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The authors propose a rule-plus-exception (RULEX) model for how observers classify stimuli re-
siding in continuous-dimension spaces. The model follows in the spirit of the discrete-dimension ver-
sion of RULEX developed by Nosofsky, Palmeri, and McKinley (1994). According to the model, ob-
servers learn categories by forming simple logical rules along single dimensions and by remembering
occasional exceptions to those rules. In the continuous-dimension version of RULEX, the rules are for-
malized in terms of linear decision boundaries that are orthogonal to the coordinate axes of the psy-
chological space. In addition, a similarity-comparison process governs whether stored exceptions are
used to classify an object. The model provides excellent quantitative fits both to averaged classifica-
tion transfer data and to distributions of generalizations observed at the individual-participant level.
The modeling analyses suggest that, when multiple rules are available for solving a problem, averaged
classification data often represent a probabilistic mixture of idiosyncratic rule-plus-exception strategies.

The idea that people may represent categories in terms
of simple logical rules dates back to the very beginnings
of research on concept identification in cognitive psy-
chology (Bourne, 1970; Bruner, Goodnow, & Austin,
1956; Hunt, Marin, & Stone, 1966; Levine, 1975; Restle,
1962; Trabasso & Bower, 1968). The rule hypothesis car-
ries a good deal of intuitive appeal. An important pur-
pose of categorization is to reduce the complexity of
mental processing by organizing distinct objects into
classes and then dealing with the classes as wholes rather
than with each object uniquely. By forming a simple rule,
an economical summary description is provided for an en-
tire class of objects, thereby allowing for a vast reduction
in the amount of information that one needs to store in
memory. Furthermore, to decide category membership for
any individual object, one need only decide whether or not
the combination of attributes that composes the object
satisfies the rule.

Despite its intuitive appeal and the early dominance of
this approach, models based on the formation of simple
logical rules had. until recently, largely dropped from the
" scene in categorization research. Historically, the main
impetus for this trend can be traced to the highly influ-
ential work of such researchers as Posner and Keele (1968)
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and Rosch (1973; Rosch & Mervis, 1975; Rosch, Simpson,
& Miller, 1976). Rosch, for example, argued convincingly
that most categories in the natural world were not struc-
tured according to simple rules. For one thing, it is difficult
to state simple rules or definitions that perfectly parti-
tion the members of most natural-world categories. Fur-
thermore, experimental research indicates that categories
have a graded, internal structure, in which some objects
are “better” or more typical members of the category than
others are (Barsalou, 1985; Rips, Schoben, & Smith, 1973:
Rosch, 1973). Models based solely on the idea that simple
rules or definitions are used to represent categories seem
unable to account for the full range of findings involving
these typicality and graded-structure effects (for an exten-
sive review and analysis, see E. E. Smith & Medin, 1982,
chap. 3).

In response to these challenges, experimental research
began to examine the learning of ill-defined category
structures in which no simple rules existed for deciding
category membership. A wide variety of models have been
developed to account for the learning of such ill-defined
categories. These models include prototype models (Reed,
1972), feature-set models (Hayes-Roth & Hayes-Roth,
1977), exemplar models (Medin & Schaffer, 1978), con-
nectionist models (Knapp & J. A. Anderson, 1984),
Bayesian models (J. R. Anderson, 1991), and decision-
boundary models (Ashby & Lee, 1991). According to ex-
emplar models, for instance, people represent categories
by storing previously experienced category exemplars in
memory and classifying objects on the basis of their sim-
ilarity to these exemplars. Such models, which have en-
joyed enormous success at accounting for diverse cate-
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gorization phenomena (Brooks, 1978; Estes, 1994; Heit,
1994; Hintzman, 1986; Kruschke, 1992; Lamberts, 1994;
Medin & Schaffer, 1978; Nosofsky, 1986), provide a view
of category representation that is dramatically different
in spirit from those of simple rule-based models.

Recently, however, the pendulum of competing ideas
has begun to shift back to consideration of simple rule-
based models, at least as an important component of cat-
egory learning and representation. One reason for this
renewed consideration is quite subjective in nature: Peo-
ple have strong impressions that they do indeed form
rules when learning to categorize. Furthermore, some re-
searchers have questioned the plausibility of exemplar
memory models and the vast storage and computational
resources that they seem to require.

More important, researchers have begun to develop
elaborated rule-based models that are showing some
promising successes at accounting for various forms of
classification and memory data (Ahn & Medin, 1992;
Martin & Caramazza, 1980; Medin, Wattenmaker, &
Michalski, 1987; Nosofsky, Palmeri, & McKinley, 1994;
Palmeri & Nosofsky, 1995; Ward & Scott, 1987). The
most broadly tested of these models in the domain of clas-
sification learning is the rule-plus-exception (RULEX)
model of classification proposed by Nosofsky, Palmeri,
and McKinley (1994; Palmeri & Nosofsky, 1995). Fol-
lowing in the spirit of the early concept-identification
models, according to RULEX, observers learn to classify
by a process of hypothesis testing in which simple logi-
cal rules are formed along the dimensions that compose
the objects. As a straightforward extension of such models,
RULEX allows for the formation of imperfect rules—
that is, rules that do not perfectly partition the members
of contrasting categories. Observers then supplement these
imperfect rules with occasional stored exceptions. Thus,
complex, ill-defined categorization problems can often
be solved by a combination of rule formation and excep-
tion storage. An important theme in the model is that large
individual differences are expected to be observed in the
particular rules that are formed and in the exceptions that
are stored, so that averaged classification data may not be
representative of the behavior of any single subject.

Nosofsky, Palmeri, and McKinley (1994) demon-
strated that RULEX provides excellent quantitative ac-
counts of a wide variety of benchmark phenomena in the
modern categorization literature. These phenomena in-
clude prototype and specific exemplar effects (Medin &
Schaffer, 1978), selective attention effects (Medin &
E. E. Smith, 1981; Nosofsky, 1984), sensitivity to corre-
lated dimensions (Medin, Altom, Edelson, & Freko,
1982), the difficulty of learning linearly versus nonlin-
early separable categories (Medin & Schwanenflugel,
1981), and the relative difficulty of learning categoriza-
tion problems described by rules of differing complexity
(Nosofsky, Gluck, Palmeri, McKinley, & Glauthier, 1994;
Shepard, Hovland, & Jenkins, 1961). Furthermore, Palmeri
and Nosofsky (1995) provided converging evidence for
the RULEX ideas by collecting recognition memory data

following the completion of category learning. In these
studies, observers displayed superior memory for excep-
tions to category rules, and a mixed model that assumed a
combination of RULEX processing and residual exem-
plar storage provided good quantitative accounts of the
recognition data.

An important limitation of RULEX, however, is that
the current version predicts performance only for stim-
uli varying along discrete binary-valued dimensions. Al-
though numerous categorization experiments have been
conducted in such a stimulus domain, to evaluate the
generality with which RULEX processing may occur, it
is vital to extend the model to predict performance in
continuous-dimension stimulus domains. Indeed, a com-
mon critique of the concept-identification paradigm and
the associated hypothesis-testing models that were de-
veloped is that many real-world categories are composed
of continuous rather than discrete dimensions (Reed,
1996, pp. 225-226). Therefore, the main purpose of this
research was to begin the development and testing of a
continuous-dimension RULEX model.

We organize our article as follows. We start by briefly
reviewing how RULEX has been used to model classifi-
cation learning for stimuli varying along binary-valued
dimensions. Using this previous modeling as a guide, we
then develop a continuous-dimension version of RULEX.
Nosofsky, Palmeri, and McKinley (1994) implemented
the binary-valued version of RULEX as an explicit learn-
ing model. However, because the complexity of modeling
performance is far greater in multivalued, continuous-
dimension domains than in binary-dimension ones, in the
present article we bypass questions about learning and
simply propose an asymptotic form of the model. This
continuous-dimension RULEX model is then evaluated
by fitting it to data from several previously published
studies in the literature, as well as to some new data sets
reported herein. For many of these studies, we believe
that the continuous-dimension RULEX model provides
an account of the complete set of data that is as good as
or better than the accounts provided by extant alternative
models. We conclude the article by briefly comparing
RULEX with some related models that are currently being
developed by other investigators. To forecast this final
discussion, we argue that although RULEX processing
may play a fundamental role in a variety of categoriza-
tion settings, we do not view RULEX as a self-sufficient
model. Rather, our ultimate aim is the development of a
hybrid model that includes both RULEX processing and
exemplar-based processing as fundamental components.

Review of the Binary-Valued RULEX Model
Consider the category structure shown in Table 1. This
structure was used by Medin and Schaffer (1978) in their
seminal article which introduced the exemplar-based
context model and has been used by numerous investiga-
tors since then. The stimuli vary along four binary-valued
dimensions. There are five Category A training exemplars,
four Category B training exemplars, and seven transfer



Table 1
Example of Category Structure Tested
in Medin and Schaffer’s (1978) Experiments 2 and 3

Category A Category B Transfer Stimuli
Alll12 BI 1122 T1 1221
A21212 B2 2112 T2 1222
A3 1211 B3 2221 T3 1111
Ad41121 B4 2222 T4 2212
A52111 T52121

T6 2211
T72122

stimuli. Logical Value 1 on each dimension tends to indi-
cate Category A, and Logical Value 2 tends to indicate
Category B, but there are no singly necessary and jointly
sufficient sets of features that define the categories. Ac-
cording to RULEX, by the time the learning process is
completed, an individual observer might have stored the
following information in memory. First, the observer
might store the (imperfect) single-dimension rule that
objects with Value 1 on Dimension | belong to category 4
and that objects with Value 2 on Dimension 1 belong to
Category B (see Table 1). We summarize these rules by
using the notation 1*** — A, 2*** — B, where the as-
terisks denote dimension “wild cards” that match any
value. Exemplars A5 and B1 are exceptions to this rule,
so the observer must store additional information to
learn the categories. For example, the observer might store
the exceptions 2*11 — A, 1*22 — B (see Table 1). Note
that, with these rules, the categorization problem is
solved, even though no complete exemplars are stored in
memory. The learning process in RULEX is stochastic,
and a key property of the model is that different ob-
servers form alternative rules and exceptions. For exam-
ple, numerous observers might, instead, form rules along
Dimension 3, ¥**1* — A, **2* — B, and store informa-
tion to classify the A4 and B2 exceptions—for example,
1*21 — A, 2*12 — B. Averaged classification data are
assumed to represent probabilistic mixtures of these
idiosyncratic rules and exceptions. An explicit learning
process is formalized in the RULEX simulation that in-
corporates classic principles of hypothesis testing (e.g.,
Levine, 1975; Trabasso & Bower, 1968) and probabilis-
tic storage of exception information. Thus, although a
vast array of different rules and exceptions are involved
in predicting the averaged classification data, these rules
and exceptions emerge from a probabilistic learning pro-
cess described by relatively few free parameters.
Nosofsky, Palmeri, and McKinley (1994) demon-
strated that RULEX provides excellent quantitative fits
to averaged classification data, fits that are essentially
the same as those achieved by the exemplar-based con-
text model. Beyond predicting averaged classification
data, however, RULEX also fares well at predicting pat-
terns of performance at the individual observer level. A
highly diagnostic form of data is what Nosofsky, Palmeri,
and McKinley (1994) referred to as a distribution of gen-
eralizations (see also Nosofsky, Clark, & Shin, 1989:
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Pavel, Gluck, & Henkle, 1988). Consider the transfer
stimuli in Table 1. During test, each transfer stimulus is
classified by an individual observer into either Cate-
gory A or Category B. The specific pattern of classifi-
cation responses given to the transfer stimuli defines a
generalization profile for an individual observer. For ex-
ample, an observer classifying T1-T3 into Category A and
T4-T7 into Category B yields the generalization profile
AAABBBB. The distribution of generalizations is then
obtained by computing the frequency of individuals dis-
playing each profile. The top panel of Figure | shows the
distribution of generalizations observed in Nosofsky,
Palmeri, and McKinley’s (1994) replication of Medin and
Schaffer’s (1978) experiment. The bottom panel shows
the distribution predicted by RULEX. (This distribution
was predicted while holding fixed the parameters that
best fit the averaged transfer data, although in the pre-
sent article we will have reason to fit both types of data
simultaneously.) RULEX does a reasonably good job of
predicting the.observed distribution. This achievement is
important, because in addition to accounting for the aver-
aged transfer data, RULEX simultaneously characterizes
the patterns of performance observed at the individual
observer level. By contrast, the exemplar-based context
model failed dramatically to predict the distribution-of-
generalization data (see Nosofsky, Palmeri, & McKinley,
1994). In evaluating the continuous-dimension version of
RULEX in this article, we continue to rely on distribution-
of-generalization data to provide more incisive tests of the
model.

