization test.

2With further increases in sensitivity, categorization accuracy eventually begins to fall, yet recog-
nition accuracy remains at asymptote. Indeed, as ¢ approaches infinity, categorization accuracy ap-
-proaches chance (again) but recognition remains at perfect accuracy. In order to make sense of this
prediction, it is important to remember that, in the Knowlton and Squire (1993) paradigm, during
categorization, subjects are always tested on new items but that during recognition, subjects are tested
on a combination of old and new items. With extremely large values of sensitivity, each memory trace
becomes a completely unique entity (i.e., only a perfect match counts). This is ideal for recognition
where the goal is to discriminate old from new items. But this is destructive to categorization in which
new items are classified according to their similarity to old items; if only perfect matches count, then
the generalization processes so crucial for categorization disappear entirely.
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Fig. 13. Predictions of the exemplar model in the Knowlton and Squire (1993) paradigm for values
of sensitivity (c) that vary from .0 to 4.5 with criteria (k¢ or kr) set to predict unbiased responding.
The figure plots recognition accuracy against categorization accuracy across this range of parameters.

Smith and Minda (2001) did evaluate a version of the exemplar model that
acquired category information during the categorization test in order to model
the Palmeri and Flanery (1999) data. Not surprisingly, since their simulations
were based on (arguably) erroneous distance calculation for random patterns, they
reported similar failures of the exemplar model and instead reported successful
accounts by a prototype model. One aim of some of our current research is to
systematically investigate how well various learning-during-transfer versions of
the exemplar model account for the results from Palmeri and Flanery (1999) that
are summarized in the beginning section of this article. Although our initial inves-
tigations are showing that memory for only some of the test items is necessary to
produce above-chance categorization, we must forgo discussion of these results
for a future article. '

IV. Other Experimental Paradigms

The dot-pattern paradigm is just one experimental procedure that has been used
to contrast categorization and explicit memory by amnesics and normals. In this
section, we review some other recent research showing dissociations between
categorization and explicit memory, contrasting interpretations by multiple and
single memory system accounts.

A. LEARNING CATEGORIES OF OBJECT-LIKE STIMULI
WITH DISCRETE FEATURES

Recent work by Reed, Squire, Patalano, Smith, & Jonides (1999) aimed to pro-
vide further evidence for multiple memory systems subserving categorization and
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explicit memory. Reed et al. generalized the investigation of preserved categoriza-
tion in amnesia by using object-like stimuli with discrete features, which are quite
unlike the continuously varying dot patterns used in the studies discussed earlier.
The stimuli they used, which they called Peggles, were line drawings of animals
that varied along nine binary-valued dimensions. As illustrated in Fig. 14, to create
a category, a particular Peggle was designated as the prototype of the category.
Category members were distortions of that prototype. Low distortions shared 7 or
8 features of the prototype, whereas high distortions shared only 1 or 2 features of
the prototype. As an extreme, the antiprototype had all 9 features opposite to that of
the prototype. Stimuli that shared 4 or 5 features of the prototype were designated
neutral stimuli that were half way between the prototype and the antiprototype.
During an initial study phase, subjects viewed 40 low distortions of the proto-
type. Immediately after this initial exposure, subjects were told that the animals
they just saw were all members of a category, called the Peggles, and were then
asked to judge new animals as members or nonmembers of the Peggle category.
During the test phase, subjects made member/nonmember judgments of 96 new

12 Prototypes

24 Low Distortions
Test Items

24 Neutrals

I | 24 High Distortions

40 Low Distortions
12 Antiprototypes

Study Items

Fig. 14. Illustration of the Peggles used in Experiment 1 of Reed et al. (1999) that vary along 9
binary-valued dimensions. Study items were 40 low distortions of the prototype. Test items were 12
repetitions of the prototype, 24 low distortions, 24 neutral items, 24 high distortions, and 12 antiproto-
types. Low distortions differed from the prototype along 1 or 2 dimensions, neutral items differed along
4 or 5 dimensions, high distortions differed along 7 or 8 dimensions, and the antiprototypes differed
along all 9 dimensions.
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Fig. 15. Percentage correct categorization and cued recall performance for controls and amnesics
from Experiment 1 of Reed et al. (1999). The left panel contains data from all amnesics and all normals
tested. The right panel contains data for amnesics E.P. and P.H. compared to all normals.

stimuli presented one at a time without corrective feedback. The categorization
test consisted of 12 repetitions of the prototype, 24 low distortions, 24 neutral
stimuli, 24 high distortions, and 12 repetitions of the antiprototype. In addition,
subjects were also tested on their ability to complete a cued recall test identifying
the values of each of the 9 dimensions of the animals they had been shown.

As shown in the left panel of Fig. 15, Reed et al. (1999) found that amnesics
were significantly impaired at explicit cued recall of the features of the animals
but were not significantly impaired at categorizing the animals as Peggles or not.>
Surprisingly, as shown in the right panel of Fig. 15, two of the amnesics actually
categorized the test stimuli opposite to the way they should have (significantly less
than chance?). That is, they mistakenly judged the prototype and low distortions to
be nonmembers and mistakenly judged the antiprototype and high distortions to be
members, and did so in a consistent fashion. Reed et al. suggested that amnesics had
a spared implicit category learning system that had learned to partition members
from nonmembers but that perhaps declarative memory was needed to explicitly
remember which partition corresponded to the stimuli they had previously been
exposed to (i.e., which partition corresponded to Peggles that were viewed earlier?).

