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Theories of Automaticity and the Power Law of Practice
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In arecent reanalysis of numerosity judgment data from T. J. Palmeri (1997), T. C. Rickard
(1999) found that mean response times did not decrease as a pure power law of practice and
standard deviations systematically increased and then decreased with practice in some
conditions. Rickard argued that these results were consistent with the component power laws
(CMPL) theory of strategy shifting (Rickard, 1997), but were inconsistent with instance theory
(G. D. Logan, 1988) and the exemplar-based random walk (EBRW) model (R. M. Nosofsky &
Palmeri, 1997). In this article, the author demonstrates how a slightly more complex power
function fitted the numerosity data nearly as well as the CMPL function, and how race models,
such as instance theory and the EBRW, can predict deviations from a pure power law of
practice and can predict nonmonotonic changes in standard deviations with practice. Potential

limitations of CMPL are also discussed.

One of the most ubiquitous findings in experimental
psychology is that the time needed to perform most tasks
decreases with practice. Newell and Rosenbloom (1981)
observed power-function decreases across nearly every task
that showed practice effects and proposed that this func-
tional relationship be elevated to the status of a psychologi-
cal law. Since then, the power law of practice has been
viewed as a fundamental benchmark result and has had
tremendous influence on the development of theories of
automaticity (e.g., Anderson, 1982, 1987, 1992; Cohen,
Dunbar, & McClelland, 1990; Ericsson, Krampe, & Tesch-
Romer, 1993; Logan, 1988, 1992; MacKay, 1982; Nosofsky
& Palmeri, 1997; Palmeri, 1997; Rickard, 1997).

However, recent evidence suggests that the power law
may not be as lawful as was once thought (Delaney, Reder,
Staszewski, & Ritter, 1998; Heathcote & Mewhort, 1995;
Rickard, 1997, 1999). One could argue that if deviations
from the power law are observed, then theories that have

been explicitly formulated to predict power-law decreases in

response time (RT) must surely be wrong. My goal is to
discuss whether systematic deviations from the power law
pose real difficulties for instance-based theories of automa-
ticity as has been recently claimed by Rickard (1997, 1999).

The Power Law of Practice

Newell and Rosenbloom (1981) observed that the relation-
ship between practice and performance is one in which
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substantial gains are made early in practice but dramatically
diminishing marginal gains are made with increased prac-
tice. Formally, the power law of practice is given by

RT=A+B-(N+prey©, 1
where RT is the response time on trial N, A is the asymptotic
RT, B is the difference between initial and final RT, pre is the
amount of prior extraexperimental practice, and C is the
learning rate parameter that specified how quickly RTs reach
asymptote.

Instance Theory and the Exemplar-Based Random
Walk (EBRW) Model

One of the most influential theories of automaticity has
been instance theory (Logan, 1988). According to the theory,
people begin solving a task using general algorithms,
strategies, or rules. Every time an instance of that cognitive
skill is performed, a trace of that action is obligatorily stored
in memory. When a new object must be judged, a race
ensues between the completion of the algorithm and re-
trieval of particular instances from memory, with the winner
determining the overt response. Initially, performance is
governed solely by the algorithm. However, increases in
speed of responding with practice are not due to more
efficient application of the algorithm. Rather, memory
retrieval gets faster as more repetitions of particular in-
stances are stored in memory. Memory retrieval is assumed
to be another race process, with all instances competing to
be retrieved in parallel; as the number of runners increases,
the expected winning time decreases (see Logan, 1988,
1992). Soon, memory retrieval dominates the race against
algorithmic processing. Therefore, qualitative changes in
performance are due to shifts from algorithmic processing to
memory retrieval.

Logan (1988, 1992; see also Colonius, 1995; Logan,
1995) demonstrated that if memory retrieval is a race
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process and if memory retrieval times are distributed as
Weibulls,

fO=1~-expf[— (- b)a)], @

then not only do means and standard deviations of retrieval
times decrease as a power function of the number of
instances stored in memory, but the entire retrieval time
distribution decreases as a power function as well. There-
fore, quantitative changes in processing speed, characterized
by the power law, are caused by increasing numbers of
instances in memory that race to be retrieved.