A Continuous-Dimension RULEX Model

To introduce the continuous-dimension RULEX model,
we refer to the category structure illustrated in Figure 2,
which was tested in a previous study by Nosofsky et al.
(1989). The stimuli were circles varying in size and angle
of orientation of a radial line, which are highly separable
dimensions (Nosofsky, 1985; Shepard, 1964). There
were four levels of size and four levels of angle combined
orthogonally to yield 16 stimuli. The spacings between
dimension values illustrated in Figure 2 were derived in
a separate similarity-scaling study. Stimuli enclosed by
circles and triangles represent Category A and Cate-
gory B training exemplars, respectively; the unenclosed
stimuli were novel transfer items. Nosofsky et al. (1989)
designed this category structure to contrast the predic-
tions of the exemplar-based context model with those of
a particular rule-based model formalizing an “economy-
of-description” view. Although the results favored the con-
text model over the economy-of-description rule model,
we will see that the continuous-dimension version of
RULEX fares even better at accounting for the data.

A natural way of extending RULEX to the domain of
continuous-dimension stimuli is to make use of the
decision-boundary construct central to the general recog-
nition theory (GRT) of Ashby, Townsend, and their as-
sociates (e.g., Ashby & Gott, 1988; Ashby & Townsend.
1986: Maddox & Ashby. 1993). GRT is a multidimen-
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Figure 1. Top panel: Distribution of generalization profiles observed in Nosofsky, Palmeri, and McKin-
ley’s (1994) experiment. Bottom panel: Distribution of generalizations predicted by RULEX. From “Rule-
Plus-Exception Model of Classification Learning,” by R. M. Nosofsky, T. J. Palmeri, and S. C. McKinley,

1994, Psychological Review, 101, pp. 72-73 (Figures 9-10). Copyright 1994 by the Americal Psychological
Association. Adapted with permission.
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Figure 2. Category structure tested by Nosofsky, Clark, and
Shin (1989). Stimuli enclosed by circles = members of Category A;
stimuli enclosed by triangles = members of Category B; unen-
closed stimuli = transfer items. Single primes denote values along
Dimension 1; double primes denote values along Dimension 2.
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sional generalization of signal detection theory. One of the
key ideas is that an observer establishes decision bound-
aries in a multidimensional psychological space. These
boundaries partition the space into response regions. Any-
time a percept falls in Region A, a Category A response
is made. For RULEX, which places emphasis on single-
dimension rules, the decision boundaries take a highly sim-
plified form: They are simply linear boundaries that are
orthogonal to the coordinate axes of the space. (For previ-
ous examples in which continuous-dimension logical rules
have been formalized in terms of orthogonal linear bound-
aries, see Nosofsky et al., 1989, and Nosofsky, 1991.) For
example, in the Figure 2 category structure, an observer
might establish a criterion on the dimension of angle, such
that any object with an angle level of 2 or greater is clas-
sified into Category A and any object with an angle level
of 1 or less is classified into Category B. We summarize
this rule by using the notation A: =2’, where the single
prime indicates that we are referring to values along Di-
mension 1 (angle). Likewise, the rule A: =3” indicates
that members of Category A are those with values
greater than or equal to 3 on Dimension 2 (size). Of
course, to solve the categorization problem, exceptions
would need to be learned for each of these rules, a pro-
cess that we discuss below.

The rules just described involve the setting of a single
criterion. Another important type of single-dimension rule
occurs when the observer establishes an interval defined
by two decision criteria. Any percept falling within the in-
terval is classified in one category, and any percept falling
outside the interval is classified in the alternative category.
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For example, a likely double-criterion rule for the Figure 2
structure would be B: =1’ V =4’ (members of Category B
are those with values of =1 OR =4 on Dimension 1). For
simplicity, in developing the continuous-dimension ver-
sion of RULEX, we limit initial consideration to these two
types of single-dimension rules (i.e., single criterion and
double criterion). Later, we consider more complex logical
rules that result from combinations of orthogonal linear
boundaries along multiple dimensions, such as conjunc-
tive, disjunctive, and biconditional rules.

Because of perceptual noise in the object representation
or criterial noise in the location of the decision boundary,
classification of items into categories according to the
rules may not be completely deterministic. Suppose that
a given Rule K is used. Then the probability that item i
is classified into Category A is denoted Py, « (Ali) and
is found by integrating over the portion of the item i dis-
tribution that falls in the Response A region defined by
Rule K. In the current model, a single perceptual-criterial
noise parameter, o, is assumed when one is estimating
these probabilities.!

Once the single-dimension rule is established, the ob-
server needs to store exceptions, just as occurs in the dis-
crete, binary-valued dimension case. When continuous-
dimension stimuli are involved, however, it becomes
critical to consider the role of stimulus similarity in guid-
ing the use of stored exceptions. In the binary-valued ver-
sion of RULEX, we assumed, for simplicity, that a stored
exception was used to classify an object only if it perfectly
matched the object on its relevant attributes. For exam-
ple, learning the exception 2*11 — A would lead the ob-
server to classify only objects 2111 and 2211 into Cate-
gory A. For continuous-dimension stimuli, we propose
that a similarity-comparison process is used to guide
classifications based on exceptions. For example, if the
observer learns that an object with size 5 mm and angle
46° is an exception that belongs in Category A, itis likely
that the observer would also classify an object with size
5.1 mm and angle 46.3° into Category A.

Suppose that the observer has learned Rule K for par-
titioning the space, and let E(K) denote the set of excep-
tions that a learner has stored in memory to completely
solve the problem (given this rule). For example, if the
observer adopted the rule A: =2’, then he or she would
need to learn that Stimuli 3 and 8 are exceptions that be-
long to B (see Figure 2). (In the examples considered in
this article, the stimuli are composed of two dimensions, so
storing an exception to the rule amounts to storing a com-
plete exemplar. However, just as is the case in the binary-
valued version of RULEX, when multiple dimensions
compose the objects, the exceptions that are stored could
consist of subsets of dimensions of the complete exem-
plars.) Following previous work, we assume that the prob-
ability that the exception process is used to classify item i
is related to the summed similarity of item i to all excep-
tions & belonging to E(K). Specifically. the probability that
the exception process is used to classify item i is given by

r
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| Zs{i.k)ii
{‘: Z's(i,k)}+ v}

where s(i,k) denotes the similarity of item i to exception
k, and v represents a criterion for the use of the exception
information (cf. Estes & Maddox, 1995; Nosofsky, 1988).

Similarity is computed in the model by using classic
methods from multidimensional scaling (MDS) theory
(Shepard, 1958, 1964, 1987; see Nosofsky, 1992, for a
review of the use of these methods in modern exemplar
models). The stimuli represented in Figure 2 were readily
discriminable and varied along highly separable dimen-
sions. For such stimuli, we assume that the similarity be-
tween item i and exception k is an exponential decay
function of their distance in the multidimensional space
(Shepard, 1987):

s(i,k) = exp[—x - d(i,k)], (2A)

where « is a freely estimated scaling parameter. Further-
more, for these highly separable-dimension stimuli, we
assume that distance d(i, k) is computed by using a city-
block metric (see, e.g., Garner, 1974; Nosofsky et al.,
1989; Shepard, 1991):

d{l‘k} = z ‘Xl'm = Xim l’

PE I.I.SC(K} =

(2B)

where x,,, denotes the psychologically scaled value of
item i on dimension m.

Table 2
Average Probability With Which Each Stimulus Was Classified
in Category A in Nosofsky, Clark, and Shin’s (1989)
Experiment 1, Together With the Predictions From RULEX

Stimulus Obs Pre-1 Pre-2
Bl .05 06 .06
2 54 .56 .56
B3 17 16 18
4 .06 05 .05

5 19 22 .20
Ab .83 B4 82
7 37 41 42
B8 .08 .08 .09
9 8 19 19
Al10 .86 90 .90
All 91 86 .85
12 .39 38 40
B13 08 .08 .08
14 76 .80 81
15 87 B5 83
16 32 .36 36

Note—Obs. observed probabilities. Pre-1, predicted probabilities from
RULEX when the model is fitted to the averaged classification trans-
fer data by using the AIC statistic. Pre-2, predicted probabilities from
RULEX when the model is fitted simultaneously to the averaged clas-
sification transfer data and the distribution-of-generalizations data by
using the composite SSD(C) measure. Training exemplars from Cate-
gories A and B are denoted with an A or a B, respectively.

Once the exception process is invoked, the probability

that item i is classified in Category A is given by
> s(i k)
keEA(K)

S s k)+ stk
keEA(K) keEB(K)
where EA(K) and EB(K) denote the set of exceptions be-
longing to Categories A and B, respectively.

Bringing these ideas together, suppose that the ob-
server has learned Rule K and has stored the set of excep-
tions corresponding to that rule, E(K). With probability
Pg use(K), item i invokes the exception-use process; and
with probability [1 — Pg .(K)], the rule is used. Thus,
the probability that the observer classifies item i into Cat-
egory A is given by

Py (A i) = Py e (K) - Pogc (A1)
+[1_PEuse(K)]'PRuleK(A]i)‘

Finally, because multiple sets of rules and exceptions
are available for solving any given problem, the averaged
classification data are predicted by summing over the
probabilities that each individual Rule K is formed. Thus,
letting P(K) denote the probability that any given ob-
server forms Rule K, the overall probability that a group
of observers classifies item i into Category A is given by

P(A|i) = X[P(K)-Pg(A]])]. (5)
K

ngc(Ah.): (3)

(4)

The free parameters in this version of the RULEX
model are the set of rule probabilities, P(K); the noise
involved in applying the rules (o); the similarity-scaling
parameter k; and the exception-use criterion v. As will
be seen in the applications of the model, a reasonably
small number of candidate rules can often be hypothe-
sized, so the model is testable. The precise locations of
the decision boundaries in the multidimensional space
can also be treated as free parameters, but, at least for the
initial problems considered in this article, these locations
can be set at reasonable default values with essentially
no effect on the overall model fits.