1. Experiment 4: Learning about Categories during Testing

Following one of the themes of this article, we propose an alternative explanation.
During the categorization test, subjects were shown the prototype many times
(indeed, there were 12 repetitions of this single item) and were shown many low
distortions that were very similar to the prototype. They were also shown the

3 Note that for categorization, a P(correct) of .50 is considered chance since each item can be
categorized as a member or nonmember, but for the open-ended cued recall test, “chance” performance
is not defined in any similarly straightforward fashion.
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antiprototype many times (indeed, there were 12 repetitions of this item as well)
and were shown many high distortions that were very similar to the antiproto-
type. In other words, there were two clear clusters of stimuli presented during
the categorization test, emphasized by the presence of the prototype or the an-
tiprototype on 25% of the test trials. If subjects could discover the clear category
structure embedded within the testing sequence so as to cluster stimuli into two
groups, they would be able to partition the stimuli into two different categories.
Obviously they would not be able to unambiguously decide which cluster corre-
sponded to the category they were initially exposed to without relying on memory.
Might this be a more reasonable explanation of the category switching by a subset
of the amnesics in the Reed et al. study? And might this suggest that amnesics (and
perhaps normals) may be relying more on information acquired during the catego-
rization test than on information retrieved from long-term memory? By contrast,
the explicit cued recall test cannot be completed without explicitly remembering
what the cartoon animals looked like.

The goal of the following experiment was to test whether subjects might be
categorizing in part by extracting information from the structure of the catego-
rization test. Following Reed et al. (1999), our subjects initially studied 40 low
distortions of a Peggle category prototype. After a varying delay, we then pro-
vided a cued recall test in which subjects described the feature values for all 9
dimensions of the animals.* Then subjects were given a categorization test. We
randomly assigned subjects to one of three different conditions: Immediate, De-
layed, and Novel. Subjects in the Immediate and Delayed conditions were tested
in the same way as subjects in the Reed et al. (1999) experiment, except that
subjects in the Immediate condition were tested immediately and subjects in the
Delayed condition were tested 1 week later. As shown in Fig. 16, no significant
difference in categorization was observed between the Immediate and Delayed
groups (indeed, the Delayed group was numerically more accurate than the Im-
mediate group), yet there was a significant difference in cued recall between the
two groups.

One underlying motivation for the experimental design used in the Novel con-
dition was the finding reported in Section I1.D.4. Recall that in that experiment we
had initially exposed some of the subjects to 40 high distortions of a prototype dot
pattern and then tested subjects either on new stimuli generated from their studied
prototype (Same condition) or on new stimuli generated from a novel prototype
(Different condition). We observed no difference in categorization performance
between these two conditions. The Novel condition in the present experiment had

4 Unlike Reed et al. (1999), we gave subjects the cued recall test before the categorization test. This
was necessary and entirely sensible because we were testing subjects after varying delays (i.e., if subjects
tested after a 1-week delay were given the cued recall test after they completed the categorization test,
their responses would be based on memory for what they just saw rather than memory for what they
saw a week earlier).
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Fig. 16. Percentage correct categorization and cued recall performance on Peggles as a function
of test condition in Experiment 4. We determined whether the prototype or antiprototype served as the
defining member of each subject’s internally defined category (see text). Correct categorization was
then defined by either judging the prototype and low distortions as “members” and the antiprototype
and high distortions as “nonmembers™ or vice versa (see text). Correct cued recall was defined by the
proportion of features recalled from each of the nine stimulus dimensions. In the Immediate Condition,
subjects were tested within a single session. In the Delayed Condition, subjects were tested after one
week. In the Novel Condition, subjects were tested after one week with a stimulus set defined by
prototypes and antiprototypes that were neutral stimuli from the originally studied set. All subjects
were tested on both categorization and cued recall.

a similar design in that subjects were initially exposed to distortions of a prototype,
but when subjects were tested, the “members” and “nonmembers” were generated
from a novel prototype.

Specifically, in the Novel condition, subjects also returned 1 week later to be
given a categorization test. In this condition, the sequence of test stimuli contained
an embedded category structure that actually contradicted what was presented dur-
ing initial exposure. To do this, a neutral stimulus with respect to the prototype
that was used to generate stimuli from the original exposure session was randomly
selected and designated the “prototype” for purposes of creating a new catego-
rization test sequence. From this novel prototype, low distortions, neutral stimuli,
high distortions, and an antiprototype were created. Note that the “antiprototype”
for this new structure would also be considered a neutral stimulus with respect
to the prototype that was used to generate stimuli to which subjects had been
originally exposed. The novel categorization test consisted of 12 repetitions of the
novel prototype, 24 low distortions, 24 neutral stimuli, 24 high distortions, and 12
repetitions of the novel antiprototype.
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Let us generate some predictions for the Novel condition. If subjects were
categorizing based on what they had been previously exposed to, they should
categorize the “prototype” and the “antiprototype” in this novel test sequence
equally, as half way between the member and nonmember category with respect
to what they had originally studied. However, if subjects were instead attending
to the clear category structure embedded within this novel test sequence, they
should group the “prototype” and its distortions in one category and group the
“antiprototype” and its distortions in another category. Half of the subjects would
call the “prototype” group the members and half would call the “antiprototype”
group the members.

