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Learning categories at
different hierarchical levels:
A comparison of category learning models

THOMAS J. PALMERI
Vanderbilt University, Nashville, Tennesee

Three formal models of category learning, the rational model (Anderson, 1990), the configural-cue
model (Gluck & Bower, 1988a), and ALCOVE (Kruschke, 1992), were evaluated on their ability to ac-
count for differential learning of hierarchically structured categories. An experiment using a theoreti-
cally challenging category structure developed by Lassaline, Wisniewski, and Medin (1992) is reported.
Subjects learned one of two different category structures. For one structure, diagnostic information
was present along a single dimension (1-D). For the other structure, diagnostic information was dis-
tributed across four dimensions (4-D). Subjects learned these categories at a general or at a specific
level of abstraction. For the 1-D structure, specific-level categories were learned more rapidly than
general-level categories. For the 4-D structure, the opposite result was observed. These results proved
highly diagnostic for evaluating the models—although ALCOVE provided a good account of the ob-
served results, the rational model and the configural-cue model did not.

In recent years, there has been tremendous growth in
the development of formal models of classification. These
include exemplar (e.g., Estes, 1994; Kruschke, 1992;
Nosofsky, 1986; Nosofsky & Palmeri, 1997; Palmeri,
1997), connectionist (e.g., Gluck & Bower, 1988a, 1988b),
Bayesian statistical (e.g., Anderson, 1990), decision bound
(e.g., Ashby & Maddox, 1993; Maddox & Ashby, 1993),
and rule-based models (e.g., Nosofsky & Palmeri, 1998;
Nosofsky, Palmeri, & McKinley, 1994; Palmeri & Nosof-
sky, 1995). Although these models make different as-
sumptions about category representations and processes,
many of them make similar predictions of some elemen-
tary patterns of classification data. This has caused re-
searchers to look at more detailed aspects of classification
in order to evaluate models. In the present work, rather than
simply asking whether models could account for transfer
data following category learning, the models were in-
stead evaluated on whether they could account for patterns
of classification throughout the entire training sequence.
This work follows in a line of recent studies that have fo-
cused on understanding the details of the category learn-
ing process (e.g., Estes, 1986; Estes, Campbell, Hat-
sopoulos, & Hurwitz, 1989; Kruschke, 1992; Nosofsky,
Gluck, Palmeri, McKinley, & Glauthier, 1994; Nosofsky,
Kruschke, & McKinley, 1992; Nosofsky & Palmeri, 1996).

Surprisingly, formal models of classification have
largely neglected issues surrounding category learning at
different hierarchical level (see, however, Estes, 1993).
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The seminal work of Rosch and colleagues (Rosch,
Mervis, Gray, Johnson, & Boyes-Braem, 1976) demon-
strated that intermediate levels of a category hierarchy (the
basic level) have a privileged status relative to superordi-
nate or subordinate categories (see Lassaline, Wisniewski,
& Medin, 1992, for one recent review). For example, ob-
jects are often classified most rapidly at the basic level
(e.g., Murphy & Smith, 1982; Rosch et al., 1976), and
categories are often learned most rapidly at the basic level
(e.g., Lassaline et al., 1992). Although most models of
supervised! category learning (in contrast to unsuper-
vised learning; see Fisher & Langley, 1990, and Schyns,
1991) have not been formalized with hierarchical aspects
of classification in mind, it seems reasonable to evaluate
whether these models can account for differences in learn-
ing categories at different hierarchical levels.

For purposes of evaluating the category learning models,
an intriguing category structure reported by Lassaline
et al. (1992; Experiment 3 of Lassaline, 1990) was used.
In their study, subjects learned one of two different cate-
gory structures at either a specific or a general level of a
category hierarchy. As shown in Table 1, the two different
structures primarily differed in whether the defining fea-
tures fell along just a single dimension (1-D structure) or
fell along all four dimensions (4-D structure). Lassaline
et al. observed an interesting, and theoretically challeng-
ing, pattern of results. For the 1-D structure, a “basic-level
effect” was observed—fewer errors were made when
learning the specific level categories than when learning
the general level categories. For the 4-D structure, the op-
posite pattern of results was observed.

