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Rule-Plus-Exception Model of Classification Learning

Robert M. Nosofsky, Thomas J. Palmeri, and Stephen C, McKinley

The authors propose a rule-plus-exception model (RULEX) of classification learning. According to
RULEX, people learn to classify objects by forming simple logical rules and remembering occa-
sional exceptions to those rules. Because the learning process in RULEX is stochastic, the model
predicts that individual Ss will vary greatly in the particular rules that are formed and the exceptions
that are stored. Averaged classification data are presumed to represent mixtures of these highly
idiosyncratic rules and exceptions. RULEX accounts for numerous fundamental classification phe-
nomena, including prototype and specific exemplar effects, sensitivity to correlational information,
difficulty of learning linearly separable versus nonlinearly separable categories, selective attention
effects, and difficulty of learning concepts with rules of differing complexity. RULEX also predicts
distributions of generalization patterns observed at the individual subject level.

Psychologists have witnessed a major shift in the study of cat-
egory learning during the past few decades. Early research was
dominated by the concept-identification paradigm, in which
subjects learned well-defined categories structured according to
simple logical rules. Owing to the influence of researchers such
as Rosch (1973) and Posner and Keele (1968), interest shifted
to more ill-defined categories as might be found in the natural
world. For ill-defined categories, no simple logical rules exist for
classifying objects, and the boundaries demarcating alternative
categories are fuzzy.

With the shift in emphasis from well-defined to ill-defined
categories, there has also been a major shift in the types of
models used for explaining classification learning. Early re-
search was dominated by hypothesis-testing and rule-formation
models (e.g., Bruner, Goodnow, & Austin, 1956; Hunt, Marin,
& Stone, 1966; Levine, 1975; Neisser & Weene, 1962; Restle,
1962; Trabasso & Bower, 1968). Subjects were presumed to for-
mulate and test simple hypotheses concerning the logical rules
that defined category membership. By the time learning was
completed, the category representation was presumed to consist
of whatever simple logical rule partitioned the objects. In con-
trast, because no simple rules exist for classifying members of
ill-defined category structures, hypothesis-testing models have
largely fallen from the scene in psychological research and have
been replaced by alternatives such as exemplar, Bayesian, and
connectionist/distributed memory models.

These modern category learning models differ dramatically
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from classic hypothesis-testing models in their information-
processing requirements. A common thread connecting most
of the successful and well-known current models is that a great
deal of information from the originally presented exemplars is
retained in the category representation. According to exemplar
models (e.g., Estes, 1986a; Hintzman, 1986; Kruschke, 1992;
Medin & Schaffer, 1978; Nosofsky, 1986), category representa-
tions consist of the storage of all previously presented exem-
plars, and classification decisions involve massive similarity
computations performed over these stored exemplars. A rea-
sonable process interpretation for Anderson's (1990, 1991) ra-
tional model is that highly similar exemplars are grouped into
clusters during the learning process, but this model retains the
assumption that accurate statistical records are maintained
over all the dimensions that compose the exemplars. Further-
more, in application to many classification learning paradigms,
the best fitting version of the rational model creates a separate
cluster for virtually every exemplar, so the model reduces essen-
tially to a pure exemplar model (Anderson, 1990; Nosofsky,
199la). In addition, according to the property set model of
Hayes-Roth and Hayes-Roth (1977) and the configural cue
model of Gluck and Bower (1988), there are records not only of
all exemplars presented during learning but also of all lower
order configurations of features that compose these exemplars.
Such models presume that there is a massive amount of infor-
mation about the presented exemplars that is retained in mem-
ory and used for making classification decisions.

Although the models just discussed have provided impressive
accounts of a wide array of categorization phenomena, it is rea-
sonable to question the plausibility of exemplar storage pro-
cesses and the vast memory resources that they seem to require.
Indeed, despite the shift away from formal hypothesis-testing
models, the view that people might represent categories in
terms of fairly simple logical rules remains stubborn (e.g., Mar-
tin & Caramazza, 1980; Medin, 1986; Nosofsky, Clark, & Shin,
1989; Pavel, Gluck, & Henkle, 1988; Ward & Scott, 1987). A
key idea, according to such a view, is that, although ill-defined
category structures cannot be learned by forming simple logical
rules, perhaps such structures are learned by forming imperfect
rules and storing occasional exceptions to those rules. Further-
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more, according to such a view, the good fits of exemplar
models may result from averaging over the responses of different
subjects. This view of category learning is extremely interesting
because it not only contrasts dramatically with current exem-
plar-trace theories but also establishes continuity with the early
theorizing on hypothesis testing that once dominated the field
of category learning.

If the general idea that averaged classification data represent
mixtures of different rules and exceptions is to serve as a useful
scientific construct, however, it is imperative to formalize ex-
plicit models of rule extraction and conduct rigorous empirical
tests of such models. To date, no explicit, psychologically ori-
ented rule-plus-exception models based on elementary pro-
cesses of hypothesis testing have been tested on their ability to
predict diverse phenomena in the modem classification litera-
ture. The purpose of the present research, therefore, was to ini-
tiate such a project by developing and providing rigorous tests
of a formal rule-plus-exception model of classification learning.

In spirit, our model is almost the polar opposite of many of
the currently popular exemplar models of classification. Learn-
ing is presumed to result from the extraction of simple logical
rules using a process of hypothesis testing, with occasional ex-
ceptions to those rules also being stored. These exceptions are
rarely complete exemplars; actual storage of complete exem-
plars occurs as a last resort. Thus, for any given subject, we
imagine that category representations contain relatively little
information, just a simple rule or two, supplemented by a few
exceptions.

As we bring out in the General Discussion, our rule-plus-ex-
ception model (RULEX) also differs in important ways from
a variety of rule-extraction models emanating from both the
psychological and artificial intelligence literatures. In particu-
lar, rules are learned on an incremental, trial-by-trial basis by a
process of hypothesis testing, and the system makes minimal
memory requirements and information-processing demands on
the part of the learner. Rather than designing a learning algo-
rithm with goals such as speed of learning, efficiency, and opti-
mality, the design of the present RULEX model was motivated
primarily around considerations of psychological plausibility.

A key theme of our modeling is that subjects take themselves
up by the bootstraps in solving classification problems, and the
strategies that work for a given subject are often highly idiosyn-
cratic. Large individual differences are expected to be observed
in the particular rules that are extracted and the particular ex-
ceptions that are stored. As a result, extensive computer simu-
lations are needed to use the RULEX model to predict classifi-
cation data. Because of the complexities that are envisioned in
the learning process, to get started on the theoretical investiga-
tion we need to restrict ourselves to a fairly simple domain of
inquiry. Accordingly, we developed the present model to ac-
count for classification learning in domains in which the stimuli
vary along separable binary-valued dimensions, in which there
is a deterministic assignment of training exemplars to catego-
ries and in which there are two categories of exemplars to be
learned. Fortunately, numerous experiments have been con-
ducted in such domains, so there is a wealth of data for testing
the model. Indeed, we demonstrate that the hypothesis-testing
and simple rule-extraction processes that are formalized in our
model can go a long way toward accounting for numerous fun-

damental categorization phenomena, including prototype
effects, effects of specific exemplars, sensitivity to correlational
information, the learning of linearly separable versus nonlin-
early separable categories, selective attention effects, and the
role of structural complexity in influencing speed of category
learning.

Beyond accounting for these key phenomena, which serve as
benchmarks for modern classification learning theories, we go
on to demonstrate that the RULEX model may provide better
predictions than extant alternative models of patterns of classi-
fication behavior observed at the individual subject level. With
some notable exceptions (e.g., Ashby & Lee, 1991; Maddox &
Ashby, 1993; Nosofsky, 1986), most current models of catego-
rization have been tested on their ability to predict aggregate
classification data. As is extremely well known, aggregate data
may obscure patterns observed at the individual subject level.
In the present research, we develop techniques that allow classi-
fication models to be compared on their ability to predict both
aggregate data as well as distributions of individual subject be-
haviors from which the aggregate data are derived. We argue
that these more fine-grained analytic techniques may be neces-
sary to test adequately among the very powerful models of clas-
sification learning that have been developed in recent years.

In a nutshell, then, we suggest that complex and intricate pat-
terns observed in aggregate classification data may not reflect
complex and informationally rich category representations but
rather averages computed over a number of different, fairly sim-
ple category representations, each of which has been learned
through a simple process of hypothesis testing.

A Preliminary Example

Before presenting the model, which is formalized in a com-
puter simulation, it is useful to provide an example of the pro-
cess that is envisioned. Table 1 shows a category structure tested
extensively by Medin et al. in numerous studies of classification
learning (e.g., Medin & Schaffer, 1978). The stimuli vary along
four binary-valued dimensions. There are five training exem-
plars in Category A and four in Category B; the remaining seven
stimuli are transfer items that are not assigned by the experi-
menter to either category. In general, members of Category A
tend to have a logical value of 1 on each of their dimensions,
whereas members of Category B tend to have a logical value of
2. Importantly, however, no single-dimension rule is available
for perfectly partitioning the exemplars into categories, and no

Table 1
Example Category Structure Tested in Some
of Medin and Schaffer's (1978) Experiments

Category A Category B Transfer stimuli

Al 1112
A2 1212
A3 1211
A41121
A52111

Bl 1122
B22112
B32221
B4 2222

Tl 1221
T2 1222
T3 1111
T42212
T52121
T62211
T72122
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conjunctive rule is available either. The category structure is ill-
defined in the sense that there are no singly necessary and
jointly sufficient sets of features for determining category mem-
bership (Smith & Medin, 1981).

How might subjects solve such a categorization problem?
Medin et al. (e.g., Medin, Dewey, & Murphy, 1983; Medin &
Florian, 1992; Medin & Schaffer, 1978; Medin & Smith, 1981)
and Nosofsky (1984, 1992) promoted an exemplar model of
classification in which all exemplars of the categories are stored
in memory and in which subjects compute summed similarities
of items to these stored exemplars. This well-known context
model of classification has provided excellent quantitative fits
to numerous sets of classification learning data and far outper-
forms various prototype models that have been its main com-
petitors (Estes, 1986b; Medin & Schaffer, 1978; Nosofsky,
1992).

In contrast, according to the RULEX model, the learning
process might proceed as follows: One subject might notice that
a value of 1 on Dimension 1 almost always signals Category
A, whereas a value of 2 on Dimension 1 almost always signals
Category B. So the subject starts by adopting a single-dimension
rule along Dimension 1. As learning proceeds, the subject real-
izes that, although the rule is working fairly well, it is clearly not
perfect. On encountering Stimulus 2111 from Category A and
receiving corrective feedback, the subject then attempts to form
an exception to the rule. For example, an exception might be
formed that stimuli with the pattern 211 * are also members of
Category A. (In this notation, the asterisks denote wild cards
that can take on any value.) The subject would quickly learn
that such an exception does not work, however, because it
matches Stimulus 2112, which is a member of Category B.
Thus, this exception would be discarded, and a new exception
would be formed on the next encounter of Stimulus 2111. Even-
tually, the subject might learn the rule that a value of 1 on Di-
mension 1 signals Category A, that a value of 2 signals Category
B, but that the pattern 2* 11 is an exception that belongs to Cat-
egory A and the pattern 1*22 is an exception that belongs to
Category B. Note that the classification problem is solved, even
though no complete exemplars are stored in memory.

In contrast, a second subject might learn a completely differ-
ent rule and set of exceptions, for example, that a value of 1 on
Dimension 3 signals Category A, that a value of 2 on Dimension
3 signals Category B, and that the patterns 1*21 and 2*12 are
exceptions to these rules. Other subjects might learn rules based
on conjunctions of features, whereas still others might form
rules and store exceptions that never allow them to solve the
problem completely. Note that each individual subject is as-
sumed to extract an extremely simple set of rules and excep-
tions. The aggregate data are predicted by mixing these idiosyn-
cratic sets of rules and exceptions together.

Overview of the Formal Model

In this section, we provide an overview of RULEX. Our in-
tent is to provide enough information to communicate the key
conceptual underpinnings of the model. Some of the more tech-
nical details of the computer simulation are provided in the Ap-
pendix. We emphasize at the outset that we are not committed
to many of the detailed processing assumptions in RULEX.

The important issue is whether the general idea of mixing to-
gether idiosyncratic rules and exceptions provides a viable
model of category learning and representation. Specific pro-
cessing assumptions are needed to implement such a model in
a computer simulation and to initiate the investigation. After
our description of the formal computational model, we sum-
marize the key conceptual aspects of the simulation that we
consider to be the most important. Extensions of the model and
relations between RULEX and other recently proposed rule-
extraction models are considered in the General Discussion.