Scoring categorization performance for subjects in the Novel condition was
somewhat more complicated than scoring in the other conditions. Essentially, what
we first did was to measure the difference in membership endorsements for the
“prototype” and the “antiprototype.” Recall that if subjects were categorizing these
two critical stimuli with respect to what they had studied, they should be indiffer-
ent at categorizing these stimuli as members or nonmembers. To the contrary, we
found a 53.6% difference in membership endorsements for the “prototypes” and
the “antiprototypes.” Subjects were clearly discriminating between these stimuli
when making category member judgments. Next, if a particular subject judged the
“prototype” to be a member, then we scored categorizations of the low distortions
as members and high distortions as nonmembers to be “correct” responses; on
the other hand, if a particular subject judged the “antiprototype” to be a member,
then we judged categorizations of the high distortions as members and low distor-
tions as nonmembers to be “correct” responses. Figure 16 displays categorization
accuracy for the Novel condition using this scoring method (actually, we scored the
Immediate and Delayed conditions in the same way to make the reported results
consistent across conditions). What should be clear from the figure is that subjects
in the Novel condition discriminated between members and nonmembers in a way
that was consistent with the structure embedded within the testing sequence and
not on memory for what they had seen a week earlier. As with the dot pattern
experiments reported earlier, we found comparable performance between subjects
who were tested on categories they actually studied and subjects who were tested
on categories that contradicted what they had actually studied.

2. Summary

In Experiment 4, we extended a paradigm used by Reed et al. (1999) to contrast
categorization and recall by amnesics and normals. Reed et al. observed impair-
ments in cued recall by amnesics compared to normals, but there was little dif-
ference in categorization between the two groups. However, they did observe that
two of their amnesic individuals categorized members of the previously studied
category as nonmembers and nonmembers as members. Although Reed et al.
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interpreted these results in terms of an implicit memory for the category, we in-
stead provided evidence that this ability to discriminate members from nonmem-
bers might emerge from a clear category distinction embedded within the testing
sequence. As we argued in the case of dot pattern categorization, perhaps the pre-
served ability of amnesics to categorize object-like stimuli with discrete features
could be an artifact of the way the categorization tests were designed rather than
evidence for independent memory systems subserving categorization and explicit

memory.

B. LEARNING CATEGORIES DESCRIBED BY A COMPLEX QUADRATIC RULE?

Filoteo, Maddox, and Davis (2001) investigated whether amnesics could learn to
classify stimuli defined by a complex categorization rule. Adapting the well-known
paradigm developed by Ashby and colleagues (e.g., Ashby & Gott, 1988; Ashby &
Maddox, 1992), subjects learned two categories that were defined by multivariate
normal distributions. In this paradigm, on every trial one of the two categories (nor-
mal distributions) is randomly selected and a stimulus is randomly sampled from
that distribution. The subject classifies the stimulus as an A or a B and receives
corrective feedback. Because any two normal distributions overlap, perfect perfor-
mance is impossible in that an item that would otherwise be classified as a member
of category A could have been selected from the tail of the category B distribution.

The categories used by Filoteo et al. (2001) were defined by the distribution
parameters provided in Table III. Figure 17 displays contours of equal likelihood
for the normal distributions that define the two categories. As shown in the figure,
the two categories have a high degree of overlap. More importantly, learning to dis-
criminate members of category A from members of category B requires integrating
information from both dimension 1 and dimension 2. In the language of general
recognition theory (Ashby & Gott, 1988; Ashby & Townsend, 1986), learning these
categories requires the formation of a nonlinear, quadratic decision boundary that

TABLE III

CATEGORY DISTRIBUTION PARAMETERS
FROM FILOTEO, MADDOX, AND DAVIS (2001)

H1 2 g1 a2 covy2
Category A

150 150 33 33 1052
Category B

165 165 46 46 0

Note. 1) = mean along dimension 1, o7 = standard deviation
along dimension 1, cov; 2 = covariance of dimensions 1 and 2.
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Fig. 17. The central panel displays the category structure used by Filoteo, Maddox, and Davis
(2001). The ellipses give equal likelihood contours for the two multivariate normal distributions speci-
fied by the parameters in Table II1. The dotted diagonal line specifies stimuli for which the value along
dimension 1 equals the value along dimension 2. To the left and right of the central panel are illustrated
examples of Category A (“squares”) and examples of Category B (“rectangles”).

combines information from both stimulus dimensions. This manipulation of the
category structure was of particular theoretical importance because some recent
work has suggested that amnesics cannot integrate information across multiple
stimulus dimensions (Rickard & Grafman, 1998). This would imply that amnesics
might be unable to learn categories defined by a quadratic decision boundary.

The physical stimuli used by Filoteo et al. (2001) consisted of a horizontal
and a vertical line connected at the top left corner. The length of the horizontal
and vertical lines varied in accordance with the category distributions shown in
Fig. 17, and examples of each category are shown on the left and right hand sides
of the figure. Note that the category A distribution consisted of stimuli for which
the line lengths were highly correlated (i.e., given the parameters in Table III,
the correlation between dimension 1 and dimension 2 was .966). In other words,
as shown on the left side of the figure, the two line segments formed the left
and top portions of a square (or a stimulus extremely similar to a square). Hence
we will refer to category A as the “square” category. On the other hand, the
category B distribution consisted of stimuli for which the line lengths were entirely
uncorrelated. In other words, as shown in the right side of the figure, the two line
segments formed the left and top portions of various rectangles. Hence we will
refer to category B as the “rectangle” category. On each trial of the experiment,
subjects were presented with a stimulus randomly drawn from either the square
or the rectangle category, categorized it as a member of category A or category B,
and received corrective feedback. Subjects completed six 100-trial blocks with an
equal number of stimuli from each category presented per block.
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Filoteoetal. (2001) observed the accuracy in the last block of 100 trials to be 85%
for normals and 84% for amnesics. Overall, the learning curves for the amnesics and
normals were virtually indistinguishable. They concluded that amnesics appear to
be able to acquire categories defined by a complex quadratic rule. To test whether an
amnesic could retain that rule over a period of time, they tested one amnesic and one
normal after a 1-day delay. Subjects completed a single block of 100 trials in which
they received corrective feedback on every trial, just as in the original training ses-
sion. Accuracy was 92% for the normal individual and 89% for the amnesic. Thus,
according to Filoteo et al., amnesics appear to be able to learn and retain a com-
plex quadratic categorization rule, even though the amnesics scored in the bottom
percentiles on a variety of standard clinical neuropsychological memory measures.

