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Recognition Memory for Exceptions to the Category Rule

Thomas J. Palmeri and Robert M. Nosofsky

Indiana University

Experiments were conducted to demonstrate the utility of a rule-plus-exception model for
extending current exemplar-based views of categorization and recognition memory. According to
the model, exemplars that are exceptions to category rules have a special status in memory relative
to other old items. In each of 4 experiments, participants first learned to categorize items organized
into 2 ill-defined categories and then made old-new recognition judgments. Although the
categories afforded no perfect rules, a variety of imperfect rules could be formed combined with
memorization of exceptions to those rules. In each experiment, superior recognition of exceptions
to imperfect logical rules was found. In addition, participants demonstrated better memory for old
exemplars than new ones. A mixed model, which assumed a combination of rule-plus-exception
processing and residual exemplar storage, provided good quantitative accounts of the data.

A common assumption underlying many modern models of
classification learning is that a great deal of information about
the originally presented exemplars is retained in the category
representation. According to exemplar models, for example,
category representations consist of the storage of all previously
presented exemplars, and classification decisions are made by
summing the similarity of an object to the stored exemplars of
the alternative categories (e.g., Estes, 1986a; Heit, 1992;
Hintzman, 1986; Medin & Schaffer, 1978; Nosofsky, 1986).
Exemplar models have had success in accounting for numerous
fundamental categorization phenomena (e.g., Estes, 1994,
Medin & Florian, 1992; Nosofsky, 1992). Despite this success,
it is reasonable to question the plausibility of exemplar-storage
processes and the vast memory resources they seem to require.

An alternative model of category learning, much different in
spirit from exemplar models, was recently proposed by Nosof-
sky, Palmeri, and McKinley (1994). These investigators formal-
ized a rule-plus-exception (RULEX) model of category learn-
ing that follows in the spirit of classic hypothesis-testing
models (e.g., Levine, 1975; Trabasso & Bower, 1968). Accord-
ing to RULEX, participants learn categories by forming logical
rules over single dimensions or conjunctions of dimensions and
then supplement these rules with occasional exceptions. In
contrast to exemplar models, the category representations in
RULEX contain relatively little information—just a simple
rule or two, plus a few exceptions.
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RULEX is limited in its development thus far to problems
involving deterministic category assignments and stimuli vary-
ing along binary-valued dimensions. Nevertheless, within this
domain, Nosofsky, Palmeri, et al. (1994) demonstrated that
RULEX was capable of accounting for many fundamental
categorization phenomena. These phenomena include proto-
type and specific exemplar effects (Medin & Schaffer, 1978),
selective attention effects (Medin & Smith, 1981; Nosofsky,
1984), sensitivity to correlated dimensions (Medin, Altom,
Edelson, & Freko, 1982), differential difficulty of learning
linearly versus nonlinearly separable categories (Medin &
Schwanenflugel, 1981), and the relative difficulty of learning
various rule-described categories (Nosofsky, Gluck, Palmeri,
McKinley, & Glauthier, 1994; Shepard, Hovland, & Jenkins,
1961). In addition, beyond simply accounting for averaged
classification data, RULEX predicted fairly well the wide
variety of patterns of generalization displayed by individual
participants (Nosofsky, Palmeri, et al., 1994; Palmeri & Nosof-
sky, 1993).

The central goal of the present research was to provide
further tests of this rule-plus-exception model by using it to
predict patterns of old-new recognition data observed at the
completion of category learning. Old—new recognition data are
often used as a source of converging evidence for the types of
representations that are formed when people learn categories
(e.g., Estes, 1986b; Hayes-Roth & Hayes-Roth, 1977; Medin &
Schaffer, 1978; Metcalfe & Fisher, 1986; Omohundro, 1981,
Reitman & Bower, 1973). Indeed, previous work has demon-
strated that, following category learning, people often have
memories for old exemplars and that exemplar models provide
excellent accounts of patterns of old—new recognition perfor-
mance (Estes, 1994; Medin & Schaffer, 1978; Nosofsky, 1988,
1991). According to such models, recognition judgments are
based on a measure of overall “familiarity” for an item,
computed by summing the similarity of that item to all
exemplars stored in memory (Gillund & Shiffrin, 1984; Hintz-
man, 1988; Nosofsky, 1988).

If all that is stored in the category representations is a rule
and a few exceptions, then why do exemplar models yield good
fits to old-new recognition data? One approach to answering
this question is to admit that, even if the dominant strategy for
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solving classification problems is to form rules and exceptions,
some participants may have memories for at least some of the
exemplars presented during training. Such memories could be
a natural byproduct of the processing that takes place when
rules and exceptions are formed.

The approach we took in our research was to ask whether
the predictions of exemplar models could be improved by
considering the learning processes that are assumed in the
RULEX model. Specifically, a natural prediction is that the
exceptions to the category rule should have a special status in
memory. We used this idea to develop a combined model,
which posits that recognition decisions are based on summing
similarities to stored exemplars, but where the exceptions are
accorded a special weight when computing this summed
similarity.

It is important to realize that sensitive procedures are
needed to reveal the special role of the exceptions in memory.
According to RULEX, people learn categories by forming
rules and exceptions, but the particular rules and exceptions
that are used will vary idiosyncratically across individual par-
ticipants. The reason is that the learning process in RULEX is
stochastic, and multiple dimensions and exceptions are avail-
able for solving most problems. Thus, in many cases, averaged
categorization and recognition data will not reveal a special
role for the exceptions because the particular items serving as
the exceptions will differ across individual participants.

We used a variety of techniques in this research in an
attempt to reveal the special role of the exceptions in partici-
pants’ category representations. In each of the first three
experiments, we used ill-defined category structures consisting
of stimuli varying along highly separable, binary-valued dimen-
sions. In these structures, no perfect single-dimension rule or
conjunctive rule existed for defining category membership;
however, a variety of imperfect rules were available that could
be supplemented by exceptions. In the first experiment,
participants were supplied with explicit rule-plus-exception
instructions to control the strategy that was used for categoriz-
ing the items. We hypothesized that the exceptions to the
supplied rule would be the best recognized items. Armed with
knowledge of how these explicit rule-plus-exception instruc-
tions influence the types of representations that are formed, in
the second experiment we examined old-new recognition
following free-strategy category learning. Participants were
first clustered into two groups on the basis of the types of
rule-based generalizations they produced. We then examined
differential recognition of individual items within each sub-
group. If rule-plus-exception processes dominate during free-
strategy conditions, then patterns of results within each sub-
group should be similar to those observed in Experiment 1. In
the third experiment we sought additional evidence for differ-
ential old-new recognition of exceptions under free-strategy
conditions. We designed a category structure affording an
extremely limited number of rules so that the exceptions could
be determined beforehand, thus bypassing the need to exam-
ine different subgroups of participants. Finally, in Experiment
4, we extended the domain of inquiry from discrete, binary-
valued stimuli to stimuli varying along fuzzy, continuous
dimensions, again testing for differential recognition of excep-
tions to category rules. In all cases, we made use of explicit

formal models to corroborate our interpretations of the use of
exemplars in old—new recognition judgments, but where excep-
tions to the category rule have a special status in memory.

Models of Categorization and Recognition

In the following section we describe the formal models that
guided our research. The exemplar model is Medin and
Schaffer’s (1978) well-known context model, which has had
enormous success accounting for a variety of categorization
and recognition data. The rule-plus-exception model that is
used to supplement the context model’s predictions of old—new
recognition is the RULEX model proposed by Nosofsky,
Palmeri, and McKinley (1994). At the outset, we restrict
attention to stimuli varying along binary-valued dimensions.

Categorization

Context model. Categorization decisions in the context
model are based on similarity relations among exemplars. The
probability that a given stimulus §; is classified into Category A
is found by summing the similarity of S, to all members of
Category A and then dividing by the summed similarity of §; to
members of both Category A and Category B,

E $ij

PALS) = o (1)
ES,’J + j}{l;si]

As formulated for discrete binary-valued dimensions, the
similarity between exemplar S; and §; is given by the multiplica-
tive rule,

s =TT sie, @

where the s, are free parameters indicating the similarity of
mismatches along dimension m, and 3,(i, j) is an indicator
function equal to 0 if stimuli §; and S; match along dimension m
and set equal to 1 if they mismatch along dimension m. The
similarity parameters, s,,, represent a combination of dimen-
sional salience and selective attention (see Nosofsky, 1984,
1986). In general, when the physical dimensions are randomly
assigned to each abstract dimension for every participant, the
dimensional saliences can be assumed to be equal, hence, the
similarity parameters refiect selective attention.

RULEX. The basis for category learning in RULEX is the
acquisition of simple single-dimension rules or conjunctive
rules supplemented by the partial storage of exceptions to
those rules. One of the defining characteristics of RULEX is
that the behavior of an individual participant is highly idiosyn-
cratic. Different participants form different rules and remem-
ber different partial exceptions to those rules. The notion that
much of category learning is based on the extraction of simple
rules with the occasional storage of exceptions to those rules is
not entirely new (cf. Martin & Caramazza, 1980; Medin, 1986;
Medin, Wattenmaker, & Michalski, 1987; Ward & Scott,
1987). However, RULEX is the first such model to have
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explicitly been formulated and tested on a wide variety of
psychologicat data (see Nosofsky, Palmeri, & McKinley, 1994,
for additional details).

The learning process in RULEX works basically as follows.
First, RULEX searches for a perfect single-dimension rule. A
dimension is sampled and a single-dimension rule is formed. In
the general version of the model, each dimension is sampled
according to its intrinsic salience, W, where the saliences are
free parameters. However, when physical dimensions are
randomly assigned to abstract dimensions, we assume equal
saliences (the only exception is Experiment 1 in which partici-
pants were supplied with a rule, causing that dimension to
acquire a higher salience). If a rule fails it is discarded and a
new dimension is sampled. If no dimension yields a perfect
single-dimension rule (as was true in all experiments presented
in this article), then RULEX searches for imperfect single-
dimension rules. A dimension is selected and a single-dimen-
sion rule is formed. This rule is retained for a minimum
number of trials (set equal to the number of training items by
default). From this point on, the imperfect rule is retained only
if performance exceeds a lax criterion (set to 60% correct by
default). After a given number of trials (set equal to twice the
number of training items by default) the rule is evaluated. If
performance exceeds a strict criterion, scrit (which is a free
parameter), the rule is permanently stored, otherwise it is
discarded and another dimension is selected. If all dimensions
have been sampled, RULEX searches for conjunctive rules by
using a similar process.