These results presented formidable challenges to three
classification models Lassaline et al. (1992) examined:
A category utility measure (Gluck & Corter, 1985), the
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Table 1
Category Structure Used in the Experiment
(From Lassaline et al., 1992)

Category Structure

Category Label 1-D 4-D
Stimulus General Specific DI D2 D3 D4 D1 D2 D3 D4
1 A C o 0 2 3 0 1 3 2
2 A C o 1 3 0 o0 2 1 3
3 A C 0o 2 0 1 0 3 2 1
4 A D I3 1 0 1 0 2 1
5 A D !0 2 1 2 0 3 1
6 A D /13 2 3 0 1 2
7 B E 2 2 0 2 3 2 0 1
8 B E 2 3 1 3 1 3 0 2
9 B E 2 0 2 0 2 1 0 3
10 B F 3 ¢ 3 1 2 3 1 0
11 B F 3 2 1 2 3 1 2 0
12 B F 3 3 0 3 1 2 3 0

Note—The italicized values highlight those feature values that are most
diagnostic for category membership.

adaptive network model (Gluck & Bower, 1988b), and
the context model (Medin & Schaffer, 1978) could not
account for the interaction of level and structure. Cate-
gory utility predicted a specific-level advantage for both
structures, whereas the adaptive network model and the
context model predicted a general-level advantage for
both structures. Would these results also pose challenges
to more recent, and potentially more sophisticated, cate-
gory learning models? In particular, could the rational
model (Anderson, 1990), the configural-cue model (Gluck
& Bower, 1988a), and ALCOVE (Kruschke, 1992) ac-
count for an interaction of category level and structure?

Unfortunately, two aspects of Lassaline et al. (1992)
make it impossible to use their results to evaluate these
models. First, they only reported average accuracy
throughout training. In order to rigorously evaluate the
category learning models, the present study instead re-
ported classification data throughout the course of train-
ing. Second, they used a category verification paradigm
in which a stimulus and a category label were simulta-
neously displayed, and the subjects’ task was to decide
whether that category label was the correct one or not. The
present study instead used a more typical category learn-
ing paradigm in which a stimulus was displayed, and the
subjects’ task was to decide which category label from a
number of possible category labels to apply to the stim-
ulus. This kind of task is preferable, largely because the
various category learning models have been explicitly for-
mulated to account for data from just such classification
paradigms.

Note that in using this more typical kind of category
learning task, the interesting interaction of category level
and structure that Lassaline et al. (1992) reported is not
guaranteed to be reproduced. In the category verification
task, there are just two possible responses (“yes” or “no”
at both the general level and the specific level. By con-
trast, in the classification task used in the present study,

there were two possible responses at the general level, but
there were four possible responses at the specific level.
By simply guessing, subjects learning at the general level
would be correct half of the time, whereas subjects learn-
ing at the specific level would be correct only one fourth
of the time. In order to observe a specific-level advantage
in this task, subjects would need to surmount this rela-
tively large base rate difference—obtaining a crossover
interaction between category level, and the amount of
training is a real empirical challenge. Moreover, this pat-
tern of results would provide an even more difficult test
for the category learning models.

Because it has proven quite difficult to train individu-
als to classify objects at different hierarchical levels si-
multaneously, different groups of subjects in each of the
four experimental conditions (1-D—specific, 1-D—general,
4-D-specific, and 4-D—general) were trained separately.
In the studies in which subjects have been trained at mul-
tiple levels, they have typically been trained on one level
at a time (e.g., Murphy, 1991; Murphy & Smith, 1982).
In addition to posing difficulties for subjects, it is not ob-
vious how to instantiate this segmented training regimen
in the models that were evaluated. Although the hierar-
chical levels existed only virtually, in the sense that no
subject learned more than one level throughout the ex-
periment, any empirical differences between levels that
are observed would still be challenging for the models to
reproduce. If the models cannot account for differential
learning of categories that exist in virtual hierarchies, it
seems less likely that they will be able to account for nat-
urally learned hierarchies either.

In the following experiment, a standard category learn-
ing paradigm was used. On every trial, a stimulus was
presented, and the subject classified it into either one of
two categories (subjects learning at the general level) or
one of four categories (subjects learning at the specific
level). Of particular interest was how classification accu-
racy would change with training as a function of which
category structure subjects learned (1-D vs. 4-D) and at
what level they learned to classify (specific vs. general).

METHOD

Subjects
The subjects were 100 undergraduates who voluntarily partici-
pated as part of an introductory psychology course.

Stimuli

The stimuli were computer-generated line drawings of rocket-
ships varying in the shape of the wing, nose, porthole, and tail
(closely modeled after stimuli originally used by Hoffman &
Ziessler, 1983; see also Anderson, 1990). Each dimension had four
possible values.