Because the locus of automaticity lies in specific memo-
ries for previous instances, instance theory predicts ex-
tremely narrow transfer of cognitive skills to new situations.
The highly specific nature of transfer was demonstrated by
Lassaline and Logan (1993; see also Palmeri, 1997) using a
numerosity task in which people judged the number of
elements in a pattern as quickly as possible without making
errors. Initially, RTs increased as a function of numerosity,
indicating that explicit counting dominated performance.
With several sessions of training, however, RTs became flat
as a function of numerosity, suggesting that memory re-
trieval dominated performance. To assess specificity, partici-
pants judged both old and new patterns in a transfer phase at
the end of training. No transfer to new pattems was
observed. Whereas RTs to the old patterns were the same as
they were at the end of training, RTs to the new patterns were
the same as they were at the beginning of training (see also
Palmeri, 1997). Such specificity of transfer suggests that
training did not cause the algorithm (in this case counting) to
speed up by any appreciable amount.

However, the memory-retrieval assumptions of instance
theory are limited by not taking into account graded
similarities among exemplars and by not allowing response
competition. The exemplar-based random walk (EBRW)
model (Nosofsky & Palmeri, 1997; Palmeri, 1997) dealt
with these limitations by combining elements of instance
theory with elements of the generalized context model of
categorization (Nosofsky, 1986). According to the model, all
instances race to be retrieved with rates proportional to their
similarity to some presented item. Unlike instance theory, a
single memory retrieval does not suffice. Rather, each
retrieval provides incremental evidence to a random walk
process (Link, 1975; Luce, 1986; Ratcliff, 1978). Once one
response exceeds all others by some criterial amount, an
output is made. As with instance theory, Palmeri (1997)
assumed that the EBRW races against an algorithm. With
practice, memory retrieval speeds up, causing the random
walk to accumulate evidence more quickly, causing the
EBRW to eventually win the race over the algorithm.

In a recent series of experiments, Palmeri (1997) tested
participants on numerosity judgment tasks in which the
similarities between patterns were systematically manipu-
lated. Consistent with the EBRW,! automaticity transferred
as a function of similarity to training patterns, increases in
within-category similarity facilitated the development of
automaticity, and increases in between-category similarity
inhibited the development of automaticity. The combination

of similarity-based retrieval and a competitive random walk
decision process allowed the EBRW to account for these
findings.

Component Power Laws (CMPL) Theory
of Automaticity

Rickard (1997) recently proposed an alternative account
of the development of automaticity called the component
power laws (CMPL) theory. Although concurring that
automaticity reflects a shift from algorithmic processes to
memory retrieval, CMPL differs from instance theory and
the EBRW in quite a number of important ways (see
Rickard, 1997, for details). However, two fundamental
differences were made particularly salient by Rickard (1999).
First, CMPL differs from instance theory and the EBRW in
that the algorithm and memory retrieval cannot be executed
in parallel. Rather, on each trial, the algorithm or memory
retrieval, but not both, are executed. Therefore, at each stage
of training, overall RT reflects a mixture of the two
components,

RT = RTa_[g . (1—17) + RTmem 'p ’ (3)

where p is the probability that memory retrieval is per-
formed rather than the algorithm on that given trial. Second,
unlike instance theory and the EBRW, CMPL assumes that
both algorithm completion times and memory retrieval
times decrease as a power law of practice. Rather than
substitute the complete four-parameter power-law function
from Equation 1 into Equation 3, Rickard (1997, 1999)
found that the following simplifications could reasonably be
made:

RT,, = By, - (N + pre)~Cue ()]
RTmem = Bmem « N7 Cmem (5)

Rickard (1999) also assumed the probability that memory
retrieval is used on a given trial to be an exponential function
of the trial number

p=1l-exp[—7-(N—-1), 6

where r is a rate constant. The resulting CMPL function is
given by

RT = By, - (N + pre)~S - exp[— r(N — 1)]
@
+ Bpom - N™Coen . [1 — exp[— r(N — 1)]] .