The general goal of the RULEX learning process is to form a
"decision tree" in the sense of Hunt et al. (1966). The decision
tree consists of a sequence of tests of the values of individual
attributes in an object. The category into which an object is
classified is determined by the outcome of this sequence of tests.
For example, for the category structure shown in Table 1, one
possible decision tree is illustrated in Figure 1. The first test asks
whether the stimulus has a value of 1 or 2 on Dimension 1. If
the stimulus has a value of 1, then it is tested for the exception
pattern 1*22. A positive outcome on this latter test results in a
Category B response, whereas a negative outcome results in a
Category A response. Alternatively, if the stimulus has a value
of 2 on Dimension 1, then it is tested for the exception pattern
2*11 and so forth (see Figure 1). Numerous classification algo-
rithms in the artificial intelligence literature can be character-
ized as giving rise to such decision trees, but the tree-building
process can vary considerably. Our aim in this research was to
test a learning process that seemed psychologically plausible,
learning such decision trees by developing and testing hypothe-
ses on a trial-by-trial basis using induction over exemplars and
making minimal memory requirements on the part of the
learner. This set of characteristics distinguishes RULEX from
other decision-tree building algorithms emanating from artifi-
cial intelligence (see General Discussion).

Computational Model
A schematic flow diagram of RULEX is shown in Figure 2.

The first stage of learning involves a search for a perfect single-

Does the stimulus have value 1 on Dimension 1 ?

Y/ \N

Is it exception 1*22?

Y/ \ N

Is it exception 2*11?

Y/ \N

Figure 1. Schematic illustration of one possible decision tree for dis-
criminating the members of Categories A and B in Medin and Schaffer's
(1978) experimental paradigm (see Table 1). Y = yes; N = no. The
terminal nodes of the decision tree indicate the category to which an
item is assigned (A or B). Note that the tests for the exceptions (1*22
and 2*11) can themselves be broken down into a sequence of tests of
values on the individual dimensions, thereby extending the decision
tree. The simplified structure shown here is provided for conceptual
clarity.
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Search for Perfect Single-Dimension Rules
Success

Learn Exceptions

Failure
Failure

-». Success

Search for Imperfect Single-Dimension Rules

Failure

Failure

Learn Exceptions

Failure

Search for Conjunctive Rules

Success

Leam Exceptions

Failure

Figure 2. Schematic flow diagram of the sequence of hypothesis-testing stages in rule-plus-exception
model of classification learning. The solid lines show the sequence that occurs with high probability, and
the dotted lines show the sequence that occurs with lower probability.

dimension rule (cf. Levine, 1975; Trabasso & Bower, 1968).
Each dimension is assigned a positive, real-valued weight that
represents its intrinsic salience. In the first stage, an individual
dimension is sampled with probability that is proportional to its
weight. A single-dimension rule is then formed that is consistent
with the exemplar and feedback that is received. For example,
if Dimension 1 is sampled, the exemplar has a logical of value 1
on this dimension, and feedback for Category A is provided,
then a subject would form the rule that exemplars with a value
of 1 on Dimension 1 belong to Category A (1 *»*-»• A), whereas
exemplars with a value of 2 on Dimension 1 belong to Category
B (2*** -* B). The subject continues to use a single-dimension
rule as long as it works. If the rule fails to work perfectly, it is
discarded, and a new dimension is sampled for testing a single-
dimension rule. If no dimension yields a perfect rule, then a
second stage of hypothesis testing begins.

In the second stage, subjects search for an imperfect, single-
dimension rule, and, if this strategy fails, they search for a con-
junctive rule in a third stage. (In the general version of the sim-
ulation, the ordering of these two strategies is probabilistic.
However, in most of the simulations, we assume that the search
for imperfect, single-dimension rules comes first, so we focus
discussion on this special case.)

In searching for an imperfect, single-dimension rule, the sub-
ject samples dimensions by the same process as that used in
Stage 1. A single-dimension rule is formed that is consistent
with the presented exemplar and the feedback information.
This rule is maintained for a minimum number of trials,
termed the lower test window. Once the lower test window is
reached, the single-dimension rule is maintained only as long as
it exceeds a lax criterion; otherwise, it is discarded. For exam-
ple, a subject might regard a single-dimension rule as tentatively
acceptable as long as it correctly classifies 60% of the incoming
exemplars. Once the upper test window is reached, the single-
dimension rule is stored as a permanent rule as long as it ex-
ceeds a strict criterion; otherwise, it is discarded. For example,
the imperfect rule might be acceptable as a permanent rule only

if it correctly classifies at least 90% of the incoming exemplars.
If an imperfect single-dimension rule is discarded, a new di-
mension is sampled and the search continues. If all of the di-
mensions are exhausted without an acceptable single-dimen-
sion rule being found, then a search begins for conjunctive
rules.

In searching for conjunctive rules, pairs of dimensions are
sampled with a probability that is proportional to the product
of their weights. Each conjunctive rule is maintained until the
lower test window is reached. Thereafter, the conjunctive rule is
maintained only as long as it exceeds the lax criterion. If the
conjunctive rule exceeds a strict criterion when the upper test
window is reached, then it is stored as a permanent rule; other-
wise, it is discarded, and a new pair of dimensions is sampled.

Once a permanent, single-dimension rule or conjunctive rule
is formed, or once all single dimensions and pairs of dimensions
are exhausted without a rule being formed, the subject then be-
gins the exception-storage process. If an item is encountered
that contradicts the rule or for which a rule does not apply, the
subject probabilistically samples each of the item's dimensions.
(The dimension that participates in the rule, however, is sam-
pled with Probability 1.) For example, consider again the cate-
gory structure in Table 1. Suppose that the subject had formed
the rule that a value of 1 on Dimension 1 signals Category A.
On encountering Stimulus 2111, Dimension 1 is sampled with
Probability 1, and Dimensions 2 to 4 are individually sampled
with some fixed sampling probability. If the pattern that is sam-
pled is 211 *, then the subject would attempt to remember that
the exception 211 * signals Category A. Two factors affect a sub-
ject's ability to remember an exception. First, the larger the
number of dimensions that form the exception, the lower is the
probability that it is successfully stored. Second, the larger the
number of exceptions currently stored in memory, the lower is
the probability that a new exception is successfully stored.
These assumptions reflect the idea that the memory system is
limited in capacity.

If an exception is stored that later produces an incorrect cat-
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egorization decision, it is discarded from memory (although, at
a subsequent point in the learning process, it could be sampled
and stored again). Once stored in memory, exceptions are
maintained as long as they continue to work.

Classification decisions proceed as follows. First, a check is
made of all exceptions stored in memory. If an exception applies
to the presented stimulus, it is used to make the decision. (For
example, Exception 12** applies to Stimuli 1211, 1212, 1221,
and 1222.) In the rare case that there are conflicting exceptions,
a Category A response is made with probability equal to the
proportion of exceptions that signal A. If no exceptions apply,
then a check is made of any conjunctive rules that are stored. If
no conjunctive rules are stored, then a check is made of any
single-dimension rules that are stored. If no exceptions, con-
junctive rules, or single-dimension rules apply, then a random
guess is made. Note that classification decisions follow a speci-
ficity principle. The exceptions, which are the most specific
rules, have highest priority in determining the classification de-
cision (cf. Anderson, Kline, & Beasley, 1979).

Key Properties

Several conceptual points regarding the RULEX model
should be emphasized. The most important general property of
the model is that relatively little information about the original
exemplars is stored in memory, at least for the purpose of mak-
ing classification decisions.1 In typical runs of the simulation,
either a single-dimension rule or a conjunctive rule is stored,
with just a couple of exceptions used to supplement the rule.
The exceptions are rarely full exemplars. Indeed, because of the
assumption of limited memory capacity, there is a bias in the
model to store only subsets of the dimension values that com-
pose individual exemplars. Note that, even during the learning
process itself, there is essentially no memory for previously pre-
sented exemplars (cf. Trabasso & Bower, 1968). Subjects have
memory only for previous hypotheses they have tested and for
specific dimensional information relevant to the current hy-
pothesis. Possibly, an improved learning model would result by
allowing some short-term memory for previously presented ex-
emplars (e.g., Fowler Williams, 1971; Levine, 1966). Such in-
formation could be used to make hypothesis selection and test-
ing more efficient. The no-memory assumption is adopted here
mainly for reasons of simplicity and to serve as a strong contrast
against alternative exemplar-trace theories.

A second property of the model is that the particular rules
and exceptions that are learned are highly idiosyncratic. Be-
cause of the probabilistic sampling of dimensions during the
rule-formation process, the model predicts that, even after suc-
cessfully solving a problem, individual subjects may vary
greatly in the pattern of generalizations that they form when
classifying transfer stimuli (cf. Medin, Wattenmaker, & Michal-
ski, 1987; Nosofsky et al, 1989; Pavel et al., 1988). We also
expect that subjects vary greatly in the criteria they apply for
accepting imperfect rules, and this variability will also result in
different patterns of generalization.

Another property of the model is that, early in learning, val-
ues on individual dimensions are expected to exert primary in-
fluence on classification decisions, whereas later in learning,
when exceptions begin to be formed, combinations of values on

dimensions start exerting influence. As will be seen, this rela-
tional coding aspect of storing occasional exceptions, together
with the property that individual dimensions exert major in-
fluence, allows RULEX to account for a variety of important
categorization phenomena, such as prototype effects, effects of
specific exemplars, selective attention to dimensions, and sensi-
tivity to correlational information.

Finally, we remark that, in its strong form, once the model
has extracted a set of rules and exceptions, responding is pre-
dicted to be deterministic (cf. Ashby & Gott, 1988). In other
words, a given subject who has solved a classification problem
is predicted to always give the same categorization response for
any given stimulus. Taken to an extreme, this prediction is im-
plausible in that it imputes to the subject an automaton-like
character without any of the fallibilities of human information
processing. Even if the present RULEX model is correct in
spirit, numerous factors exist that could introduce noise into
the classification decision process, including lapses of attention,
inadvertent button presses, and occasional trials in which the
rules and exceptions are temporarily forgotten or misapplied.
Thus, to develop a more realistic model, we assume that, on any
given trial, there is some small probability that the subject gives
the opposite response dictated by the extracted rules. Such an
assumption has precedence and empirical support in the previ-
ous work of Levine (1966, 1975). This response-error parame-
ter becomes important when we attempt to use RULEX to
model detailed distributions of classification responses at the
individual subject level, but for more standard applications we
simply set it equal to zero.

Fitting the Model to Data

In this section, we apply RULEX to a variety of well-known
experimental results in the categorization literature. Because
RULEX is a simulation model and has a large number of avail-
able free parameters, the task of fitting the model to data is
difficult. Our primary goal is not to obtain a best fit of the model
to data but rather to show that even simple versions of the model
with many of the parameters constrained can achieve reason-
able accounts of major phenomena of interest.

The free parameters in the most general version of RULEX
include the following (see Table 2 for a glossary): a set of weights
to represent the salience of the individual dimensions that com-
pose the stimuli; a general storage probability that determines
the rate at which simple rules, conjunctions, and exceptions can
be placed in memory; lax criteria for accepting tentative single-
dimension and conjunctive rules; strict criteria for forming per-
manent single-dimension and conjunctive rules; lower test win-
dows and upper test windows (numbers of trials) for testing
these candidate rules; a branching parameter for determining
whether to test conjunctive rules or imperfect, single-dimension
rules first; a capacity-limit parameter that affects the rate at

1 Later in this article, we argue that, although rules may be formed
to classify exemplars, it is plausible that some subjects may also have
memories for some of the exemplars that were presented. Although not
used for classification, these stored exemplars could be used when sub-
jects make recognition or typicality judgments or could be involved in
implicit memory tasks such as perceptual identification.
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Table 2
Glossary of Free Parameters in RULEX

Parameter Description

w Vector of dimension-salience weights (default: all weights set equal to 1.0)
pstor General storage probability that affects the rate at which rules and exceptions can be

added to memory and the probability that individual dimensions are sampled
during the exception-formation process

lent Lax criterion for tentatively accepting imperfect simple rules (default: Icrit = .55)
scrit Strict criterion for forming a permanent, imperfect, single-dimension rule
ccrit Strict criterion for forming a permanent, imperfect, conjunctive rule (default: ccrit

= 1.0)
Iwind Lower test window (default: Iwind = number of training items)
uwind Upper test window (default: uwind = 2 X Iwind)
branch Probability that a subject tests imperfect, single-dimension rules before testing

conjunctive rules (default: branch = 1.0)
capac Capacity-limit parameter that affects the rate at which new exceptions can be added

to memory (default: capac = 1.0)
rerr Response-error parameter giving the probability that a subject makes the opposite

response indicated by the extracted rules (default: rerr = 0.0)

Note. RULEX = rule-plus-exception model of classification learning.

which new exceptions can be added to memory; and a response-
error parameter that allows for fallible application of extracted
rules. Furthermore, each of these parameters is expected to vary
across different subjects and might also be expected to vary
within a single subject during the course of an experimental
session. Thus, a fully adequate test of the model would require
conducting simulations over probability distributions of these
parameters.