Application to Nosofsky, Clark, and Shin (1989)

Our first test of RULEX is obtained by fitting the model
to the averaged classification data obtained by Nosofsky
et al. (1989, Experiment 1) for the category structure in
Figure 2. In Nosofsky et al.’s (1989) experiment, there was
an initial training phase in which only the seven assigned
category exemplars were presented. Corrective feedback
was provided on every trial. Following training, there was
a test phase in which all 16 stimuli in the set were presented
five times each with no feedback. The probability with
which each stimulus was classified into Category A is
given in Table 2. The transfer data are only for the ob-
servers who achieved a reasonably strict learning crite-
rion during the initial training phase. Thus, we assume
that most or all of these observers had learned rules and
exceptions that enabled them to solve the problem.



Table 3
List of Rule-Plus-Exception Strategies for the Nosofsky,
Clark, and Shin (1989) Experiment 1 Category Structure

# Rule Exceptions
1 B:=I'V =4 3

2 B:=1"V =4" 8

3 B: =2" 6,13

4 B: =1’ 3,8

5 B:=1" 8, 13

6 B:=1'V=% 11

7 B:=2"V =4" ) 6

To apply RULEX, we assume that only the single-
dimension rules that give rise to no more than two ex-
ceptions have nonzero probabilities. This assumption is
akin to the criterion used in the binary-valued version of
RULEX, in which rules were retained only if they yielded
reasonable levels of performance (Nosofsky, Palmeri, &
McKinley, 1994, pp. 55-58). There are seven such rules
available, and they are listed in Table 3 along with the set
of exceptions necessary for each rule. Because the rule
probabilities are constrained to sum to 1.0, there are six
free rule-probability parameters, plus the parameters o,
k, and v. In all cases, the locations of the rule boundaries
were set midway between the adjacent dimension values
where they were positioned.

We fitted RULEX to the transfer data by searching for
the free parameters that minimized Akaike’s information
criterion (AIC) statistic (Akaike, 1974), given by

AIC=-2InL + 2N, (6)

where In L is the (natural) log likelihood of the data given
the model, and N is the number of free parameters in the
model.2 Smaller values of the AIC statistic reflect a better
fit for a model. Note that the AIC statistic penalizes a
model for the number of free parameters that it uses. Al-
though sole reliance on the AIC statistic has certain pit-
falls, we used it as a preliminary guide to help evaluate the
fits of competing models with different numbers of free
parameters.3

The predicted probabilities from RULEX are shown
alongside the observed probabilities in Table 2. The model
yielded AIC =92.0, accounted for 99.4% of the variance
in the classification response probabilities, and achieved
a root-mean-squared deviation (RMSD) with the ob-
served classification probabilities of .026.

As a source of comparison, we also fitted Nosofsky’s
(1986) generalized context model (GCM) to the classifi-
cation data. The GCM generalizes Medin and Schaffer’s
(1978) exemplar-based context model to the domain of
continuous-dimension stimuli. In the present case, it uses
three free parameters to fit the data: a similarity-scaling
parameter, K, an attention weight, w|, and a response-bias
parameter, 3, (see Nosofsky et al., 1989, for a detailed
discussion of the model as applied to the present data).
The GCM yielded AIC = 134.4 and accounted for 97.8%
of the variance in the response probabilities (RMSD =
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.048). By conventional criteria, the fit of the GCM would
be considered excellent. Nevertheless, the superior fit of
the continuous-dimension RULEX model sets a new
standard. Although RULEX uses substantially more free
parameters than does the GCM in the present situation,
the superior AIC fit achieved by RULEX provides some
initial clues that these extra free parameters may be doing
some important work.

More impressive than its ability to fit the averaged
classification transfer data is that RULEX also does an
excellent job of predicting the distribution of individual-
observer generalizations. The observed distribution, com-
puted previously by Nosofsky et al. (1989, p. 291), is re-
ported in Table 4. This distribution is based on 122 subjects
who satisfied the learning criterion established in the train-
ing phase. For example, 21 of the 122 learners (17.2%) dis-
played generalization profile ABBABBAAB, meaning
that, during the test phase, they classified Transfer Stimuli
2,7, 14, and 15 in Category A and Transfer Stimuli 4, 5,
9, 12, and 16 in Category B—see Figure 2. (Following the
spatial layout in Figure 2, the transfer stimuli in each pro-
file are listed in the order 2, 4, 5,7, 9, 12, 14, 15, 16.)

The distribution of generalizations predicted by the
present version of RULEX, with its best-fitting param-
eters held fixed from the previous analysis in which the
averaged transfer data were fitted (Table 2), is also re-
ported in Table 4. (The manner in which the distribution
of generalizations is predicted from the model is explained
in Appendix A.) The model accounts for 82.4% of the
variance in the distribution-of-generalizations data. Thus,
RULEX does a reasonably good job of simultaneously
characterizing both the averaged transfer data and the
distribution of behavior at the individual-observer level.

It is critical to understand that the ability of RULEX
to fit the distribution of generalizations is not an automatic
consequence of its excellent fit to the averaged transfer
data. Indeed, a wide variety of different distributions are
consistent with the same averaged transfer data. As one
example, consider a model that predicts the averaged trans-
fer data perfectly, and which assumes that all individual
observers behave identically (except for random noise).

Table 4
Observed and Predicted Distribution of Generalization Data
From Nosofsky, Clark, and Shin’s (1989) Experiment 1

Profile Observed RULEX-1 PFM RULEX-2
ABBABBAAB 172 176 068 178
ABBBBBAAB 156 265 134 232
BBBABBAAB 082 037 053 041
BBBBBBAAB 074 056 106 054
ABBBBAAAA 066 057 030 063
BBABAABAA 041 008 000 008
ABBBBBAAA .033 012 053 017
Other 377 388 556 407

Note—RULEX-1, RULEX’s predicted probabilities derived from the
use of the AIC statistic. PFM, predicted probabilities from the perfect-
fitting average-probability model. RULEX-2. RULEX’s predicted
probabilities derived from the use of the composite SSD(C) measure.
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Table §

Best-Fitting Parameters Obtained by Fitting RULEX
Simultaneously to the Averaged Transfer Data and
Distribution-of-Generalization Data in Nosofsky,
Clark, and Shin (1989) and in Experiments 1 and 2

Data Set
Parameter 1 2 3
R1 51 32 .00
R2 .00 .00 .50
R3 A7 14 .00
R4 13 3R .03
RS 13 .00 46
R6 .00 15 .00
R7 .07 .01 .00
v 31 A7 17
K 37 2.44 334
o 00 .00 .00

Note—Data set: 1, Nosofsky, Clark. and Shin (1989); 2, Experiment 1;
3, Experiment 2. Parameters R1-R7 denote probabilities of Rules 1-7,
respectively. v, criterion for use of exception information; K, similarity-
scaling parameter; o, perceptual-criterial noise parameter.

In other words, all individual observers have the same
probability vector for the 16 stimuli, and it is identical to
the averaged probability vector. The distribution of gen-
eralizations predicted by this model is given in the third
column in Table 4. This model accounts for only 46.2% of
the variance in the observed distribution-of-generaliza-
tion data.

The key lesson here is that, according to RULEX, in-
dividual observers may differ greatly in the classifica-
tion rules that they adopt, especially when multiple rules
are available for solving the problem. Averaged classifi-
cation data often represent a mixture of an array of idio-
syncratic rules and exceptions; they do not arise from a
homogeneous distribution at the individual-observer level.
Furthermore, these analyses suggest that RULEX does
quite well at characterizing this range of individual-
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observer strategies giving rise to the averaged data. (For
previous examples from the classification literature that
place emphasis on the importance of modeling the hetero-
geneity in individual-observer performance, see Ashby,
Maddox, & Lee, 1994; Martin & Caramazza, 1980; No-
sofsky etal., 1989; Nosofsky, Palmeri, & McKinley, 1994;
Palmeri & Nosofsky, 1995; J. D. Smith, Murray, & Minda,
1997.)4

For completeness, we also conducted an analysis in
which RULEX was fitted simultaneously to the aver-
aged transfer data in Table 2 and the distribution-of-
generalization data in Table 4. Such an analysis is impor-
tant because multiple parameter settings may be avail-
able that can fit the averaged transfer data. Therefore,
holding these parameters fixed may, in some situations,
greatly underestimate the ability of RULEX to describe
the distribution of generalizations. Any method for com-
bining the fits to the averaged transfer data and the dis-
tribution of generalizations into a composite measure is ar-
bitrary. After preliminary exploration, we defined SSD(T)
as the sum-of-squared deviations between the predicted
and observed classification transfer probabilities, SSD(D)
as the sum-of-squared deviations between the predicted
and observed probabilities for the distribution of gener-
alizations, and SSD(C) as a composite measure given by
SSD(C)=SSD(T) + 4 - SSD(D). We then searched for the
free parameters that minimized SSD(C). The results are
reported in the final columns of Tables 2 and 4, which
show RULEX’s predicted probabilities for each data set.
RULEX yielded SSD(C) = .069 and accounted for 99.2%
of the variance in the averaged classification transfer prob-
abilities [SSD(T) = .028] and for 88.6% of the variance in
the distribution-of-generalizations data [SSD(D) =.010].
We consider these excellent fits to provide support for
the model.

The best-fitting parameters derived from the fit of
RULEX to the composite data are reported in Table 5.
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Figure 3. Generalization profiles most likely to emerge from the use of Rule 1 (see Table 3). Sin-
gle primes denote values along Dimension 1; double primes denote values along Dimension 2.
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Figure 4. Constrained two-dimensional scaling solution for the
ellipses used in Experiment 1.

One point of interest is that several of the free parameters
had best-fitting values of zero, so in essence the model
is making use of fewer “effective” free parameters than
listed previously. For example, the best-fitting value of the
perceptual-criterial noise parameter (o) was zero, sug-
gesting that there was very little noise involved in apply-
ing the logical rules. Recall that the stimuli used in
Nosofsky et al.’s (1989) experiment were highly discrim-
inable. We expect that the o parameter would take on far
greater importance in experimental situations involving
perceptually confusable stimuli.

The parameter estimates also reveal a high probability
for the use of Rule 1. Thus, according to this analysis, the
most prevalent strategy adopted by the observers was to
use the rule B: =1”V =4’ while remembering that Train-
ing Stimulus B3 was an exception to this rule. The gen-
eralization profiles most likely to emerge from the use of
this rule are illustrated in Figure 3, and they correspond
precisely to the two highest frequency generalization pro-
files reported in Table 4.

One reason that this rule may have been prevalent in-
volves the physical dimension values used by Nosofsky
et al. (1989) in their design. Angle value 1" was a nearly
horizontal line pointing to the right, whereas angle value
4’ was a nearly horizontal line pointing to the left. The
intermediate angle values (2° and 3") pointed in a more
upwards direction. Thus, from a psychological perspec-
tive, the rule B: 1’ V 4’ can be summarized by the simpler
rule: “Respond Category B if the angle is nearly hori-
zontal.” Perhaps the availability of this extremely sim-
ple verbal rule promoted the observers’ use of the
RULEX strategy. To assess the generality with which the
model may apply. we decided to repeat the Nosofsky
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et al. (1989) experiment, but using a new stimulus set in
which this type of very simple rule was unavailable.

EXPERIMENT 1

In this experiment, we again used the category struc-
ture illustrated in Figure 2, except that instead of using
circles varying in size and angle of radial line, we used as
stimuli a set of ellipses varying in their shape and bright-
ness. Extensive similarity-scaling work was first con-
ducted to find physical dimension values that yielded a
psychological structure close to the one shown in Fig-
ure 2. We then conducted the classification learning and
transfer test on a separate group of subjects. The goal was
to use RULEX to once again fit the averaged transfer data
and the distribution of generalizations.