1. Experiment 5: Are Subjects Learning a Complex Quadratic Rule?

The Filoteo et al. (2001) results suggest that amnesics can learn and retain a cat-
egory described by a complex quadratic rule that requires integrating information
from two stimulus dimensions, height and width. Our first question was whether
amnesics were truly learning an extremely difficult categorization rule, or whether
this categorization problem might alternatively be described using a far simpler
single-dimension rule. As noted earlier, Rickard and Grafman (1998) have shown
that amnesics appear to retain the ability to learn simple unidimensional discrim-
inations but are impaired at discriminations requiring an integration of multiple
stimulus dimensions.

Indeed, the stimuli used by Filoteo et al. can also be described in an alternative
way by rotating the dimensions by 45 degrees. As shown in Fig. 18, we can instead
describe the stimulus dimensions in terms shape and area. Now, the square and
rectangle categories vary along a single dimension and can be categorized by a very
simple shape rule rather than a complex quadratic rule. Filoteo et al. rejected this
possibility, arguing that their subjects were indeed learning a complex quadratic
rule requiring integration of information along two independent stimulus dimen-
sions. But, we are puzzled by how these subjects were able to learn a “complex”
categorization rule so quickly, reaching asymptotic performance after less than
100 trials. Indeed, one of the amnesics was performing near asymptote after just
20 training trials. For comparison, other categorization experiments using mul-
tivariate normal distributions that appear to require the formation of a quadratic
decision boundary may take normal subjects several days to reach asymptotic
levels of performance (e.g., Ashby & Maddox, 1992). In addition, in recent work,
Ashby et al. (1998) have argued that classifying such line segment stimuli may
sometimes be accomplished using a simple verbalizable categorization rule using
stimulus shape.

To illustrate that subjects may not be learning a complex quadratic rule, but
instead may be learning a simple shape rule, we replicated and extended the
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Fig. 18. A rotation of the dimensions in Fig. 17 by 45 degrees, yielding dimensions of shape and
area.

Filoteo et al. (2001) study in the following way. In the first condition, we replicated
their study using the same stimuli and category structures (Squares/Rectangles con-
dition). In the second condition, subjects were trained on similar stimuli, but both
multivariate category distributions shown in Fig. 17 were shifted along dimension
1 by 50 units. In this way, the category A distribution still had height and width
highly correlated, but the values of height and width were not equal—in other
words, the stimuli in category A were “squatty” rectangles of the same shape that
varied in size and the stimuli in category B were other rectangles of varying shapes
and sizes (Rectangle/Rectangle condition). In the third condition, we used very
different stimulus dimensions of circles that varied in size containing an embedded
diameter line that varied in orientation (Circle-Line/Circle-Line condition). Unlike
the height and width of line segments, these two stimulus dimensions are incom-
mensurable and cannot be readily integrated into any meaningful single dimension.
Nor can a simple verbalizable rule be used to discriminate members of the two
categories (see Ashby, Alfonso-Reese, Turken, & Waldron, 1998). Critically, in
our experiment, the dimensions of the circle-line stimuli were roughly equated for
discriminability with the height and width dimensions of the squares and rectangles
(Maddox & Ashby, 1993). Five subjects completed each of the three conditions
1 week apart. The order of testing was Square/Rectangle, Circle-Line/Circle-Line,
and Rectangle/Rectangle.
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Filoteo et al. (2001) assumed that subjects-were processing width and height of
the line segments independently, such that they were required to learn a complex
quadratic rule requiring the integration of information across two independent di-
mensions. If that were true, then the particular instantiation of dimension 1 and
dimension 2 in the category structure shown in Fig. 17 should not matter at all.
Thus, we might predict performance in the Circle-Line/Circle-Line condition to
be comparable to performance in the Square/Rectangle condition. On the other
hand, if subjects were instead using a simple shape rule in the Square/Rectangle
condition, as we surmise, then performance in the Circle-Line/Circle-Line con-
dition should be far worse. These stimuli indeed require integrating information
across independent dimensions and require the formation of a complex decision
rule.

The left half of Fig. 19 shows performance in the Square/Rectangle, Rectangle/
Rectangle, and Circle-Line/Circle-Line conditions as a function of each block of
200 training trials (TB1, TB2, and TB3). Performance in the Square/Rectangle
and Rectangle/Rectangle conditions were comparable (achieving 81 and 78%
accuracy, respectively, in the final block). By contrast, performance in the Circle-
Line/Circle-Line condition was terrible (58% accuracy). Indeed, all but one of
the five subjects failed to exceed chance performance on the first block of trials,
and three of the five subjects failed to exceed chance performance on the final
block of trials. Our finding suggests that amnesics in the Filoteo et al. (2001)
study may not have been learning a complex quadratic categorization rule at all,
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Fig. 19. Categorization accuracy in Experiment 5, our replication and extension of Filoteo et al.
(2001). The left half of the figure shows performance on the three training blocks of 200 trials (TB1,
TB2, and TB3) on Day 1 of each condition (Square/Rectangle, Rectangle/Rectangle, and Circle-
Line/Circle-Line). The right half of the figure shows performance on the three types of transfer blocks
of 200 trials on Day 2 of each condition. UN is the uniform condition with no feedback. SN is the
structured condition with no feedback. SF is the structured condition with feedback.
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but may have instead been learning a very simple shape rule. These limitations
are important because Filoteo et al. instead argued that their results demonstrated
intact categorization by amnesics under the most difficult of circumstances.