To get started, however, we introduce numerous constraints
on the parameter settings. For various applications, these con-
straints will be clear. For example, in some of the experiments,
the assignment of physical dimensions to the abstract coding
that defines the category structures is balanced over subjects. In
these situations, the weights for representing differential intrin-
sic salience of the dimensions are not used. Certain arbitrary
choices are made for various other parameters. For example,
the lower test window is set equal to the number of training
exemplars in the category, and the upper test window is set equal
to twice the lower test window. The lax criterion for tentatively
maintaining an imperfect rule is set at .55, which means that an
imperfect rule is thrown out quickly only if it leads to nearly
chance performance. In virtually all of the simulations, the
probability of branching to single-dimension rules before test-
ing conjunctive rules is set at 1. Also, in virtually all of the sim-
ulations, the parameter for representing a limited capacity on
the number of exceptions that can be stored is not used because
most of the experiments have a fairly limited number of training
trials, leaving room for a relatively small number of exceptions
to be stored in any case. Finally, except when fitting detailed
individual subject distributions, the response-error parameter
is not used. In sum, the applications of RULEX that are re-
ported here make use of a reasonably small number of free pa-
rameters.

Applications to Empirical Phenomena

Medin and Schaffer (19 78)
The first applications of RULEX are to the series of classifi-

cation problems tested by Medin and Schaffer (1978) in their

seminal article on the learning of ill-defined categories. A good
initial illustration of RULEX is provided by considering Medin
and Schaffer's Experiment 3. The category structure was the
one shown in our informal example in Table 1. A set of Bruns-
wik faces varying along the dimensions of eye height, eye sepa-
ration, nose length, and mouth height were used as stimuli, and
these physical dimensions instantiated the abstract category
structure shown in the table. An unfortunate aspect of Medin
and Schaffer's design (at least with respect to testing RULEX) is
that each logical dimension was always instantiated by the same
physical dimension. Thus, the dimension weights for represent-
ing differential intrinsic salience of the physical dimensions are
needed for fitting the model. After an initial learning phase in
which only the training stimuli were presented, Medin and
Schaffer then conducted a test phase in which both the training
and transfer stimuli were presented. The main goal is to use
RULEX to predict the data observed during this test phase.

The free parameters that we used for fitting RULEX were the
overall storage probability parameter (pstor), the strict criterion
for single-dimension rules (scrit), the strict criterion for con-
junctive rules (ccrit), and three freely varying dimension
weights (wi-Wn, in which the weights sum to 1). The general
procedure for fitting the model was to conduct a discrete grid
search over these parameters to find a combination of parame-
ter values that produced a reasonable starting fit. Attempts were
then made to fine-tune the fit by conducting a hill-climbing
search, with the parameters obtained from the grid search used
as starting values. Each run involved 5,000 Monte Carlo simu-
lations of the rule-extraction process, with each simulation be-
ing conducted over a sequence of nearly 200 learning and
transfer trials.2 Thus, the model-fitting process was enormously
time consuming. Furthermore, because of the intrinsic variabil-
ity resulting from simulation methods, the parameter-search

2 The precise learning criterion used by Medin and Schaffer (1978)
varied across the different experiments. For simplicity, in the following
simulations, we assume 16 blocks of learning trials, with each exemplar
presented once in random order in each block.
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process is made even more difficult, and the resulting fits are
almost certainly local minima. Our goal, however, was not to
find the absolute best fitting version of RULEX but simply to
demonstrate that the model can provide a reasonable account
of the data.

The predictions of RULEX are shown along with Medin and
Schaffer's (1978) observed data in Table 3. The data are the
probabilities with which each stimulus was classified in Cate-
gory A during the transfer phase. Overall, the model gives a rea-
sonable quantitative account of these data. The sum of squared
deviations (SSD) between predicted and observed Category A
response probabilities is .037, the root mean squared deviation
(RMSD) is .048, and the model accounts for 98.0% of the vari-
ance. These fits are fairly close to those achieved by Medin and
Schaffer's (1978) context model (SSD = .031).

It is interesting to understand how RULEX accounts for these
data. The best fitting parameters are shown in Table 4. The most
critical point is that the strict single-dimension rule criterion
takes on a very low value (scrit = .55). Thus, according to the
model, virtually all subjects adopted single-dimension rules in
this experiment. Indeed, because searches for conjunctive rules
never took place in these simulations, the value of the strict con-
junctive rule criterion is arbitrary. As indicated by the values of
the weight parameters, the dimensions of eye height (Dimen-
sion 1) and eye separation (Dimension 2) had the most intrinsic
salience, followed by those of nose length (Dimension 3) and
mouth height (Dimension 4). Of the 5,000 simulated subjects,
roughly 60% adopted a single-dimension rule based on Dimen-
sion 1, almost 30% adopted a single-dimension rule based on

Table 3
Fit of RULEX Model to Medin
and Schaffer's (1978) Experiment 3

Stimulus Predicted p Observed p

AI 1112
A21212
A3 1211
A41121
A52111

Category A

.950

.974

.997

.867

.734

.970

.970

.920

.810

.720

Category B

Bl 1122
B22112
B32221
B4 2222

.391

.210

.026

.001

.330

.280

.030

.050

Tl 1221
T2 1222
T3 1 1 1 1
T42212
T52121
T62211
T72122

Transfer

.726

.486

.991

.251

.299

.477

.045

.720

.560

.980

.230

.270

.390

.090

Note. Entries are the predicted and observed probabilities with which
each stimulus was classified in Category A during the test phase.
RULEX = rule-plus-exception model of classification learning.

Table 4
Best Fitting Parameters for the RULEX Model Applied
to Medin and Schaffer's (1978) Experiments

Parameters

Data set

Experiment 3
Experiment 2
Experiment 4

pstor

.55

.65

.58

scrit

.55

.85

.78

ccrit

1.00
.55
.55

w,

.43

.25

.50

w2

.33

.06

.25

w,

.19

.24

.13

W4

.05

.44

.13

Note. RULEX = rule-plus-exception model of classification learning;
pstor = general storage probability; scrit = strict criterion for forming a
permanent, imperfect, single-dimension rule; ccrit = strict criterion for
forming a permanent, imperfect conjunctive rule; wt - dimension _;' sa-
lience weight.

Dimension 3, and the remaining 10% were split between Di-
mensions 2 and 4. Although Dimension 2 was more salient than
Dimension 3, it is less diagnostic of category membership (see
Table 3) and so is less likely to meet the criterion for forming an
acceptable rule.

The general pattern of data in Table 3 is highly interpretable
in terms of a model that posits that the majority of single-di-
mension rules were formed over Dimension 1 and that a sizable
minority were formed over Dimension 3. As can be seen in the
table, the training stimuli that satisfied these rules on both di-
mensions (A 1, A2, and A3 of Category A and B3 and B4 of
Category B) were classified with very high accuracy. The train-
ing stimuli that were exceptions to the Dimension 1 rule (A5
and Bl) were classified least accurately, whereas the training
stimuli that were exceptions to the Dimension 3 rule (A4 and
B2) were next worst in accuracy. Apparently, after adoption of
the single-dimension rules, many subjects failed to learn all of
the exceptions that would be needed for perfect classification.
In the present simulations, only about 20% of the subjects
learned rules and exceptions that would allow for perfect per-
formance. This figure accords fairly well with Medin and
Schaffer's (1978) report that only 30% of their subjects reached
a learning criterion of one errorless run through the set of nine
training stimuli, because some of the correct responses could
have been guesses or based on exceptions that were not fully
stored in long-term memory.

The RULEX model predicts a couple of other critical phe-
nomena in this data set. First, it predicts prototype effects.
Transfer Stimulus T3 is the prototype of Category A, having a
logical value of 1 on all of its dimensions. (Recall that members
of Category A tend to have a logical value of 1 on each of their
dimensions, whereas members of Category B tend to have a log-
ical value of 2.) Although never presented during training, sub-
jects classified T3 into Category A with extremely high proba-
bility. RULEX predicts this effect because essentially all of the
single-dimension rules that could be adopted would lead T3 to
be classified in Category A, and any exceptions that undo such
rules would be temporary and rare.

Other successes for RULEX that are more subtle but of criti-
cal importance are its predictions of relative performance on
Training Stimuli Al and A2. Unfortunately, because of ceiling
effects, the phenomenon is not evident in this set of observed
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data. However, in virtually all of the experiments reported by
Medin and his associates (e.g., Medin & Schaffer, 1978) that
used this category structure, A2 was classified in Category A
with higher probability than was A1. Note that A2 is less similar
to the prototype of Category A than is A1. The stimuli match on
Dimensions 1,3, and 4, but A1 has a value of 1 on Dimension 2,
whereas A2 has a value of 2 on this dimension. This effect of
specific exemplars poses problems for a wide variety of models
of classification, including prototype models and independent
feature-frequency models (e.g., see Medin & Schaffer, 1978;
Nosofsky, 1992).

As hinted at in Table 3 and documented more fully in some
subsequent simulations, RULEX predicts this critical phenom-
enon. According to RULEX, A2 tends to have an advantage
over A1 because various subconfigurations of dimension values
that compose A1 also tend to appear in the contrast category.
Thus, when exceptions are formed for classifying A1, they often
need to be discarded because they lead to incorrect classifica-
tions of stimuli in the contrast category. For example, suppose
that a single-dimension rule is formed over Dimension 4, with
a logical value of 1 signaling Category A and a logical value of
2 signaling Category B (see Table 3). Stimuli Al and A2 are
exceptions J«ffhis"rule. To classify A1, a subject might form the
exception * 112 -*• A. This exception, however, would then lead
the subject to inisclassify Stimulus B2 of Category B, so the ex-
ception would have to be discarded. More exceptions are avail-
able for A2 that do not lead to these misclassifications, so it
tends to be easier to learn A2 than A1.

Another illustrative application of RULEX is provided in Ta-

Table 5
Fit of RULEX Model to Medin
and Schaffer's (1978) Experiment 2

Stimulus

Al 1112
A2 1212
A3 1211
A4 1121
A52111

Predicted p

Category A

.840

.927

.901

.831

.821

Observed/;

.780

.880

.810

.880

.810

Category B

Bl 1122
B22112
B32221
B4 2222

.205

.202

.130

.066

.160

.160

.120

.030

Tl 1221
T2 1222
T3 1 1 1 1
T42212
T52121
T62211
T72122

Transfer

.601

.376

.830

.364

.492

.572

.139

.590

.310

.940

.340

.500

.620

.160

ble 5, which shows the fit of the model to Medin and Schaffer's
(1978) Experiment 2. The same category structure was used as
in Experiment 3. To instantiate the category structure, geomet-
ric forms were used as stimuli instead of the Brunswik faces in
Experiment 3. Again, each logical dimension was always in-
stantiated by the same physical dimension, so the dimension-
salience weights are needed for fitting the model.

RULEX provides a fairly good account of the Experiment 2
data (SSD = .040, RMSD = .050, percentage of variance [%var]
= 97.4). Again, the fit is almost certainly a local minimum but
is already as good as that of the context model (SSD = .060).
Interestingly, the best fitting version of RULEX extracted rules
and exceptions that were quite different from those extracted in
Experiment 3 (see the best fitting parameters in Table 4).
Whereas in Experiment 3 the predominant type of rule was sin-
gle dimensional, in Experiment 2 there was a strong bias to form
conjunctive rules.3 The value of the strict single-dimension rule
criterion was quite high (.85), so permanent, single-dimension
rules were rarely formed. According to the model, the most
common strategies were to form conjunctive rules over Dimen-
sions 1 and 4 and over Dimensions 3 and 4 and to supplement
these rules by various exceptions. An example of a rule defined
over Dimensions 1 and 4 was that the conjunction 1**1 signaled
Category A, with all other items belonging to Category B, ex-
cept that patterns 1*12 and 21*1 also belong to Category A. An
example of a rule defined over Dimensions 3 and 4 was that
the conjunction ** 11 signaled Category A, with all other items
belonging to Category B, except that the patterns * 121 and 1*12
also belong to Category A. Again, the rules and exceptions that
were extracted were highly idiosyncratic, and there is no easy
way to summarize them. It was again extremely common for
the model to form rules and exceptions that did not provide a
full solution to the problem. This result is consistent with the
fairly high error rate displayed by Medin and Schaffer's (1978)
subjects (see Table 5).

As was true for the previous data set, RULEX predicts the
critical qualitative result that Stimulus A2 was classified with
higher accuracy than was Stimulus A1. It predicts this result for
two reasons. First, as discussed earlier, many of the subcon-
figurations of dimension values that compose A1 also tend to
occur in the contrast category, so it is more difficult to learn
exceptions for Al. Second, there are more conjunctive rules
available for A2 than for A1 that do not conflict with members
of the contrast category. Thus, there is a higher probability of
forming a conjunctive rule that correctly classifies A2 than A1.