After a single-dimension rule or conjunctive rule has perma-
nently been stored, RULEX begins the exception storage
stage. If an item is encountered that contradicts the rule, then
RULEX attempts to store that exception. Each dimension of
the item is probabilistically sampled with probability pstor
(which is a free parameter); the dimension(s) that were part of
the failed rule are sampled with probability one. Any dimen-
sion not sampled is stored as a “wildcard” (+) that can match
any value. Storage of the exception is also probabilistic, with
P (successful storage) = pstor¥, where N is the number of
sampled dimensions. For example, given the stimulus structure
shown in Table 1, suppose a rule has been formed along
dimension 1 such that value 1 on dimension 1 signals an A and
value 2 signals a B. When AS (2111) is encountered, an error
occurs, and an attempt is made to store this item as an
exception. Dimension 1 is sampled with probability one, and
dimensions 24 are each sampled with probability pstor.

During the categorization decision process, an item is first
matched with all exceptions that have been stored. For
example, 2111 and 2112 match the exception 21**. If an item
matches more than one exception, then a response is made
probabilistically, depending on how many of those exceptions
signal Category A or Category B. If an exception causes an
error, it is removed from memory. If none of the exceptions
match the item, then the rule is applied.

Recognition

Context model. According to the context model, whereas
categorization decisions are based on the relative summed
similarity of an item to exemplars of each category, recognition

Table 1
Category Structure Used in Experiments | and 2
Dimension
Category and item values

Category A
Al 1112
A2 1212
A3 1211
Ad 1121
AS 2111

Category B
B1 1122
B2 2112
B3 2221
B4 2222

Transfer item
T1 1221
T2 1222
T3 1111
T4 2212
T5 2121
T6 2211
T7 2122

Note. Based on Medin and Schaffer (1978).

decisions are based on the absolute summed similarity of an
item to exemplars of both categories (Gillund & Shiffrin, 1984,
Hintzman, 1986, 1988; Nosofsky, 1988, 1991). The overall
summed similarity, or familiarity, F;, of each stimulus, §;, is
given by

F;= Esij+ Zsf;, 3)
jed jeB

where the similarities are defined in Equation 2. Recognition
judgments are assumed to be a monotonically increasing
function of this summed similarity.

RULEX. In an extreme version of RULEX, recognition
decisions are only based on the partial exceptions. Note that
recognition judgments may vary among individual participants
because different partial exceptions have been stored. The
familiarity of a stimulus, §;, is based on its summed similarity to
each of the exceptions, X}, and is given by

F;= 2 Sij- 4)
jeFxe

The similarity between a stimulus, $;, and an exception, X}, is
given by

M
s5= 11 On(@.)), ©)
m=1
where
s, if X; contains a wildcard on dimension m
8,,(i,j) = {5, if S; mismatches X; on dimension m (6)

1 if §; matches X; on dimension m,
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where s, and s, are free parameters. s, reflects the similarity of
a value to a wildcard. whereas s, reflects the similarity of
mismatching values.!

Combined model. In the combined model, we assume that
recognition decisions are primarily based on the exceptions,
but that there is also residual memory for old items. We
formulated a model in which the summed similarity was a
combination of summed similarities to stored exceptions and
residual summed similarities to all old exemplars. The familiar-
ity of a stimulus §; was defined by

Fy=oF¥ + (1 - w)FE, 7

where F¥ is the summed similarity of §; to the exceptions, as
defined above for RULEX, and FF is the residual summed
similarity to all exemplars, as defined above for the context
model. Because exceptions are presumably more strongly
encoded, they are weighted by w. A four-parameter model was
formalized with parameters s,, s,, s, and w, where s is the
residual exemplar-similarity parameter in Equation 2. Setting
o equal to zero results in a pure version of the context model,
in which s,, = s for all dimensions m. Setting w equal to one
results in a pure version of RULEX.

Experiment 1

In the first experiment we supplied participants with explicit
rule-plus-exception instructions to control as carefully as
possible the type of strategy that was used during category
learning. The goal was to investigate the pattern of recognition
data that would be observed when rule-plus-exception strate-
gies are used for categorization. We hypothesized that under
such conditions the exceptions to the supplied rute would be
the best recognized items. After verifying and modeling such a
pattern of results, the next step would be to search for evidence
of rule-plus-exception processes under free-strategy conditions.

Experiment 1 was a partial replication and extension of a
study by Medin and Smith (1981). These researchers found
that the context model could adequately account for categori-
zation under conditions of explicit rule-plus-exception instruc-
tions and free-strategy instructions. Therefore, they argued, an
account of categorization under different strategies could be
made within the framework of a single process model (see also
Medin, 1986). The effect of different strategies was merely to
alter the amount of information stored about each attribute.
However, Medin and Smith did not compare the predictions of
the context model with those of a rule-plus-exception model.
Thus, a subsidiary goal of this experiment was to compare the
predictions of RULEX and the context model with regards to
categorization judgments under conditions in which explicit
rule-plus-exception instructions were provided.

Method

Participants. The participants were 58 undergraduate and gradu-
ate students from Indiana University who were paid $5.00 for their
participation. All participants were individually tested.

Stimuli. The stimuli were computer-generated line drawings of
rocketships varying along four binary-valued dimensions: shape of

wing (triangular or rectangular). nose (staircuse or half circle).
porthole (circular or star). and tail (jagged or boxed) (modeled after
stimuli used by Hoffman and Ziessler, 1983). The abstract category
structure is shown in Table | (Medin & Schaffer, 1978). The ass}gn.-
ment of physical dimension to abstract dimension was randomized for
every participant, as was the assignment of physical values along a
dimension to abstract values (! or 2). In all experiments. stimulus
presentation and response recording were controlled bv IBM-
compatible personal computers.

Procedure.  Participants were instructed to follow a rule-plus-
exception strategy at the start of the experiment. A sample stimulus
was shown on the screen with one of the four dimensions highlighted.
Instructions read as follows:

We want you to use a particular strategy to learn to classify the
rocketships. You might call it a “rule-plus-exception strategy.”
First, pay attention to the part of the rocketship which is
highlighted on the display in front of you. During the experiment,
we want you to pay attention to this dimension and learn which
shape of this part is associated with rocketships from Planet A and
which shape is associated with rocketships from Planet B. You
will find a rocketship from each planet that is an exception to this
rule. Memorize these rocketships. When you have mastered the
task, you will be doing something like looking to see if the
rocketship is one of the exceptions; if so, make the memorized
response; if not, apply the rule.

For every participant, the “‘rule”™ dimension corresponded to abstract
dimension 1 in Table 1. Hence, for every participant, A5 and Bl were
the exceptions. Because the assignment of physical dimensions to
abstract dimensions was randomized for every participant, the particu-
lar physical dimension defined as the rule was different for every
participant. After the participants had read the instructions they were
again explicitly told by the experimenter which dimension to form a
rule along and that there would be a couple of exceptions to this rule.

There were 16 blocks of training trials. Each of the nine training
stimuli, A1-A5 and B1-B4, was presented once per block. The
presentation order was randomized for each subject. On each trial, the
participant was presented with a rocketship and judged if it was from
Planet A or Planet B. Responses were made by pressing one of two
labeled keys on the computer keyboard. After a participant responded,
corrective feedback was provided for 2 s. After an interval of 1 s, the
next stimulus was shown. In addition, during the first two blocks of
training, only the stimuli that followed the rule were displayed. This
procedure was used to avoid the possibility of having one of the
exceptions appear very early, causing participants to abandon the
strategy they were explicitly told to use. This aspect of our procedure
differs from Medin and Smith (1981).

Following training, participants completed a transfer phase in which
they categorized and made old—new recognition judgments about all
16 stimuli. On each trial, the participant first judged if the rocketship
was from Planet A or Planet B and then judged whether the rocketship
was old or new. No corrective feedback was provided after either
response. Each of the 16 stimuli was presented once per block for a
total of three blocks. Participants were told to judge a rocketship as old
only if it had been seen during training.

!'In a complete version of the model, the actual features making up
the rule would also be represented in memory. So, if a new feature
value were presented along the dimension forming the rule, the
participant should immediately recognize it as a new item. Such
manipulations were not carried out in the experiments reported in this
article.
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Participants also completed five blocks of a speeded categorization
task in which they categorized each of the 16 stimuli as quickly as
possible without sacrificing accuracy. On each trial, a small crosshairs
appeared on the screen for 500 ms to alert the participant to the next
stimulus. Participants were instructed to keep one finger from each
hand on the response keys at all times during this phase. Feedback was
supplied only for old stimuli originally seen during the training phase.

Results

Categorization and recognition data. A fairly high criterion
was set to ensure that only those participants who followed the
rule-plus-exception strategy were included in the analyses. A
reasonable assumption is that most of the participants who did
poorly in the experiment were those who either did not follow
the instructions or abandoned the explicit strategy that was
given to them. Such participants might have adopted different
rules or might have tried to memorize all of the items.
Including them would have disrupted our goal of studying
old—new recognition under highly controlled conditions deemed
to promote the rule-plus-exception strategy. Participants mak-
ing six or more errors in the last four blocks of training (36
trials) were excluded. A total of 35 participants (60%) satisfied
the criterion for inclusion in the study.

The observed categorization data obtained during the trans-
fer phase are shown in Table 2 as the probability of classifying
each of the 16 rocketships as a member of Category A. Observe
that T1-T3 each have value 1 on dimension 1 and T4-T7 each
have value 2 on dimension 1. As shown in Table 2, there was a
tendency to classify transfer items T1-T3 into Category A and
T4-T7 into Category B. Thus, the pattern of categorization for
the new transfer items is consistent with the use of the rule
provided. Moreover, this rule-described tendency was weakest
for T2, T5, and T6, which are each very similar to one of the
exceptions, AS or Bl. For example, T2 (1222) can be classified
according to the rule as a member of Category A or according
to the similar stored exception, B1 (1122), as a member of
Category B. Finally, as might be expected, more errors were
made on the exceptions, AS and B1, than were made on the
other training items. In summary, the overall pattern of
categorization data is consistent with the use of the rule-plus-
exception strategy that participants were instructed to use, a
point that we corroborate in the Categorization theoretical
analysis section.