2. Experiment 5: How Are Subjects Tested?

Although we contend that amnesics in the Filoteo et al. (2001) study were learn-
ing a simple categorization rule, not a complex categorization rule, we are still
impressed with the finding that one of their amnesic subjects was able to retain
that categorization rule after a delay of an entire day. Specifically, during the first
10 trials of Day one, their amnesic was performing at chance. Yet, during the first
10 trials of Day two, their amnesic was performing at 80% accuracy. Certainly,
one possibility is that amnesics can learn and retain simple categorization rules
that do not require an integration of multiple stimulus dimensions (e.g., Rickard
& Grafman, 1998). On top of this possibility, another possibility is that the way
their subjects were tested for memory for the learned category is so unlike the way
subjects are typically tested for explicit memory that making comparisons between
categorization performance and explicit memory performance can be a precarious
undertaking. Recall that one of the issues Nosofsky and Zaki (1998) emphasized,
and that we demonstrated in simulations described earlier in this article, was that
memory impairments can lead to significant deficits in explicit memory but only
small deficits in categorization.

In Filoteo et al. (2001), one amnesic and 1 normal control returned after 1 day
and were given the same categorization task they had been given on the first day.
That is, on each trial, they saw a stimulus, classified it as an A or a B, and received
corrective feedback. By contrast, on nearly every test of explicit memory ever
conducted, subjects are never given corrective feedback, but instead are just asked
to make a memory judgment which is then scored outside the presence of the
subject. In the Filoteo et al. experiments, to what extent did their amnesic display
an entirely unimpaired memory for categories or express a savings in relearning a
very simple categorization rule? In addition, like the other experiments summarized
in this article, Filoteo et al. sampled test stimuli from the very same distributions
used to initially train subjects on the categories. That is, on half the trials they saw
a square-like stimulus and on half the trials they saw a rectangle-like stimulus.
Thus, like the experiments discussed previously in this article, the structure of the
testing sequence served as a further cue to inform the subject how the studied
categories were structured. In order to make categorization and explicit memory
tests as comparable as possible, it is necessary to remove the category structure
and to remove the corrective feedback.

To show that different kinds of categorization tests can reveal different levels of
memory for studied categories, we brought our subjects back after 1 day and tested
them in three different ways. Each test block consisted of 200 trials. First, we tested
subjects without feedback on stimuli drawn from a uniform distribution across the
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set of possible stimuli (stimuli were sampled from a 5 x 5 grid that spanned the
space in which most stimuli were selected)—uniform structure without feedback
is indicated by UN in Fig. 19. Second, we tested subjects without feedback on
stimuli drawn randomly from the two category distributions—category structure
without feedback is indicated by SN in Fig. 19. Third, we retrained subjects with
feedback, as was done by Filoteo et al. (2001)—category structure with feedback
is indicated by SF in Fig. 19.

Although subjects reached comparable levels of performance in the Square/
Rectangle and Rectangle/Rectangle condition by the end of the first day, as shown
in Fig. 19, subjects were significantly better when tested on the uniform distribu-
tion without feedback (UN) in the Square/Rectangle condition than the Rectangle/
Rectangle condition. By contrast, in the other two testing conditions (without
feedback and with feedback), performance was comparable between the two con-
ditions. Thus, different kinds of categorization tests can reveal very different levels
of memory for previously learned categories. Just examining performance in the
structured test with feedback would have led to the erroneous conclusion that
subjects retained information about the category structures in the two different
conditions equally well. By extension, we again argue that when testing amnesics
on categorization and recognition, it i$ critical that the two tests be equated as
much as possible: Remove corrective feedback and remove the informative cate-
gory structure.

C. CATEGORIZATION AND RECOGNITION IN ARTIFICIAL
GRAMMAR LEARNING

Finally, another experimental paradigm in which researchers have investigated
dissociations between categorization and explicit memory is artificial grammar
learning (e.g., Knowlton, Ramus, & Squire, 1992; Knowlton & Squire, 1994,
1996). In an artificial grammar learning experiment (Reber, 1969, 1989), subjects
study letter strings that are generated from a finite state grammar. An example
grammar is shown in Fig. 20. To generate a “grammatical” letter string, start at the
left side of the network (IN) and follow the arrows until an exit point is reached
(OUT). For each arrow that is followed, append the letter associated with the ar-
row to the letter string. For example, for the grammar shown in Fig. 20, the strings
LCRRM, MTCCM, and MTTTL would be grammatical in that they follow the
rules of the grammar, but the strings LCCL, MRLLT, and MTCTTM would be
ungrammatical. In a typical artificial grammar learning experiment, subjects first
memorize a set of letter strings that are generated from the finite state grammar. In
a categorization task, subjects are then told that the letter strings they memorized
were all generated by a complicated set of rules and are asked to judge new strings
as grammatical or ungrammatical (half are generated from the grammar and half
are not). For comparison, in a recognition memory task, subjects are instead asked
to discriminate between old and new letter strings.
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Fig. 20. An example of a network specifying an artificial grammar. The network is entered at the
left (IN). Letter strings are generated by following the arrows through the network until an exit arrow
is reached (OUT). When multiple arrows leave a node, each arrow has an equal probability of being
followed. When a particular arrow is followed, the letter associated with that arrow is appended to the
letter string. (From Annette Kinder and David Shanks, ‘Amnesia and the Declarative/Nondeclarative
Distinction: A Recurrent Network Model of Classification, Recognition, and Repetition Priming,’
Journal of Cognitive Neuroscience, 13:5 (September, 2001), pp. 648-669. © 2001 by the Massachusetts
Institute of Technology.