At the general level, rocketships were divided into two cate-
gories; at the specific level, rocketships were divided into four cat-
egories. As shown in Table 1, the two different category structures,
1-D and 4-D, differed in how the most relevant information was dis-
tributed across the four dimensions. For the 1-D structure, diag-
nostic features were contained along D1. For the 4-D structure, di-
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Figure 1. Average probability of error as a function of the number of training blocks and condition. Specific level of clas-
sification (S) is indicated by open symbols, and general level of classification (G) is indicated by filled symbols. The 1-D cat-
egory structure is indicated by circles, and the 4-D category structure is indicated by squares. Panel A displays the observed
data, panel B displays the predictions by the rational model, panel C displays the predictions by the configural-cue model,

and panel D displays the predictions by ALCOVE.

agnostic features were distributed across all four dimensions. In
particular, at the specific level, for the 1-D structure, Values 0, 1, 2,
and 3 along D1 signaled Categories C, D, E, and F, respectively; for
the 4-D structure, at the specific level, Value 0 along Dimen-
sions D1, D2, D3, and D4, signaled Categories C, D, E, and F, re-
spectively. Both category structure (1-D vs. 4-D) and category level
(specific vs, general) were manipulated between subjects.

The assignments of physical dimensions and features to abstract
dimensions and features were randomized for every subject. For ex-
ample, a given subject learning the 1-D-specific categories might
need to learn that a particular shape of the wing was associated with
each category; a given subject learning the 1-D—general categories
might need to learn that two different shapes of the wing were as-
sociated with each category. A given subject learning the 4-D—
specific categories might need to learn that a particular shape of the
wing was associated with the first category, that a particular shape
of the nose was associated with the second category, that a particu-
lar shape of the porthole was associated with the third category, and
that a particular shape of the tail was associated with the fourth cat-
egory; a given subject learning the 4-D—general categories might
need to learn that a particular shape of the wing or a particular
shape of the nose was associated with the first category and that a
particular shape of the porthole or a particular shape of the tail was
associated with the second category.

Procedure

A standard supervised category learning procedure was used in
which the subjects were supplied with corrective feedback after
every response. Half of the subjects learned category structure 1-D,
whereas the other half learned category structure 4-D. For the sub-
jects learning each category structure, half of them learned to clas-
sify each of the 12 stimuli into one of two categories (general level),
whereas the other half learned to classify each of the 12 stimuli into
one of four categories (specific level). Each stimulus was presented
once per block for a total of 25 training blocks. On every trial, a
randomly chosen stimulus was presented, the subject classified that
stimulus into either one of two possible categories (those learning
at the general level) or one of four possible categories (those learn-
ing at the specific level), and then corrective feedback was supplied
for 1 sec. The learning trials were terminated when the subject com-
pleted two error-free training blocks.

EMPIRICAL RESULTS AND DISCUSSION

Figure 1A displays classification error probabilities as
a function of training. First, error rates decreased as a
function of training. Second, more errors were made by
subjects given the 4-D structure (square symbols) than
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those given the 1-D structure (circle symbols). Third,
category level interacted with category structure: For the
1-D structure, the specific level (open circles) was learned
more rapidly than the general level (filled circles); for the
4-D structure, the general level (filled squares) was learned
more rapidly than the specific level (open squares). Using
a very different learning procedure from the one used by
Lassaline et al. (1992), a very similar interaction between
category level and category structure was observed.

A 2 (1-D vs. 4-D) X 2 (general vs. specific) X 25
(training block) analysis of variance was conducted on
the data, with category structure and category level as
between-subjects factors and training block as a within-
subjects factor.2 An alpha level of .05 was set for all sta-
tistical tests. Corroborating the above impressions, sig-
nificant main effects of category structure and training
block were found [F(1,89) = 15.30, MS, = 0.54, and
F(24,2136) = 98.69, MS, = 0.02, respectively]. A signif-
icant two-way category structure X category level inter-
action reflected the more rapid learning of the specific
level than the general level for the 1-D structure and the
more rapid learning of the general level than the specific
level for the 4-D structure [F(1,89) = 4.43, MS, = 0.54].
A significant two-way category structure X training block
interaction reflected the quicker learning of the 1-D struc-
ture than the 4-D structure [£(24,2136) = 3.51, MS, =
0.02]. Finally, a significant two-way category level X
training block interaction partially reflected the initial ad-
vantage of general level over specific level due to the dif-
ferent number of response categories [F(24,2136)=5.63,
MS,=0.02].

OVERVIEW OF THE
CATEGORY LEARNING MODELS
AND THEIR PREDICTIONS

[ will summarize the key aspects of the three category
learning models, discuss some possible expectations for
how well the models might account for the observed data,
and then summarize the actual fits of the models to the
observed data. More details of the model fitting are pro-
vided in the Appendix.