The observed recognition probabilities are shown in Figure
1. Although overall recognition performance was not very
good, the training items, on average, were recognized as old
with higher probability than the new transfer items, 1(34) =
4.40, p < .001. Furthermore, if one excludes the exceptions
from the analysis, the remaining old items still had higher
recognition probabilities than the new items, 1(34) = 2.45,p <
.01. Of particular interest, the exceptions, AS and B1, were
recognized as old with higher probability than any other item
(all relevant pairwise ¢ tests were significant, 1(34) > 1.83,
p < .05). New items that were similar to the exceptions also
tended to have relatively high recognition probabilities.

The median response times for each item in the speeded
categorization phase are shown in Figure 2. The most striking

Table 2
Categorization Response Probabilities P(4) Observed and
Predicted by RULEX and the Context Model in Experiment |

Stimulus
Category Dimension Context
and item vajues Observed RULEX model
Category A
Al 1112 .943 972 .943
A2 1212 1.000 983 .996
A3 1211 97 .988 .999
A4 1121 981 972 .878
A5’ 2111 924 932 .872
Category B
B1 1122 133 129 176
B2 2112 057 032 123
B3 2221 .023 014 .004
B4 2222 019 012 .00
Transfer item
T1 1221 943 .934 935
T2 1222 .686 .654 553
T3 111 943 .983 969
T4 2212 .029 061 .065
TS 2121 143 255 415
T6 2211 324 302 461
T7 2122 076 019 059

Note. RULEX = rule-plus-exception model.

finding was that the exceptions, AS and BI1, were classified
several hundred milliseconds slower than any other item (all
relevant pairwise Wilcoxon tests were significant, z > 4.77,
p < .01). We discuss the interpretations of these results
following presentation of the formal modeling analyses.

Categorization theoretical analysis. Our first goal was to
corroborate that participants followed our instructions and
used a rule-plus-exception strategy by comparing the predic-
tions of RULEX and the context model with respect to the
categorization judgments. We first fitted a version of RULEX
with three free parameters to the categorization data. The
parameters were the criterion for accepting single-dimension
rules, scrit, the exception storage probability, pstor, and a
salience parameter for the rule dimension, W, (all other
parameters were set at their default values; see Nosofsky,
Palmeri, & McKinley, 1994). We modeled the explicit rule
instructions by assuming a high salience along the dimension
on which the rule was provided, W;. Because RULEX is
inherently stochastic, all of the fits to the categorization data
reported in this article were averaged over Monte Carlo
simulations of 5,000 individual runs. The best fitting param-
eters were found by conducting an extensive grid search using
summed squared error (SSE) as the measure of fit. The
predicted categorization response probabilities are shown in
Table 2. RULEX provided an excellent fit to the average
classification data, SSE = 0.022, accounting for 99% of the
variance. The best fitting parameters were scrit = 0.72, pstor =
0.67, and W, = 0.89 (with W, = W; = W, = 0.037; the W;s sum
to 1.0).

The excellent fit of RULEX contrasts with a relatively poor
fit of the context model. A version of the context model with
four free similarity parameters was fitted to the categorization
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Figure 2. Median speeded categorization response times in Experiment 1.

data by using a hill-climbing algorithm that minimized the
summed squared error. The results, shown in column 3 of
Table 2, yielded an SSE of 0.134, with best fitting similarity
parameters of s; = 0.000, s; = 0.074, 53 = 0.066, and 5, = 0.141.
This fit is appreciably worse than that of RULEX, even though
the context model has an additional free parameter.

Recognition theoretical analysis. Having obtained evidence
that participants in this experiment followed the explicit
instructions provided to them, we now turn to the real issue of
interest, namely the effect that the rule-plus-exception strategy
had on old-new recognition. To address this issue, we fitted
versions of RULEX, the context model, and the combined
model to the recognition probabilities shown in Figure 1. In all
of the fits reported, we found parameters that maximized the
linear correlation between the observed recognition probabili-
ties (or ratings) and the predicted summed similarities.”

We first fitted the strict RULEX model to the recognition
data. In ali fits involving RULEX, the parameters scrit, pstor,
and W, that best fitted the categorization data were held fixed,;
only the similarity parameters s; and s, were allowed to vary.
Each simulation yielded a unique set of rules and exceptions
for a hypothetical participant, which was used to generate that
participant’s summed similarities for each item. The predic-
tions for the individual simulated runs were then averaged to
predict the group data. The predictions are shown in Figure
1A along with the observed recognition probabilities. The
correlation between the observed and predicted recognition
probabilities was r = .865. Although this strict RULEX model
successfully predicted superior recognition memory for the ex-
ceptions, AS and B1, it had difficulty accounting for the residual
recognition of old rule-following items relative to new transfer
items; the model overpredicted the recognition of many new

items and underpredicted the recognition of many old items.
Residual memory for old exemplars was found, even under
conditions involving explicit rule-plus-exception instructions.

We next fitted a four-parameter version of the context
model to the recognition probabilities. The results are shown
in Figure 1B. The correlation between the observed and
predicted recognition probabilities was relatively poor, r =
.734. Although the context model correctly predicted better
overall recognition of the old items retative to the new items, it
failed to predict many important trends in the data, especially
regarding recognition of the exceptions. Foremost, the context
model failed to predict high recognition of one of the excep-
tions, A5; contrary to the data, three old items (Al, A4, and
B2) and one new item (T3) were predicted to be better
recognized than AS. In fact, as shown in Appendix A, the
standard context model cannot predict high recognition of
both AS and Bl compared with A4 and B2, regardless of the
values of the similarity parameters. The qualitative pattern of
results in this experiment rules out an explanation of old—new
recognition in terms solely of the exemplar storage processes
allowed in the standard context model.

Taken together, these modeling results suggest that al-
though the exceptions do have a special status in memory, old

2 The assumption of a linear relation between recognition probabili-
ties (or ratings—see Experiments 3 and 4) and summed similarities is
made for simplicity. Nonlinear squashing functions could yield slight
improvements in quantitative fit but would not change the qualitative
predictions of the models. In every case, for clarity and ease of
exposition, we display the predicted recognition probabilities (or
ratings) found by regressing the predicted summed similarities onto
the observed recognition probabilities (or ratings).
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exemplars were still remembered. Hence, we tested a com-
bined model in which recognition decisions were based on
similarity to stored exceptions and old exemplars (Equation 7).
The best fitting parameters yielded a correlation of r = .925,
with s, = 0.329, s, = 0.050, s = 0.000, and o = 0.889. The
predicted recognition probabilities of this combined model are
shown in Figure 1C. The addition of residual memory for old
exemplars increased the familiarity of old items relative to new
items, but the exceptions were more heavily weighted, as
indicated by the high value of .

Overall, the combined RULEX model does an excellent job
of predicting the overall pattern of recognition data (jts only
obvious failings were moderate mispredictions of B3 and B4).
Furthermore, for RULEX, the fit to the recognition data was
entirely dependent on the categorization simulation to deter-
mine the rules and exceptions formed—even more impressive
fits could be achieved if the categorization data and the
recognition data were fitted simultaneously.

Discussion

This experiment provided support for our hypothesis that, if
people are instructed to use a rule-plus-exception strategy
during learning, then the exceptions to the supplied rule would
be the best recognized items. The theoretical analyses revealed
that the exceptions to category rules have a special status in
memory relative to other category exemplars. A hybrid repre-
sentational model was required in which recognition decisions
were a function of strongly weighted exceptions plus some
residual memory for the remaining old exemplars.

Further evidence for the special nature of exceptions was
supplied by the speeded phase in which the exceptions were
categorized several hundred milliseconds slower than any
other item (see Ward and Scott, 1987, for a similar result).
Although there does not exist a response time model of
categorization that can formally be applied to these data, the
results are suggestive that something special may be occurring
when people encounter the exceptions. For example, every
dimension of an exception must be verified. By contrast, for the
remaining items, few dimensions need to be checked because
once a single mismatch is found, the rule can be applied. This
pattern of results is consistent, therefore, with a rule-pius-
exception strategy involving some form of limited capacity,
self-terminating comparison process. Clearly, however, further
theoretical and empirical work is needed to test other potential
response time models.

Although the exceptions were more strongly encoded in
memory, there was also residual memory for the nonexception
old items. This result is extremely important because it
indicates that even under extreme conditions involving explicit
rule-plus-exception instruction, there is still some memory for
old exemplars. Thus, even if rule-plus-exception processes
operate in free-strategy conditions, we should still expect to
see evidence of memories for old exemplars.

Residual memory for nonexception old items is consistent
with the processing assumptions of RULEX. Before a rule can
be applied, a decision must be made about whether the item is
an exception. This decision requires the participant to check
other dimensions besides the rule dimension. Whereas the

exceptions are encoded by an active memorization process, the
nonexceptions may be encoded as a bvproduct of this cxception-
verification process. Thus, the nonexceptions will be remem-
bered, but not to the same cxtent as the exceptions.

Experiment 2

Armed with the knowledge of what to expect when partici-
pants are instructed to use a rule-plus-exception strategy, we
now looked for evidence of rule-plus-exception processes
during free-strategy conditions. In Experiment 2, we provided
participants with standard, free-strategy instructions, replicat-
ing the classic Medin and Schaffer (1978) experiment. Nosof-
sky, Palmeri, and McKinley (1994) showed that RULEX
successfully predicted the averaged categorization data ob-
tained in this experimental paradigm. Furthermore, beyond
predicting averaged transfer data, RULEX provided a fairly
good account of the distribution of generalization patterns
observed at the individual participant level. The novel contribu-
tion of the present experiment involved collecting recognition
judgments after category learning to test for superior recogni-
tion of the exceptions relative to the other items.