Method _

Subjects. A group of 30 subjects was tested in a similarity-scaling
study to verify the dimensional structure of the stimulus set that we
constructed. Another 185 subjects were tested in the classification
learning study. All subjects were undergraduates at Indiana Uni-
versity who received partial credit toward an introductory psychol-
ogy course requirement.

Stimuli and Apparatus. The stimuli were 16 ellipses created by
factorially combining four levels of shape and four levels of bright-
ness. Extensive pilot work was conducted to find physical values of
shape and brightness that yielded a psychological structure close to
that shown in Figure 2. Shape was defined as the ratio of the width
to the height of each ellipse. The four ratio values used were 5.692:1,
4.125:1,3.000:1, and 2.190:1. The areas of the ellipses were equated,
with the narrowest ellipse spanning approximately 4% in. by % in.
The brightness of the ellipses varied from black (0) to dark gray
(50) to light gray (160) to white (250). The values in parentheses in-
dicate the intensities of the red, green, and blue channels on the
video board (255 maximum) on the CompuAdd 486 personal com-
puters. The ellipses were displayed against a bright red background
on 14-in. computer monitors.

Procedure. In the similarity-scaling study, all 120 distinct pairs
of the 16 ellipses were presented four times each during the course
of 480 trials. On each trial, 2 distinct ellipses were presented side
by side on the screen, and the subject judged their similarity on a
scale from 1 (most dissimilar) to 9 (most similar). The subjects were
urged to use the full range of ratings in making their judgments.
The ellipse pairs were presented in four blocks of 120 trials each.
with each unique pair presented once per block in a random order.

The classification-learning experiment used a repeating training—
test procedure. The full sequence consisted of 10 blocks of training
trials, 3 blocks of test trials, 10 blocks of training trials, 3 blocks of
test trials, 20 blocks of training trials, and 3 blocks of test trials.
During each training block, each of the seven assigned category ex-
emplars was presented once in a random order. On each trial. the
subject classified the ellipse into either Category A or Category B
by pressing a button on the computer keyboard, and corrective feed-
back was then presented on the screen. During each test block, all
16 stimuli were presented in a random order. The subjects again
classified each ellipse into Category A or Category B, but no cor-
rective feedback was provided.

Results and Theoretical Analysis
Similarity scaling. A constrained two-dimensional
solution for the ellipses was derived from the matrix of

v
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Table 6
Predicted and Observed Classification Transfer Data
From the Final Set of Test Blocks in Experiment 1

Category A

Response Probability
Stimulus Pre Obs
Bl 042 010
2 .B43 B66
B3 A13 057
4 .083 016
5 .080 037
Ab 922 943
7 227 A7
B8 067 071
9 082 .094
AlO 975 978
All 924 917
12 576 539
BI3 022 029
14 915 947
15 905 017
16 .552 539

Note—Pre, predicted; Obs, observed. Training stimuli from Categories
A and B are denoted with an A or a B, respectively.

averaged similarity ratings. In this solution, all ellipses
with a common physical value of brightness were con-
strained to have the same psychological coordinate on the
brightness dimension, and all ellipses with the same phys-
ical shape were constrained to have the same psycholog-
ical coordinate on the shape dimension. A city-block
metric was used for computing distance in the space. The
constrained two-dimensional solution makes use of only
six free parameters for fitting the matrix of 120 similar-
ity judgments. The MDS model was fitted to the data by
searching for the psychological coordinates that mini-
mized stress (see, e.g., Kruskal & Wish, 1978). The MDS
solution yielded a stress of only .060, which is considered
quite a good fit even for standard MDS solutions that allow
coordinate parameters for all stimuli to vary freely (with-
out constraints imposed by the physical structure of the
stimulus set). The constrained two-dimensional solution
is illustrated graphically in Figure 4. The structure of the
derived space corresponds closely to the planned design.

Classification. Because the continuous-dimension
version of RULEX is applicable only in situations in
which observers have formed rules and exceptions that
solve accurately the classification problem, we estab-
lished a learning criterion for including each subject’s
data in the modeling analyses. Specifically, we elimi-

nated from analysis any subject who made greater than.

15% errors during the final 10 training blocks. Use of
this criterion led to the removal of 11.4% of the subjects,
leaving a total of 164 subjects.

The probability with which the learners classified
each of the 16 stimuli into Category A during the final
three test blocks is reported in Table 6. The distribution
of generalizations for the learners is reported in Table 7.5

In an initial analysis, we fitted RULEX and the
GCM to the classification transfer data by searching for

the parameters that minimized the AIC statistic. RULEX
yielded AIC = 86.6, accounting for 99.8% of the vari-
ance in the response probabilities (RMSD = .018). The
GCM yielded AIC = 109.28, accounting for 99.5% of the
variance (RMSD = .030). RULEX again yields a better
AIC fit to the classification transfer data than does the
GCM.

Next, we fitted RULEX simultaneously to the classi-
fication transfer data and distribution-of-generalizations
data by using the composite measure of fit described pre-
viously. The predicted probabilities are shown alongside
the observed probabilities in Tables 6 and 7. RULEX
yielded SSD(C) = .059, accounting for 99.3% of the vari-
ance in the classification transfer data (RMSD = .033), and
94.6% of the variance in the distribution-of-generalizations
data (RMSD = .024). Once again, we interpret these excel-
lent fits as providing support for the proposed RULEX
model.

The best-fitting parameters for RULEX are reported in
Table 5. In the Nosofsky et al. (1989) experiment, the use
of Rule 1 dominated the observers’ behavior, whereas in
the present experiment, there was a greater mix of alter-
native RULEX strategies. This result supports our hy-
pothesis that recoding of the dimension values to yield a
rule based on horizontal angles may have occurred in the
Nosofsky et al. (1989) study. In the present experiment, the
most prevalent rules were Rules 1, 3, 4, and 6 (see Tables
3 and 5). To gain some insight into these results, note from
Table 7 that the most common generalization profiles
were ABBBBAAAA and ABBBBBAAB. We illustrate
these profiles in Figure 5. Profile ABBBBAAAA is the
highest probability profile predicted by Rule 4, and pro-
file ABBBBBAARB is the highest probability profile pre-
dicted by Rule 1.

Inspection of the rule-probability parameter estimates
also reveals that both single-criterion and double-criterion
rules were adopted by the observers (see Tables 3 and 5).
Although single-criterion rules may be less cognitively
complex than double-criterion rules, note that in the pre-
sent design the double-criterion rules required the storage
of only one exception, whereas the single-criterion rules
required the storage of two exceptions. These factors prob-

Table 7
Predicted and Observed Distribution-of-Generalization
Data From the Final Set of Test Blocks in Experiment 1

Probability

Profile Pre Obs
BBBBBBAAB 013 018
BBBBBAAAA 023 024
ABBBBBAAB 235 201
ABBBBBAAA 022 067
ABBBBAABB 036 012
ABBBBAAAB 047 012
ABBBBAAAA 291 287
ABBBAAAAA 010 018
ABBABBAAB {081 091
Other 243 268

Note—Pre, predicted; Obs. observed.
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ably trade off in influencing the types of RULEX strate-
gies that observers adopt.

The probability with which the learners classified each
of the 16 stimuli into Category A during the early sets of
test blocks is reported in Table 8. Because we have not
developed a learning version of the continuous-dimension
RULEX model, we cannot formally model these data.
However, the pattern of early transfer data provides some
converging evidence for the type of learning process that
we envision. Recall that our modeling analyses indicated
that the most prevalent rules adopted by the observers
were Rules 1 and 4, which occurred with high frequency,
and Rules 3 and 6, which occurred with lower frequency.
As indicated in Table 3, Training Stimulus B3 is the only
exception to Rule 1, and it is one of the two exceptions to
Rule 4. Interestingly, as revealed by the early test data in
Table 8, Stimulus B3 had the most errors among the Cat-
egory B training stimuli. By contrast, Training Stimu-
lus B1, which was not an exception to any of the rules,
had the fewest errors among the Category B training stim-
uli. Likewise, Training Stimuli A6 and A11 are exceptions
to Rules 3 and 6, respectively, whereas Training Stimu-
lus A10 is not an exception to any of the rules. Interest-
ingly, Training Stimulus A 10 had the fewest errors among
the Category A training stimuli. These patterns of results
are consistent with the idea that many of the observers had
developed hypotheses based on Rules 1, 4, 3, and 6 by the
early test blocks, but had not yet formed the exceptions
necessary to solve the classification problem. We also
observed that the distributions of generalizations during
the early test blocks were quite a bit more diffuse than the
distribution observed in the asymptotic data. Such a pat-
tern is expected because, early in learning, the observers
are still exploring a multitude of different rules and are
at different stages of exception storage as well.

Although in comparison with Nosofsky et al.’s (1989)
results, there was a reduction in the use of Rule 1 in the
present experiment, note that the most prevalent rules
still tended to be defined along Dimension 1 (see Tables 3
and 5). This result led us to wonder whether the focus on
Dimension 1 had something to do with the abstract cat-
egory structure or with the particular physical dimen-
sions that were used to instantiate the abstract structure.
For example, perhaps the brightness dimension is more
“salient” than the shape dimension, or perhaps it is eas-
ier to verbalize rules based on the present brightness val-
ues than on the present values of ellipse shape. To inves-
tigate this issue, we again tested the Figure 4 structure,

Table 8
Observed Category A Response Probabilities
From the First Two Test Blocks of Experiment 1

Test Block
Stimulus 1 2

Bl 067 .035
2 709 823
B3 197 116
4 065 .043

5 079 059
Ab 783 880
7 279 232
B8 136 077
9 183 130
Al0 .898 953
All 746 852
12 533 526
B13 134 .063
14 850 892
15 839 884
16 563 549

Note—Training stimuli from Categories A and B are denoted with an
A or a B, respectively.
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Table 9
Predicted and Observed Classification Transfer Data
From the Final Set of Test Blocks in Experiment 2

Category A

Response Probability
Stimulus Pre Obs
Bl .000 .008
2 038 011
B3 006 014
4 015 .008
5 954 903
A6 994 964
7 587 575
B8 141 {083
9 728 750
Al0 915 953
All 992 981
12 935 908
B13 066 .028
14 236 286
15 496 486
16 491 478

Note—Pre, predicted; Obs, observed. Training stimuli from Categories
A and B are denoted with an A or a B, respectively.

except that we switched the assignment of physical di-
mensions to the logical dimensions.

EXPERIMENT 2

The procedure in Experiment 2 was similar to that in
Experiment 1; the main difference being that in the pre-
sent experiment, Dimension 1 corresponded to ellipse
shape, whereas Dimension 2 corresponded to brightness.
If something about the logical structure of the categories
led subjects to focus on Dimension 1 in the previous ex-
periment, then the same pattern of generalization and
rule-use estimates should be obtained in this experiment.
On the other hand, new patterns of generalization should
be obtained if observers preferred to form rules based on
brightness than on ellipse shape.

Method

Subjects. The subjects were a new set of 185 undergraduates
from Indiana University who received partial credit toward an in-
troductory psychology course requirement.

Stimuli and Apparatus. The stimuli and apparatus were the
same as those used in Experiment 1.