Rational Model

According to the rational model (Anderson, 1990,
1992), classification involves a Bayesian statistical
analysis of the environment. Internal representations of
subcategories, or partitions, are created to the extent that
objects in the world are divided up into disjoint sets
whose members probabilistically share certain features
(cf. Rosch et al., 1976). Partitions are similar to proto-
types in that they may be abstractions of a number of
specific instances; a single category in the world may be
represented as one or more internally defined partitions.
The probability of classifying an object as a member of
some particular category is essentially a function of the
similarity of that object to the central tendency of each
partition weighted by how likely that particular category
label is associated with objects contained within the par-

tition. Anderson (1990) applied the rational model to ex-
periments examining basic-level effects that were simi-
lar to the present one (e.g., Hoffman & Ziessler, 1983;
Murphy & Smith, 1982). Although the model was not
actually fitted to experimental data, the rational model
did show a strong preference for creating partitions at the
experimentally determined basic level-—that is, each
basic-level category was represented by a single parti-
tion. Thus, it may seem reasonable to expect the model
to predict a specific-level advantage in the present task.
In addition, although the rational model does not assume
any mechanism of selective attention? to psychological
dimensions,* Anderson (1990, 1992) applied the model
to classification tasks in which certain dimensions were
highly diagnostic for determining category membership
(e.g., Medin & Schaffer, 1978; Shepard, Hovland, &
Jenkins, 1961). Thus, it may seem reasonable to expect
the model to predict a 1-D advantage as well.

The best-fitting predicted learning curves of the ra-
tional model are shown in Figure 1B. Contrary to the in-
tuitive predictions generated above, the qualitative fit of
the model was quite poor. The model was unable to pre-
dict any specific-level advantage and was essentially un-
able to predict any difference between the 1-D and 4-D
conditions. It should be noted, however, that although the
model-fitting routine settled on parameters that maxi-
mized quantitative fit, the best-fitting parameter values
were fairly extreme (see the Appendix). In essence, fit was
maximized when the rational model created individual
partitions for every stimulus, effectively reducing to a
pure exemplar-based model (see Nosofsky, 1991).

Because these shortcomings of the rational model may
be partially a product of the demands of maximizing the
quantitative fit of model, it seemed important to explore
the qualitative predictions of the model using more rea-
sonable parameters similar to what was used in previous
research (Anderson, 1990; Nosofsky, 1991).5 In these
new simulations, the model still predicted essentially no
difference between the 1-D and 4-D conditions and did not
predict a crossover in learning the specific- and general-
level categories. Examination of the partitions that were
formed was particularly revealing. When learning cate-
gories at a general level, partition formation was fairly
idiosyncratic: Depending on the particular sequence of
training stimuli, between three and six partitions were
formed for each category. For example, in one particular
sequence, when learning the 1-D structure, Stimuli 1, 3,
and 5 formed one partition, Stimuli 2 and 6 formed an-
other partition, and Stimulus 4 formed its own partition;
in one particular sequence, when learning the 4-D struc-
ture, Stimuli 3, 4, and 5 formed one partition, while
Stimuli 1, 2, and 6 formed their own separate partitions.
By contrast, when learning categories at a specific level,
all stimuli within a given category were grouped together
into a single partition; however, the formation of such
partitions was insensitive to whether the diagnostic fea-
tures were present along a single dimension (1-D) or pre-
sent along various dimensions (4-D). So the rational
model did indeed create consistent partitions when learn-



ing categories at the specific level. Unfortunately, al-
though such partitioning may suggest some sort of an ad-
vantage for “basic-level” categories, the model did not
effectively utilize this advantageous partitioning to pre-
dict these categories to be more quickly learned than cat-
egories at higher levels of the hierarchy.

To assess whether the model could possibly account for
a specific-level advantage when learning only the 1-D
structure, the model was fitted to the 1-D data alone—it
was not possible to find parameters that permitted the
model to predict the observed crossover between specific-
and general-level categories.

Configural-Cue Model

The configural-cue model (Gluck & Bower, 1988a) is
a two-layer connectionist mode! of category learning.
The input layer contains a single node for every individual
cue (i.e., particular values along psychological dimen-
sions) and combination of cues (configural cues) that
compose an item. The output layer contains a single node
for every category. Association weights are learned be-
tween cues and categories via gradient descent on error.
Gluck, Corter, and Bower (1996) applied the configural-
cue model to existing data (Hoffman & Ziessler, 1983;
Murphy & Smith, 1982) and new experiments examining
basic-level effects in artificial categories. Thus, it may
seem reasonable to expect the model to predict a specific-
level advantage in the present results. Also, although the
configural-cue model does not incorporate selective at-
tention to psychological dimensions (see note 3), Gluck
and Bower (1988a) provided simulations demonstrating
the effectiveness of the model in accounting for classic
attentional phenomena in classification. Thus, it may seem
reasonable to expect the model to predict a 1-D advan-
tage as well.