Recall that a crucial assumption underlying RULEX is that
different participants form different rules and store different
exceptions. According to RULEX, average categorization data
for the structure shown in Table 1 can be accounted for by
assuming most participants form rules along dimension 1 or
dimension 3, with partial exceptions A5 and Bl or partial
exceptions A4 and B2, respectively (along with smaller propor-
tions of rules along dimension 4 and a variety of conjunctive
rules). Such a mixture of different strategies makes it difficult
to examine differential recognition of the exceptions directly
because average data obscure any difference in recognition
that may be present. Suppose AS and Bl are the best
recognized items for one group of participants (with A4 and B2
poorly recognized), and A4 and B2 are the best recognized
items for another group of participants (with AS and B1 poorly
recognized). Averaging across these two sets of participants
masks the differences that are present.

Therefore, the idea in this experiment was to first select
those participants who most likely formed single-dimension
rules along dimensions 1 and 3 and then to examine differen-
tial recognition and speeded categorization of the exceptions
within these subgroups. As described below in more detail,
participants were partitioned into groups on the basis of the
pattern of categorization responses made during the transfer
phase. For example, a participant who classified T1-T3 into
Category A and T4-T7 into Category B likely formed a rule
that value 1 on dimension 1 signals Category A. Participants
who showed this pattern of dimension 1 generalizations, as
well as other patterns, were grouped together for analysis; we

3 The model fits suggest that these residual exemplar memories were
highly distinctive, as indicated by s = 0.000. A result for which we have
no explanation is why the estimated value of s,,, which measures the
similarity between a dimension value and a wildcard, is less than that
of s,, which measures the similarity between mismatching dimension
values. The fits are not very sensitive to the precise values of s,
however, so these results should not be emphasized.
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then tested for differential recognition of AS and B1. A similar
subgroup of participants was formed for dimension 3 general-
izations, testing for differential recognition of A4 and B2.

Method

Participants.  Participants were 198 undergraduates from Indiana
University who received partial course credit in an introductory
psychology course for their participation.

Stimuli.  The stimuli and category structure were the same as those
used in Experiment 1.

Procedure. Participants received standard, free-strategy instruc-
tions. There were 25 blocks of training trials. Each of the nine training
stimuli, A1-AS5 and Bi-B4, was presented once per block. On each
trial, a participant was presented with a stimulus, judged if it was a
member of Category A or Category B, and received corrective
feedback for 2 s. The next stimulus was shown after an interval of 500
ms. Training ended if the participant completed four consecutive
error-free blocks.

Following training, three blocks of transfer-recognition trials were
presented. On each trial, a participant first categorized an item and
then judged it as new or old. Recognition judgments were made by
using a confidence rating scale with responses ranging between (1)
absolutely sure new and (8) absolutely sure old. Responses were made by
pressing one of eight labeled numeric keys at the top of a computer
keyboard. No corrective feedback was provided after either response.

Following the transfer phase, participants were given a speeded
categorization task identical to that used in Experiment 1.

Results

Overall categorization. The categorization data obtained
during the transfer phase are shown in Table 3 as the
probability that each item was classified as a member of
Category A. Notice that most errors were made on AS and B,
and A4 and B2, the exceptions to rules along dimensions 1 and
3, respectively. The distribution of generalization patterns
underlying these average transfer data is shown in Figure 3. As
introduced in Nosofsky, Palmeri, and McKinley (1994; see also
Nosofsky, Clark, & Shin, 1989; Pavel, Gluck, & Henkle, 1988),
we defined a pattern of generalization for an individual
participant as the pattern of responses given to each new
transfer item. For example, if a participant classified T1-T3 in
Category A, and T4-T7 in Category B, this defined the
generalization pattern AAABBBB. Because there were seven
transfer items and two categories, there was a total of 27 = 128
possible patterns.

Three prominent generalization patterns were observed,
along with a number of other patterns. Pattern AAABBBB is
consistent with a single-dimension rule along dimension 1, and
pattern BBAABAB is consistent with a single-dimension rule
along dimension 3. Pattern ABABBAB is consistent with rules
along both dimension 1 and dimension 3, as well as being
consistent with pure exemplar storage.* Overall, the distribu-
tion of generalization patterns is similar to the distribution
observed by Nosofsky, Palmeri, and McKinley (1994).

Other generalization patterns, besides the prominent ones
listed above, are consistent with rules along dimensions 1 or 3.
For example, pattern ABABBBB is consistent with a rule on
dimension 1 along with the exception 1*22 — B. Pattern
BAAABAB is consistent with a rule on dimension 3 along with

Table 3

Categorization Response Probabilities P(A) for All Participants
and Those Showing Dimension 3 Generalizations and
Dimension 1 Generalizations in Experiment 2

Stimulus

Category Dimension

and item value Overall Dimension3 Dimension |
Category A

Al 1112 811 .787 .894

A2 1212 .838 .870 .887

Al 1211 .856 917 .943

A4 1121 704 685 816

AS 2111 722 .898 .560
Category B

B1 1122 322 157 532

B2 2112 306 .500 .106

B3 2221 .200 167 .149

B4 2222 113 056 071
Transfer item

T1 1221 .630 .250 943

T2 1222 379 .093 759

T3 1111 .846 917 .943

T4 2212 337 787 078

TS 2121 318 .361 .326

T6 2211 .589 907 255

T7 2122 192 167 113

the exception 1*2* — A. We conducted a simulation of
RULEX by using standard parameter settings (see Nosofsky et
al.,, 1994) to determine which patterns of generalization were
consistent with rules along dimension 1 or dimension 3, but not
both. Table 4 displays the observed patterns that were exclu-
sively predicted by rules along dimension 1 or dimension 3.
Using these sets of generalization patterns, we partitioned par-
ticipants into those showing dimension 1 generalizations (47
participants) or dimension 3 generalizations (36 participants).

In the following analyses, we examine categorization, recog-
nition, and speeded categorization for these two subgroups of
participants. We expected participants who displayed dimen-

4 Pattern ABABBAB is consistent with two different interpreta-
tions. First, it mirrors the average transfer data (see also Medin &
Schaffer, 1978; Nosofsky, Palmeri, & McKinley, 1994), so the context
model predicts it to be the most probable generalization pattern.

Second, pattern ABABBAB is also consistent with at least two
different rule-based patterns of generalization. Imagine that a partici-
pant forms a rule along dimension 1, such that value 1 signals Category
A, along with exceptions 1*22 — B and 2*11 — A. Stimuli T1, T3, T4,
TS, and T7 would be classified according to the rule as members of
Category A, A, B, B, and B, respectively. Now, exception 1*22 matches
T2, so it would be classified as a member of Category B, and exception
2*11 matches T§, so it would be classified as a member of Category A.
This yields the generalization pattern ABABBAB for transfer stimuli
T1-T7.

Similarly, imagine that a participant forms a rule along dimension 3,
such that value 1 signals Category A, along with the exceptions 1*21 —
A and 2*12 — B. Stimuli T2, T3, TS5, T6, and T7 would be classified
according to the rule as B, A, B, A, and B, respectively. Exception 1*21
matches T1, so it would be classified in Category A. Exception 2*12
matches stimulus T4, so it would be classified in Category B.

5 Some of these generalization patterns might be consistent with
other single-dimension or conjunctive rules as well.
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Figure 3. Observed distribution of generalization patterns in Experiment 2. Only those patterns observed

in two or more participants are displayed.

sion 1 generalizations to show superior recognition of A5 and
B1, and participants who displayed dimension 3 generaliza-
tions to show superior recognition of A4 and B2. Furthermore,
these items should produce more errors during transfer and be
categorized more slowly during the speeded phase. As dis-
cussed in Experiment 1, the context model cannot predict
superior recognition of both AS and B1 relative to A4 and B2,
nor can it predict the opposite. Therefore, for each group of
participants, a critical test will be to compare recognition of A5
and Bl with A4 and B2.

Dimension 3 generalizations. We start by discussing the
dimension 3 generalizations because these data provide the
clearest evidence in favor of the RULEX predictions. Table 3

Table 4

Generalization Patterns Consistent With Rules Along
Dimension 1 and Dimension 3 in Experiment 2 According to
RULEX Simulations

Dimension 1

Dimension 3

ABABBBB BBABBAB
AABBBBB BBAABBB
AAABBBB BBAABAB
AAABBBA BBAABAA
AAABBAB BBAAAAB
AAABABB BAAABAB
AAAABBB ABAABAB

Note. RULEX = rule-plus-exception model.

displays the categorization data for this subgroup of partici-
pants. Most errors were made on the exceptions to the
dimension 3 rule, A4 and B2. Furthermore, the tendency to
apply the dimension 3 rule to the new transfer items was
weakest for those items that were similar to the exceptions,
namely T1, T4, and T5. Each of these items differs from one of
the exceptions along a single, nonrule dimension. This pattern
of results is consistent with the idea that many of these
participants used a rule-plus-exception strategy along dimen-
sion 3.

Figure 4A displays the recognition data for participants who
showed dimension 3 generalizations. Consistent with the
predictions of a rule-plus-exception strategy, the exceptions to
the dimension 3 rule, A4 and B2, tended to be the best
recognized items. Also, the average recognition of A4 and B2
was significantly higher than that for A5 and B1, ¢(35) = 2.572,
p < 0L

Table 5 displays the median speeded categorization re-
sponse time for participants who made dimension 3 generaliza-
tions. Again, consistent with the rule-plus-exception hypoth-
esis, the exceptions to the dimension 3 rule, A4 and B2, were
categorized more slowly than any other old exemplar.

Dimension 1 generalizations. Table 3 displays the categori-
zation data for the subgroup of participants who showed
patterns of generalization consistent with a logical rule along
dimension 1. As expected, the exceptions, A5 and B1, were
categorized with the lowest accuracy. Also, the pattern of
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responses for the transfer items is consistent with participants
forming rules along dimension 1 combined with some partial
exceptions formation. As in Experiment 1, the tendency to
apply the rule along dimension 1 was weakest for those new
transfer items that were similar to the exceptions, namely T2,
TS, and Té6.

Figure 4B displays the recognition ratings for participants
who showed dimension 1 generalizations. By comparison to
the dimension 3 data, the present recognition data do not
provide as clear evidence for the use of rule-plus-exception
strategies. That is, some nonexceptions were recognized as
well or better than the exceptions. Still, the exceptions re-
ceived higher recognition ratings than most of the old exem-
plars. Critically, the average recognition of AS and Bl was
significantly greater than that of A4 and B2, ¢(46) = 2.163,p <
.05, a pattern impossible for the context model to predict,
regardless of its parameter settings.