! Formally, EBRW is an instance-based model of categorization
(Nosofsky & Palmeri, 1997). To account for the development of
automaticity in numerosity judgments, Palmeri (1997) assumed
that the EBRW raced against an algorithm. While the term EBRW
was used in that work, and will continue to be used in this work, to
refer to this hybrid model (see also Rickard, 1999), the simulta-
neous race assumption is not fundamental to the EBRW model of
categorization per se.
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Although its components are power-law functions, this
equation is not itself a power law, in general.

Rickard (1997) found evidence consistent with CMPL in a
series of pseudoarithmetic tasks similar to others used in the
automaticity literature (e.g., Compton & Logan, 1991;
Delaney et al., 1998; Logan & Klapp, 1991). Although the
power law geperally did not account for the overall RT data
all that well, the power.law did hold within a given strategy
(algorithm or memory retrieval) after the data were suitably
partitioned according to the type of strategy used (see also
Delaney et al., 1998).

A CMPL Alternative Account of Practice
Effects in Numerosity Judgment Tasks

The impetus for the present article was a reanalysis
Rickard (1999) performed on data reported in Palmeri
(1997). In three experiments, participants judged the numer-
osity of patterns of between 6 and 11 dots over many
sessions as quickly as possible without making errors.
Whereas I originally reported these RT data as a function of
session, collapsed across training blocks within a session,
Rickard (1999) reanalyzed my data as a function of training
block instead. His primary goal was to compare fits of the
power law with those of CMPL. According to Rickard,
significant deviations from a power law might constitute a
significant challenge to both instance theory and the EBRW
because predictions that were a close approximation to a
three-parameter power function were previously used as
support for the theories (Logan, 1988, 1992; Palmeri, 1997).

For each of the experiments of Palmeri (1997), Rickard
fitted three-parameter power functions at each level of
numerosity. The power law fitted the data rather poorly, account-
ing, on average, for less than 90% of the variance in the observed
data. Visual inspection of figures provided by Rickard (1999)
confirmed this poor fit—in some cases, there was little overlap
between the observed data and the best fitting power-law
function, especially for large numerosities. By contrast, excellent
fits of constrained versions of CMPL, with fewer free parameters
than the power-law functions, were obtained.

Recall, the CMPL theory assumes that algorithm comple-
tion times and memory retrieval times decrease as a power
law of practice, but the function resulting from the mixture
of these two processes is not itself a power law. In his
analyses, the power law decrease in algorithm completion
times actually contributed fairly little to the success of
CMPL. Rather, the power-law decrease in retrieval times
coupled with the competition between the algorithm and
memory retrieval performed most of the work in accounting
for the observed practice effects in these experiments.
Therefore, for present purposes, the most important differ-
ence between CMPL and the instance-based theories in
accounting for the numerosity judgment data given in
Palmeri (1997) lies in the strategy-selection process—is it a
competition or is it a race?

Very good fits of the power-law function to the numeros-
ity judgment data were previously reported because ob-
served data were averaged across blocks within a session
(Palmeri, 1997). Clearly, averaging masks potentially impor-

tant empirical regularities, particularly in the first few
training sessions (Heathcote & Mewhort, 1995); other
previously reported successes of the power law may be
partially an averaging artifact as well. Unfortunately, until
just recently, the power law was generally taken as a
benchmark characterization of data—systematic deviations
were simply not expected to be found. Rickard’s (1999)
reanalysis of my data and other recent work (e.g., Delaney et
al., 1998; Heathcote & Mewhort, 1995; Rickard, 1997) are
very important because they strongly suggest that practice
effects may not completely conform to a power law after all.