For completeness, Table 6 shows the fit of RULEX to Medin
and Schaffer's (1978) Experiment 4. Note that a different cate-
gory structure was used in this experiment. As before, logical
values of 1 on each dimension tend to signal Category A,
whereas logical values of 2 tend to signal Category B. The best
fitting parameters are given in Table 4. RULEX's overall fit is
not quite as good as before (SSD = .080, RMSD = .071, %var

Note. Entries are the predicted and observed probabilities with which
each stimulus was classified in Category A during the transfer phase.
RULEX = rule-plus-exception model of classification learning.

3 We do not have a good explanation as to why conjunctive rules may
have been more prevalent in Medin and Schaffer's (1978) Experiment 2
than in their Experiment 3. The parameter values needed to fit the
context model to these data also differ markedly across these two exper-
iments, and there has been no principled explanation of this finding
either.
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Table 6
Fit of RULEXModel to Medin
andSchaffer's (1978) Experiment 4

Stimulus

Al 2112
A2 1112
A3 21 11
A4 1212
AS 1121
A612U

Bl 1221
B2 1222
B32212
B42211
B52122

Tl 1111
T22121
T3 2222
T4 1122
T52221

Predicted p

Category A

,72
.91
.79
.78
.71
.74

Category B

.25

.21

.20

.21

.27

Transfer

.86

.56

.20

.53

.30

Observed p

.80

.78

.86

.83

.72

.80

.30

.36

.27

.22

.31

.89

.56

.22

.62

.36

Note. Entries are the predicted and observed probabilities with which
each stimulus was classified in Category A during the test phase.
RULEX = rule-plus-exception model of classification learning.

= 92.0) but is still only slightly worse than that of the context
model (SSD = .078). The model correctly predicts the proto-
type enhancement effects observed in the experiment (i.e., the
high classification accuracies for the transfer patterns 1111 and
2222). The rules and exceptions extracted by the model were
again highly idiosyncratic and involved a complex mixture of
single-dimension rules, conjunctive rules, and exceptions.

In summary, RULEX provides reasonable quantitative ac-
counts of the classification transfer data observed in Medin and
Schaffer's (1978) experiments. It also predicts some of the sa-
lient qualitative results of those experiments, such as prototype
effects and effects of specific exemplars. These effects are pre-
dicted despite the fact that the learning process in RULEX is
quite different from the one assumed in the context model. In
the present simulations of RULEX, complete exemplars were
rarely stored, and similarity comparisons to exemplars are not
involved in the classification decision process. Instead, the aver-
aged classification data are conceptualized as mixtures of idio-
syncratic rules and exceptions.

Evolution of Generalizations as a Function of Learning

Because RULEX assumes that people first test single-dimen-
sional rules and then later form higher dimensional rules (i.e.,
store exceptions), it predicts changing patterns of generalization
as a function of learning. In general, whereas dimensions that
are individually diagnostic should exert primary influence on
generalization early in learning, combinations of dimensions
that are diagnostic can show more of an influence later in learn-

ing. Medin, Altom, Edelson, and Freko (1982) reported an im-
portant experiment that tested the extent to which people at-
tend to individual dimensions as opposed to combinations of
dimensions. The category structure they designed is useful for
testing RULEX's predictions about changing patterns of gener-
alization.

Medin et al.'s (1982) category structure is shown in Table 7.
The stimuli vary along four binary-valued dimensions. Stimuli
Al to A4 are training exemplars of Category A, Stimuli Bl to
B4 are training exemplars of Category B, and Stimuli Tl to T8
are new, unassigned transfer stimuli. The values on Dimensions
3 and 4 are perfectly correlated in the training set, such that
their combination serves as a perfect predictor of category
membership. However, neither of these dimensions is individu-
ally diagnostic; each of the dimension values is associated with
the alternative categories 50% of the time. In contrast, Dimen-
sions 1 and 2 are individually diagnostic. A value of 1 on each
dimension predicts Category A 75% of the time, and a value of
2 on each dimension predicts Category B 75% of the time.

This category structure therefore pits individual-dimension
diagnosticity against correlated-dimensions diagnosticity. Fur-
thermore, the manner in which people classify the transfer stim-
uli can provide clues about which dimensions are exerting in-
fluence on people's classification decisions. To the extent that
the correlated dimensions are exerting primary influence, peo-

Table 7
Observed Data From Medin, Altom, Edelson, and Freko's
(1982) Design That Pitted Correlated Features
Against Individually Diagnostic Ones

Data set

Stimulus

Al 111!
A22111
A3 1122
A4 1222

Bl 1212
B22212
B32121
B42221

Tl 2222
T22211
T32122
T4 1211
T51112
T6 1121
T72112
T8 1221

1

.88

.89

.73

.77

.12

.17

.25

.33

.53

.53

.75

.67

.45

.38

.36

.28

2

Category A

.99

.98

.99

.95

Category B

.01

.01

.01

.00

New transfer

.58

.56

.71

.70

.46

.45

.40

.26

3

.96

.93
1.00
.96

.02

.00

.05

.00

.66

.64

.64

.66

.36

.36

.27

.30

4

.64

.64

.66

.55

.57

.43

.46

.34

.46

.41

.52

.50

.73

.59

.39

.46

Note. 1 = Medin, Altom, Edelson, and Freko (1982); 2 = Pavel,
Gluck, and Henkle (1988); 3 = McKinley and Nosofsky (1993), final
transfer block; 4 = McKinley and Nosofsky (1993), first transfer block.
Entries are the probabilities with which each stimulus was classified in
Category A during the transfer phase.
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pie should tend to classify transfer stimuli into Category A when
the values on Dimensions 3 and 4 agree but classify transfer
stimuli into Category B when these values disagree. On the
other hand, to the extent that diagnosticity of individual dimen-
sions is important, people should tend to classify transfer stim-
uli into Category A when they have a value of 1 on Dimensions
1 and 2 and into Category B otherwise.

In Medin et al.'s (1982) experiment, subjects freely inspected
the eight training exemplars during a 10-min period to learn
their category assignments. After this period, they then classi-
fied each of the training exemplars and the transfer items. The
results are shown in Table 7 (column 1) in terms of the proba-
bility with which each pattern was classified in Category A. The
data indicate that the subjects were sensitive to values on the
correlated dimensions, because novel patterns that preserved
the correlation (T1-T4) were classified primarily in Category
A, whereas novel patterns that broke the correlation (T5-T8)
were classified primarily in Category B. Some sensitivity to in-
dividual dimension diagnosticity is also evident, however, be-
cause patterns T3 and T4 were classified in Category A more
often than patterns Tl and T2 and patterns T5 and T6 were
classified in Category A more often than patterns T7 and T8.

Two follow-ups of the Medin et al. (1982) experiment have
been conducted. Pavel et al. (1988) used Medin et al.'s category
structure, but, instead of using a free-inspection paradigm, sub-
jects learned to classify the training patterns in a supervised
learning paradigm. Like Medin et al., they then conducted a
transfer test in which both the training patterns and novel pat-
terns were presented. The averaged classification probabilities
for those subjects meeting a learning criterion are shown along
with Medin et al.'s data in Table 7 (column 2). Although Pavel
et al.'s criterion subjects learned to classify the training patterns
with higher accuracy than Medin et al.'s subjects, the pattern of
transfer data on the novel patterns was essentially identical in
the two studies.

McKinley and Nosofsky (1993) conducted another replica-
tion and extension of this learning paradigm. The only impor-
tant difference from Pavel et al.'s (1988) experiment was that, in
addition to conducting a transfer phase at the end of learning,
McKinley and Nosofsky inserted transfer phases at intermedi-
ate points during the learning sequence. As reported in Table 7
(column 3), the data obtained in the final transfer phase after
the completion of learning show the same pattern as was ob-
served for Medin et al.'s (1982) and Pavel et al.'s subjects.

However, the data obtained during the first transfer phase af-
ter the initial block of learning show a much different pattern
(column 4). In general, the dimensions that are individually di-
agnostic appear to exert primary influence. (Pavel et al., 1988,
reported a similar result for their learning data.) For example,
consider Transfer Stimuli Tl, T2, T5, and T6. These transfer
stimuli are "conflicting items" in which the correlated dimen-
sions and the individually diagnostic dimensions are in direct
competition. For T1 and T2, the correlated dimensions point to
Category A, but the individually diagnostic dimensions both
point to Category B. The reverse holds for T5 and T6. Averaging
over these four stimuli, subjects chose the category indicated by
the correlated dimensions with a probability of .387 and chose
the category indicated by the individually diagnostic dimen-
sions with a probability of .613. This pattern contrasts dramat-

ically with that observed during the final block of transfer, in
which the correlated-dimensions choice was made with an av-
erage probability of .642 and the individual-dimensions choice
was made with an average probability of .358.

In summary, the transfer data obtained by Medin et al.
(1982), Pavel et al. (1988), and McKinley and Nosofsky (1993)
provide evidence that, by the end of learning, the correlated di-
mensions exert a major influence on subjects' classification de-
cisions, with some residual influence from the individually di-
agnostic dimensions. Early in learning, however, it appears that
the individually diagnostic dimensions exert primary influence.

RULEX accounts for this pattern of results. Without an ex-
tensive parameter search, we were able to find reasonable set-
tings on the parameters that allowed RULEX to achieve a good
quantitative description of McKinley and Nosofsky's (1993)
data. Because McKinley and Nosofsky randomized the assign-
ment of physical dimensions to the logical category structure,
the dimension-salience weights were not used (i.e., they were all
set equal to 1.0). The general storage parameter was set at pstor
= .6, and the strict criterion for conjunctive rules was set at
ccrit = 1.00. To simulate the data, we assumed that there was
variability in the value of the strict criterion for accepting im-
perfect single-dimension rules. This value varied uniformly
from .7 to .9. This distribution of values represents the idea
that some subjects may set a fairly lenient criterion for accepting
single-dimension rules, and other subjects may set a strict one.
Finally, preliminary simulations suggested that the default as-
sumption of setting the upper test window at twice the size of
the training set needed to be modified (learning proceeded too
slowly). Instead, the value of the upper test window was set
equal to the value of the lower test window (8).

The predictions of RULEX, based on 5,000 simulated sub-
jects, are shown in Table 8. Overall, RULEX provides an excel-
lent account of the averaged classification data. Consider first
the transfer data from the final block. Averaged over the patterns
Tl, T2, T5, and T6 (i.e., the conflicting items), RULEX pre-
dicts that the correlated-dimension choice is made with a prob-
ability of .600 compared with the observed value of .642. For
patterns T3, T4, T7, and T8 (i.e., the nonconflicting items),
RULEX predicts that the correlated-dimensions choice is made
with a probability of .706 compared with the observed value of
.682. Thus, at the final block of transfer, RULEX predicts the
primary influence of the correlated dimensions and the residual
influence of the individually diagnostic ones. RULEX also pre-
dicts some subtle patterns involving the training exemplars.
Note that, in the observed data, the overall percentage correct
for the nonconflicting training exemplars (Al, A3, B2, and B4)
was .989, whereas for the conflicting training exemplars (A2,
A4, B1, and B3), overall percentage correct was .955. These val-
ues are well predicted by RULEX (predicted values of .995 and
.933, respectively).

In addition to predicting the pattern of transfer data at the
final block of learning, RULEX predicts the pattern of transfer
data after the initial block of learning. Overall percentage cor-
rect on the training patterns is predicted to be .563, which is
reasonably close to the observed value of .585. For the novel
patterns in which the correlated dimensions are in competition
with the individually diagnostic dimensions (Tl, T2, T5, and
T6), RULEX predicts that the correlated-dimensions choice is
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Table 8
Fit of RULEX Model to McKinley and Nosofsky's (1993)
Replication and Extension ofMedin, Altom,
Edelson, andFreko's (1982) Study

Final block First block

Stimulus Predicted/; Observed/; Predicted/; Observed/;

Category A

AI mi
A22111
A3 1 122
A4 1222

.994

.934

.993

.924

.96

.93
1.00
.96

.622

.511

.612

.489

.64

.64

.66

.55

Category B

Bl 1212
B22212
B32121
B42221

.064

.004

.062

.004

.02

.00

.05

.00

.491

.378

.499

.382

.57

.43

.46

.34

Transfer

Tl 2222
T22211
T32122
T4 1211
T51112
T61121
T72112
T81221

.591

.592

.705

.701

.406

.399

.293

.288

.66

.64

.64

.66

.36

.36

.27

.30

.378

.381

.489

.503

.612

.616

.491

.496

.46

.41

.52

.50

.73

.59

.39

.46

Note, RULEX = rule-plus-exception model of classification learning.

made with probability .383. This prediction is reasonably close
to the observed value of .387. For the novel patterns in which
ambiguous information is provided by the individually diagnos-
tic dimensions (T3, T4, T7, and T8), RULEX predicts that the
correlated-dimensions choice is made with probability .501,
which is fairly close to the observed value of .546. In summary,
RULEX provides reasonable quantitative predictions of the av-
eraged classification data observed both at the final block of
transfer and after the initial block of transfer and predicts how
the pattern of generalization evolves as a function of learning.