(A) Dimension 3 Generalizations
Recognition

Al A2 A3 M A58 B2 BIBATI T2TI T4 TS T8 17
Stimulus

Dimension 1 Generalizations
Recognition

(B)

461
Al A2 A3 M ASBI B2BIBITI T2 TIT4TS T8 T7

Stimulus

Figure 4. Recognition ratings observed in Experiment 2 for each
generalization subgroup. (A): dimension 3 generalizations and (B):
dimension 1 generalizations.

Table 5

Speeded Categorization Response Times (in Milliseconds) From
Panticipants Who Showed Dimension | and Dimension 3
Generalizations in Experiment 2

Stimulus

Category Dimension

and item value Dimension 1 Dimension 3
Category A

Al 1112 980 957

A2 1212 930 1,004

A3 1211 861 924

A4 1121 938 1.189

AS 2111 1,249 1,139
Category B

B1 1122 1,327 1.072

B2 2112 1,094 1,316

B3 2221 1,027 1.103

B4 2222 897 1,063
Transfer item

Ti 1221 904 1.176

T2 1222 1,048 1,003

T3 1111 933 981

T4 2212 980 1,010

TS 2121 1,025 1,198

T6 2211 1,131 991

T7 2122 950 1,091

Although the general pattern of recognition data for this
subgroup of participants was similar to that found in Experi-
ment 1, A5 and B1 were not the best recognized items. This
result could be due to greater exemplar memorization occur-
ring during free-strategy conditions relative to explicit rule-plus-
exception conditions. However, it could also be because
participants did not adequately store the exceptions to the
rules they formed. Unlike in Experiment 1, we did not have
enough participants to allow us to discard nonlearners. Hence,
many of the participants in this subgroup may indeed have
formed a rule along dimension 1, but failed to adequately store
the exceptions, so the exceptions were not recognized as well
for these participants. Furthermore, although the generaliza-
tion patterns were consistent with single-dimension rules,
some of these participants may have formed various conjunc-
tive rules, causing different stimuli to become the exceptions.

Table 5 displays the median speeded categorization re-
sponse times for the participants who showed dimension 1
generalizations. As in Experiment 1, the exceptions, A5 and
B1, were categorized more slowly than any other item.

Discussion

A major explanation for how people learn ill-defined catego-
ries has been that people memorize exemplars and make
decisions according to similarity relations among these exem-
plars (Estes, 1994; Medin & Schaffer, 1978; Nosofsky, 1984,
1986). For the most part, support for these claims has relicd on
averaged categorization data. However, past and current
evidence suggests that averaged categorization data may not
always accurately reflect the behavior of individual partici-
pants (see Nosofsky, Palmeri, & McKinley, 1994; Trabasso &
Bower, 1968). Indeed, others have suggested that data consis-
tent with apparent exemplar-based processes may be the result
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Table 6
Category Structure Used in Experiment 3

Category and item Dimension value

Category A
Al 21111
A2 11122
A3 12211
A4 11221
A5 12112
A6 11212
A7 12121
A8 11111

Category B
B! 12222
B2 22211
B3 21122
B4 22112
B5 21221
B6 22121
B7 21212
B8 22222

Transfer item
T1 22221
T2 22212
T3 22122
T4 22111
TS 21222
T6 21211
T7 21121
T8 21112
T9 12221
Ti0 12212
T11 12122
Ti2 12111
T13 11222
T14 11211
T15 11121
T16 11112

of averaging together participants who utilize various idiosyn-
cratic rule-based strategies (cf. Martin & Caramazza, 1980;
Ward & Scott, 1987).

In the present experiment, evidence for rule-plus-exception
processes under free-strategy conditions came from superior
recognition and slower categorization of exceptions. Two
subgroups of participants were formed on the basis of rule-
based generalizations that were made (as predicted by
RULEX). The exceptions to the rule that defined each
subgroup tended to be recognized better and categorized more
slowly than any other item. In a critical test that bears on the
predictive power of the context model, the exceptions for one
subgroup were recognized better and categorized more slowly
than the items that were the exceptions for the other subgroup.
These data were consistent with the predictions of RULEX,
replicating and extending the findings of Experiment 1. In
contrast, it is impossible for the context model to predict these
results (see Appendix A).

One potential way to address the shortcomings of the
context model wouid be to allow individual differences in the
similarity parameters for different subgroups of participants.
Like the stochastic learning rule in RULEX, which allows
different participants to form alternative rules and form
varying exceptions, different groups of participants could

selectively attend to alternative dimensions. However, as
shown in Appendix A. the context model always predicts better
recognition of B2 than AS, and better recognition of Bl than
A4, regardless of the values of the similarity parameters. Thus,
the inability of the context model to predict these results
cannot be addressed simply by allowing individual differences
in the similarity parameters. Rather, an additional mechanism
is required to determine which items are exceptions and to
store these items more strongly.

Experiment 3

The previous experiment provided evidence consistent with
the use of rule-plus-exception strategies for categorization that
led to differential recognition of the exceptions. However, this
evidence required us to conditionalize on the patterns of
categorization data before generating recognition predictions.
The goal of Experiment 3 was to design a category structure
that allowed us to predict a priori which items would serve as
exceptions to the rule.

The category structure is shown in Table 6. RULEX predicts
that nearly all participants will learn this structure by forming a
rule along dimension 1 and attempt to remember the excep-
tions, Al and B1. Hence, the model predicts that the excep-
tions, Al and B1, should be the best recognized items. As we
discuss later, this category structure has an interesting prop-
erty with respect to the predictions of the context model—it is
impossible for the context model to predict superior recogni-
tion of the exceptions relative to the other old items, regardless
of the values of the parameters. In fact, the only qualitative
prediction the standard context model can make is that the old
items are given higher recognition ratings than the new items.

Inspection of the category structure reveals that a rule-plus-
exception strategy is not the only possible strategy that
participants could adopt. The categories were generated from
two prototypes, A8 and B8, which were presented during
training. Thus, dimensions 2-5 are partially diagnostic for
determining category membership. That is, a value 1 along
each dimension appears more often for Category A exemplars,
and a value 2 along each dimension appears more often for
Category B exemplars. This arrangement gives the categories a
family resemblance structure in addition to a rule-plus-
exception structure. Thus, the category structure does not
“force” the use of a rule-plus-exception strategy. Alternative
strategies, such as prototype or independent-feature strate-
gies, could also be used.

Method

Participants.  Participants were 54 members of the Indiana Univer-
sity community who were paid $5.00 for their participation. They could
receive up to $3.00 bonus depending on their performance on the
three phases of the experiment. All participants were individually
tested.

Stimuli. The stimuli were computer-generated drawings of starfish
that varied along five binary-valued dimensions: size (large or small),
texture (solid or speckled), number of arms (four or six), color (yellow
or blue), and outer texture (smooth or spiny; modeled after stimuli
used by Ahn & Medin, 1992). All physical dimensions and values along
dimensions were randomly assigned to abstract dimensions and values.
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The abstract category structure is shown in Table 6. The main
characteristic of this structure was that there existed an imperfect rule
that value 1 on dimension 1 signals Category A and value 2 on
dimension | signals Category B. There were two exceptions to this
rule. Al and Bl. Furthermore, dimensions 2-5 were somewhat
diagnostic; for Category A, the value | appeared five eighths of the
time along each dimension; for Category B, the value 2 appeared five
eighths of the time along each dimension.

Procedure. There was a maximum of 32 blocks of training trials.
Each of the 16 training stimuli, A1-A8 and B1-B8, was presented once
per block. The order of presentation was randomized for each
participant. On each trial, the participant was presented with an item
and judged if it was a member of Species A or Species B. After
participants responded, corrective feedback was provided for 2 s. The
next stimulus was shown after an interval of 500 ms. The training trials
were terminated after the participant completed 2 error-free blocks in
a row. Participants were paid $1.00 if they reached this criterion before
the 32 blocks had been completed.

Following training, participants made old-new recognition judg-
ments about each of the 32 stimuli, using the 8-point confidence rating
discussed earlier. There were two blocks of recognition. Participants
were told to judge a starfish as old only if it had been seen during
training. No corrective feedback was provided. Participants were paid
up to $1.00, depending on their performance during the recognition
test.

Following the recognition test, participants were given a transfer
test using all 32 stimuli and were asked to judge eachoneasan Aora
B. There were two blocks of transfer. No corrective feedback was
provided. Participants were paid up to $1.00 depending on how
accurately they categorized the old stimuli during the transfer trials.

Results

Categorization and recognition. Only those participants who
reached the established criterion of two consecutive error-free
training blocks in a row were included in the analyses. Of the
54 participants, 43 reached this criterion (80%). This high
criterion was set because a participant who never learned the
exceptions could still have achieved approximately 87% accu-
racy at the end of training. Including participants who never
learned the exceptions would have defeated the purpose of
testing for superior recognition of the exceptions.

The categorization data obtained during the transfer phase
are shown in Table 7. For the nonexceptions, we defined
P(correct) as the probability of assigning each item to the
category dictated by the value along dimension 1. For the
exceptions, we defined P(correct) as the probability of assign-
ing each exception to the correct category. Because the
physical dimensions were randomly assigned to the abstract

Table 7
Categorization Accuracy Observed and Predicted by RULEX
and the Context Model in Experiment 3

Stimuli Observed RULEX Context model
Exc 774 813 .761
Old 962 960 958
Pro .989 994 997
Sim .788 787 .761
Dis 954 .968 986

Note. RULEX = rule-plus-exception model; Exc = exceptions;
Old = old items; Pro = category prototypes; Sim = new items similar
to the exceptions; Dis = remaining new items.
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Figure 5. Recognition ratings observed and predicted by the context
model, RULEX (rule-plus-exception model), and the combined model
in Experiment 3. Exc = exceptions; Old = old items: Pro = prototypes:
Sim = new items similar to the exceptions: Dis = remaining new items.

dimensions for every participant, we did not expect differential
categorization or recognition of items that are logically indistin-
guishable; for example, A2 (11122) and A3 (11221) both differ
from the category prototype, A8 (11111), and the exception,
Al (21111), in logically the same way. Thus. we collapsed the
data into five distinct item types. Al and Bl were combined as
the exceptions (Exc); A2-A7 and B2-B7 were combined as the
old items (Old); A8 and B8 were combined as the prototypes
(Pro); T4, T6, T7, T8, T9, T10, T11, and T13 were combined as
the new items similar to the exceptions (Sim); the remaining
new items were then combined (Dis). As shown in Table 7,
more errors were made on the exceptions, Exc, compared with
the other old training items. Furthermore, more errors were
made on those new items similar to the exceptions, Sim, than
the remaining new items, Dis.