Rickard’s (1999) reanalyses do show that RTs in numeros-
ity tasks do not decrease as a pure power-law function of
practice. But does he provide an alternative account of the
development of automaticity in numerosity judgment tasks?
As discussed earlier, one of the primary goals of my earlier
article (Palmeri, 1997) was to examine the effects of pattern
similarity on the development of automaticity and to try to
account for these effects with the EBRW. As Rickard (1999)
conceded, “the current version of the CMPL theory simply
cannot account for such effects, and it is an open question
whether it can be extended to do so” (p. xx)—the CMPL
theory may be too simple to provide a complete alternative
account to the one provided by the EBRW.

However, Rickard’s (1999) reanalyses do pose potential
challenges to instance theory and the EBRW, which I
attempt to address in subsequent sections of this article. I
begin by comparing the fits of power-law functions with fits
of CMPL functions and discuss what can be leamed from
curve fitting. I next examine whether models that assume a
race between algorithm completion and memory retrieval,
such as instance theory and the EBRW, can predict devia-
tions from a pure power-law function of practice. Finally, 1
examine how predicted and observed RT standard deviations
change with practice.

What Can Be Learned From Curve Fitting?

Rickard (1999) reported poor fits of power-law functions
compared with CMPL functions when applied to the Palmeri
(1997) data. However, Rickard tested only a restricted
version of the power-law function in which no prior practice
was assumed (pre = 0). I fitted the three-parameter power
law (Equation 1 with pre = 0), the four-parameter power
law (Equation 1), and the five-parameter CMPL (Equation 7,
With ¢y1g = Cmem) to Palmeri’s (1997) data. Table 1 provides
fit values (+%) as a function of experimental condition and
numerosity; for illustration, Figure 1 displays the three
functions and the observed data points from Experiment 1.
As Rickard (1999) reported, across nearly every condition,
three-parameter power-law functions did not adequately
capture the observed decrease in RTs with practice. How-
ever, there was actually very little difference in fit between
four-parameter power-law functions and five-parameter
CMPL functions.? As illustrated in Figure 1, the functions

2 It must be noted that Rickard (1999) significantly reduced the
number of free parameters of CMPL by constraining the values of
several parameters in meaningful ways.
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Table 1

Fits (12) of Three-Parameter Power-Law Function, Four-Parameter Power-Law

OBSERVATIONS

Function, and Five-Parameter CMPL Function to Numerosity Judgment Data

From Palmeri (1997)

Experiment Numerosity

and function Condition 6 7 8 9 10 11 All

Experiment 1
Power (3) — .928 .902 .874 .908 .843 .828 .873
Power (4) — 959 948 .969 .980 978 962 961
CMPL (5) — 942 937 962 966 968 .968 967

Experiment 2
Power (3) Moderate .885 .897 .893 882 .824 .868 876
Power (4) Moderate .886 923 920 928 931 941 .939
CMPL (5) Moderate .889 931 921 .949 936 955 .949
Power (3) Low 915 .833 .899 789 824 .799 .841
Power (4) Low 932 .929 952 935 942 925 .942
CMPL (5) Low 933 940 959 950 952 946 955
Power (3) Unrelated 842 837 837 846 784 813 833
Power (4) Unrelated 913 925 929 942 .935 .949 945
CMPL (5) Unrelated 920 934 956 957 .949 968 .960

Experiment 3
Power (3) Friends 879 904 .891 .909 913 919 911
Power (4) Friends 923 934 959 973 947 967 960
CMPL (5) Friends 928 936 974 973 .969 976 .969
Power (3) Enemies 887 882 891 .890 878 .870 .879
Power (4) Enemies 925 933 944 957 951 944 951
CMPL (5) Enemies 928 933 944 963 973 968 .964

Note. The number of parameters in each function is indicated within parentheses. CMPL =

component power laws.