Procedure. The procedure was the same as in Experiment 1,
with the following exceptions. First, we switched the assignment of
the physical dimensions of brightness and shape to the abstract cat-
egory structure. Dimension | corresponded to shape, and Dimen-
sion 2 corresponded to brightness. Second, because overall perfor-
mance on the training stimuli was extremely high in Experiment 1,
we were worried that the experiment might be tedious, so we re-
duced the number of training and transfer blocks. The complete se-
quence consisted of 5 training blocks, | transfer block, 5 training
blocks, | transfer block, 10 training blocks, and 3 transfer blocks.

Results
We eliminated from analysis any subject who made
more than three errors during the final five training blocks.

Use of this criterion led to the removal of 35% of the sub-
jects, leaving a total of 120 subjects. Our ensuing con-
clusions do not change if we adopt a more lax criterion and
fit RULEX to the data of a larger proportion of observers,
but we think that it is important to restrict the modeling
analyses to the set of observers who successfully solved
the problem. The data from the nonlearners are presented
and discussed in Appendix B.

The probability with which the learners classified
each of the stimuli into Category A during the final three
transfer blocks is reported in Table 9, and the distribution-
of-generalization data are reported in Table 10. Upon in-
spection of the data, it is immediately apparent that switch-
ing the assignment of physical dimensions had a dramatic
effect on the pattern of results. For example, Transfer
Stimuli 5 and 9 had a strong tendency to be classified in
Category B in Experiment |, whereas the reverse was ob-
served in the present experiment. Likewise, the classifi-
cation patterns for Transfer Stimuli 2 and 14 reversed
dramatically across the two experiments. In addition, the
structure of the distribution of generalizations was dra-
matically altered. As will be seen, a good explanation of
these results is that observers had a strong preference for
developing rules along the physical dimension of bright-
ness rather than the physical dimension of ellipse shape.

We fitted RULEX simultaneously to the averaged trans-
fer data and the distribution-of-generalization data by
using our composite measure. The predicted probabilities
are shown alongside the observed probabilities in Tables
9 and 10. RULEX yielded SSD(C) = .108, accounting for
99.4% of the variance in the classification transfer data
(RMSD = .031) and 72.3% of the variance in the distrib-
ution-of-generalizations data (RMSD = .039). Although
the fit to the distribution-of-generalization data is not quite
as good as in the previous experiments, it still seems quite
respectable.

The best-fitting parameters are reported in Table 5.
The results indicate that by far the most prevalent strate-
gies were to use Rules 2 and 5. Both of these rules are de-
fined along Dimension 2 (see Table 3), which, in the pres-

Table 10
Predicted and Observed Distribution-of-Generalization
Data From the Final Set of Test Blocks in Experiment 2

Probability

Profile Pre Obs
BBBABAAAA .000 017
BBBAAABAA 000 017
BBABBAAAA 032 033
BBABAABBB 179 175
BBABAABAA 050 083
BBABAAAAA 032 017
BBAABAAAA 057 133
BBAAABBBB 003 050
BBAAAABBB 314 267
BBAAAABAA 088 075
BBAAAAAAA 056 017
ABBBBAAAA 013 017
Other A75 100

Note—Pre, predicted: Obs, observed.



Table 11
Observed Category A Response Probabilities
From the First Two Test Blocks of Experiment 2

Test Block
Stimulus 1 2

Bl 092 033
2 108 050
B3 150 .033
4 .083 .033

5 625 .808
A6 .633 842
7 .600 533
B8 450 158
9 658 692
Al0 750 875
All 792 967
12 758 850
B13 192 075
14 325 300
15 500 467
16 533 475

Note—Training stimuli from Categories A and B are denoted with an
A or a B, respectively.

ent experiment, was the brightness dimension. Thus, it is
apparent that, in developing a learning version of the
RULEX model that predicts which rules will be adopted,
we will need to incorporate factors pertaining to the in-
trinsic physical dimensions as well as the abstract category
structure.

The probability with which the learners classified the
stimuli into Category A during the early test blocks is re-
ported in Table 11. Because Rules 2 and 5 were dominant
in this experiment and Training Exemplar B8 is the sin-
gle exception to Rule 2 and is one of the two exceptions
to Rule 5, the prediction is that the observers should have
the greatest tendency to misclassify Training Exem-
plar B8 during the early test blocks. This prediction is
strongly supported by the early test data (see Table 11).
The table also reveals fairly high error probabilities for
Training Exemplars A6 and B13. Note that Training Ex-
emplar A6 has the same value along Dimension 2 as does
the badly misclassified Training Exemplar B8. To the ex-
tent that, during the learning process, observers were

Dimensional Criss-Cross
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switching the location of the Dimension 2 rule bound-
aries to accommodate Exemplar B8, it would result in er-
rors for Exemplar A6. Finally, Exemplar B13 is the sec-
ond exception to Rule 5, so its high error rate among the
Category B exemplars is consistent with the RULEX
ideas as well.

In summary, these results provide additional evidence
that observers may often use RULEX strategies when
learning classifications and that properties intrinsic to
the physical dimensions that compose the stimuli may
exert a powerful influence on which rules are formed.

APPLICATION TO NOSOFSKY (1986)

Another set of data that provides a good test of the
continuous-dimension RULEX model comes from a se-
ries of classification conditions reported by Nosofsky
(1986). In that experiment, the stimuli were a set of circles
with an embedded radial line. The circles varied in size
and in angle of the line. There were four levels of size and
four levels of angle, combined orthogonally to yield a
16-member stimulus set. Unlike the type of stimuli used
in Nosofsky et al.’s (1989) experiment, the stimuli were
perceptually confusable.

Nosofsky (1986) tested 2 highly experienced observers
across four separate classification conditions. The cate-
gory structures are illustrated in Figure 6. In this figure,
items enclosed by triangles represent training exemplars
assigned to Category A, items enclosed by circles repre-
sent training exemplars assigned to Category B, and un-
enclosed items represent unassigned transfer stimuli.
Following an initial learning phase in which only assigned
exemplars were presented, the subjects completed ex-
tensive transfer phases in which all 16 stimuli were pre-
sented. During the transfer phase, an average of roughly
225 response observations was obtained for each individ-
ual stimulus in each categorization condition for each of
the 2 observers. (See Nosofsky, 1986, pp. 43—44, for fur-
ther details regarding the experimental procedure.)

The central theme in the RULEX model is that ob-
servers construct simple orthogonal linear boundaries to
partition the stimulus space into category regions, and
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Figure 7. Left panel: Illustration of biconditional rule hypothesized for
the criss-cross category structure. Right panel: Illustration of extreme-
value rule hypothesized for the interior—exterior category structure.

then store exceptions to the rule. Now, in the category
structures considered previously, we assumed that the or-
thogonal boundaries were constructed along a single
stimulus dimension. In the binary-valued version of
RULEX, however, single-dimension rules are used only
if they work fairly well. If no single-dimension rule cor-
rectly classifies a large proportion of the stimuli, then ob-
servers are assumed to search for more complex logical
rules, such as conjunctive or biconditional rules. It is
straightforward to develop continuous-dimension ver-
sions of these more complex logical rules.

In applying RULEX to the category structures illus-
trated in Figure 6, we hypothesized that the observers
used the following logical rules. For the “dimensional”
categorization, the observer is assumed to place an or-
thogonal linear boundary along the size dimension at a
location intermediate between Size Values 2 and 3. Per-
cepts that fall above the boundary are classified in Cat-
egory B, and percepts that fall below the boundary are
classified in Category A. For the “diagonal” categoriza-
tion, the observer is assumed to place an orthogonal lin-
ear boundary along the angle dimension at a location in-
termediate between Angle Values 2 and 3. The rule is to
classify percepts that fall to the right of the boundary in
Category B and to classify percepts that fall to the left of
the boundary in Category A. In addition, the observer is
assumed to store training exemplars A3 and B14 as ex-
ceptions to this rule (see Figure 6).

For the criss-cross categorization, no single-dimension
rule is available. The obvious multiple-dimension rule,
however, is that the observer establishes two orthogonal
linear boundaries, one placed between Angle Values 2
and 3 and the other placed between Size Values 2 and 3,
as illustrated in the left panel of Figure 7. Percepts falling
in the shaded regions are classified in Category B and per-
cepts falling in the unshaded regions are classified in
Category A. This set of orthogonal boundaries produces
a continuous-dimension biconditional rule—A: (=2" AND
=3")or (=3 anp =27).

There are several plausible rule or RULEX strategies
available for the interior—exterior structure, and, at the
present stage of theorizing, we are unable to predict

a priori which one any given observer will adopt. (Indeed,
as explained in the previous sections of this article,
RULEX uses a stochastic learning process for selecting
among multiple rule candidates.) On the basis of prelim-
inary model exploration, however, we posit that both ob-
servers adopted an extreme-value rule: If a percept has
an extreme value on either dimension, classify it into Cat-
egory B. This rule is represented by a set of four orthog-
onal linear boundaries, as illustrated in the right panel of
Figure 7.

We fitted these RULEX models to Nosofsky’s (1986)
transfer data by searching for the free parameters that
minimized the AIC statistic. Fitting the model to the di-
mensional, criss-cross, and interior—exterior categoriza-
tions required estimation of 2, 3, and 5 free parameters,
respectively (i.e., the perceptual-criterial noise param-
eter 0, and the parameters representing the locations of
the orthogonal linear boundaries needed for constructing
the logical rules). Fitting the model to the diagonal cat-
egorization required estimation of five free parameters:
the perceptual noise parameter o, the location of the sin-
gle orthogonal linear boundary, and three exception-use
parameters.®

The summary fits for RULEX are given in Table 12
for each of the 2 observers in each of the four categoriza-
tion conditions. For purposes of comparison, the sum-

Table 12
AIC Fits of RULEX, GCM, and QDBM to
Nosofsky’s (1986) Classification Transfer Data

Model

Condition RULEX GCM QDBM
Dimensional (1) 69.2 70.6 76.7
Dimensional (2) 103.8 102.6 102.6
Diagonal (1) 123.8 132.0 110.5
Diagonal (2) 172.6 130.4 105.8
Criss-Cross (1) 146.8 208.2 1123
Criss-Cross (2) 202.6 275.6 119.2
Interior-Exterior (1) 128.8 247 8 135.6
Interior-Exterior (2) 117.8 231.4 111.6

Note—Values in parentheses denote Participant | or Participant 2 in
each condition. RULEX. rule-plus-exception model; GCM, generalized
context model: QDBM, quadratic decision-bound model.
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Figure 8. Scatterplots of observed against predicted Category A response probabili-
ties from RULEX and the GCM for Observers 1 and 2 of Nosofsky’s (1986) experiment.
Circles, dimensional; diamonds, interior—exterior; squares, criss-cross; triangles, di-

agonal.

mary fits for the GCM are also presented. Scatterplots of
observed against predicted Category A response proba-
bilities for each model are shown in Figure 8. The GCM
yields a better fit than does RULEX for Observer 2’s
diagonal-categorization data. The models perform about
equally for both observers in the dimensional categoriza-
tion. In the remaining five cases, however, RULEX yields
a better fit than does the GCM. The improvement in fit
is substantial for the criss-cross and interior—exterior cat-
egorizations. It is also worth noting that the mean esti-
mate of the perceptual-criterial noise parameter across
the eight data sets was o = .63. The large value of ¢
makes sense given that highly perceptually confusable
stimuli were used.” Finally, note that we cannot evaluate
RULEX’s ability to predict the distribution of general-
izations in this experiment because only 2 observers were
tested.