The average recognition ratings are shown in Figure 5. As
predicted, the exceptions, Al and B1 (Exc), were recognized
with the highest confidence. Also, the category prototypes, A8
and B8 (Pro), tended to be recognized with higher confidence
than the other old stimuli (Old). There was essentially no
difference in the recognition ratings given to the two types of
new items, Sim and Dis. The old items were recognized with
higher confidence than were the new items.

Categorization theoretical analysis. 'Two-parameter versions
of RULEX and the context model each fitted the categoriza-
tion data quite well, as shown in Table 7. The best fitting
parameters for RULEX were pstor = 0.610 and scrit = 0.790,
with SSE = 0.0048. The best fitting parameters for the context
model were s, = 0.002, s, = 0.228 (where s, is a common
similarity parameter along dimensions 2-5), with SSE =
0.0150.

Recognition theoretical analysis. The predicted recognition
ratings for the five item types are shown in Figure 5. A
two-parameter version of the strict RULEX model fitted the
recognition data poorly, r = .689. As expected, the strict
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RULEX model was able to capture the enhanced recognition
of the exceptions, Al and Bl. However, as in earlier simula-
tions, it was unable to predict residual recognition of the old
items relative to the new items.

A two-parameter version of the context model also failed to
fit the recognition data, r = .776. As shown in Figure 5, the only
qualitative trend the context model was able to predict was
that the old items were recognized with higher confidence than
the new items. The context model was unable to predict that
the exceptions were the best recognized items nor that the
prototypes were better recognized than most of the remaining
old items. In fact, this prediction is parameter free. The
absolute summed similarity of a given item to the old exem-
plars is the same for every old item and for every new item,
regardless of the parameter settings (see Appendix B).

As shown in Figure 5, the three-parameter combined model
predicted superior recognition of the exceptions, Al and Bt
(Exc), relatively high recognition of the category prototypes,
A8 and B8 (Pro), and higher recognition of the old exemplars
{Old) relative to the new exemplars (Sim and Dis). The
quantitative fit was quite good, r = 987, with s, = 0.000, 5,, =
0.999, and w = 0.769. As expected, the exceptions were more
heavily weighted than the other old exemplars, as indicated by
the large value of w. The value of s, the residual similarity
parameter, was arbitrary because the absolute summed similar-
ity for every old item and every new item was identical (see
Appendix B); thus, the residual exemplar similarity terms
merely added a constant amount to the absolute summed
similarity of every old item. The model also predicted slightly
higher recognition of Sim items relative to Dis items, but a
nonsignificant difference was observed in the opposite direc-
tion.

Consideration of a rehearsal-borrowing hypothesis. ‘Thus far,
we have interpreted our experimental results in terms of
rule-plus-exception classification strategies leading to memory
representations in which the exceptions have enhanced
strength. An alternative view needs to be considered, however,
which is not based on rule-plus-exception strategies. In all
cases that we have examined, the exceptions to the category
rule are also the most difficult items to classify. An exemplar
theorist can argue that participants devote special rehearsal to
these difficult-to-classify items in an effort to learn them. This
rehearsal borrowing leads to increased strength for the excep-
tions, thus explaining the superior old—new recognition perfor-
mance observed for these items.

Our main reaction to this rehearsal-borrowing hypothesis is
to note that it is extremely similar in spirit to the hypothesis
that has motivated our work. Furthermore, whereas the
hypothesis that exceptions may have a special status in memory
is an a priori prediction stemming from RULEX, the rehearsal-
borrowing idea is post hoc. Exemplar models have been used
in previous work to predict old-new recognition following
category learning, and in no case has an investigator posited
increased memory strength for difficult-to-classify items (e.g.,
Estes, 1986b, 1994; Hayes-Roth & Hayes-Roth, 1977; Medin,
1986; Medin & Florian, 1992; Nosofsky, 1988, 1991, 1992; Shin
& Nosofsky, 1992).

Nevertheless, in this section we make some preliminary
attempts to address this alternative hypothesis. First, we note

that although the hvpothesis that difficult-to-classify items
have increased memory strength would allow the context
model to predict the old-new recognition results, this same
hypothesis causes the model trouble in its predictions of
categorization. For example, we find that if memory-strength
terms are attached to the exceptions so as to enable adequate
recognition predictions (see Nosofsky, 1991), then the context
model no longer predicts that the exceptions are the worst
classified old items.

In another attempt to address the rehearsal-borrowing idea,
we tested a model that basically implements a form of
rehearsal borrowing in its learning rule. Kruschke's (1992)
ALCOVE model is an extended version of the context model
incorporating an error-driven learning rule, with association
weights learned between stored exemplars and alternative
categories. A key property of that model is that. because of its
error-driven learning rule, difficult-to-classify items can de-
velop stronger association weights to their respective catego-
ries than other items. Indeed, when we fitted ALCOVE to the
classification data from the present experiment, we found that
it predicted stronger learned association weights for the
exceptions than for the other old exemplars. Nevertheless,
when the best fitting version of ALCOVE was then used to fit
the old-new' recognition data, it failed to predict superior
recognition of the exceptions. (Old-new recognition predic-
tions are generated in ALCOVE by summing the activations
on all category-output nodes, a process that is analogous to the
summed-similarity rule in the context model—see Nosofsky
and Kruschke, 1992, pp. 225-226, for details.) The key point
here is that it is not trivial to find an exemplar model with a
learning rule in which exceptions are accorded greater strength
that can simultaneously predict the categorization and old-
new recognition data.

Discussion

The results of this experiment support the predictions of the
rule-plus-exception model of categorization and recognition
memory without supplying participants with an explicit strat-
egy, as in Experiment 1, and without partitioning participants
on the basis of generalization patterns, as in Experiment 2. The
results support the prediction of RULEX with respect to the
superior recognition of the exceptions to a rule along dimen-
sion 1. In contrast, this fairly straightforward prediction was
impossible for the standard context model to predict. Evidence
for the use of the rule-plus-exception strategy was obtained
despite the fact that the category structure afforded the use of
alternative strategies, such as independent-feature, prototype,
and exemplar strategies.

Further empirical support for the use of rule-plus-exception
processes during free-strategy category learning was supplied
by a second closely related experiment that we did not report.
In that experiment, the category structure was identical to the
one used here, except the prototypes, A8 and B8, were not
presented during training. The exceptions, Al and B1, were by
far the best recognized items. Unlike the present experiment,
the new transfer items similar to the exceptions (Sim) were
given a higher recognition rating than the dissimilar new items
(Dis), a result correctly predicted by RULEX. We do not
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report this second experiment in detail, however, because the
context model was also able to predict higher recognition of
the exceptions, albeit with highly unusual parameter settings.
Nevertheless, although this second experiment was not as
clearly diagnostic as the present one, the results add to the
generality of the recognition predictions stemming from
RULEX.

Experiment 4

In the final experiment we sought to generalize the finding
that exceptions to the “category rule” may have a special status
in memory. In the previous experiments the stimuli varied
along highly separable, binary-valued dimensions. By contrast,
the dimensions of natural objects are not always so clearly
delineated and they often vary continuously. We used the
classic random dot-pattern stimuli used by investigators such
as Posner and Keele (1968), Homa (1984), and numerous
others. In categorization experiments involving such stimuli,
prototypes defining each category are formed by randomly
positioning a set of dots. Statistical distortion algorithms are
then used to create training exemplars from each of the
prototypes. The stimuli created in such experiments arc
essentially infinitely variable and have a complex dimensional
structure, perhaps mimicking the dimensional structure of
many natural objects.

In the current experiment, we first formed two prototypes
and seven moderate-level distortions of each prototype. Six
distortions from one prototype and one distortion from the
other prototype formed each of two categories. The distortion
created from the prototype of the opposite category can be
thought of as the “exception” in its own category. Consistent
with previous results, we predicted that, after learning, the
exceptions would be better recognized than the other old
items. During recognition and transfer, we also included new
low-level distortions of the exceptions. We predicted that new
items that were similar to the exceptions might have high
false-alarm rates.

Unlike the previous experiments, no obvious single-
dimension rule was present to classify the items. Instead, each
category was defined by a prototype, and the exceptions were
those items generated from the opposite prototype. At pre-
sent, for such continuous-dimension stimuli, there is no model
analogous to RULEX that we can compare with the context
model at predicting the categorization data. Regardless, we
can still focus on the main aim of this research, the role that
exceptions play in recognition memory. In the theoretical
analyses, we compare the predictions of the recognition data
for the standard context model to a version that gives extra
weight to the exceptions.

Method

Participants.  Participants were 86 undergraduate students at Indi-
ana University who received partial course credit for their participa-
tion. Participants who reached a learning criterion received a $1.00
bonus. All participants were individually tested.

Stimuli.  Stimuli were random dot patterns similar to those used by
Posner and Keele (1968). Each pattern was constructed by randomly
placing nine dots on the center 30 x 30 of a 50 x 50 square grid,

subject to the constraint that the dots must be at least two units apart.
Two prototypes were randomly generated for every participant. Unlike
many previous experiments using random dot patterns, every partici-
pant was exposed to a different set of randomly generated stimuli. By
testing each participant on a ditferent set of stimuli we gain confidence
concerning the generality of the results (i.e.. they are not due to
idiosyncrasies involving any particular set of stimuli).