The best-fitting predictions of the configural-cue
model are shown in Figure 1C. The fit was quite poor—
the model failed to predict a specific-level advantage,
and the predicted learning curves for the 1-D and 4-D
conditions overlapped completely. But could the model
account for the observed specific-level advantage if it
was fitted only to the data from the 1-D condition? In con-
trast to what was reported by Gluck et al. (1996), using
different category structures, it was not possible to find
parameter values that allowed the model to predict the
observed crossover of the specific- and general-level
conditions.

Why did the configural-cue model fail to account for
the observed difficulty of learning the 4-D category struc-
ture? According to the model, a cue is any specific feature
value, such as the particular shape of the tail or the par-
ticular shape of the porthole of a rocketship stimulus. The
model assumes that people learn the relevance of such
cues, and combinations of cues, for making category de-
cisions. However, no distinction is made between learn-
ing the relevance of two cues along the same psycholog-
ical dimension (e.g., a circular vs. a rectangular porthole)
versus two cues along different psychological dimensions
(e.g., a circular porthole vs. a triangular wing). Psycho-
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logical dimensions, per se, do not exist in the model,
only featural cues and cue combinations. By contrast, it
is likely that people might learn the relevance of psycho-
logical dimensions as well as the relevance of particular
values along those dimensions.

ALCOVE

ALCOVE is a connectionist instantiation of an exem-
plar model of classification, the generalized context
model (GCM; Medin & Schaffer, 1978; Nosofsky, 1986).
According to exemplar models, categories are represented
in terms of the individual remembered exemplars. AL-
COVE assumes that classification decisions are deter-
mined by the similarity of a target item to each remem-
bered exemplar and by the learned association strength
between each exemplar and each category. A fundamental
property of ALCOVE is that psychological dimensions
can be learned to be selectively attended to according to
their diagnosticity. Selective attention acts to “stretch”
the psychological space along relevant dimensions and
“shrink” it along irrelevant dimensions. For example, if
stimuli varied in shape, size, and color, but shape was par-
ticularly diagnostic for deciding which category a stimu-
lus belonged in, then differences along the shape dimen-
sion would be accentuated, whereas differences along
the size and color dimensions would be attenuated. Be-
cause ALCOVE learns to attend to dimensions based on
their diagnosticity, it may seem reasonabie to expect the
model to predict a 1-D advantage in the present results.

However, one generally acknowledged shortcoming of
many exemplar models is that, in a typical category learn-
ing paradigm, they cannot predict classification of ob-
jects at lower levels of a nested category hierarchy to ever
be superior to classification of those same objects at higher
levels of a hierarchy (e.g., Lassaline et al., 1992)—they
fail to predict a “basic-level” advantage. To illustrate, sup-
pose that at the general level there are two categories, A
and B, and that these two categories can be divided up at
the specific level into two categories each, C and D for
Category A, and E and F for Category B. According to
the context model (Medin & Schaffer, 1978; Nosofsky,
1986), the evidence that some item belongs to a category
is found by summing up the similarities of that item to all
exemplars of the category. The probability of classifying
an item as a member of a category is given by the ratio
of the evidence for that category to the total evidence for
all categories. For example, when classifying at the gen-
eral level P(A) = E,/(E, + Ep), and when classifying at
the specific level P(C) = E-/(E¢ + Ep + Eg + Ep), where
E is the evidence (summed similarity) for Category X
(where X can be Category A, B, C, D, E, or F). If cate-
gories are represented in terms of stored exemplars, then
categories at higher levels of a hierarchy are simply the
union of the exemplars of categories at lower levels ‘of
the hierarchy. This means that the summed similarities to
categories at higher levels of a hierarchy are simply
equal to the sum of the summed similarities to categories
at lower levels; for example, £, = Ec + Ep. In comput-
ing classification response probabilities, the denomina-
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tor in the ratios are identical at the general level and the
specific level, and the numerator is greater at the general
level than at the specific level, so classification proba-
bilities are constrained to be less accurate at the specific
level than the general level—the context model fails to
predict a “basic-level” advantage.

ALCOVE is not necessarily constrained to predict a
general-level advantage for several reasons. First, because
ALCOVE learns to attend to dimensions based on their
diagnosticity, the similarity between an item and an ex-
emplar in memory can depend on the category level that
was learned. Therefore, evidence for classification at a
higher level of a hierarchy is not a simple linear combina-
tion of evidences at a lower level. Second, ALCOVE learns
to associate exemplars with categories via a connectionist
error-driven learning algorithm. It is possible for associa-
tion weights to be larger for categories learned at the spe-
cific level than at the general level. By contrast, the con-
text model just tallies the number of times each exemplar
has been associated with a given category. Finally, the
response rule used by ALCOVE to map category activa-
tions to response probabilities is highly nonlinear. Unlike
the context model, evidence for classification at higher
levels of a hierarchy is not simply the additive combina-
tion of evidences at lower levels. In summary, ALCOVE
is not subject to the same constraints as the context model.
Yet, explicit simulations of the model are necessary to
assess whether the model can predict the observed spe-
cific level.