Although RULEX compares favorably with the GCM
on its ability to fit the classification transfer data, some

caveats are in order. First, Nosofsky (1986) has already
noted limitations on the ability of the GCM to handle
these data, and there appear to be good psychological
reasons why such limitations may have arisen. In Nosof-
sky’s (1986) paradigm, the 2 observers classified the same
transfer stimuli repeatedly during the test phase. (Multi-
ple observations of each transfer stimulus were needed
in order to obtain sufficiently large sample sizes for model
fitting.) Unfortunately, it seems likely that once an ob-
server makes an initial decision regarding the category
membership of a transfer stimulus, this initial decision is
likely to influence subsequent ones. For example, Nosof-
sky (1986) suggested that observers might augment their
category representations with inferred exemplars. Once
a transfer stimulus is classified into a category a given
number of times, the observer might augment his or her
category representation with this transfer stimulus.
Thus, comparing RULEX to the standard GCM without
making allowance for a memory-augmentation process is
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Figure 9. Contours of equal likelihood for the bivariate normal
category distributions tested by Ashby and Maddox (1990). The
diagonal line is the optimal decision boundary for partitioning
the space into category regions.

probably not completely fair to the exemplar-based ap-
proach.

Second, Maddox and Ashby (1993, p. 62) have reported
even better AIC fits of their quadratic decision boundary
model (QDBM) to Nosofsky’s (1986) data than those re-
ported here for RULEX. According to the QDBM, the
observer uses a decision boundary with a quadratic form
to partition the space into response regions. The previously
obtained fit values for the QDBM are reported along with
those of the GCM and RULEX in Table 12. The QDBM
gives a slightly worse AIC fit than does RULEX for Ob-
server 1’s dimensional and interior—exterior conditions
data, is essentially the same as RULEX for Observer 2’s
dimensional condition data, but gives a better fit in the re-
maining five cases. A straightforward interpretation is
that the ideas in RULEX are incorrect, and that observers
instead use quadratic decision boundaries for dividing
the perceptual space into response regions. It should be
noted, however, that in each condition the quadratic
model uses seven free parameters for fitting these data,
so it has considerably more flexibility than does RULEX.
Maddox and Ashby (1993, Figures 4 and 5) provided il-
lustrations of the best-fitting quadratic boundaries for
these studies. Inspection of these boundaries suggests
that most of them have an overall form similar to the log-
ical rule-boundaries posited in RULEX, but with some
curvilinear distortion. One possibility is that the observers
were trying to implement the logical rules assumed in
RULEX, but had difficulty in maintaining a fixed crite-
rion setting for their rule boundaries across the range of
the perceptual space. For example, the precise criterion
that an observer sets for using a rule based on angle might
be influenced by the perceived size of the circle as well.
Alternatively, perhaps the perceptual representations for
these stimuli are more complex than the ones we assume
for simplicity in this modeling, and the extra free param-
eters of the QDBM are capturing this complexity (cf.
Maddox & Ashby, 1998). We conclude that our fits of
RULEX to Nosofsky’s (1986) categorization data show
some real promise for the model, but it still has a way to
go before it can match the precision achieved by the
QDBM.

APPLYING RULEX TO LARGE-SIZE,
PROBABILISTIC CATEGORY STRUCTURES

Thus far in our article, we have focused solely on ex-
perimental paradigms involving structures with a small
number of training exemplars that are assigned deter-
ministically by the experimenter to the alternative cate-
gories. A much different type of experimental paradigm
involves structures with a large number of training ex-
emplars that are assigned probabilistically to the alter-
native categories. In particular, Ashby, Maddox, and their
colleagues have often used an experimental paradigm in
which the categories are defined by bivariate normal dis-
tributions (e.g., Ashby & Gott, 1988; Ashby & Maddox,
1990, 1992; Maddox & Ashby, 1993; see also McKinley
& Nosofsky, 1995, 1996). An interesting challenge for
RULEX is whether or not it can account for performance
in such tasks. In this final section of this article, our pur-
pose is to provide some preliminary ideas along these lines.

Consider the category structure illustrated in Figure 9.
There are two categories defined by bivariate normal dis-
tributions. Each distribution is represented schematically
by a contour of equal likelihood (Ashby & Gott, 1988),
which is a locus of points that are equally likely to be pro-
duced by the distribution. For normal distributions, these
contours are always circular or elliptical in shape. The
center of each ellipse gives the mean of the normal distri-
bution on each of its dimensions. The expanse of the el-
lipse along each dimension represents the variability of
the distribution along that dimension. The correlation be-
tween the dimensions is represented by the angle of ori-
entation of the ellipse. Figure 9 illustrates a simple situ-
ation in which both category distributions have equal
variance along both dimensions and where there is zero
correlation.

In the usual version of the paradigm, each normal dis-
tribution defines a category. Thus, on each trial of the ex-
periment: (1) a category distribution is selected: (2) an
exemplar from this distribution is randomly chosen and
presented to the observer; (3) the observer guesses the ex-
emplar’s category assignment; and (4) corrective feed-
back is then provided. By the time learning is completed,
an observer may have experienced thousands of unique
training exemplars from each category. Because the dis-
tributions are overlapping, it is impossible to classify all
exemplars perfectly. However, it is possible to define an
optimal decision boundary that maximizes classification
accuracy. It is well known that for bivariate normal dis-
tributions, the optimal boundary is always linear or qua-
dratic in form. Indeed, for the situation illustrated in Fig-
ure 9, the optimal decision boundary is simply the 45°
line running through the space. Any point falling to the
upper left of the line should be classified in Category A,
and any point falling to the lower right should be classi-
fied in Category B.

Ashby, Maddox, and their colleagues have provided evi-
dence that in a variety of situations like those illustrated in
Figure 9, observers do indeed appear to adopt a boundary
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Figure 10. Category responses made by a representative observer
from Ashby and Maddox’s (1990) experiment using the category struc-
ture illustrated in Figure 9. Squares, Category A responses; crosses,
Category B responses. From “Integrating Information From Separable
Psychological Dimensions,” by F. G. Ashby and W. T. Maddox 1990,
Journal of Experimental Psychology: Human Perception & Performance,
16, p. 608 (Figure 6). Copyright 1990 by the American Psychological As-
sociation. Reprinted with permission.

with the same form as the optimal boundary (following suf-
ficient experience with the training exemplars). An exam-
ple from Ashby and Maddox (1990) is shown in Figure 10.
In the figure, locations marked with a square represent
items for which the observer made a Category A response
and locations marked with a cross represent Category B re-
sponses. The figure illustrates that the optimal boundary
neatly separates the space into the two response regions,
lending support to the idea that the observer used this diag-
onal linear boundary for making his or her responses. (Oc-
casional inconsistent responses across the boundary are at-
tributed to the effects of perceptual and criterial noise.)

These results appear to pose a severe challenge to
RULEX. The key idea in RULEX is that observers es-
tablish decision boundaries that are orthogonal to the co-
ordinate axes and not at oblique angles. Clearly, there is
no small set of orthogonal decision boundaries that could
produce the response pattern in Figure 10. The question
arises, however, of what RULEX would predict if an or-
thogonal single-dimension boundary were supplemented
with exceptions.

Suppose that an observer established an orthogonal
boundary based on Dimension 1 values, such as illus-
trated by the dashed line in Figure 11. The classification
responses predicted by the orthogonal boundary agree
with those predicted by the optimal diagonal linear
boundary (the dotted line), except for the regions marked
Ax and Bx in the figure. During training, observers
would experience a great many training exemplars in

these regions that are misclassified by the orthogonal
boundary. Following in the spirit of the RULEX model,
it is reasonable to posit that an observer might store a
representative exception (or small number of exceptions)
in each of these regions and use them to supplement the
single-dimension rule (i.e., store an A exception in re-
gion Ax and a B exception in region Bx). Applying the
process formalized in Equations 1-5, the idea would be
that an observer would classify an item based on the ex-
ceptions if the item were sufficiently similar to the excep-
tions; otherwise, the rule would be used.

Figure 12 shows the classification predictions made
by a single simulation of RULEX in a situation in which
we treated the locations of the exceptions as free param-
eters (a single exception was assumed for each region).
The locations of the exceptions were chosen to maximize
the agreement of RULEX with the predictions made by
the optimal linear boundary.® It is evident from inspection
that the responses predicted by this version of RULEX
are in close accord with the responses defined by a di-
agonal linear decision boundary, with all stimuli falling
to the upper left of the boundary classified in Category A
and all stimuli falling to the lower right classified in Cat-
egory B. One way of thinking about this demonstration
is that it illustrates a situation in which an optimal diag-
onal decision boundary can be approximated by a simple
one-dimensional rule together with a couple of exceptions.

It is critical to understand, however, that the overlap
between the optimal diagonal linear boundary and the

-
e
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Figure 11. Illustration of a rule-plus-exception strategy for
classifying objects from the Figure 9 category structure. The
dashed line indicates the dimensional rule, Ax and Bx indicate
the exception regions. The dotted diagonal boundary is shown for
purposes of comparison.

RULEX boundary arises only in the region of the stimu-
lus space in which observers have experienced training
exemplars. If one tested observers with unfamiliar trans-
fer items located far from the original training region,
the patterns of generalization predicted by the two mod-
els would differ dramatically. In particular, according to
RULEX, if an unfamiliar transfer item is presented that
is dissimilar to the stored training exceptions, the excep-
tion-use process will no longer operate, so classification
decisions will again be based on dimensional rules that
are orthogonal to the coordinate axes. The result is that al-

though the RULEX decision boundary is essentially lin-
ear in the local training region, it ends up being globally
nonlinear when viewed across the entire span of the stim-
ulus space. Thus, this question of how observers gener-
alize in unfamiliar regions is a critically important one
that needs to be investigated in future work.

Another important question that arises is why observers
would first form an orthogonal linear boundary and then
later “patch it up” with exceptions. For example, in the Fig-
ure 9 structure, observers could simply store the central
tendency or “prototype” of each category and classify on
the basis of similarity to the prototype. Objects more sim-
ilar to the A prototype would be classified in Category A,
and likewise for Category B. Such a classification strategy
would also produce the diagonal linear boundary illus-
trated in the figure. However, forming each category
prototype requires averaging over a highly diffuse set of
exemplars spanning the range of the psychological space.
By contrast, forming exceptions in the local regions
marked Ax and Bx may be less cognitively demanding: It
seems easier to form a summary representation for highly
similar exemplars in a local region of space than for highly
disparate exemplars spanning a wide region.