From each of the two prototypes. Ap and Bp. seven moderate-level
distortions were generated (6 bits/dot. see Posner. Goldsmith, &
Welton, 1967). Six distorted patterns from one prototype, A1-A6 and
B1-B6, and one distorted pattern from the other prototype. Ax and
Bx, made up each category. Thus, there was one exception in each
category, Ax or Bx, generated from the other prototype, Bp or Ap.
respectively. There were also 14 new patterns: two low-level distor-
tions of each exception (3 bits/dot), Axl and Bxl; two moderate-level
distortions of each exception (6 bits/dot), Axm and Bxm; two low-level
distortions of one of the nonexception patterns, Aol and Bol: and two
moderate-level distortions of one of the nonexception patterns, Aom
and Bom. Two new moderate-level distortions of the prototype were
also created, An and Bn. Along with the two objective prototypes, Ap
and Bp, the empirical category prototypes were formed by spatially
averaging the six distortions plus the one exception from each
category, At and Bt. (Because we found no significant differences in
either categorization or recognition of these two types of prototypes.
we treat them identically in the Results section.)

Procedure.  Participants learned to classifv each of the old patterns.
Al-A6, B1-B6, Ax, and Bx, into Category A or Category B. These 14
stimuli were shown ance per block for a total of 20 blocks. Participants
were informed at the start of the experiment that they would be paid a
$1.00 bonus if at any time during the experiment they correctly
classified every stimulus on two consecutive blocks without making an
error. On every trial, a dot pattern was shown on the computer screen,
and participants were required to respond A or B. Corrective feedback
was supplied and the stimulus remained on the screen for 2 s. After an
interval of 1 s, the next pattern was shown.

Following the training phase, participants were given a recognition
test. The 14 old stimuli and the 14 new stimuli were displayed to the
participants once per block for a total of three blocks. The recognition
ratings were numerical judgments between (1) absolutely sure new and
(8) absolutely sure old. No feedback was supplied during the recogni-
tion task.

Following the recognition phase, participants were given a transfer
test. The 14 old stimuli and the 14 new stimuli were displayed once per
block for a total of three blocks. Participants judged if each dot pattern
was a member of Category A or Category B. No feedback was
supplied. Category judgments and response times were recorded.

Results

Categorization and recognition. A criterion of fewer than
eight errors on the last four training blocks was established to
ensure that only those participants who adequately iearned the
task were included in the analyses. Because there were two
exceptions per block, a participant who never learned the
exceptions would make at least eight errors on these last four
blocks. A total of 49 of the 86 participants (57%) reached this
criterion and were included in all subsequent analyses.

Table 8 displays the average categorization accuracy and the
median categorization response times. As in earlier experi-
ments, we converted the categorization response probabilities
into P(correct) and combined these data according to item
type. As expected, more errors were made on the exceptions
than on the other old items. Furthermore, more “errors” were
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Table 8
Categonization Accuracy and Median Categorization Response
Times (RTs; in Milliseconds) Observed in Experiment 4

Stimuli P (correct) RT
X 694 1.405
O 956 977
X1 434 1,294
Xm 218 1,253
Ol 925 999
Om 895 1.147
N .888 1,065
P 892 1,101

Note. X = exceptions; O = old items; X1 = new low distortions of the
exceptions; Xm = new moderate distortions of the exceptions; Ol =
new low distortions of an old item; Om = new moderate distortions of
an old item; N = new items; P = true and empirical prototypes.

made on the new distortions of the exceptions. In fact, these
items tended to be classified into the opposite category from
the exceptions. As we found earlier, the exceptions (X) were
also classified several hundred milliseconds slower than other
old items (O). Furthermore, those items that were similar to
the exceptions (X! and Xm) were also classified more slowly
than the other new items (Ol, Om, N, and P).

Figure 6 displays the average recognition ratings for the
eight types of items. The exceptions (X) were better recog-
nized than the old exemplars (O). The old exemplars (O) were
given higher recognition ratings than the new exemplars (N).
The low distortions of the exceptions (XI) were given higher
recognition ratings than the low distortions of the nonexcep-
tions (Ol), 1(48) = 2.34, p < .01. Indeed, the low distortions of
the exceptions (X1) were given an average recognition rating
that was not significantly different from the old exemplars (O),
1(48) < 1.0. We regard the high recognition ratings given to
the exceptions and low distortions of the exceptions to be
consistent with the basic ideas underlying the RULEX model.

Recognition theoretical analysis. Using procedures analo-
gous to ones used in previous work by Homa, Sterling, and
Trepel (1981) and Busemeyer, Dewey, and Medin (1984), we
defined four parameters to capture the similarity relations
among the 28 items in this experiment. These similarity
parameters were used to compute the summed similarity of an
item to all old exemplars (see Equation 3). The within-
category similarity parameter, s, defines the similarity be-
tween items that surround the same prototype, such as the
similarity between Al and A4, the similarity between an
exception and a nonexception of the other category, such as Ax
and B4, or the similarity between a new distortion and another
item surrounding the same prototype, such as Aol and A2. The
between-category similarity parameter, s, , defines the similar-
ity between an item surrounding one prototype and an item
surrounding the other prototype, such as A2 and B4, B3 and
Ap, Ax and A4, or Bxl and BS. The prototype similarity
parameter, s,, defines the similarity between an item and the
prototype it surrounds, such as Al and Ap or Bx and Ap. It
also defines the similarity between an item and its moderate-
level distortion, such as B6 and Bom or Ax and Axm, because
the same algorithm was used to create medium-level distor-
tions from prototypes and from old exemplars. Finally, the
low-distortion similarity parameter, s, defines the similarity
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Figure 6. Recognition ratings observed and predicted by the equal
and weighted versions of the context model in Experiment 4. X =
exceptions; O = old items; XI = new low distortions of the exceptions;
Xm = new moderate distortions of the exceptions; Ol = new low
distortions of an old item; Om = new moderate distortions of an old
item: N = new items; P = objective and empirical prototypes.

between an item and its low-level distortion, such as A6 and
Aol or Bx and Bxl. The similarity between an item and itself
was set to 1.0.

As in the previous analyses we defined the familiarity of a
stimulus S; as F; = oF* + (1 — w)FR, where F¥ is the summed
similarity of S; to the exceptions and F¥ is the residual simi-
larity to remaining exemplars. If ® = 1.0 then only exceptions
are remembered; if @ = 0.5 then the exceptions have the same
strength as any other item; and, if 0.5 < o < 1.0 then the
exceptions have greater strength than the other old items.

We first fitted a four-parameter, equal-weight (0 = 0.5)
version of the model to the recognition data. As shown in
Figure 6, the fit was fairly good, r = .950; however, this model
failed to predict the recognition advantage observed for the
exceptions (X) and the low distortions of the exceptions (XI).

We next fitted a four-parameter, strict exception-based
{w = 1.0) version of the model. Again, we were not surprised
that the fit was quite poor, r = .791. Although the model now
captured the superior recognition of the exceptions (X) and
the items similar to the exceptions (Xl), there was no way for
this model to capture the difference between the old items (O)
and the new items (Ol, Om, and N).

Finally, we fitted a five-parameter, weighted (w free) version
of the model to the recognition data. The fit was excellent, r =
999, with 5, = 0.349, 5, = 0.267, s, = 0.340, 5, = 0.738, 0 =
0.616. As expected, the exceptions were more strongly encoded
in memory. As shown in Figure 6, the model accounted for all
of the important trends in the data. It predicted that the
exceptions were the best recognized items and that the
remaining old items were recognized better than most of the
new items. Furthermore, it predicted that the new items
similar to the exceptions were given recognition ratings compa-
rable to those for the old items.
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Discussion

In this experiment we found further evidence for the special
role that exceptions play in recognition memory following
category learning. We extended the findings from the previous
experiments to a situation in which the dimensions were
continuous and not readily apparent. The exceptions were
those items that were created from the opposite prototype. As
in the previous experiments, we found that people demon-
strated better recognition for the exceptions than for the other
old items. Furthermore, we found that those new items that
were similar to the exceptions were also given high recognition
ratings. These results are consistent with the predictions
stemming from RULEX that exceptions to the “category ruie”
have a special status in memory.

Although the results of the present experiment are analo-
gous to those observed in our earlier studies, the question
arises whether similar processes are involved in forming rules
and exceptions for these dot-pattern stimuli as occurred for
the stimuli varying along discrete, binary-valued dimensions.
We have recently begun investigating a continuous-dimension
version of RULEX (Nosofsky, Palmeri, & McKinley, 1993). In
the model, single-dimension rules divide a continuous-
dimension psychological space into category response regions
(cf. Ashby & Townsend, 1986). Exceptions are those items of a
category falling outside of the appropriate region defined by
the rule. Classification of an item is determined jointly by its
similarity to the exceptions and by the category response
region in which it falls. As assumed in the baseline version of
RULEX that is applicable for stimuli composed of binary-
valued dimensions, different participants form alternative
single-dimension rules and form different exceptions.

Nosofsky et al. (1993) demonstrated that this continuous-
dimension version of RULEX was able to predict a set of
classification data involving dot-pattern stimuli nearly as well
as did the context model (Shin & Nosofsky, 1992). In the
model, the single-dimension rules are defined within a multidi-
mensional scaling solution for the patterns (Carroll & Wish,
1974; Shepard, 1962). The rule dimensions are highly complex
and derived, but the same basic principles operate as when
participants classify stimuli varying along discrete, binary-
valued dimensions.

Further evidence for such rule-based processes in classifying
dot-pattern stimuli has been provided by Hock and his col-
leagues (Hock, Tromley, & Polmann, 1988; Hock, Webb, &
Cavedo, 1987). Using a part-parsing procedure, these research-
ers demonstrated that people are sensitive to large perceptual
units, akin to rules, when learning to classify dot patterns. We
suggest that once one allows for highly complex, derived
perceptual dimensions, the principles underlying RULEX may
apply not only to the learning of binary-valued stimuli and
complex dot patterns but also to the learning of many natural
categories, a point we reprise in our General Discussion section.

General Discussion

The main goal of this research was to examine recognition
memory for exceptions to logical rules. In so doing, we
provided evidence for the use of rule-plus-exception processes

in conjunction with exemplar memorization during category
learning, We tested an exemplar-based model. the context
model (Medin & Schaffer. 1978), and a rule-plus-exception
model, RULEX (Nosofsky. Palmeri. & McKinlcy. 1994), on
categorization and item recognition under a variety of condi-
tions and category structures. In the Swmmary section, we
summarize the results of these experiments, and then we
discuss possible implications of these results and relations to
other research.