were nearly coincident across most experimental condi-
tions. On average, the one additional parameter of CMPL
captured approximately 1% additional variance in the ob-
served data. Moreover, the best fitting power-law func-
tions usually had A equal to zero (see also Heathcote &
Mewhort, 1995; Logan, 1988); in such cases, the power law
is a special case of CMPL, and it would be mathematically
impossible for the power law to fit the data any better than
CMPL3

Certainly, I do not want to suggest the four-parameter
power-law function as any kind of serious psychological
process model. Rather, my purpose in conducting these fits
was to counter Rickard’s (1999) strong claim that finding
poor fits of the three-parameter power function might be
enough to rule out theories of automaticity that assumed
concurrent execution of algorithmic and memory-retrieval
strategies. In fact, on their own, the results of this curve
fitting are insufficient to rule out even fairly broad classes of
theories. In this case, a fairly simple power function, which
could well characterize the predictions of any number of
single-process models of automaticity, provided a good
account of the observed practice curves (see also Van Zandt
& Ratcliff, 1995). Generally, great care must be taken in
using any single pattern of data to make strong inferences
about underlying psychological structures (e.g., Townsend,
1990; Van Zandt & Ratcliff, 1995). Theories must be
evaluated on their ability to account for a broad spectrum of
empirical results.

Can Race Models Predict Deviations From
the Power Law of Practice?

However, there still is the question of whether race
models, such as instance theory and the EBRW, can predict
deviations from the pure power law of practice. A critical
assumption made by Rickard (1997) was that instance-
theory predictions were equated with power-law predic-
tions—a failure to fit the power law meant a failure of
instance theory. Although this assumption was somewhat
relaxed by Rickard (1999), it still implicitly underlies his
discussion.

As mentioned earlier, if retrieval times are distributed as
Weibulls and if memory retrieval is a race process, then
memory retrieval times decrease as a power law (Logan,
1988, 1992). However, memory retrieval races against
algorithm completion, which has its own temporal character-
istics. Does this additional race distort the power-law
predictions? As Logan (1988, 1992) has pointed out repeat-
edly, it must. However, power-law predictions made by

3If A = 0 in the power-law function (Equation 1), then CMPL
(Equation 7) can always mimic this power-law function by simply
setting r equal to zero. Therefore, it would be impossible to find a
set of data for which CMPL could not provide an equal or better fit
than the power-law function (without A). In this sense, using the
terminology of hierarchical model testing, the power-law function
(without A) is a special case of CMPL. Hence, it should come as no
surprise that CMPL provided a somewhat better fit.
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Figure 1. Analyses of numerosity judgment data from Experi-

ment 1 of Palmeri (1997). Dots indicate observed mean RTs as a
function of training block, fine lines indicate best fitting four-
parameter power-law functions, circles indicate best fitting three-
parameter power-law functions, and thick lines indicate best fitting
five-parameter component power laws (CMPL) functions.

instance theory “‘are not compromised much by the race
with the algorithm, provided that the mean for the algorithm
is reasonably close to the mean for memory retrieval [of
individual instances]” [italics added] (Logan, 1988, p. 522).
Moreover, any distortions that may occur are limited to the
early portions of learning. Once memory retrieval dominates
performance, the power law govems further decreases in RT
with practice. For simplicity, much of Logan’s (1988, 1992;
Compton & Logan, 1991) work has assumed that the algorithm
does not appreciably distort the predictions of the model; Logan
(1988) previously reported how the presence of an algorithim
with temporal characteristics similar to those of memory retrieval
did not distort the power-law predictions by very much.

Using Monte Carlo simulations, I explored how the
presence of a competing algorithm with temporal character-
istics different from those of memory retrieval might cause a
simple race model to predict deviations from a pure power-
lIaw function of practice. For simplicity, in these simulations,
a pure instance-based memory retrieval component was
assumed (Logan, 1988), rather than the EBRW (the main
conclusions from this section hold for the EBRW as well).
Algorithm completion and memory retrieval race, with the
winner determining the response. The effects of presenting
between 1 and 400 training instances were simulated 5,000
times. Memory retrieval times for each stored instance were

distributed as Weibulls, with ager, = 4,000, bape, = 500, and
Cmem = 2. Assuming that stored instances race to be retrieved
from memory, then the winning memory retrieval time
decreases as a power law of the practice. Algorithm comple-
tion times were normally distributed, with p,, and oy,
varying systematically; an additional base time of 500 ms
was assumed for the algorithm.