As shown in upper panel of Fig. 21, Knowlton et al. (1992) found that amnesics
were not significantly impaired at categorizing letter strings as grammatical or
ungrammatical, but were significantly impaired at recognizing letters strings as old
ornew (see also Knowlton & Squire, 1994, 1996). As with the other cases discussed
in this article, this dissociation was taken as further evidence for independent
systems governing categorization and recognition memory.

However, as with Nosofsky and Zaki (1998), Kinder and Shanks (2001) recently
provided an alternative single-system explanation for the dissociation between cat-
egorization and recognition in artificial grammar learning. To do so, they adapted
a successful connectionist model of artificial grammar learning based on a sim-
ple recurrent network (Cleeremans & McClelland, 1991; Elman, 1990). As with
Nosofsky and Zaki (1998), Kinder and Shanks assumed that the difference between
amnesics and normal controls was manifest in the change of a single parameter
of the model, namely the learning rate of the connectionist network. Specifically,
amnesics were assumed to have a lower learning rate than normals. As a single-
system model, both categorization and recognition judgments were mediated by
the same network, but because the stimulus sets for categorization and recogni-
tion were different, quite different predictions could emerge for the two tasks. As
shown in the lower panel of Fig. 21, this simple recurrent network with different
learning rates was able to account for the Knowlton et al. (1992) data quite well. As
with Nosofsky and Zaki (1998), and as we showed earlier, a parameter difference
can cause a relatively small difference in categorization but can lead to a rela-
tively large difference in recognition. Although the modeling framework is quite
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Fig. 21. Top panel shows observed classification and recognition accuracy by amnesics and nor-
mal controls from Knowlton et al. (1992). Bottom panel shows predicted classification and recognition
accuracy by SRN for low learning rate (simulating amnesics) and high learning rate (simulating nor-
mal controls) from Kinder and Shanks. (From Annette Kinder and David Shanks, ‘Amnesia and the
Declarative/Nondeclarative Distinction: A Recurrent Network Model of Classification, Recognition,
and Repetition Priming,” Journal of Cognitive Neuroscience, 13:5 (September, 2001), pp. 648—669.
© 2001 by the Massachusetts Institute of Technology.

different (simple recurrent networks instead of exemplar models), the simulations
by Kinder and Shanks (2001) provide further evidence that behavioral dissocia-
tions that seem to suggest multiple independent systems can often be explained by
the operation of a single system suitably impaired to simulate brain damage.

V. Final Thoughts

Are dissociations between categorization and explicit memory evidence for in-
dependent memory systems? In experiments using dot patterns, amnesics appear
to categorize as well as normals, but are significantly impaired at recognition
memory (Knowlton & Squire, 1993; Squire & Knowlton, 1995). In experiments
using stimuli with discrete features, amnesics appear to categorize as well as
normals, but are significantly impaired at cued recall (Reed et al., 1998). In
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experiments using categories defined by multivariate normal distributions, am-
nesics appear to categorize as well as normals, but are significantly impaired on
neuropsychological tests of explicit memory (Filoteo et al., 2001). And in ar-
tificial grammar learning experiments, amnesics appear to make grammaticality
judgments as well as normals, but are significantly impaired at recognition memory
(Knowlton et al., 1992; Knowlton & Squire, 1994, 1996). In addressing the impli-
cations of these dissociations, this article described two lines of research aimed at
understanding why amnesics appear to show preserved memory for categories yet
show impaired explicit memory for other kinds of information without needing to
posit independent memory systems.

A. FINDINGS FROM COMPUTATIONAL MODELING

Computational models of human cognition aim to instantiate psychological princi-
ples involved in representing information in the environment, retrieving informa-
tion from memory, storing information and creating new representations, utilizing
information to make decisions, and so forth, in terms of well-specified computa-
tional and mathematical formalisms. By specifying a theory in this level of detail,
it is then possible to test specific predictions of the theory, making it possible to
falsify the theory. A typical approach to testing a computational model is to find
values of the free parameters of the model that minimize the deviations between
the model predictions and the observed data. The number of free parameters is a
reasonable first approximation to the inherent flexibility of a model in accounting
for particular patterns of observed data. The ideal psychological model would have
zero free parameters, in which case the model would perfectly predict observed
behavior a priori, a situation perhaps best approximated by certain physical laws
of motion. In the other extreme, a model could have so many free parameters that
it could account for any possible pattern of observed resuits, making the model
entirely unfalsifiable.

When comparing models, it is necessary to equate the models for the number
of free parameters, or to use fit statistics that penalize a model for the number
of free parameters, or to use fit statistics that penalize a model for how flexible
it is (Myung, 2000). A model with more free parameters and more flexibility is
favored over a simpler model only if the more complex model provides a signif-
icantly better account of the observed data even after the various penalities for
additional parameters and flexibility are imposed. In other words, the approach
is to start with the simplest and most parsimonious model possible and to add
complexity only when necessary. This is similar to the approach that verbal theory
development often takes, but with a statistical underpinning for deciding when
additional complexity is warranted.

Of particular relevance to the present discussion are cases where a simple model
~ is a special case of a more complex model. That is, by restricting a subset of the

parameters of the more complex model, the simple model emerges mathematically
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(e.g., alinear regression function is a special case of a quadratic regression function
in that a linear function can be derived from a quadratic function by setting the
constant for the quadratic term equal to zero). In terms of model testing, when
two models have such a hierarchical arrangement, the more complex model is
guaranteed to account for observed data better than the simple model that it contains
as a special case (e.g., a quadratic regression function always provides a better fit
to observed data than a linear regression function). Under these circumstances, it
becomes critical to examine the improved fit of the more complex model using
statistical criteria instead of absolute fit measures.