If these ideas involving RULEX are correct, then one
straightforward prediction is that at very early stages of
learning with normally distributed categories, the deci-
sion boundaries that best describe observers’ behavior
should be orthogonal to the coordinate axes rather than at
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Figure 12. Classification responses predicted from a simulation of the RULEX
strategy illustrated in Figure 11. Circles, Category A responses; crosses, Cate-
gory B responses. The locations of the A and B exceptions are also shown in the
figure. The solid diagonal boundary is shown for purposes of comparison.
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Figure 13. Category structures tested by McKinley and Nosofsky (1996, Experiment 2).
Each bivariate normal category distribution is represented by a contour of equal like-
lihood, as explained in the text. From “Selective Attention and the Formation of Linear
Decision Boundaries,” by S. C. McKinley and R. M. Nosofsky, 1996, Journal of Experi-
mental Psychology: Human Perception & Performance, 22, p. 307 (Figure 6). Copyright
1996 by the American Psychological Association. Adapted with permission.

oblique angles. Alfonso-Reese (1996) has reported some
data that are consistent with this prediction. She tested
10 individual observers in a probabilistic classification
paradigm using two bivariate normal category distribu-
tions, where the stimuli were lines varying in their lengths
and angles of orientation. At various points during the
learning phase, she tested observers in a transfer phase
in which objects spanning the two-dimensional space
were presented for classification without feedback. The
goal was to investigate the types of decision boundaries
that observers had adopted at various points during
learning. (If one continued to provide feedback, then the
decision boundary that an observer had adopted would
undergo continual change, so a single “snapshot” could
never be taken.) Alfonso-Reese found that, during the
early stages of learning (e.g., following 10 and 30 train-
ing trials), the linear decision boundary that provided the
best account of her observers’ response patterns was
usually a nearly orthogonal linear boundary. For most of
the observers she tested, the linear boundary that pro-
vided the best fit to the early transfer data was closer in
slope to an orthogonal linear boundary than to the diag-
onal linear boundary that would optimize performance.
These results support the RULEX prediction that, even in
probabilistic classification paradigms involving large
numbers of training exemplars, observers initiate their
learning by searching for single-dimension rules that
best partition the objects into categories.

The important role of orthogonal linear boundaries in
probabilistic classification designs has also been brought
out by the work of McKinley and Nosofsky (1996, Experi-
ment 2). Twenty-four individual observers were tested in
the two categorization conditions illustrated in Figures
13A and 13B. The stimuli were circles varying in their
sizes and angles of orientatfon of a radial line. In a train-
ing phase. the observers learned to classify the stimuli
into two bivariate normal categories, labeled A and B in

Figures 13A and 13B. The structure of these normal dis-
tributions is illustrated in the figures in terms of their con-
tours of equal likelihood. Following the training phase, a
test phase was conducted in which observers classified
stimuli from the original training distributions as well as
a new transfer region, marked “T” in the figures. The
transfer region was used to provide diagnostic informa-
tion concerning the types of decision boundaries that ob-
servers were using to partition the space into categories.

As can be seen in Figures 13A and 13B, in the size cat-
egorization, the dimension of size was primarily relevant
for performing the classification, whereas in the angle
categorization, the dimension of angle was primarily rel-
evant. Indeed, observers could achieve nearly optimal
performance in this design by using a single-dimension
rule in each condition—that is, by using a linear bound-
ary orthogonal to the size dimension in the size catego-
rization, and likewise for the angle categorization. (Sys-
tematic exceptions to these rules are rarely experienced,
so observers might never store any exceptions.) However,
in both conditions, a quadratic decision boundary pro-
vides the ideal-observer boundary for partitioning the
space into categories. These ideal-observer boundaries
are illustrated along with the category distributions in
Figures 13A and 13B. Note that the ideal-observer bound-
aries and the single-dimension rule boundaries make
dramatically different predictions regarding how observers
will classify objects in the transfer regions. The single-
dimension rule boundary predicts that the transfer items
will be classified in Category B with high probability,
whereas the ideal-observer boundary predicts that the
transfer items will be classified into Categories A and B
with roughly equal probability.

Despite the fact that a quadratic decision boundary is
the ideal-observer boundary, McKinley and Nosofsky
(1996) found that, in the size and angle conditions, lin-
ear decision boundaries actually provided slightly better

b
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Figure 14. Response patterns for two representative subjects from the size and angle conditions illustrated in Figure 13. Category A
responses are labeled X, and Category B responses are labeled O. From “Selective Attention and the Formation of Linear Decision
Boundaries,” by S. C. McKinley and R. M. Nosfosky, 1996, Journal of Experimental Psychology: Human Perception & Performance,
22, p. 309 (Figure 7). Copyright 1996 by the American Psychological Association. Adapted with permission.

AIC fits to the subjects’ classification response patterns
than did general quadratic boundaries, and far outper-
formed the ideal-observer boundary. Furthermore, in
most cases, the best-fitting linear boundary was essen-
tially orthogonal to the relevant dimension in these con-
ditions. The response patterns for two representative ob-
servers from the size and angle conditions are illustrated
in Figure 14, where Category A responses are labeled X
and Category B responses are labeled O. Inspection of the
figure indicates clearly that both observers overwhelm-
ingly classified objects in the transfer regions into Cate-
gory B, which is consistent with the idea that they formed
a nearly orthogonal linear boundary along the relevant
dimension for partitioning the response regions of Cate-
gories A and B. Averaged across all observers, the prob-
ability with which patterns in the transfer regions were
classified into Category B was .92 in the size condition
and .84 in the angle condition, consistent with the hy-
pothesis that many of the individual observers used the
single-dimension rules.

In summary, McKinley and Nosofsky’s (1996) results
support the RULEX prediction that people may have
strong tendencies to form orthogonal linear boundaries for
purposes of classification, even in designs involving nor-
mally distributed category structures in which the form
of the ideal-observer boundary is highly nonlinear.

GENERAL DISCUSSION

In summary, in this article we have formalized a rule-
plus-exception (RULEX) model of how observers clas-
sify objects in continuous, multidimensional spaces. At
the heart of the model is the assumption that observers
partition continuous multidimensional spaces into cate-

gory regions by forming decision boundaries that are or-
thogonal to the coordinate axes. If needed, the observers
then remember occasional exceptions to these single-
dimension rules. Objects that are sufficiently similar to
an exception are classified in the category to which the
exception belongs, otherwise the rules are applied.

In the initial tests presented in this article, we demon-
strated that the continuous-dimension RULEX model
was capable of providing excellent quantitative fits to
previously reported sets of classification data as well as
to some new data sets reported herein. In addition to pre-
dicting extremely accurately the averaged classification
probabilities for individual stimuli at time of transfer, a
major accomplishment of RULEX is that it also describes
well the heterogeneity in classification response patterns
seen at the individual-observer level. Specifically, RULEX
provides simultaneous good fits to averaged classifica-
tion data and to the distributions of generalizations dis-
played by individual observers that underlie these averaged
data. More complex logical rules, such as conjunctive,
biconditional, and extreme-value rules, can be formed
by combining orthogonal boundaries along multiple di-
mensions, and we demonstrated reasonably good fits of
such models to individual-observer classification data
reported by Nosofsky (1986). Finally, we provided some
ideas about how RULEX may be applicable in proba-
bilistic classification designs involving normally dis-
tributed categories and reviewed some preliminary evi-
dence in favor of these ideas.

One of the major directions for future research is to
develop a learning version of the continuous-dimension
RULEX model. In its current form, the model is intended
to describe only asymptotic performance observed at the
completion of training. It is critical to understand, how-



ever, the processes that lead observers to adopt certain
classification rules rather than others, as well as how ex-
ceptions come to be formed. In addition to describing the
category-learning process, a learning version of RULEX
may allow for a reduction in the number of free param-
eters currently required for fitting the model to data. In-
stead of estimating the rule probabilities (Equation 5) on
the basis of best fits to the transfer data, the learning
model might allow for the a priori prediction of these rule
probabilities. Our demonstrations that the RULEX model
is capable of yielding extremely accurate quantitative
predictions of individual observers’ classification response
patterns strongly encourages future attempts to develop
such a learning model.

Although our emphasis in this article has been on the
role that RULEX processes play in classification, we do
not take the position that stored exemplars play no role
in people’s category representations. Indeed, there is
good evidence from previous research that experiences
with specific exemplars exert an important influence on
classification behavior, even in situations in which sim-
ple rules are available for performing a task. For example,
Nosofsky (1991) conducted experiments in which sub-
jects learned classifications defined by exceedingly sim-
ple logical rules. The frequency with which observers
experienced different exemplars that satisfied those rules
was manipulated. Nosofsky (1991) found that observers’
goodness-of-example judgments and speeded classifica-
tions were strongly influenced by these frequency ma-
nipulations in a manner consistent with the idea that
stored exemplars formed part of the category represen-
tation. Also, in Nosofsky, Palmeri, and McKinley’s (1994)
tests of the binary-valued version of RULEX, it was dis-
covered that a complete account of the distribution-of-
generalizations data required recourse to the idea that at
least some exemplar-based classification had taken place.
Even in experiments in which observers are given ex-
plicit instructions to use certain logical rules for purposes
of classification, there is evidence that the specific ex-
emplars on which the observers are trained influence both
their categorization and old-new recognition judgments
(e.g.. Brooks, Norman, & Allen, 1991; Nosofsky et al.,
1989; Palmeri & Nosofsky, 1995).

In addition, the ability of an observer to implement an
orthogonal linear boundary, such as assumed in RULEX,
is strongly influenced by the types of dimensions that
compose the objects. Forming an orthogonal linear bound-
ary along a single dimension would seem to require the
ability to “selectively attend” to that dimension while ig-
noring values along other dimensions. Therefore, we fo-
cused throughout our article on stimuli varying along
highly separable dimensions. Such dimensions are ones
that remain psychologically distinct when in combina-
tion, and where selective attention can operate with high
efficiency (e.g., Garner, 1974; Shepard, 1964). By con-
trast, integral dimensions are ones that combine into rel-
atively unanalyzable wholes, and where selective attention
is difficult. Good examples are colors varying in bright-
ness and saturation, or tones varying in loudness and pitch.
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Nosofsky (1987, 1998) and McKinley and Nosofsky
(1996) provided evidence that when observers learn to
classify integral-dimension stimuli, they fail to form or-
thogonal linear boundaries along single dimensions, even
when such boundaries would produce nearly optimal per-
formance. Instead, the patterns of performance observed
under such conditions are more consistent with the idea
that similarity comparisons to stored exemplars drive clas-
sification (McKinley & Nosofsky, 1996; Nosofsky &
Palmeri, 1997).

Therefore, we believe that a full account of perceptual
categorization will involve the development of a hybrid
model that makes use of both RULEX strategies together
with exemplar storage (see also J. R. Anderson, Kline, &
Beasley, 1979; Nosofsky et al., 1989; Nosofsky & Palmeri,
1997; Nosofsky, Palmeri, & McKinley, 1994; Palmeri,
1997). Indeed, some important developments along these
lines are currently taking place. For example, Vandieren-
donck (1995) proposed a parallel rule activation and rule
synthesis (PRAS) model in which both rules and exem-
plars are represented in a common production-system
framework. Rather than abstracting rules along just sin-
gle dimensions, however, in PRAS the system abstracts
rules corresponding to rectangular regions in psycho-
logical space that are defined by pairs of exemplars. To
date, however, Vandierendonck has applied the model
only in a limited situation in which observers learned two
categories defined by just two exemplars each, so the
generality with which such a rule-abstraction mechanism
may operate remains unknown.

Erickson and Kruschke (1998) proposed a connec-
tionist model called ATRIUM (attention to rules and in-
stances in a unified model) that consists of two modules.
One module classifies objects through the use of single-
dimension rules, as we have assumed in RULEX. A sec-
ond module learns associations between exemplars and
categories. (The second module is Kruschke’s, 1992, AL-
COVE model, which incorporates key components of
Nosofsky’s, 1986, exemplar-based GCM within a con-
nectionist framework.) The hybrid system learns which
module is superior for classifying exemplars in different
regions of the psychological space. In essence, it learns to
pay special attention to exemplars that are exceptions to
the single-dimension rule and to use the exemplar-based
module for classifying these objects.