The best-fitting predictions of ALCOVE are shown in
Figure 1D. The quantitative fit of the model was quite
good (see Appendix). More importantly, the model was
able to account for all of the qualitative results: AL-
COVE predicted more rapid learning of the 1-D structure
over the 4-D structure and was able to predict the observed
crossover interaction of category structure with category
level.

Not surprisingly, dimensionalized selective attention
learning is critical for allowing ALCOVE to predict the
observed 1-D over 4-D category structure advantage. To
demonstrate this, a restricted version of ALCOVE with-
out allowing for learned selective attention was fitted to
the observed data. As was the case for the configural-cue
model, this restricted version of ALCOVE predicted ab-
solutely no difference in learning the 1-D and 4-D category
structures.® This finding adds additional support for the
theoretical claim that dimensionalized selective attention
is a critical component of category learning (see Kruschke,
1992; Nosofsky, 1986; Nosofsky, Gluck, et al., 1994;
Nosofsky & Palmeri, 1996). Essentially, ALCOVE cap-
tures the notion that people generally find it is easier to
learn to pay attention to differences along a single psy-
chological dimension than differences along multiple
psychological dimensions.

Why can ALCOVE predict a specific-level advantage
for the 1-D structure when the context model failed? As
discussed above, multiple factors relieve ALCOVE from
the constraint of assuming evidence for classification at
the higher level of a hierarchy to be a simple linear sum-

mation of evidences at lower levels. In breaking this con-
straint, dimensionalized selective attention is clearly
important—a restricted version of ALCOVE without at-
tention could not predict a specific-level advantage. For
the 1-D structure, when trained on the specific-level cat-
egories, ALCOVE learned to attend solely to Dimen-
sion 1 because Dimensions 2—4 were completely nondi-
agnostic. By contrast, when trained on the general-level
categories, ALCOVE learned to attend to Dimensions
2-4 because they were somewhat diagnostic. These dif-
ferences in selective attention cause the relative evidence
for specific-level classification to be greater than the rel-
ative evidence for general-level classification. Error-dri-
ven learning and nonlinear response rules are also very im-
portant—restricted versions of ALCOVE with Hebbian
(correlational) learning and a linear response mapping
rule could not predict a specific-level advantage either.
Accordingly, when provided the 1-D structure, ALCOVE
developed stronger association weights from exemplars
to categories when trained at the specific level than when
trained at the general level.

SUMMARY

The present article reported an extension of an exper-
iment by Lassaline et al. (1992). For one category struc-
ture in which diagnostic information was present along a
single dimension, specific-level categories were learned
more rapidly than general-level categories; for another
category structure in which diagnostic information was
spread across dimensions, the reverse pattern of results
was found.

Predicting this interaction of category structure and
category level proved quite challenging. Neither the ra-
tional model (Anderson, 1990) nor the configural-cue
model (Gluck & Bower, 1988a) was able to predict a dif-
ference in learning the two category structures, largely
because neither model incorporates dimensionalized se-
lective attention (see Nosofsky, Gluck, et al., 1994; Nosof-
sky & Palmeri, 1996). Also, neither model was able to
predict a specific-level advantage for the 1-D category
structure. Although the rational model can indeed pro-
duce partitions at the specific level when learning spe-
cific-level categories (Anderson, 1990), the model was
un-able to take advantage of this partitioning to predict
a specific-level advantage in category learning. Al-
though the configural-cue model showed some promise
in predicting basic-level effects in previous work (Gluck
et al., 1996), the model was unable to account for the
present results. By contrast, ALCOVE (Kruschke, 1992)
was able to account for the interaction of category struc-
ture and category level. The presence of dimensionalized
selective attention allowed the model to predict faster
learning of the 1-D structure than of the 4-D structure. A
nonlinear response mapping rule, differences in associ-
ation weights when learning at different category levels,
and differences in learned selective attention weights
when learning at different category levels all contributed
to ALCOVE predicting a specific-level advantage when



learning the 1-D structure. The surprising failure of the
rational model and the configural-cue model and the sur-
prising success of ALCOVE highlight the importance of
carrying out explicit simulations. Hintzman (1990) noted
the difficulties in predicting the behavior of complex psy-
chological models based on some a prior understanding
of the models: “Surprises are likely when the model has
properties that are inherently difficult to understand,
such as variability, parallelism, and nonlinearity—all,
undoubtedly, properties of the brain” (p. 111).