Figure 2 displays the predicted mean RTs as a function of
practice for four different combinations of 1., and 0.
Three-parameter power-law functions fitted to the predicted
RTs are displayed as well. When the algorithm completion
times were quite fast (1, = 500 and o, = 50), the transi-
tion from algorithmic processes to memory processes was
quite slow, and the power function fitted the predicted RTs
quite poorly. By contrast, when the algorithm completion
times were quite slow (U, = 5,000 and o, = 500), the
transition was quite fast, and the power function fitted the
predicted RTs almost perfectly. Clearly, a race model can
predict significant deviations from the pure power law. Little
or no deviations from the pure power law were observed
only when the algorithm was as slow as, or slower than, the
mean retrieval time for a single instance (see Logan, 1988).

But, is it plausible for the memory component to be
slower than the algorithmic component? Plausibility is most
definitively demonstrated using the EBRW as the memory
component rather than the conceptually simpler instance
theory (although it would be possible to provide a plausibil-
ity argument for instance theory as well). Recall that the
memory component of the EBRW requires multiple retriev-
als before a given response is.chosen. In the numerosity task,
accuracy was highly stressed, so the decision criterion was
set quite high (see Palmen, 1997); that is, evidence for the
winning response needed to exceed all other responses by a
significant amount. Although individual retrievals might
have occurred quickly, a large number of retrievals were
necessary before one of the potential responses exceeded all
others by a sufficient amount. Moreover, if there was noise
in the memory-retrieval process (e.g., Nosofsky & Alfonso-
Reese, in press), then it is quite plausible that no response
would reach criterion before even a lengthy algorithm was
completed. Because RT distributions generated by a random
walk can be approximated by a Weibull (e.g., Luce, 1986),
and because the EBRW predicts that means and standard
deviations for memory retrieval decrease as a power law
(Palmeri, 1997), the above simulations nicely summarize the
first-order predictions of the EBRW as well.

How unique are the predicted practice curves generated
from a race model versus a competition model? The
assumption made by CMPL that algorithm completion and
memory retrieval compete implies that the observed practice
curves will deviate from the power law in a particular way,
following the component power law of practice. Rickard
(1999) used good fits of the CMPL function as evidence in
favor of a competitive strategy-selection process and as
evidence against a race process. The five-parameter CMPL
was fitted to the instance-theory predictions in Figure 2. In
every case, the CMPL function was able to capture well over
99% of the variance in the race model predictions. There-
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Figure 2. Instance-theory predictions (thick lines) and best fitting three-parameter power-law

functions (fine lines) as a function of number of presentations. Fit values (r%) for the power-law
functions are reported. Each panel displays predictions for a different combination of algorithm

parameters.

fore, simply fitting the power-law function and the CMPL
function to observed data may be insufficient to reveal whether
the underlying strategy-selection process is a competition
(Rickard, 1997) or a race (Logan, 1988; Palmeri, 1997).

These analyses do reveal a potential problem with in-
stance theory and the EBRW. As originally reported by
Rickard (1999), deviations from the pure power law of
practice in the Palmeri (1997) data was more pronounced in
higher numerosity conditions (e.g., see Figure 1). If we
assume that the memory-retrieval time distribution for each
pattern is essentially the same, regardless of numerosity (as
in Palmeri, 1997), and if we assume that algorithm comple-
tion (counting) times increase as a function of numerosity,
then a race model will predict faster transitions from
algorithmic processes to memory processes for higher numeros-
ity patterns. Therefore, instance theory and the EBRW would
predict more significant deviations from the pure power law
of practice for patterns with low numerosity than for patterns
with high numerosity, opposite of what was found.