Summary

In Experiment 1, participants were supplied with explicit
rule-plus-exception instructions before learning in order to
control the type of strategy they used. Consistent with the
predictions of RULEX, the exceptions were the best recog-
nized items and were the slowest categorized items. This fairly
straightforward finding was impossible for the context model
to predict. However, even when participants were supplied
with an explicit rule-based strategy, residual memory for the
other old exemplars was still observed, a result also obtained in
all of our subsequent experiments.

In Experiment 2, we found evidence for rule-plus-exception
processes during free-strategy conditions. Two subgroups of
participants were formed on the basis of rule-based generaliza-
tions made when categorizing new transfer items. Mirroring
the results from Experiment 1, the exceptions to the rule for
each subgroup tended to be the best recognized items overall.
Furthermore, as a critical test, the exceptions for one subgroup
were recognized better and categorized more slowly than items
that were exceptions for the other subgroup. Again, these
results provide evidence that the exceptions to simple logical
rules have a special status in memory relative to the remaining
old items, consistent with predictions of RULEX.

Experiment 3 provided converging evidence for rule-plus-
exception processes under free-strategy conditions. In contrast
to Experiment 2, the category structure afforded a limited
number of possible single-dimension rules that could be
formed during learning and so the exceptions could be
predicted a priori. Thus, it was not necessary to examine
subgroups of participants. As predicted, the exceptions were
the best recognized items. These results were impossible for
the standard context model to predict; in fact, the context
model could only predict that old items were given higher
recognition ratings than new items. In contrast, the combined
RULEX-exemplar model provided a good account of the
data, especially with regard to superior recognition of the
exceptions and the category prototypes. Further evidence that
exceptions receive stronger memory representations than other
items was provided in Experiment 4, which generalized the
previous results by using dot pattern stimuli that did not have a
clear dimensional structure.

Relations to Other Research

One possible way of viewing the exception formation process
is as a form of stimulus-specific selective attention, which has
previously been proposed as a necessary extension to the
context model (Medin & Edeison, 1988). In the standard
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context model, selective attention is applied to dimensions
uniformly across all itemns. thereby plaving a role similar to that
of explicit rules. Under certain conditions, particular dimen-
sions could come to be more highly attended for some items
compared with other items. Unfortunately, there have been no
published accounts that formalize the processing assumptions
of such a model. RULEX, in essence, may be seen to
implement one form of stimulus-specific selective attention.
For most items, the dimension along which a rule has been
formed receives the most attention. For the exceptions, how-
ever, other dimensions must also be given some attention so as
to distinguish these items from nonexceptions.

To what extent may rule-plus-exception processes govern
learning and representation of natural categories? Also, what
is the nature of exceptions in other cognitive domains? We
now address these questions in several different areas: social
expectations, semantic memory, face recognition, perceptual
expertise, and language learning.

Research on social expectations has found that, in general,
memory is better for expectancy-incongruent (exceptional or
atypical) than expectancy-congruent (rule-following or stereo-
typical) information (Stangor & McMillan, 1992). The expect-
ancies in these experiments derive from previous experiences,
whereas the expectancies in our experiments derive from
experimental factors. Some researchers have posited that
expectancy-incongruent information is stored explicitly, in a
separate memory trace, from expectancy-congruent informa-
tion, hence, expectancy-incongruent information is better
recognized (see Stangor & McMillan, 1992, for a review).6

Likewise, most semantic memory models posit category
exceptions to have a special status relative to other category
exemplars (see Chang, 1986, for a recent review). For example,
semantic networks and schemas often assume information
about exceptional items to be stored directly with those items,
whereas information about typical items is stored at a more
general category level. Furthermore, classic research on seman-
tic verification found faster response times for typical objects,
“a robin is a bird,” than for atypical items, “an ostrich is a
bird.” Similarly, we found rule-following items to be catego-
rized faster than exceptions. Regardless of the particular
model, exceptional items are represented explicitly, apart from
general category representations.

Exceptions appear to have a special status in perceptual
domains as well. Evidence suggests that distinctive or unusual
faces are processed differently than typical faces (e.g., Bartlett,
Hurry, & Thorley, 1984; Valentine & Ferrara, 1991). Similar
to our results, typical faces are classified faster than atypical
(exceptional or distinctive) faces, but atypical faces are better
recognized than typical faces. Valentine and Ferrara (1991)
argued that the standard context model could not account for
these “distinctiveness” effects in face recognition.

In another perceptual domain, Biederman and Shiffrar
(1987) examined expertise in an extraordinarily difficult percep-
tual task, sexing day-old chicks. Experts can classify 1,000
chicks per hour at over 98% accuracy, but they require many
years to achieve this level of performance. For a naive
observer, it is not at all obvious how to tell male and female
chicks apart. From interviews with an expert (who had spent 50
years classifying over 55 million chicks), Biederman and

Shiffrar discovered a fairly simple perceptual “rule” this expert
used to classify most examples. However. following attainment
of high accuracy, this expert spent many ycars learning
(memorizing) the rare. exceptional configurations of genitalia.
At least for this one case. perceptual expertise can be charac-
terized as a rule-plus-exception process. Research has only
recently begun to examine perceptual aspects of expertise in
other areas, such as medical diagnosis (e.g., Brooks, Norman,
& Allen, 1991; Lesgold, Glaser, Rubinson, Klopfer. Feltovich,
& Wang, 1988).

Finally, debate has ceatered on the use of rules and
exceptions in language (¢.g., Pinker & Prince, 1988; Rumelhart
& McClelland, 1986). There is a posited U-shaped learning
curve for the acquisition of the past tense—children initially
learn both regular, rule-following verb forms (walked or killed)
and irregular, exceptional verb forms (went or sang); later, they
overgeneralize the rule (wented or goed); finally, they acquire
an adult understanding of both regular and irregular verbs.
Traditional! linguistic theories posit an explicit notion of rules
and exceptions (see Pinker & Prince, 1988)—"not only must
the child induce the rules which underlie the use of regular
linguistic forms, he [she] must also learn the exceptions to
these rules” (Kuczaj, 1977, p. 600). Connectionist models
reject explicit rules entirely; however, Rumelhart and McClel-
land (1986) acknowledged the special status of exceptions by
allowing them to acquire stronger representations early in
learning (see Kruschke, 1992; Lachter & Bever, 1988).

In conclusion, the emphasis in the present work was on the
special role that exceptions to category rules may play in
recognition memory. Our model-based analyses of the old-
new recognition data provide converging evidence that rule-
plus-exception processes may be common strategies in cat-
egory learning. Nevertheless, our analyses also point to a
continued role of old exemplars that are not exceptions to the
category rule. Just as rules, exceptions, and old exemplars
appear to jointly influence categorization and memory (e.g.,
Medin & Ross, 1989; Nosofsky, 1992; Regehr & Brooks, 1993),
it is critical that continued research explore the co-existence of
exemplar-storage strategies and rule-based strategies in other
fundamental cognitive tasks, such as similarity (Smith &
Sloman, 1994), problem solving (Medin & Ross, 1989; Ross,
1987), and induction (Medin & Ross, 1989; Smith, Langston,
& Nisbett, 1992).

6 Theoretical analyses conducted by Heit (1993) suggest that certain
memory effects involving expectancy-congruent and expectancy-
incongruent information can be modeled in terms of storage of prior
examples of the expectancy-congruent information. Our results sug-
gest, however, that there are at least certain experimental conditions
that accord a special memory status to incongruent information as
well.
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Appendix A

Context Model Predictions of Recognition in Experiments 1 and 2

In this appendix we prove that the context model cannot predict the
observed pattern of recognition data in Experiments 1 and 2. In
particular, the context model cannot predict better recognition of AS
than A4 and better recognition of Bl than B2, simultaneously, for the
category structure shown in Table 1 in the text (nor can it predict the
inverse).

First, define the similarity parameters a, B, v, and d for dimensions
1, 2, 3, and 4, respectively.

Second, calculate the absolute summed similarity (familiarity) of
stimuli A4, A5, Bl, and B2 to all of the old exemplars by using
Equations 2 and 3 from the text. (Recall that recognition is a
monotonically increasing function of familiarity.)

Faa=v3 +Byd+By+1+ay+8+ ayd+ap + affd
Fas=ad +apd +aB +ad + 1+ ayd +8 + By + Byd

Fgi=vy+By+By3+8+ayd+1+ay+apd+ap

Fpp=a+af+aBd+ayd +3+ay+ 1+ Byd+ By

Third, compare the summed similarities and cancel common terms,
yielding the following predicted relations:

Fas > Fasora > y A
Fgi > Fppe> vy > a (B)
Fgy > Fas  always 0)
Fpy > Fay  always (D)

It is impossible for Relations A and B to hold simultaneously,
regardless of the parameter values. Hence, the context model cannot
predict better recognition of AS than A4 and better recognition of Bl
than B2, simultaneously (nor can it predict the inverse).

(Appendixes continue on next page)
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Appendix B

Context Model Predictions of Recognition in Experiment 3

In this appendix we illustrate that the context model predicts the
same recognition ratings for all old items and for all new items in
Experiment 3. The category structure is shown in Table 4 in the text.

Define similarity parameters a, 8, v, 8, and e for dimensions 1, 2, 3, 4,
and 5, respectively.

Calculate the absolute summed similarity (familiarity) between an
item and all of the old items by using Equations 2 and 3 in the text. For
illustration, we calculate the familiarity of items A2 and B1.

Fq; = ade + 1 + Byde + ve + Bd + v8 + Pe + de + By
+ afyde + a + ofd + aye + affe + ayd + afy
Fp; = apyde + By + 8¢ + Be + y8 + B3 + ye + Byde + 1
+ abe + afy + ayd + aBe + aye + offd + a
By rearranging terms, it is easy to see that both equations are identical.

In fact, the familiarity of every old item is identical. Hence, the context
model must predict the same recognition ratings for every old item.

Similarly, perform calculation for the new items. For illustration, we
calculate the familiarity of items T4 and T14.

Fry=8 + afde + ay + afyd + ae + afye + ad + op + ayde
+ B+ Bde + €+ Byd + y + Pye + vde

Fro=oPfyd + Bye +3 + B + vde + Bde + v + Byd + € + ad
+ afye + ayde + aff + ay + afde + ae

By rearranging terms, we see that the sums are identical. Hence, the
context model must predict the same recognition ratings for every new
item.
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