It should again be emphasized that the present empir-
ical and theoretical work is limited in that the category
hierarchies existed only virtually, in the sense that indi-
vidual subjects never learned categories at more than one
level. However, the model-based analyses are still rele-
vant in pointing out important limitations of the rational
model and the configural-cue model in accounting for
observed patterns of categorization behavior, irrespec-
tive of whether these particular empirical results say any-
thing about learning natural categories at multiple levels
of a hierarchy. In extending these results to the more gen-
eral issue of how people might actually learn natural cat-
egory hierarchies, the present work highlights the possi-
bility that learning categories at different hierarchical
levels may require attending to the psychological di-
mensions of stimuli in very different ways. That these pat-
terns of selective attention to dimensions seem to vary as
a function of category level may help explain why it has
proved so difficult to train people to classify stimuli at
multiple levels of a category hierarchy at the same time
(Lassaline et al., 1992; Murphy, 1991; Murphy & Smith,
1982). But these varying patterns of selective attention
to dimensions also point out an important limitation of
ALCOVE. If ALCOVE is to account for natural situa-
tions in which the same individual learns categories at
multiple levels, then there must be inclusion of some
mechanisms for remembering specific patterns of selec-
tive attention weights and setting them to their appropri-
ate values depending on the given category context. Fu-
ture research will be needed to extend ALCOVE to
account for learning multiple category levels at the same
time and to then test whether ALCOVE can explain
basic-level effects in other classification situations.
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NOTES

1. Two main forms of category learning have been investigated. In
supervised learning tasks, explicit trial-by-trial feedback is supplied
about whether particular category responses are correct or incorrect. In
unsupervised learning tasks, no feedback is supplied, and subjects form
their own categories on the basis of some internal criteria for category
cohesiveness.

2. Unfortunately, due to a procedural error, 7 of the 25 subjects in the
4-D—general condition did not finish all 25 training blocks (none of
these subjects completed fewer than 20 training blocks). Although their
available data were included in the data plotted in Figure 1, which was
used to assess the model predictions, our statistical package could not
accommodate partial observations from individual subjects.

3. A number of categorization studies have found that the diagnostic-
ity of certain stimulus dimensions has a profound effect on the speed of
learning particular categories (e.g., Nosofsky, Gluck, et al., 1994; Shep-
ard, Hovland, & Jenkins, 1961) and on transfer of category knowledge
to new stimuli (e.g., Medin & Schaffer, 1978; Nosofsky, 1986). These re-
sults have been taken as evidence for some form of a dimensionalized se-
lective attention mechanism in categorization (in other words, particular
dimensions of stimuli are weighted more heavily because they are rela-
tively more diagnostic for determining category membership). However,
the rational model and the configural-cue model, which do not incorpo-
rate any explicit form of selective attention to dimensions, have been able
to account for some of these empirical results (see, however, Nosofsky,
Gluck, et al., 1994).

4. Note that psychological dimensions, such as shape, color, or size,
are contrasted with particular values (or features) along those dimen-
sions, such as circular, red, or large (see Garner, 1974).

5. Typically, the coupling parameter is set to some intermediate value,
dimensional salience is significantly larger than label salience, and the
response-mapping parameter is not used (Anderson, 1990; Nosofsky,
1991). These simulations were conducted withc=0.3,s,=1.0,5 =0.1,
and r=1.0.

6. The fact that this restricted version of ALCOVE and the best-fitting
version of the configural-cue model accounted for the observed data
equally poorly is not simply a matter of coincidence. Rather, a version
of ALCOVE without selective attention is formally identical to a ver-
sion of the configural-cue model with only complete exemplar cue
combinations present; the best-fitting parameters of the configural-cue
model had nonzero learning rates only for complete exemplars (4 ,).

APPENDIX
Details of the Category Learning Models and Model Fitting

In this Appendix, I provide additional details about the three category learning models and how they were
fitted to the observed learning curves. Best-fitting predictions from each of the three category learning mod-
els were generated by adjusting free parameters of the models using a hill-climbing routine that minimized
sum of squared deviations (SSD) between observations and predictions. To guard against local minima emerg-
ing from the hill-climbing routine, a number of different starting parameter values were used to initialize the
search. To fit each of the models, 100 random stimulus sequences were generated, predictions were obtained
for each of these sequences, and these predictions were then averaged. These average predicted category learn-
ing curves constituted the predictions that were fitted to the observed data. The best-fitting parameters and
fit values for the three models are given in Table Al.