There are a number of potential solutions to this problem.
Each conspires to cause low-numerosity patterns to be
judged via memory retrieval relatively more quickly than
high-numerosity patterns, especially early in training. One
possibility is that there are many prior extraexperimental
memories for low-numerosity patterns. Certainly some
patterns of 6 elements, such as a die face, have been seen and
enumerated many times. It is less likely that patterns of 10 or
11 elements have ever been enumerated enough times to
have formed enduring memory traces prior to the experi-
ment. Another possibility is that patterns of low numerosity
may be more similar to one another than patterns of high

numerosity. Different patterns of 6 elements may be more
similar to one another than are different patterns of 11
elements. The EBRW assumes that the presence of similar
instances causes memory retrieval to speed up more rapidly
(Palmeri, 1997). Conversely, patterns of low numerosity
may be more discriminable from one another than patterns
of high numerosity. Patterns of 10 elements may be rela-
tively similar to patterns of 11 elements, whereas patterns of
6 elements may be relatively dissimilar to patterns of 7
elements. The EBRW assumes that the presence of similar
instance from another category causes the random walk
process to require more steps to reach a decision (Palmeri,
1997). Finally, patterns of high numerosity may simply be
more difficult to learn than patterns of low numerosity. If
memory retrieval is contaminated by background noise (e.g.,
Nosofsky & Alfonso-Reese, in press), and if high-numeros-
ity patterns produce “weaker” traces than low-numerosity
patterns, then it may require many more repetitions of high-
numerosity patterns for them to exert any influence. For
example, if each element of a pattern is encoded probabilis-
tically, then high-numerosity patterns would have a lower
probability of being completely encoded in memory than
low-numerosity patterns. Future empirical research is needed
to fully explore each of these alternatives and to determine
their effects on the quantitative predictions of the EBRW.
So, CMPL and instance theory (and the EBRW) agree that
memory retricval dominates later trials. However, depend-
ing on how effectively memories are stored when first
learning a task, many trials may be required before memory
retrieval begins to influence behavior in any appreciable
way. That is, memory retrieval is likely to be quite noisy,
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Figure 3.

Instance-theory standard deviation predictions as a function of number of presentations.

Each panel displays predictions for a different combination of algorithm parameters.

with several repetitions required before people adequately
learn the response associated with particular objects. Also,
CMPL and instance theory (and the EBRW) agree that
algorithm use dominates early trials. This leaves a poten-
tially small transition window when either algorithm use or
memory retrieval could govern performance. Determining
unequivocally whether these relatively few trials are governed
by a competition or a race could prove quite challenging.

What About Deviations From Power-Law
Decreases in Standard Deviations?

Another essential component of Rickard (1999) was
analyses of RT standard deviations. A probability mixture
model, such as CMPL, assumes that RTs are determined by a
combination of two parent distributions. The variance of this
mixture is given by (Townsend & Ashby, 1983)

o%eme, = (1-p) Uzalg TP 0%em
+p- (1) (Mg — Mgem)®- (8)

The third term of the equation, p - (1-p) * (Mag — Mmem)*
first increases and then decreases as p goes from 0 to 1. This
can allow total variance to increase and then decrease as a
function of training (Compton & Logan, 1991; Logan,
1988), although this ““bubble” is not required for every set of
parameters (Rickard, 1999). A nonmonotonic change in RT
standard deviations would provide support for a mixture
model such as CMPL. By contrast, monotonically decreas-
ing RT standard deviations have been taken as evidence in
support of race models, such as instance theory (Compton &
Logan, 1991; Logan, 1988, 1992): ‘“Race models such as the
instance theory are mathematically required to predict a
monotonic reduction on average in the overall SD” (Rick-

ard, 1999, p. 540), “the race model predicts that variability
will decrease with training, and never increase” (Compton
& Logan, 1991, p. 152).