In this regard, some instantiations of a multiple memory systems theory could be
viewed as containing a single memory system theory as a special case. For exam-
ple, one could propose an exemplar model of explicit memory and an independent
exemplar model of categorization, each with their own unique representations and
their own unique free parameters; this multiple memory system theory is certainly
viable, but it seems prudent to first consider a single system theory where catego-
rization and explicit memory share parameters and representations. Alternatively,
Knowlton and Squire (1993) and Smith and Minda (2001) proposed an exemplar
model of explicit memory and an independent prototype model of categorization,
each with their own unique representations and their own unique free parame-
ters (and presumably with their own unique neural instantiation); again, although
certainly viable, the modeling results we summarized in this article do not seem
to warrant this additional theoretical complexity (Nosofsky & Zaki, 1998, 1999;
Nosofsky et al., 2001). The language of research proposing single system accounts
(e.g., Nosofsky & Zaki, 1998; Kinder & Shanks, 2001) does not suggest a sin-
gle system model providing a superior account of observed data than a multiple
system model—such a claim would be unfounded given the potential hierarchi-
cal arrangement of single system models within multiple system models. Instead,
researchers note that “a single-system model is sufficient to explain categoriza-
tion and recognition of stimuli generated by an artificial grammar . ..” (Kinder &
Shanks, p. 15), or that “the single-system exemplar model provides an equally
viable account of the categorization-recognition dissociation as do the multiple-
system approaches...” (Nosofsky et al.), or that “... various of the important
dissociations are also apparently consistent with the idea that a single exemplar-
based memory system underlies categorization and recognition, as long as one
allows for plausible differences in parameter settings across groups” (Nosofsky &
Zaki, 1998, p. 255).

Indeed, one of the concerns with multiple memory system accounts is the po-
tential proliferation of independent memory systems (see Roediger, Buckner, &
McDermott, 1999). One piece of evidence for independent systems subserving
categorization and recognition is the dissociation observed in amnesic subjects in
the dot pattern and artificial grammar learning tasks (Knowlton & Squire, 1992,
1993). But, simple behavioral dissociations are notoriously weak evidence for
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independent systems, for a variety of reasons (see Hintzman, 1990). Instead, the
“gold standard” for independent systems in neuropsychological research is the
double dissociation, whereby patient A can do task 1 but not task 2, but patient
B can do task 2 but not task 1. Such a double dissociation emerged with results
reported by Knowlton, Mangels, and Squire (1996) in that Parkinson’s Disease
(PD) patients were significantly impaired at learning a probabilistic classification
task but could explicitly remember aspects of the task, and amnesics patients were
unimpaired at learning a probabilistic classification task but were significantly im-
paired at explicit memory for the task. However, closer examination of the data
makes the true description of the double dissociation somewhat murky. Although
PD patients were significantly impaired early in learning, they eventually reached
the performance level of amnesics after 100 trials. However, both PD patients
and amnesics were significantly worse than normal controls at this later stage in
learning. This result is troubling because, by an independent systems account, am-
nesics should be performing just as well as normal controls throughout the task.
So, what is the explanation for impaired performance by amnesics in this classifi-
cation task? “Continued training may allow information to become available from
declarative memory, that is, the controls and the PD patients may have eventually
detected and memorized some of the cue—outcome associations” (Knowlton et al.
1996, p. 1401). Although certainly a viable explanation, such theoretical accounts
risk becoming eminently unfalsifiable when any, perhaps unexpected, deficit by
amnesics is simply explained by the amnesics’ lack of declarative memory.

Putting that criticism aside, let us accept for now the double dissociation where
amnesics can categorize but not recognize and PD patients can recognize but
not categorize. By this account, we might predict that PD patients should also
show a deficit on dot pattern classification and artificial grammar learning, both of
which are classification tasks and on both of which amnesics have been reported
to perform as well as normals. Reber and Squire (1999) tested PD patients on
dot pattern classification and artificial grammar learning. Perhaps surprisingly, PD
patients performed entirely normally on both tasks. But rather than reevaluating
the original independent memory systems account, this finding provided evidence
for yet another independent memory system. Recognition memory is served by
a declarative memory system mediated by the hippocampal formation; dot pat-
tern classification learning is served by a perceptual learning system mediated by
neocortex; and probabilistic classification learning is served by procedural habit
learning system mediated by the striatum of the basal ganglia. Perhaps. But there
may be more parsimonious explanations that should be considered first.

Without question, double dissociations are more compelling evidence than
simple dissociations. Clearly one interpretation of a double dissociation is that
there are independent systems mediating the two tasks. However, another, equally
viable, interpretation is that there are critical differences in the component pro-
cesses that make up the two tasks (e.g., Moscovitch, 1992, 1994; Roediger et al.,
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1999). For example, Nosofsky and Zaki (1998) proposed a single system account
in which amnesia led to impairments in memory sensitivity but PD led to impair-
ments in response selection. With the appropriate change in a single parameter
of the model, either to memory sensitivity or to response determinism, Nosofsky
and Zaki (1998) were able to account for deficits by amnesics at recognition and
deficits by PD patients at categorization within a single system. Similarly, Kinder
and Shanks (2001) simulated a double dissociation between perceptual priming
and recognition memory by varying single parameters associated with different as-
pects of their computational model. While double dissociations may suggest some
structural organization of a system—into modules for memory and for response
selection in Nosofsky and Zaki (1998) or into modules for memory and for percep-
tual processing in Kinder and Shanks—they do not necessarily compel functionally
independent memory systems.