Rational Model

According to the rational model, categories are learned by grouping objects into partitions. The probabil-
ity that some object joins an existing partition is a function of both the similarity of that exemplar to the par-
tition’s central tendency and the prior probability of the partition. The prior probability of a partition is jointly
determined by the size of the partition and by the value of a coupling parameter, ¢, which is a free parameter;
large values of ¢ produce large partitions, and small values of ¢ produce small partitions. In most applications,
the coupling parameter has an intermediate value (Anderson, 1990, used ¢ = 0.3). The similarity of an exem-
plar to a partition’s central tendency is found using a multiplicative similarity rule somewhat analogous to the
similarity rule used in ALCOVE and the context model (Nosofsky, 1991). This similarity is jointly deter-
mined by whether the dimensions of the object sufficiently match those stored in the partitions and priors spec-
ified by salience terms for stimulus dimensions and category labels, s, and s, , respectively, which are free
parameters; unlike other classification models, the category label is treated as just another stimulus dimen-
sion in the stored representation. In most applications, dimensional salience is significantly larger than label

Table Al
Best-Fitting Model Parameters
Model Parameters Fit
Rational ¢=0.001, sp =0.125, 5, =0.000, r = 1.486 SSD =0.958, RMSD = 0.098, Var = 67.2
Configural-cue A, =0.000, 4,=10.000, 4 ,=0.000,A,=0.074, ¢=1.788 SSD = 1.318, RMSD = 0.115, Var = 54.9
ALCOVE ¢=7440,4,=0.017,1,=0.712, ¢=3.746 SSD = 0.228, RMSD = 0.054, Var = 90.1

Note—SSD, sum of squared deviations; RMSD = root mean squared deviations; Var, percentage of variance accounted for.
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salience (Anderson, 1990; Nosofsky, 1991). The probability, p,, that a given category label is assigned to an
object is found by summing the probability that the object belongs to each partition multiplied by the proba-
bility that each partition signals that category label. A response-mapping parameter, r, transforms the inter-
nal category label probabilities, p,, into actual response probabilities, P(A). Given a category label proba-
bility, p,, the actual probability of a Category A response is given by

P(a)=-F2,
2re
C
where the subscript C ranges over all possible categories. This mapping function allows probabilities more or
less extreme than those ordinarily predicted by the rational model (see Nosofsky et al., 1994). In the present

application, there are four estimated parameters: the coupling parameter, c, the dimensional salience, s, the
label salience, s;, and the response-mapping parameter, r.

Configural-Cue Model

Inputs to the configural-cue model are individual cues and configural cues that comprise a given object.
With four dimensions, each having four possible values, there are 16 single nodes (4 dimension X 4 features),
96 possible double nodes, 256 possible triple nodes, and 256 quadruple nodes (one for each possible exem-
plar). The activation of each input node, a;, is set equal to one if the relevant configuration is present within
a stimulus, otherwise it is set equal to zero. The activation of a category output node is given by

Oa =Zwiaai’
i

where w, , is the learned association weight between cue / and Category A. Output activations are converted
into response probabilities by

p(ay= _XPWON)
;exp(tboc)

where the subscript C ranges over all possible categories and ¢ is a response mapping constant. In the present
application, there are five estimated parameters: the response mapping constant (¢ ), and learning rates (4,,
A5, A5, and A,), for updating the association weights between singles, doubles, triples, and quadruples and the
category output nodes, respectively.

ALCOVE

Formally, ALCOVE is a three-layer feedforward network. The input layer consists of a single node for every
psychological dimension of an object. The hidden layer consists of a single node for every stored exemplar.
The activation of each hidden node is a function of the similarity between the current input representation and
the exemplar representation of that node and is given by

hid
a=exp(-cy od,;,),
i

where «; is the learned selective attention to dimension i, and d;; is an indicator variable equal to zero if the
input stimulus and the exemplar match along dimension i and equal to 1 if they mismatch. The positive constant
¢, called the specificity, acts as a scaling factor. Every hidden node is connected to every category output node
via a learned association weight. The activation of Category node A is given by

_ hid
O, —ijAaj >
J

where w; , is the learned association weight. Output activations are converted into response probabilities by
exp(¢0,)

P(A)y= ———,
2.exp(¢Oc)

C

where the subscript C ranges over all possible categories, and ¢ is a response-mapping constant. In the pre-
sent applications, there were four estimated parameters: the sensitivity parameter (c), the response-mapping
constant (¢), and learning rates (1,, and A, ), for updating the exemplar association weights and selective at-
tention weights (see Kruschke, 1992, for details).

(Manuscript received March 19, 1998;
revision accepted for publication December 9, 1998.)

503