We do not view Erickson and Kruschke’s (1998) mod-
eling with ATRIUM as being in competition with our
own, but rather as pursuing complementary research
strategies. Erickson and Kruschke have developed a spe-
cific learning model involving principles of both rule
formation and exemplar storage, and have tested it on its
ability to predict averaged learning data in category struc-
tures in which all observers are expected to learn the
same simple rules. By contrast, we have bypassed ques-
tions about learning in this research, and have investigated
instead the extent to which RULEX processes may un-
derlie performance in diverse tasks, including ones in
which multiple RULEX strategies are available. We have
further focused on the ability of a RULEX model to ac-
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count for the dramatic individual differences in patterns
of generalization that underlie the averaged classification
data. Although the paths that we are taking are somewhat
different, they should converge to similar models once
we extend RULEX with learning principles combined
with exemplar storage and Erickson and Kruschke (1998)
extend ATRIUM with multiple-rule modules and stochas-
tic rule-selection mechanisms.

Another model under current development that is re-
lated to RULEX is Ashby, Alfonso-Reese, and Turken’s
(1995) COVIS (competition between verbal and implicit
systems) model. According to COVIS, classification per-
formance is mediated by two separate systems. One sys-
tem learns simple “verbal rules,” similar to the types of
rules formed by RULEX. A second system learns more
complex decision boundaries for partitioning a space into
categories, and these complex boundaries are difficult to
verbalize. Classification performance is conceptualized as
emerging from a competition between the verbal-rule sys-
tem and the complex decision-boundary system. A point
that distinguishes COVIS from RULEX and ATRIUM is
that there is no form of exemplar storage and retrieval in
COVIS. An interesting challenge for this model is to explain
the effects of exemplar frequency on observers’ classifi-
cation judgments (e.g., Nosofsky, 1991), as well as why
observers show enhanced recognition memory for excep-
tions to category rules (Palmeri & Nosofsky, 1995). Nev-
ertheless, the aspect of COVIS that places emphasis on the
development of simple verbal rules as a key component of
categorization converges with our own ideas about the im-
portance of single-dimension rules in RULEX.

Finally, the idea that human judgments may often rely
primarily on information provided along single dimen-
sions has also taken hold in a modern theory of inductive
reasoning. Gigerenzer and Goldstein (1996) considered
inferential tasks in which observers make a choice be-
tween two alternatives on a quantitative dimension. The
task requires that the inference be based on information
stored in memory. For example, an observer might be
presented with the question: “Which city has a larger
population? (a) Hamburg (b) Potsdam.” Gigerenzer and
Goldstein proposed a family of algorithms for making such
choices based on “one-reason decision making.” In these
algorithms, a single cue providing probabilistic informa-
tion concerning the answer is accessed from memory and
1s used to draw the inference. For example, an observer
might remember that Hamburg has a professional soccer
team, whereas Potsdam does not, and use this single-cue
information to infer that Hamburg has a larger population
than does Potsdam. Gigerenzer and Goldstein reviewed ev-
idence suggesting that these one-reason decision-making
algorithms provide accurate descriptions of human per-
formance in these tasks. In addition, they documented
that these one-reason algorithms yielded as many correct
inferences about unknown features of real-world environ-
ments as did a variety of information-integration algo-
rithms.

We find the parallels between RULEX and these one-
reason decision-making algorithms to be striking. Both

models suggest that human observers may place primary
reliance on information from single dimensions for mak-
ing categorization or inductive-reasoning judgments,
and both models can often yield performance levels that
approximate that of an optimal decision maker. We find it
intriguing that the principles underlying single-dimension
RULEX strategies in categorization may generalize to
other cognitive domains.
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NOTES

1. For simplicity, we assume that all stimuli give rise to normally dis-
tributed perceptual representations, that they have the same perceptual
variance, 07, on each of their dimensions, and that there is zero covari-
ance. In addition, each decision boundary has constant criterial vari-
ance. 0 2. Under these assumptions, the value of o used for computing
the relevant classification probabilities is = V(0} + 62). See Ashby
and Maddox (1993) for further details regarding the parameters in the
decision-boundary models.

2. For the present categorization transfer data, the value of In L is
given by

InL=3M} = ZXf + ZLf; In(py)),

where M, is the observed frequency of stimulus i, f;; is the observed fre-
quency with which stimulus i was classified in category j, and p;, is the
predicted probability from the model that stimulus i is classified in cat-
egory j. This likelihood function assumes that the category responses
for each stimulus are multinomially distributed and that the response
distributions are independent.

3. Our fit comparisons involving AIC are used as a preliminary guide
but should be interpreted with caution. First, it seems likely that with
sufficiently large sample sizes, the AIC measure will tend to favor a
higher parameter model over a lower parameter one, because the extra
free parameters are useful in accounting for the sundry *“noise” factors
that are not part of the models” approximations. Second. even with the
number of free parameters held fixed. certain models have functional
forms that are inherently more flexible than those of alternative models,
but the AIC statistic is insensitive to this factor (Myung & Pitt, 1997).
Third. the AIC statistic does not take into account the flexibility arising
from model-selection processes. in which a family of models actually
exists but one partrcular candidate from the family is eventually chosen
as the representative. (We should note that, in our case, the decision to
restrict RULEX to the set of all rules that had no more than two excep-
tions was made a priori without consideration of the data we were fit-
ting. In our design, rules with three or more exceptions produce, at
most. a 57% accuracy rate, which is nearly chance.) Alternative mea-
sures of model fit that are sensitive to these factors are currently being
investigated (e.g.. Myung & Pitt. 1997), but are at too early a stage of
development to be used in the present research.

4. In the context of criticizing an article by McKinley and Nosofsky
(1996). Maddox and Ashby (1998} have also argued that model fits in-
volving only averaged data can be misleading. While expressing fun-
damental agreement with this general point, Nosofsky (1998) replied
that the particular criticisms raised by Maddox and Ashby (1998) were
misguided. See Maddox and Ashby (1998) and Nosofsky (1998) for de-
tails regarding this particular debate.

5. Note that each observer classified each transfer stimulus in three
separate blocks. In computing the observed distribution of generaliza-
tions. an observer is defined as classifying an object in Category A if

he or she classified it in Category A in at least two of the three blocks.
See Appendix A for an explanation of how RULEX is used to predict
the distribution of generalizations.

6. The method for fitting RULEX to the diagonal categorization is the
same as that described previously in the text, except that there are mod-
ifications in the exact form of the similarity and distance functions that
govern the exception-use process (Equation 2). In particular. distance in
the psychological space is computed by using a Euclidean metric in-
stead of a city-block metric. and similarity is related to distance by a
Gaussian function instead of by an exponential decay function. Nosof-
sky (1985, 1986) found that these functions provided better accounts of
overall similarity relations among these highly confusable stimuli than
did the standard functions. Ennis (1988) subsequently demonstrated
that these alternative functions might simply be reflecting extensive
Gaussian noise in the internal perceptual representations of the stimuli.
Rather than modeling the Gaussian noise explicitly, however. we use the
alternative distance metric and similarity function for simplicity in the
model fitting.

7. The best-fitting parameters for each individual condition are avail-
able from the first author upon request.

8. Because the linear boundary is the optimal classification strategy
for this category structure, maximizing the agreement of RU LEX with
the linear boundary is basically the same as finding the parameters that
would allow RULEX to maximize performance. It seems reasonable
that adaptive learning mechanisms may exist that would place exception
representations at locations that would maximize performance. In ap-
plying RULEX to predict the results in Figure 12, we used a determin-
istic response rule for applying exceptions (i.e., we used deterministic
versions of Equations | and 3), and also assumed zero perceptual-cri-
terial noise in applying the single-dimension rule. If these assumptions
were relaxed, then there would be occasional scatter of responses across
the 45° linear boundary, as observed by Ashby and Maddox (1990).

APPENDIX A
Using RULEX to Predict
the Distribution of Generalizations

RULEX is used to predict the distribution of generalizations
as follows. First, for any given RULEX strategy R, one uses
Equations 1-5 to predict the probability that stimulus i is clas-
sified in Category A on any given trial, P(A|i,R;). By defini-
tion, stimulus i is classified in Category A during the transfer
phase if an observer classifies it in Category A on at least a ma-
jority, M, of the test blocks. Thus, assuming N test blocks, it fol-
lows by using the binomial expansion that the predicted prob-
ability that stimulus i is classified in Category A during
transfer, given RULEX strategy R;, Pr(Ali,R)), is given by

N
Pr(AliLR))= > (:)P(Alf- R))" - P(Bi, R,-)'\'m< (A1)
m=M
The probability of observing generalization profile G, given
RULEX strategy R, is then given by

P(GIR,)=[]Pr(AliLR,)’"
P(BJiR),

(A2)

where 8(i) = 1 if profile G has response A in position i, and
8(i) = 0 if profile G has response B in position i. Finally. the
overall probability of profile G is found by summing these con-
ditional probabilities weighted by the estimated probability of
RULEX strategy R :

P(G)=Y P(GIR))-P(R)). (A3)



APPENDIX B
Classification Transfer Data and
Distribution-of-Generalizations Data
for the Nonlearners from Experiment 2

Table B1 reports the classification transfer data obtained for
44 of the 65 nonlearners from Experiment 2. The 44 nonlearn-
ers that are included made 10 or fewer errors during the final
35 training trials of the experiment. (We do not report the data
of the 21 additional nonlearners who made greater than 10 errors,
as most of these individuals were performing at levels close to
chance.) The distribution-of-generalizations data from the 44
nonlearners are reported in Table B2. Only the generalization

Table B1
Observed Classification Transfer Data of the Nonlearners
From the Final Set of Test Blocks in Experiment 2

Category A Response

Stimulus Probability

Bl 061
2 220
B3 152
4 091

5 402
Ab 644
7 485
B8 227
9 417
Al0 773
All 864
12 742
BI3 227
14 .553
15 780
16 652

Note—Training stimuli from Categories A and B are denoted with an

A or a B, respectively.
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Table B2
Observed Distribution of Generalization Data of the
Nonlearners From the Final Set of Test Blocks in Experiment 2

Profile Probability
BBBBBAAAA .045
BBBBAAAAA 068
BBBAAABBB 068
BBABBAAAA 091
BBAABAAAA 045
Other 683

profiles displayed by at least 2 observers are reported individ-
ually. Besides displaying lower average accuracy on the train-
ing exemplars than did the learners, the nonlearners’ perfor-
mance differed from that of the learners in two main respects.
First, the learners had a strong tendency to classify Transfer
Stimuli 5 and 9 into Category A, whereas the nonlearners had
a slight tendency to classify these transfer stimuli into Cate-
gory B. Second, the learners had classified Transfer Stimuli 15
and 16 into Categories A and B with roughly equal probability,
whereas the nonlearners tended to classify these stimuli into
Category A. We fitted RULEX to the composite data of the non-
learners using the methods described in the main text. These
fits need to be interpreted with a good deal of caution, because,
as currently formalized, the model applies only to observers who
have formed rules and exceptions that accurately solve the prob-
lem. Nevertheless, the fit results suggested that the nonlearners
used broader generalization gradients when applying the ex-
ceptions than did the learners. Also, like the learners, the non-
learners made predominant use of Dimension 2 (brightness) for
forming their rules, but this pattern was not as extreme for the
nonlearners as for the learners.

(Manuscript received March 13, 1997;
revision accepted for publication January 7, 1998.)