According to RULEX, averaged classification data often re-
flect a mixture of highly disparate patterns of responding at the
individual subject level. Thus, it is critical to understand the
patterns of generalization exhibited by individual subjects. In
the study by Pavel et al. (1988), a generalization profile was de-
nned for each subject. The profile was given by the sequence of
Category A and Category B responses made for each of the
novel transfer stimuli, Tl to T8. For example, the profile
AAAABBBB reflects a subject that classified Transfer Stimuli
Tl to T4 in Category A and T5 to T8 in Category B. Pavel et
al. reported a wide variety of generalization profiles for their
individual subjects, although an actual frequency distribution
of such profiles was not reported. McKinley and Nosofsky
(1993) conducted a similar analysis. They too observed a wide
variety of generalization profiles.

The critical question is whether RULEX (and other models)
can predict the distribution of generalizations that was ob-
served. Given the parameter settings discussed earlier, RULEX

predicts that 51.9% of the subjects should have adopted the gen-
eralization profile AAAABBBB. This profile is the one pre-
dicted for subjects who adopt the pure correlated-dimension
rule: **11 -» A, »»22 -» A, **12 -* B, »*21 -» B. In McKinley
and Nosofsky's (1993) experiment, the generalization profile
AAAABBBB was actually observed for 47.7% of the subjects
(21 of 44), which is quite close to the predicted value. RULEX
further predicts that 43.8% of the subjects should have adopted
17 other moderate-frequency generalization profiles (each pro-
file is predicted for at least 1% of the subjects). Most of these
profiles correspond to a wide variety of single-dimension-plus-
exception rules. For example, profile BBBAAABA is consistent
with the rule 1 *** -*• A, 2*** -* B, with the memorized excep-
tions 2111 -» A and 1212 -* B. In McKinley and Nosofsky's
(1993) experiment, 29.5% of the subjects actually adopted one
of these profiles, which is somewhat less than predicted. Finally,
RULEX predicts that only 4.3% of the subjects should have
adopted one of the remaining possible 238 low-frequency pro-
files. In actuality, 22.7% (10 of 44) of McKinley and Nosofsky's
subjects did so (although none of these 238 profiles was adopted
by more than 1 subject). By setting the response-error (rerr) pa-
rameter to a small value (e.g., rerr = .02), the fit to the averaged
transfer data is essentially the same as before, but better predic-
tions of the distribution of generalization profiles can be
achieved: correlated-dimension profile, 44.1% predicted, 47.7%
observed; single-dimension-plus-exception profiles, 40.0% pre-
dicted, 29.5% observed; other profiles, 16.0% predicted, 22.7%
observed.

In summary, in addition to accounting for the averaged clas-
sification transfer data observed at both early and late stages of
learning, RULEX can provide at least a fair account of the pat-
tern of generalizations observed for individual subjects. This
goal of predicting distributions of responses at the individual
subject level is quite ambitious but may be necessary to test
adequately among the very powerful models of classification
learning that have been developed in recent years. We renew this
method of testing models in a subsequent section of our article.

Linearly Separable Versus Nonlinearly Separable
Categories

An important issue in categorization concerns the role of lin-
ear separability in classification learning. Two categories are lin-
early separable if they can be partitioned by a linear discrimi-
nant function. In a two-dimensional space, this means that a
straight line exists such that all members of Category A fall to
one side of the line and all members of Category B fall to the
other side of the line. Another way of thinking about linear sep-
arability is that one should be able to sum evidence along each
individual dimension of an object and be able to determine its
category membership depending on whether this summed evi-
dence exceeds a criterion value.

The construct of linear separability is important because nu-
merous models of classification predict that linearly separable
categories should be easier to learn than nonlinearly separable
ones. Such models include simple prototype models (Reed,
1972), independent feature-frequency models (Estes, 1986a,
1986b), and the fuzzy-logical model of perception (Massaro &
Friedman, 1990). Although standard back-propagation models
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(Rumelhart, Hinton, & Williams, 1986) are able to learn non-
linearly separable categories, even these models tend to predict
that linearly separable categories should be easier to learn than
nonlinearly separable ones (Gluck, 1991;Kruschke, 1993).

Medin and Schwanenflugel (1981) tested this prediction in a
series of four experiments that used stimuli varying on binary-
valued dimensions. In each experiment, they designed two cat-
egory structures: one that was linearly separable and one that
was not. In contrast to the predictions of numerous models, in
none of the experiments were the linearly separable categories
learned with fewer errors than the nonlinearly separable ones.
(This result does not imply, of course, that linearly separable
categories will never be easier to learn. It implies only that it is
possible to design structures in which the predictions of the ex-
tant models are not obtained.)

An example of one of the designs tested by Medin and
Schwanenflugel (1981) is shown in Table 9. The linearly sepa-
rable categories are shown in the top part of the table, and the
nonlinearly separable categories are shown in the bottom part
of the table. The results of their experiment are shown in the
top panel of Figure 3. The figure plots the average probabilities
of errors for the linearly separable and nonlinearly separable
categories as a function of blocks of learning. As can be seen, the
nonlinearly separable categories were learned with fewer errors
than were the linearly separable ones.

The predictions of RULEX are shown in the bottom panel of
Figure 3. In fitting the model, we set the value of the strict single-
dimension rule criterion at a moderate value (.65) and set the
upper test window equal to the lower test window (which was
held at its default value). We then adjusted the value of the gen-
eral storage probability parameter until we achieved a reason-
able fit to the data. (All other parameters were held at their de-
fault values.) As can be seen in Figure 3, RULEX correctly pre-
dicts that the nonlinearly separable categories are learned with
fewer errors than the linearly separable ones and provides a
good quantitative match to the data.

How does RULEX capture this advantage of the nonlinearly
separable categories? As can be seen in Table 9, for both the
linearly separable and nonlinearly separable categories, the
value of 1 on each dimension points to Category A two thirds
of the time, and the value of 2 points to Category B two thirds
of the time. Thus, subjects would be equally fast at extracting

Table 9
Structure of Medin and Schwanenflugel's (1981,
Experiment 3) Categorization Problems

Category A Category B

Linearly separable

Al 2111
A2 1112
A3 1221

Bl 1222
B22221
B32112

Nonlinearly separable

Al 1122
A22211
A3 1111

Bl 2222
B22121
B31212

0.6-
Observed Learning Data

0.5-

0.4-

0.3-

0.2-

0.1-

o.o-

LS
--«—
NLS

3 4
Blocks of 3 Runs

RULEX Predictions
0.6-

0.5-

0.4-

0,3-

0.2-

0.1-

0.0

LS

NLS

3 4
Blocks of 3 Runs

Figure 3, Top panel: Observed learning data from Medin and Schwan-
enflugel's (1981) Experiment 3 (solid lines are for the linearly separable
[LS] categories and dashed lines are for the nonlinearly separable [NLS]
categories). Bottom panel: Predicted learning data from the rule-plus-
exception (RULEX) model of classification learning.

single-dimension rules for both of these structures. However,
once the search for exceptions to those rules begins, the nonlin-
early separable structure has a clear advantage. Consider all
pairwise combinations of dimension values in the two struc-
tures that might be used for forming exceptions. In the nonlin-
early separable case, there are 10 pairwise combinations of the
dimensions in the exemplars of each category that are unique
to that category. For example, in Exemplar A1, the combina-
tion 1 *2* occurs in Category A but not in Category B. By con-
trast, in the linearly separable case, it turns out that there are
only five pairwise combinations of the dimensions in the exem-
plars of each category that are unique to that category.

Because the linearly separable categories have fewer unique
pairwise combinations, it is more difficult to locate exceptions
that allow the problem to be solved. For example, for the lin-
early separable categories, suppose that a subject extracted the
single-dimension rule 1 *** -»• A and then formed the exception
2*1* -*• A when encountering Al. This exception would then
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be discarded when the subject later encountered B3. In general,
it takes RULEX longer to find workable exceptions for the lin-
early separable categories than for the nonlinearly separable
ones, so the nonlinearly separable categories are learned more
quickly.

Category Structure and the Speed of Learning
Classifications

In the previous section, we illustrated RULEX's ability to
predict that certain nonlinearly separable structures are learned
more quickly than certain linearly separable ones. A more in-
tricate set of learning data was recently reported by Nosofsky,
Gluck, Palmeri, McKinley, and Glauthier (in press), who con-
ducted replications and extensions of the classic study ofShep-
ard, Hovland, and Jenkins (1961). This set of data allows for
still more rigorous tests of alternative models of classification
learning (cf. Anderson, 1991; Estes, in press; Gluck & Bower,
1988;Kruschke, 1992; Nosofsky, 1984).

In Shepard et al.'s (1961) study, subjects were tested on six
types of classification problems. In each problem, there were
eight stimuli composed of three binary-valued dimensions.

Four of the stimuli belonged to one category and the other four
stimuli to a second category. The six problem types that result
from these constraints are illustrated in Figure 4, with the stim-
uli represented as the vertices of a cube. Assignment of stimuli
to each category is indicated by oval (Category A) or rectangular
(Category B) vertices. Each face of the cube represents a value
along one of the binary-valued dimensions. For ease of discus-
sion, we imagine that the dimensions correspond to shape
(square vs. triangle), color (black vs. white), and size (large vs.
small), as is illustrated in the bottom part of the figure. Any
assignment of stimuli to categories, with four stimuli in each
category, can be rotated or reflected into one of the cubes shown
in the figure.

The simplest category structure is the Type I problem. Here,
information about only one dimension is necessary to solve the
problem (shape in the example in Figure 4). For Type II, exactly
two dimensions are relevant. In the Figure 4 example, black
squares and white triangles are assigned to Category A, whereas
white squares and black triangles are assigned to Category B.
Information about size is irrelevant to solving the problem.
Type VI is the most complex category structure, with all three
dimensions being equally relevant. Stating a logical rule for

Type I Typell Type HI
dim 3

dim 2

dim 1

Type IV TypeV Type VI

dim 3: size

dim 2: color
* fr dim 1: shape

Figure 4. Schematic illustration of the six types of categorization problems tested by Shepard, Hovland,
and Jenkins (1961). dim = dimension. From "Learning and Memorization of Classifications" by
R. N. Shepard, C. L. Hovland, and H. M. Jenkins, 1961, Psychological Monographs, 75 (13, Whole No
517), p. 4.
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Type VI in terms of the values on each of the component di-
mensions amounts to enumerating the stimuli in each of the
categories. Finally, Types III, IV, and V are intermediate in
structural complexity between Types II and VI. All three di-
mensions are relevant but to differing extents. One way of de-
scribing these problems is as single-dimension-plus-exception
structures. For example, in Type V, squares are assigned to Cat-
egory A and triangles to Category B, except that the small, white
square is switched with the small, white triangle. The nature of
the exceptions varies across the Type III, IV, and V problems, a
point to which we return later.

In Shepard et al.'s (1961) original study, the Type I problem
was learned with the fewest errors followed by Type II, Types
III, IV, and V (which were about equal in difficulty), and finally
Type VI. Nosofsky et al. (in press) conducted an extensive rep-
lication of Shepard et al.'s study that involved far more subjects,
and they collected sufficient data to obtain learning curves.
Thus, in addition to providing information about the total er-
rors for each problem type, their study provided information
about the actual time course of classification learning. Their re-
sults are reproduced in Figure 5, which plots the average prob-
ability of errors in each of the problems as a function of blocks
of learning. (Each of the eight stimuli was presented twice in
random order in each block of 16 trials.) The results corrobo-
rate Shepard et al.'s original findings and provide more detailed
information about the actual learning process.

The predictions of RULEX are shown next to the observed
data in Figure 5. As can be seen, the fit of the model to data is
excellent (SSD = .077, RMSD = .028, %var = 94.4). The free
parameters used for fitting RULEX were pstor = .80, scrit =
.75, uwind = 4, branch = .10, and capac = .40. All other pa-
rameters were set at their default values, so that a five-parameter
model was used to predict the 96 freely varying data points.
(Because Nosofsky et al., in press, balanced the assignment of
physical dimensions to the logical category structure, the di-
mension salience weights were not needed for fitting the data.)
The main role of the capacity-limiting parameter was to reduce
the speed of learning of the Type VI problem. When the capac-
ity-limiting parameter is not used, RULEX still predicts that
the Type VI problem is learned more slowly than the other types
but fails to predict the magnitude of the effect. Likewise, when
the branching parameter is not used, RULEX still predicts that
the Type II problem is learned more quickly than Types III, IV,
and V. By allowing for quick branches for testing conjunctive
rules, however, RULEX achieves better quantitative fits to the
data.