However, race models in general, and instance theory in
particular, predict monotonically decreasing RT standard
deviations only if the mean and standard deviation for the
algorithm are reasonably close to the mean and standard
deviation for memory retrieval of a single instance. Recall
the simulations that were reported earlier. Figure 2 displays
mean RTs as a function of training for various combinations
of u,, and oy, Figure 3 displays the predicted RT standard
deviations from these same simulations as a function of
practice. Depending on particular parameter settings, both a
mixture model and a race model can predict nonmonotonic
changes in RT standard deviations as a function of practice.

Summary

Both CMPL and the instance-based theories (instance
theory and the EBRW) assume that the development of
automaticity reflects a shift from algorithmic processes to
memory retrieval. The present article described two funda-
mental ways in which the two classes of theories differ:
First, CMPL allows algorithm completion times to decrease
as a power law of practice. Largely for simplicity, the
instance-based theories have assumed that algorithm comple-
tion times remain constant throughout training. Certainly, it
seems reasonable that algorithm use, and possibly other task
components,* might improve with practice. It must also be

4 For example, in the numerosity judgment task (Palmeri, 1997),
the participant began each training session with several blocks of
practice trials to learn the mapping between numerosities and
response keys. On each trial, the name of a number, such as
“seven,” would appear in the center of the screen, and the
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noted that it would be impossible to find incontrovertible
evidence that disproved CMPL in favor of the extant
instance-based theories with respect to their assumptions
about algorithm speedups. In any given paradigm, an
absence of algorithm speedup could always be accounted for
by CMPL by simply setting c,;; equal to zero or pre equal to
some relatively large number (Rickard, 1999, reported one
case in which pre was larger than the number of experimen-
tal blocks). It becomes a statistical argument whether
assuming algorithm speedup contributes significant improve-
ments to the fit of the model. At least in the case of
numerosity judgments, it appears that algorithm speedups
play a surprisingly minor role in the development of
automaticity. Rickard’s (1999) own analyses suggest that
algorithm speedups in numerosity judgments contribute
significantly less to the overall practice effect than do
speedups in memory retrieval. Moreover, transfer to new
patterns is nearly absent in this task (Lassaline & Logan,
1993; Palmeri, 1997).5

The second fundamental difference between CMPL and
the instance-based theories centers around the strategy-
selection mechanism. Whereas CMPL assumes a competi-
tion between algorithm completion and memory retrieval,
instance theory and the EBRW assume a race. The analyses
reported in this article demonstrate that distinguishing
between these two candidate processes may not be as
straightforward as has been suggested in previous work
(Compton & Logan, 1991; Logan, 1988; Rickard, 1997,
1999). Both a competition model and a race model can
predict significant deviations from the pure power-law
function of practice. Both a competition model and a race
model can predict nonmonotonic changes in RT standard
deviations with practice. Of the two possibilities, the race
model provides a conceptually simpler account of strategy
selection. In a race model, the choice between a retrieval
strategy or an algorithmic strategy is entirely determined by
the relative amount of time it takes to complete each of the
two components. By contrast, in a competition model,
without further specified processing constraints, strategy
choice is completely independent of completion times. In
fact, the strategy selection process may need to be hand
tailored to specific domains (see the appendix of Rickard,
1999). In the CMPL equation, the transition from algorithm
to memory retrieval is entirely determined by a free param-
eter, r. In my opinion, without greater specification of how
the competition between various strategies is resolved,
CMPL may be too underconstrained to provide a reasonably
testable psychological model.

participant would be required to press the corresponding response
key as quickly as possible. The speed with which participants could
perform this very simple task increased by a few hundred
milliseconds over the first four or five sessions. Therefore, some of
the practice effects reported by Palmeri (1997) may reflect a
speedup in the response-mapping component of numerosity judg-
ments, independently of any speedups in algorithm completion or
memory retrieval.

5 It should be noted that in fairly complex multistep computation
tasks (e.g., Delaney et al,, 1998; Rickard, 1997), speedups in
algorithm completion have been observed.
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