For example, Fig. 22 shows a depiction of the ALCOVE model (Kruschke,
1992), a connectionist version of an exemplar model of categorization. Each input
node represents the value of an input stimulus along a particular psychological
dimension. Each dimension is weighted by a learned selective attention gate. The
presented stimulus activates exemplar memory nodes according to the similarity
between the presented stimulus and the exemplar. Exemplars activate category
output nodes along weighted connections that are learned. This is a single system
model with a number of identifiable components. Each of these components could
have a separate neural representation that could be selectively impaired by local-
ized brain damage. Even “memory” in the network has multiple instantiations:
there is memory for the exemplars in the hidden layer, but there is also memory for

Category

Exemplar

Attention
Input

Fig. 22. The architecture of the ALCOVE model. (From Kruschke, 1992.)
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the connections between exemplars and categories (and further, there is memory
for particular patterns of selective attention to stimulus dimensions). Both kinds
of memory would be necessary for categorization, but perhaps only one kind of
memory would be necessary for recognition (that based on the exemplar nodes).
These different kinds of memory do not seem to fit the standard operational def-
inition of a memory system in that they are highly interactive within a unified
processing architecture. Selectively impairing different aspects of the ALCOVE
network can lead to a variety of different qualitative impairments. While dissoci-
ations and double dissociations may indeed dictate a modular (or semimodular)
organization, they do not necessarily dictate independent systems with their own
unique representations and processes.

In general, whereas the proliferation of multiple systems can be a natural con-
sequence of a simplistic neuropsychological interpretation of behavioral disso-
ciations and double dissociations, computational modeling approaches are far
more conservative in positing separate systems. Indeed, in the area of percep-
tual categorization, there is currently a great deal of debate over the purported
existence of separate rule-based and exemplar-based systems. Several recent com-
putational models have proposed separate rule-based and exemplar-based (or oth-
erwise implicit) subsystems (e.g., Ashby et al., 1998; Erickson & Kruschke, 1998;
Palmeri, 1997) or a mixture of rule-based and exemplar-based representations
(e.g., Anderson & Betz, 2001, Love, Medin & Gureckis, in press; Vandierendonck,
1995), yet the need for positing separate systems is still under serious debate (e.g.,
see Johansen & Palmeri, in press; Nosofsky & Johansen, 2000).

B. TASKS USED TO STUDY CATEGORIZATION AND EXPLICIT MEMORY

In most categorization paradigms, subjects acquire information about novel
categories during an initial study phase and are later tested on the knowledge
they have acquired about those categories. Patterns of observed responses during
the categorization test can serve as a window on the types of memory representa-
tions that are formed about a category, be they prototypes (e.g., Posner & Keele,
1968), rules (e.g., Nosofsky, Palmeri, & McKinley, 1994), exemplars (e.g., Medin
& Schaffer, 1978), decision boundaries (e.g., Ashby & Gott, 1988), or some com-
bination of these (e.g., Ashby et al., 1998; Erickson & Kruschke, 1998; Johansen &
Palmeri, in press). An even more fundamental question is whether or not subjects
have acquired any information about the categories during the study phase. As
we have discussed, this is particularly important when investigating whether cer-
tain brain-damaged individuals, such as amnesics and PD patients, can perform
categorization tasks.

In explicit memory experiments, subjects study a set of items and are later tested
on their memory for those items with recognition or recall tests. In most cases,
performance on the memory test is entirely a function of information acquired
during the study phase of the experiment. Similarly, in categorization experiments,
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itis typically assumed that performance on a categorization test only reflects know-
ledge acquired about the category during the initial study task. The particular choice
of test stimuli may reflect the specific hypotheses that are being evaluated within
that study—subjects might be tested on a previously unseen prototype used to
generate the studied category examples (e.g., Posner & Keele, 1968), or they might
be tested on very extreme category examples (e.g., Nosofsky, 1991), or they might
be tested on new stimuli that prove diagnostic with respect to certain theoretical
alternatives (e.g., Nosofsky & Palmeri, 1997)—but it is generally assumed that the
particular choice of test stimuli will not influence subjects’ apparent knowledge
of the previously acquired categories in any systematic way.

However, there are reasons to question this assumption under certain conditions.
For example, as a test of the generalized context model, Nosofsky (1986) trained
two subjects on a variety of category structures. For each structure, subjects studied
instances of two categories with feedback and were then tested on the old stimuli
and new stimuli. In order to increase the statistical power in examining individual
subject data, Nosofsky tested each individual many times (approximately 3500
trials for each category condition). When theoretically modeling the results from
this particular set of studies with the GCM, Nosofsky found that it was neces-
sary to augment the exemplar model by assuming that the new transfer stimuli,
which were presented many times, became an integral part of the stored category
representations.

In studies of amnesics and normals, it has been implicitly assumed that know-
ledge expressed on the categorization test or the explicit memory test reflects infor-
mation acquired during the initial study phase of the experiment. Our recent results
summarized in this article (Palmeri & Flanery, 1999) provide evidence that a great
deal of information about categories may instead be acquired through exposure
to a categorization test task, in the absence of any prior study and sometimes in
opposition to prior study. As such, it is possible that explicit memory tasks used
to test amnesics and normals may be true tests of memory, but some categoriza-
tion tasks may reflect both long-term memory for previously studied information
and information acquired more recently during the categorization test itself. Our
results, as well as other recent findings (Buchner & Wippich, 2000), strongly argue
for the absolute necessity of equating different tasks as much as possible, partic-
ularly when the aim is to document whether particular classes of brain-damaged
individuals can perform some tasks, but not others.
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