The ability of RULEX to predict these learning data falls nat-
urally out of the rule-search and exception-learning processes.
The Type I problem is learned most rapidly because subjects
quickly extract the perfect, single-dimension rule that defines
its structure. The Type II problem is learned next most rapidly
because the search for conjunctive rules also occurs early in the
learning sequence, and a perfect set of conjunctive rules is avail-
able for solving the Type II problem. Although a search for im-
perfect, single-dimension rules occurs early for the Type III, IV,
and V problems, the rate of learning for these problems is
slowed for a couple of reasons. First, in many cases, the single-
dimension rule does not exceed the criterion set by the subject,
so it is discarded. Second, even for those cases in which a single-

Observed Data

4 6 8 10 12 14
0.0

RULEX Predictions

14 16

Figure 5. Top panel: Observed learning data from Nosofsky, Gluck,
Palmeri, McKinley, and Glauthier's (in press) replication of Shepard,
Hovland, and Jenkins's (1961) experiment. Bottom panel: Predicted
learning data from rule-plus-exception (RULEX) model of classifica-
tion learning. From "Comparing Models of Rule-Based Classification
Learning: A Replication of Shepard, Hovland,-and Jenkms( 1961)" by
R. M. Nosofsky, M. A. Gluck, T. J. Palmeri, S. C. McKiijley, and P. T.
Glauthier, in press, Memory & Cognition. Copyright by the Psycho-
nomic Society.

dimension rule is formed, an additional stage is required for
subjects to learn the exceptions, and this stage can be quite time
consuming. Finally, Type VI lags considerably behind the other
problems because the only way for RULEX to solve this prob-
lem is to store all of the complete exemplars in memory.

A more fine-grained breakdown of the experimental data is
shown in Figures 6 to 8, which plot learning curves for individ-
ual types of items in Problems III, IV, and V. (In Problems I, II,
and VI, all items play the same structural role and are logically
equivalent.) In Problem IV, for example, Items 1 and 8 can be
described as "central" members of their categories and Items 2
to 7 as "peripheral" members (see Figure 4). (One way of seeing
why Items 1 and 8 are central is to notice that, regardless of
which dimension is selected, these items will never be excep-
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Type IV
Observed Data

14 16

Type IV
RULEX Predictions

"*-..
"*ji

Central

Peripheral

10 12 14 16
Block

Figure 6. Observed and predicted learning data for the Type IV problem. RULEX = rule-plus-exception
model of classification learning.

tions to the single-dimension rule.) Furthermore, the central
members are logically equivalent to one another, and all periph-
eral members are logically equivalent to one another in the sense
that they can be interchanged for one another by simple reas-
signment of dimensions or category labels. Thus, the data are
averaged over the stimuli that define these item types. As shown
in Figure 6, the central members of the Type IV problem were
learned with fewer errors than were the peripheral members. In
the Type III problem, four stimuli are central members (1,2,7,
and 8) and four stimuli are peripheral members (3,4, 5, and 6).
Again, the central members were learned with fewer errors than
were the peripheral members (see Figure 7). In the Type V prob-

lem, there are three item types, which we describe as central (1
and 5), peripheral (2, 3, 6, and 7), and exceptions (4 and 8).
(Items 4 and 8 are exceptions to the only single-dimension rule
that is available for the Type V problem.) As shown in Figure 8,
the central members were learned with fewer errors than were
the peripheral members, and the exceptions had the most er-
rors.

The predictions of the RULEX model for the individual item
types are shown next to the observed data in Figures 6 to 8.
(The parameters were held fixed at those values given earlier.)
At least at a qualitative level, RULEX correctly predicts all of
the trends noted previously here. The central members have
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Type 111
Observed Data

8 10
Block

Type III
RULEX Predictions

8 10
Block

14 16

Figure 7. Observed and predicted learning data for the Type III problem, RULEX = rule-plus-exception
model of classification learning.

fewer errors than the peripheral members because they are
more likely to be correctly classified by the simple rules that are
extracted early in the learning process. It is more likely that
exceptions are needed to classify the peripheral members cor-
rectly, and this stage occurs later in the learning sequence. The
exceptions in the Type V problem have the most errors because
they are always learned during the exception-storage stage.

Predicting Distributions of Generalizations

Earlier in our article, we introduced the idea of testing classi-
fication models on their ability to predict distributions of clas-

sification responses at the individual subject level. The idea was
to define the pattern of generalization exhibited by each indi-
vidual subject and then use the models to predict the distribu-
tion of generalizations.

It is worth emphasizing the potential importance of this ap-
proach. An alternative idea is to try to fit a model to each indi-
vidual subject's data. The problem with such a method, how-
ever, is that RULEX views classification learning as an inher-
ently stochastic process. One cannot predict ahead of time
which particular dimension a subject might sample when test-
ing a rule or which dimensions might enter into the exceptions
that are formed. Thus, fitting any given individual subject's data
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Figure 8. Observed and predicted learning data for the Type V problem. RULEX = rule-plus-exception
model of classification learning.

would require an excess number of free parameters or otherwise
tailoring the model to that subject's data. This situation is anal-
ogous, say, to trying to predict the highly irregular "Brownian
motion" that occurs for particles suspended in a liquid. One
cannot predict the precise location of any given particle from
moment to moment, but elegant mathematical models are
available for predicting the overall distribution of locations.4

In this section, we report an experiment that was designed to
provide more rigorous tests of the ability of RULEX to predict
distributions of generalizations. (The experiment discussed in
our earlier example involved relatively few subjects, and we
needed to cumulate over different types of generalization pro-

files when evaluating RULEX.) The category structure that we
used was the same as in Experiments 2 and 3 of Medin and
Schaffer's (1978) study and is shown again in our Table 10. The
stimuli were computer-generated,drawings of fictitious rocket
ships and varied along four binary-valued dimensions (shape of

4 In arguing for the importance of stochastic learning components,
we do not wish to become embroiled in the deeply philosophical debate
over whether elementary events in the universe are ultimately determin-
istic or probabilistic. Given the limited information available at the
present level of psychological theorizing, however, positing stochastic
components in our learning model is clearly reasonable.
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Table 10
Fit of the Context Model and RULEX
to the Data From Experiment 1

Predicted p

Stimulus Observed/) Context RULEX

Category A

Al 1112
A2 1212
A3 1211
A41121
A3 21 11

.77

.78

.83

.64

.61

.79

.83

.88

.65

.64

.79

.79

.77

.65

.63

Category B

Bl 1122
B22112
B32221
B4 2222

.39

.41

.21

.15

.45

.44

.23

.16

.40

.40

.21

.19

Transfer

Tl 1221
T21222
T3 1 1 1 1
T42212
T52121
T62211
T72122

.56

.41

.82

.40

.32

.53

.20

.62

.47

.85

.45

.34

.61

.22

.58

.47

.79

.45

.33

.56

.22

Note, RULEX = rule-plus-exception model of classification learning.
Entries are the observed and predicted probabilities with which each
stimulus was classified in Category A during the test phase.

the tail, wings, nose, and porthole). Unlike the procedure used
in Medin and Schaffer's study, assignment of physical dimen-
sions to the abstract category structure was randomized for each
subject so that physical and logical dimensions were not con-
founded. This procedure allowed us to fit RULEX to the classi-
fication data with few free parameters because the weights for
representing dimensional salience were not needed. As will be
seen, this procedure also allowed us to study whether RULEX
could explain certain selective-attention effects that have been
reported in the literature.

Experiment 1

Method

Subjects. The subjects were 227 undergraduates from Indiana Uni-
versity, who participated as part of an introductory psychology course
requirement. All subjects were tested individually.

Stimuli and apparatus. The stimuli were computer-generated line
drawings of fictitious rocket ships varying on four binary-valued dimen-
sions: shape of (a) tail, (b) wings, (c) nose, and (d) porthole. The assignment
of physical dimensions and values on dimensions to the abstract category
structure (see Table 10) was randomized for each subject. CompuAdd-386
computers were used to generate the stimuli and control the experiment.

Procedure. There were 16 blocks of nine trials. Each of the 9 train-
ing stimuli was presented once in each block. The order of training stim-
uli within each block was randomized. On each trial, a subject judged
whether the stimulus was a rocket ship from Planet A or from Planet B,
and feedback was then provided. After the training phase, a transfer

phase was conducted in which all 16 stimuli were presented. There were
3 blocks of transfer trials, with each stimulus presented once in each
block. Subjects judged whether the stimulus belonged to Planet A or
Planet B. No feedback was presented during the transfer phase.

Results and Theoretical Analysis

The transfer data are reported in Table 10 in terms of the
average probability with which each stimulus was classified into
Category A. The overall pattern of data is similar to what Medin
and Schaffer (1978) reported in their earlier studies. For exam-
ple, the prototype of Category A, 1111, was classified in Cate-
gory A with very high probability, although it was never seen
during the learning phase. The Category B prototype, 2222, was
also classified with very high accuracy. In addition, the training
pattern A2 (1212) was classified in Category A with slightly
higher probability than was the training pattern A 1 ( 1 1 1 2), rep-
licating the effect of specific exemplars on performance.

In an initial theoretical analysis, we fitted Medin and
Schaffer's (1978) context model to these classification data. On
the basis of previous results, we expected the context model to
provide a good fit. One purpose in fitting the context model
was to establish a benchmark against which RULEX could be
compared. A second purpose was to study the relation between
the best fitting parameters in the context model and the rules
extracted by RULEX under conditions in which the intrinsic
salience of the component dimensions was equated.

According to the context model, the probability that stimulus
/ (S/) is classified in Category A is found by summing the sim-
ilarity of Sj to all exemplars of Category A, and then dividing by
the summed similarity of S, to all exemplars of both Categories
A and B. The similarity between S, and exemplary (E,-) is given
by the multiplicative rule

where sm (0 £. sm s 1) is a free parameter representing the sim-
ilarity of mismatching values on dimension m and 8m(i, j) is an
indicator variable set equal to one when S, and E/ have mis-
matching values on Dimension m and set equal to zero other-
wise. In the present case, the stimuli vary on four dimensions,
so the context model has four free parameters, one similarity
parameter for each dimension. Under conditions in which the
dimensions have equal intrinsic salience, smaller values of sim-
ilarity in the context model represent greater "attention" de-
voted to a dimension.

The fit of the context model to the averaged transfer data is
shown in Table 10. As expected, the context model provides a
good fit to these averaged data, SSD = .030, RMSD = .043,
%var = 96. 1 . The best fitting parameters were s\ = .267, s2 =
.671, $3 = .279, and s4 = .511. Thus, according to the context
model, subjects devoted the most attention to Dimensions 1 and
3 and the least attention to Dimension 2. In a previous theoret-
ical analysis, Nosofsky ( 1 984) showed that this pattern of selec-
tive attention is in the direction of optimizing subjects' classifi-
cation performance.

In our next theoretical analysis, we fitted a four-parameter
version of RULEX to the classification transfer data. Instead of
using point estimates of general storage probability and strict
criterion, we used interval estimates. The value of general stor-
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age probability varied uniformly from .35 to .65, and the value
of the strict criterion for forming a permanent, imperfect, sin-
gle-dimension rule varied uniformly from .70 to .85. All other
parameters were set at their default values, including the dim-
ension-salience weights. The predictions of this four-parameter
RULEX model are shown in Table 10. As was the case for the
context model, the quantitative fit is very good (SSD = .015,
RMSD = .031, %var = 98.0).

Results of the RULEX simulations indicated that roughly
35% of the rules were based on Dimension 1, 35% on Dimen-
sion 3, and 5% on Dimension 4. (Single-dimension rules based
on Dimension 2 were extremely rare.) The remaining 25% of
the simulations resulted in idiosyncratic rules based entirely on
the storage of higher order exceptions.

It is interesting to note the correspondence between the best
fitting similarity parameters for the context model and the rules
extracted by RULEX. As noted previously here, according to
RULEX, the most common single-dimension rules were on Di-
mensions 1 and 3. According to the context model, these dimen-
sions received the most attention. Conversely, according to
RULEX, single-dimension rules were almost never extracted
on Dimension 2. According to the context model, this dimen-
sion received the least attention. According to both models,
then, greater attention is given to the more highly diagnostic
dimensions (1 and 3). In RULEX, however, attention corre-
sponds to those dimensions that participate in the simple rules,
whereas in the context model attention affects similarities
among the exemplars.

The main results of interest in this experiment are shown in
Figure 9, which displays the distribution of generalizations ob-
served at the individual subject level. Because there were 7
transfer stimuli and 2 categories, there are 27 = 128 possible
patterns of generalization, although only 36 of these patterns
were exhibited by at least 2 subjects. For example, the pattern
AA ABBBB, which was exhibited by 32 subjects, corresponds to
those subjects who classified Transfer Stimuli 1 to 3 in Category
A and Transfer Stimuli 4 to 7 in Category B. (Because there
were three transfer blocks, a subject is said to classify a stimulus
into Category A during the transfer phase if he or she classifies
it into Category A in at least two of the three blocks.) Two of the
most common generalizations were A A ABBBB and BB-
AABAB. The former is consistent with the Dimension 1 rule:
1 *** -» A, 2 *** -»• B; the latter is consistent with the Dimen-
sion 3 rule: ** 1 * -> A, **2* -»• B. A third common generaliza-
tion was ABABBAB. We discuss possible bases for this general-
ization later.

Our central goal was to test how well RULEX could account
for the observed distribution of generalizations. In addition, we
were interested in testing the ability of RULEX to account for
certain patterns of response consistency across the three transfer
blocks, which we describe shortly. Because we were now fitting
these detailed aspects of individual subject behavior, we decided
to allow the response-error parameter to vary, in addition to ob-
taining interval estimates of general storage probability and sin-
gle-dimension rule criterion. (The response-error parameter
turns out to be important for predicting our subsequent re-
sponse-consistency data but adds very little to the fit of the model
to the distribution of generalizations.) With general storage prob-
ability varying uniformly from .30 to .65, single-dimension rule

criterion varying uniformly from .65 to .85, and a response error
of .07, the distribution of generalizations predicted by RULEX
is shown in Figure 10. This version of RULEX accounts for
85.7% of the variance in the distribution of generalizations.
Moreover, with these parameters, RULEX accounts for an im-
pressive 99.0% of the variance in the complete set of averaged
transfer data (see Table 10). Thus, in addition to accounting ex-
tremely accurately for the averaged transfer data, RULEX does
at least a fair job of simultaneously characterizing the patterns of
variability existing at the individual subject level. Among
RULEX's main shortcomings, however, is that it underpredicts
the frequency of generalization ABABBAB.

As a source of comparison, we also fitted the context model
to the distribution of individual subject generalizations. The
best fit of the context model is illustrated in Figure 11. As is
evident from inspection, the context model does far worse than
RULEX at predicting the distribution of generalizations
(%var = 35.9). Among its main shortcomings is that it under-
predicts the frequency of the single-dimension generalizations
(AAABBBB and BBAABAB).5

Although its fit to the overall distribution of generalizations is
relatively poor, it is intriguing that, unlike RULEX, the context
model correctly predicts that generalization ABABBAB should
occur with high frequency. Indeed, if one assumes the parame-
ters that maximize the fit of the context model to the averaged
classification data, then the pattern ABABBAB is predicted to
be the highest frequency generalization. One interpretation for
this pattern of generalization, therefore, is that it reflects sub-
jects who were using an exemplar storage strategy to learn the
classification problem and basing classification decisions on the
similarity of objects to these exemplars. Although speculative,
this analysis provides preliminary support for the idea that a
mixture of classification strategies may have occurred in this
experiment, with some subjects using something akin to a rule-
plus-exception strategy and others using an exemplar-storage
strategy.

In another theoretical comparison, we tested RULEX and the
context model on their ability to predict the degree of response
consistency in individual subjects' classification decisions. As a
measure of response consistency, we computed the "hamming
distance" between generalization profiles exhibited by a subject
in Transfer Blocks 1 and 2. The hamming distance is the num-
ber of transfer stimuli for which the subject gave inconsistent
responses across blocks. For example, if the subject exhibited
generalization profile AAAAAAA during Block 1 and general-
ization profile BBAAAAA during Block 2, then the hamming
distance for that subject was 2.

5 Because it uses a probabilistic response rule, the predicted distribu-
tion of generalizations from the context model was computed from the
average probability vector produced by the model. For example, let pi
denote the predicted probability that Transfer Stimulus 1 is classified in
Category A. Then the proportion pi of the generalization profiles had a
value of 1 in their first position, and the proportion l-pl of the general-
ization profiles had a value of 2 in their first position. An additional
method for producing variability at the individual subject level is to
develop stochastic versions of the context model analogous to the way
that RULEX is formalized, but no theories along these lines have yet
been proposed.
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Figure 9. Observed distribution of generalizations for Experiment 1.

In Figure 12 (Panel A), we plot the observed distribution of
hamming distances between the Block 1 and Block 2 general-
ization profiles for all 227 subjects. (The distributions of ham-
ming distances were similar between Blocks 2 to 3 and 1 to 3.)
The most common hamming distances were 0 and 1, and the
frequency of hamming distances declined steadily thereafter.
Also shown in Figure 12 are the predicted distributions of ham-
ming distances from RULEX (Panel B) and the context model
(Panel C). The parameters that were used in generating these
predictions were held fixed at those values that provided a best
fit to the distribution of generalizations. It is evident from in-
spection that, whereas RULEX does a fair job of characterizing
the degree of response consistency across blocks of transfer, the
predictions of the context model are quite poor. It is important
to acknowledge, however, that the response-error parameter in
RULEX is critical in allowing that model to describe the degree
of response consistency. If the response-error parameter is set
at zero, RULEX's fit to the distribution of generalizations (see
Figure 9) is essentially as good as before, but it predicts too
much response consistency across blocks of transfer. Another
interpretation for the distribution of hamming distances, con-
sistent with our interpretation of the distribution of generaliza-
tions, is that it may reflect a mixture of classification strategies.
If the predictions of RULEX, with, say, a response error of .02,

are mixed with the predictions of the context model, a good fit
to the distribution of hamming distances can also be achieved.

The differing predictions of response consistency from
RULEX and the context model stem from the different re-
sponse rules found in these two models. Whereas the response
rule in RULEX is nearly deterministic, the context model uses
a probabilistic response rule (see footnote 5). Apparently, indi-
vidual subjects in the present experiment responded in a more
consistent manner than is predicted by the probabilistic re-
sponse rule in the context model. This finding agrees with an
earlier one reported by Ashby and Gott (1988) in a much
different experimental paradigm. As noted by Nosofsky
(1991b), it is possible to modify the context model by using a
deterministic response rule and introducing noise in other lo-
cations. It may also be possible to develop stochastic learning
versions of the context model, but such undertakings are be-
yond the scope of the present article. Our limited conclusion is
simply to note that the present model, RULEX, appears to do a
fair job of characterizing patterns of generalizations and re-
sponse consistency existing at the individual subject level, and
the results pose an interesting challenge for some extant models.

In summary, a key contribution of these analyses is the dem-
onstration that, although classification models may account ex-
tremely accurately for averaged data, vast individual differences
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Figure 10. Predicted distribution of generalizations from the rule-plus-exception (RULEX) model.

may lurk beneath the surface. Of course, the basic idea that ag-
gregate data may not reflect patterns observed at the individual
subject level is extremely well known. The present innovation,
however, is to characterize the range of individual differences in
categorization in terms of distributions of generalizations and
measures of response consistency and to test models on their
ability to account for these distributions of individual subject
behaviors. Although there is room for improvement, we believe
that the present model makes some significant headway toward
simultaneously characterizing the aggegrate classification data
and the individual subject behaviors from which the aggregate
data are derived.

General Discussion
In this article, we investigated the idea that, in situations in-

volving highly separable-dimension stimuli, much of category
learning may involve the extraction of simple logical rules, with
occasional exceptions to those rules also being stored. This idea
was formalized within the framework of a computer simulation
model of rule-plus-exception learning (RULEX). RULEX was
able to account for a variety of classic phenomena reported in
the categorization literature. It accounted simultaneously for
the prototype and specific exemplar effects reported in Medin
and Schaffer's (1978) studies; for people's sensitivity to both cor-

related and individually diagnostic dimensions, and how this
sensitivity evolves as a function of category learning; for the rel-
ative ease of learning nonlinearly separable versus linearly sep-
arable categories; for the speed of learning the six problem types
in the classic studies of Shepard et al. (1961); and for selective-
attention phenomena. We also demonstrated that RULEX may
contribute to a fuller understanding of the vast individual
differences in patterns of generalization that exist at the individ-
ual subject level. Beyond accounting for these effects at a quali-
tative level, we demonstrated that RULEX is often able to
achieve accurate quantitative accounts of these phenomena.
Thus, the idea that people learn categories by forming simple
rules and storing occasional exceptions appears to be viable and
deserving of continued investigation. Apparently, simple hy-
pothesis-testing and rule-extraction processes may have much
more generality and explanatory power for classification learn-
ing than previously imagined.

Limitations and Extensions
RULEX was intended to be a fairly simple representative of

a more general rule-plus-exception model. We believe that
RULEX will need to be extended in various ways to provide
more complete accounts of category learning and representa-
tion. Of course, this preliminary version of the model is appli-
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Figure 11. Predicted distribution of generalizations from the context model.

cable only in situations involving binary-valued dimensions,
two categories, and deterministic assignments of exemplars to
categories, so it clearly needs to be generalized along these lines.

We also believe that the current version of RULEX is too
brittle, and more flexibility needs to be built into the system.
For example, rules are tested and formed in a rigid, sequential
manner. Perfect single-dimension rules are tested first, followed
by imperfect single-dimension rules, and finally conjunctive
rules. It seems likely that stochastic mechanisms need to be
added to the system to allow for more variable sequencing and
for the extraction of highly accurate, albeit imperfect rules at
the outset. In addition, in the current version of RULEX, once
an imperfect rule has been discarded, it is no longer available
for later use. It seems likely that a subject might return to such a
rule if he or she eventually discovered that it was the best among
several other alternatives. Allowing the model to go back to test-
ing old rules or to storing multiple alternative rules in parallel
also seems important for handling experimental paradigms in
which exemplar-category assignments are shifted midstream.
Another aspect of RULEX that is probably too inflexible is its
strict all-or-none criterion for applying rules and exceptions.
For example, in the current version of RULEX, if an object is
highly similar to an exception but not identical to it, the excep-

tion is not applied. An intriguing possibility for extending
RULEX involves the use of adaptive network models that dy-
namically select alternative rules and exceptions to test and ap-
ply (Busemeyer & Myung, 1992; Choi, McDaniel, & Busem-
eyer, 1993; Kruschke, 1992).

Despite these limitations, we find it instructive that even a
simple representative of a rule-plus-exception model can ac-
count for the wide variety of categorization phenomena that we
investigated in this article.

Old-New Recognition and Exemplar Memories

Another question concerns how RULEX would be applied to
handle old-new recognition judgments. Often, after the comple-
tion of category learning, subjects show an ability to discriminate
between old and new exemplars. Furthermore, good accounts of
the patterns of old-new recognition data are often provided by
summed-similarity exemplar models (e.g., Estes, in press; Hintz-
man, 1988; Medin, 1986; Nosofsky, 1988, 1991b). According to
these models, recognition judgments are based on overall familiar-
ity, in which familiarity is computed by summing the similarity of
an item to all category exemplars stored in memory.

If all that is stored in memory is a rule and a few exceptions,
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how does this ability to discriminate between old and new ex-
emplars emerge, and why do summed-similarity exemplar
models yield good fits? One answer to this question is to admit
that, in addition to forming rules and exceptions, some subjects
may also have some residual memory for the exemplars that
were presented during training. Recognition judgments could
then be based on these exemplar memories, even if the domi-
nant strategy for solving classification problems is to form rules.
If this suggestion is correct, then an interesting issue is whether
RULEX could be combined with exemplar models to yield still
more accurate predictions of recognition judgments.

Our main idea is that the exceptions that subjects store when
solving a classification problem may be the most memorable
old exemplars (or parts of exemplars). We have preliminary
data that strongly support this idea. Following a procedure used
by Medin and Smith (1981), we gave subjects explicit instruc-
tions to use a particular single-dimension-plus-exception strat-
egy to solve a classification problem. We collected old-new rec-
ognition judgments at the end of classification learning. The
items with the highest recognition probabilities were, by far,
those items that were the exceptions to the single-dimension
rule. Other items with high recognition probabilities were those

that were highly similar to the exceptions. An excellent account
of the old-new recognition data was provided by a summed-
similarity model that combined weak memories for the old ex-
emplars with strong memories for the exceptions. We are cur-
rently pursuing this idea of combining RULEX with exemplar
models to predict old-new recognition judgments in free-strat-
egy situations.

More generally, a critical issue for future research is to un-
derstand the combined role of rules and exemplars in categori-
zation and memory and the experimental conditions that pro-
mote the use of these alternative strategies (e.g., Brooks, 1987;
Nosofsky et al., 1989; Ward & Scott, 1987; Wattenmaker,
1993). Even when fairly simple logical rules are available, there
is evidence that exemplars may play a critical role in classifica-
tion (Allen & Brooks, 1991; Nosofsky et al., 1989), typicality
judgments (Nosofsky, 1991c), and implicit memory phenom-
ena (Whittlesea, 1987). This evidence for the coexistence of
rules and exemplars converges with the finding in the present
study that, although RULEX accounted for a substantial pro-
portion of the variance in the distribution of individual subject
generalizations, at least some of the remaining patterns of gen-
eralization could be interpreted as exemplar based.
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Relations to Other Models

In this section, we briefly discuss the relation between
RULEX and some other models of classification.

Context model. Although our intent was to establish a con-
trast between RULEX and the exemplar-similarity context
model, it is important to acknowledge that these models share
some important commonalities (cf. Medin, 1986). Both models
are relational coding models in the sense that they will display
sensitivity to co-occurrence information in the features that
compose the exemplars. RULEX displays this sensitivity be-
cause the exceptions that it stores correspond to bundles of co-
occurring features, and the context model displays this sensitiv-
ity because there is a memory representation for each of the
exemplars. RULEX and the context model also have in com-
mon the assumption that certain dimensions are more salient in
the category representation than are others. In RULEX, those
dimensions that have intrinsic salience or that are highly diag-
nostic are more likely to participate in the single-dimension or
conjunctive rules that are formed. In the context model, greater
attention is given to these dimensions, which affects similarity
relations among the stored exemplars. Indeed, because of these
commonalities, Medin suggested that exemplar models that in-
clude assumptions about selective attention (such as the context
model) may often provide good fits to data associated with the
use of rule-based strategies.

ACT generalization model. Anderson et al. (1979) and Elio
and Anderson (1981) presented a model of classification learn-
ing that operated according to the principles of production-rule
formation in the ACT system (Anderson, 1976). This model has
some similarities to RULEX in that both general and specific
rules may coexist by the time a subject has solved a classification
problem. In addition, the rule systems that are formed may
vary across different subjects, so the model's predictions of ag-
gregate data will not match those for any given individual sub-
ject. There are several major conceptual differences between
RULEX and the ACT generalization model, however. In
RULEX, we assume that subjects first develop very simple rules
by means of hypothesis testing and then gradually supplement
these simple rules with exceptions. The opposite learning pro-
cess tends to occur in Anderson et al.'s model. Subjects start by
storing complete exemplars in memory and subsequently form
generalizations that reflect commonalities among exemplars
from the same category. Thus, this system presumes a good deal
of memory for past examples during the learning process. In-
deed, in their tests of the ACT generalization model, Elio and
Anderson reported that their subjects were "encouraged not to
formulate and test hypotheses during learning, but to concen-
trate on memorizing each description . . . we stressed item
memorization rather than active hypothesis testing" (pp. 403-
404). In addition to these fundamental differences in the learn-
ing process, RULEX and the ACT generalization model differ
in their view of the final category representation and decision
process. In RULEX, we suppose that each subject has stored at
most a couple of simple rules together with a few exceptions,
and these rules are applied in an essentially deterministic man-
ner. By contrast, in the ACT generalization model, numerous
rules exist in parallel, and the particular rule that is selected for
application on a given trial is chosen probabilistically.

Configural cue model. Gluck and Bower's (1988) configural
cue model is similar to RULEX in that associations are learned
between both single features and categories and between con-
figurations of features and categories. By the time category
learning is completed, the representation in the configural cue
model might be similar to what occurs in RULEX. For exam-
ple, a strong association might exist between a single feature
and the alternative categories, but this single-feature association
might be supplemented by associations between some highly
specific configurations of features (exceptions) and the catego-
ries. RULEX and the configural cue model differ, however, in
their conceptualization of the learning process. In RULEX, re-
lations between features and categories are learned in an all-or-
none manner by a hypothesis-testing process, and only a single
association is learned at a time. By contrast, in the configural
cue model, associations are learned by gradually incrementing
and decrementing a set of connection weights, and all associa-
tions are learned in a simultaneous and interactive manner. Fur-
thermore, whereas the configural cue model presumes that a
massive number of associations are learned between all possible
feature combinations and the categories, RULEX supposes that
only a few such associations are learned by any given subject.
Finally, whereas the learning process in RULEX is highly sto-
chastic and leads the model to predict vast individual differ-
ences at the individual subject level, current versions of the con-
figural cue model use a deterministic learning process.

General recognition theory (GRT). Ashby and Townsend's
(1986) GRT is a multidimensional generalization of signal-de-
tection theory. According to the theory, the observer establishes
decision boundaries in a psychological space that partition the
space into response regions. Any internal representation that
falls in Region A would result in a Category A response. As
discussed by Ashby (1992), the GRT provides a very general
framework in which numerous different models of classification
can be expressed, depending on the types of decision boundaries
that are assumed. In some applications involving stimuli vary-
ing along two continuous dimensions, Ashby and Lee (1991)
and Maddox and Ashby (1993) successfully fitted GRT models
that assumed general linear boundaries, quadratic boundaries,
or exemplar-based likelihood boundaries, although no process
model was tested for the learning of these boundaries. In the
language of Ashby and Gott (1988) and Ashby (1992), the rules
and exceptions developed by RULEX could be characterized
as complex sets of independent-decisions boundaries. RULEX
provides an explicit process model for how such decision
boundaries are learned over time (in stimulus domains with
binary-valued dimensions) and provides a theory of the range
of differences in types of decision boundaries observed across
individual subjects.

Two-stage model of category construction. Whereas the fo-
cus of the present research was on classification learning, an
important, closely related cognitive process is category con-
struction. In a category-construction task, subjects are given a
number of objects and are asked to cluster them into whatever
groups seem most natural. Given the enormous evidence that
natural categories are defined by similarity relations, or family
resemblance, it is reasonable to expect that people would cluster
objects in a free-sorting task on the basis of family resemblance
as well. However, evidence suggests that people most often sort
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objects on the basis of a single salient dimension (Ahn & Medin,
1992; Medin, Wattenmaker, & Hampson, 1987; Wattenmaker,
1992). Furthermore, Ahn and Medin found that occasional
cases of apparent family resemblance sorting could be ac-
counted for by a two-stage model of category construction. In
the first stage, objects are clustered on the basis of a single di-
mension. In the second stage, the exceptions, which cannot be
clustered on the basis of this dimension, are placed into the
group to which they are most similar. Although the task goals
are quite different and learning processes based on hypothesis
testing are not involved, this two-stage model of category con-
struction bears a striking resemblance to RULEX. Ahn and
Medin's (1992) work can thus be viewed as providing still fur-
ther evidence about the potential generality of rule-plus-excep-
tion processes in categorization.

Rule-plus-exception models. RULEX is closely related to a
variety of other rule-plus-exception models, mainly from the
artificial intelligence and machine-learning literatures (e.g.,
Fisher, 1987; Hunt et al., 1966; Medin, Wattenmaker, & Mi-
chalski, 1987; Michalski, 1983; Quinlan, 1986; Schlimmer,
1987). Like RULEX, such algorithms are designed to formulate
a fairly simple system of rules for correctly classifying objects
into alternative categories. One of the main features that distin-
guishes RULEX from many of these other models, however, is
that RULEX is intended to be a psychologically plausible learn-
ing model. By contrast, many of these other models are more
concerned with designing algorithms that will, in some sense,
construct optimal systems of rules. Other such models either
are not concerned with learning per se or place large memory
demands on the concept-learning system. For example, the IN-
DUCE and PATCH models of Michalski (1983) and Medin,
Wattenmaker, and Michalski (1987), which have had some in-
teresting psychological applications, construct systems of rules
for classifying examples in situations in which multiple training
exemplars are simultaneously present. The same is true of
Quinlan's (1986) IDS model, which must examine and reexam-
ine all previously presented exemplars at many stages of learn-
ing. Even the classic concept-learning systems developed by
Hunt et al. (1966) presumed that there was memory either for
all previously presented exemplars or for a substantial subset of
them. Furthermore, after any classification error, all rules were
discarded, and an entirely new system of rules was constructed
in toto to classify correctly all exemplars residing in memory.
By contrast, in RULEX, the rule-induction process takes place
on a trial-by-trial basis by means of hypothesis testing, and there
is only limited memory for any exemplars presented on previ-
ous trials. There are some examples of trial-by-trial rule-learn-
ing algorithms from artificial intelligence, but, rather than being
based on explicit hypothesis-testing procedures involving lim-
ited memory, such algorithms presume much richer sources of
statistical information involving feature-category correlations,
measures of category utility, and so forth (e.g., Fisher, 1987;
Schlimmer, 1987).

Regardless of how one views such differences, however, the
most important novel contribution of the present work is that
we have demonstrated the ability of a rule-plus-exception
model to account for a wide variety of categorization phenom-
ena of major psychological interest and have provided quantita-

tive tests of the ability of such a model to predict psychological
data.

Directions for Future Research

The main theme of our investigation was to demonstrate the
ability of RULEX to account for well-known results in the clas-
sification literature. These demonstrations are important be-
cause the learning process and category representation in
RULEX differ substantially from other current models in the
field, most of which have extraordinarily high information-pro-
cessing demands. The next logical step is to begin to develop
contrasts that will allow the predictions of RULEX to be tested
against those of competing models. We suspect that the best
chance of developing such contrasts will involve detailed analy-
ses of learning and transfer data at the individual subject level.
For example, early research on concept formation provided ev-
idence that individual subjects learn simple rules in an all-or-
none manner (Trabasso & Bower, 1968). Such all-or-none learn-
ing phenomena are consistent with the hypothesis-testing pro-
cess that is assumed in RULEX but may be much more difficult
for incremental learning models such as ALCOVE, the config-
ural cue model, and the rational model to explain. Likewise,
instead of comparing models on their ability to predict averaged
classification transfer data, it may prove more diagnostic to
compare them on their ability to predict patterns of individual
subject variability, such as the distributions of generalizations
that we have considered herein. Before rigorous comparisons
can be achieved, however, it will be important to extend essen-
tially all of these by models by incorporating stochastic learning
components. Such components are probably necessary to han-
dle the extensive variability in strategies that appears to exist at
the individual subject level. This need to rely on more and more
fine-grained levels of analysis attests to the theoretical progress
being made in the field of category learning and representation.
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Appendix

We now provide some additional details concerning the RULEX
simulation.

During the search for imperfect single-dimension rules, we assume
that the subject establishes a counter on each tested dimension and uses
a majority rule to make classification decisions. For example, suppose
that the subject samples Dimension 1 and finds that Value 1 on this
dimension signals Category A. Then the subject would increment the
rule counters 1 *** -» A and 2 *«* -»• B, and these would be the tentative
rules. If the next two stimuli had a value of 1 on Dimension 1 but sig-
naled Category B, however, then the alternative counters would be in-
cremented, and the tentative rules would be switched to 1 *** -*• B and
2*** -» A. The storage-probability parameter is also involved in the
search for imperfect single-dimension rules. On each trial, the proba-
bility that the rule counters are actually incremented is given by the
storage-probability parameter. This assumption is intended to approxi-
mate the idea that people may not have perfect memories for the single-
dimension information that is experienced during training.

The search for conjunctive rules operates in a similar manner. Sup-
pose that the subject is sampling Dimensions 1 and 2 and finds that the
combination 11** signals Category A. Then the tentative rule would be
11 ** -» A. In addition, the subject would also form the tentative rules
12 ** -*• B and 21 ** -»• B. The reason for automatically forming these
latter tentative rules is that single-dimension rules have already failed.
(For example, if 11 ** -*• A and 12 ** -* A, then it is logical that 1 *** -*
A.) Thus, the rule counters 11 ** -*• A, 12 ** -»• B, and 21 ** -»• B would
all be incremented by 1. There is a question, however, concerning the

status of the pattern 22**, which could signal either category. In the
current version of the simulation, RULEX does not increment either
counter involving this pattern and waits until it receives explicit infor-
mation concerning the category membership of this pattern. As was the
case for the single-dimension counters, RULEX uses a majority rule to
make its classification decisions. In addition, the probability that the
conjunctive rule counters are actually incremented at each step is given
by the storage-probability parameter squared. This assumption is in-
tended to approximate the idea that it is probably more difficult to re-
member conjunctive rule information than single-dimension informa-
tion.

As discussed in the text, the probability of successfully remembering
exceptions is influenced by two parameters: storage probability and ca-
pacity limit. Suppose that a subject samples an exception with n dimen-
sions and there are currently m exceptions already stored in memory.
Then the probability that the new exception is successfully stored is
given by pstor"-capacm. In general, then, it is more difficult to store
exceptions composed of a large number of dimensions and more diffi-
cult to store new exceptions when there are already a large number of
old exceptions in memory. Again, these assumptions approximate the
idea that our memory systems are limited in capacity.
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