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In a moment’s glance, humans are able to recognize 
objects at various levels of abstraction. Whether detect-
ing the presence of an object, determining what kind of 
object, or uniquely identifying an object, the human visual 
system is capable of rapid recognition. An important and 
long-standing question about object processing is when 
these different levels of abstraction become available to 
the perceiver. Given an image of a dog, how much time is 
required before we know that this image contains any ob-
ject, or that this object is an animal, a dog, or a golden re-
triever? Some perceptual decisions are made more quickly 
than others. But does fastest mean first? Are certain per-
ceptual decisions made prior to others?

The classic study by Rosch, Mervis, Gray, Johnson, and 
Boyes-Braem (1976) found that participants were faster 
at verifying objects at the basic level compared to super-
ordinate (e.g., animal) or subordinate (e.g., robin) levels. 
Later work showed that this basic-level advantage was 
malleable; the basic-level advantage can be eliminated in 
domains of perceptual expertise (Tanaka & Taylor, 1991) 
and atypical category members are quickly labeled at the 
subordinate level (Jolicœur, Gluck, & Kosslyn, 1984). 

Jolicœur et al. favored the term “entry-level” to describe 
the level of abstraction verified the fastest. As the entry 
level at which object knowledge is first accessed, the 
term suggests that particular object categorizations may 
be made before others can be started.

The entry level could be more than an entry into object 
knowledge; it could also reflect an entry into perceptual 
awareness. By some accounts, objects are segmented 
from the visual scene before they are categorized (e.g., 
Nakayama, He, & Shimojo, 1995). By this account, you 
may know an object is there before you know what it is. 
But alternatively, image segmentation may be informed by 
object categorization (e.g., Peterson & Gibson, 1993). Or 
they may even be the very same mechanism (Grill-Spector 
& Kanwisher, 2005). By the latter account, as soon as you 
know an object is there, you know what it is.

A recent study by Grill-Spector and Kanwisher (2005) 
considered these alternative hypotheses by contrasting the 
time course of object detection with the time course of 
basic-level categorization and subordinate-level identifi-
cation. In their experiments, participants performed veri-
fications of briefly presented images. On object detection 
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blocks, they verified the presence of any object versus a 
pattern mask; on basic-level categorization blocks, they 
verified a particular object category (e.g., dog) versus 
other categories (e.g., birds or fish); on identification 
blocks, they verified a particular subordinate-level cate-
gory (e.g., jeep) versus other objects from the same basic-
level category but different subordinate-level categories 
(e.g., other cars). Stimuli were presented for durations 
ranging from 17 msec to 167 msec and were followed 
by a mask to prevent further visual processing (see, e.g., 
Breitmeyer & Ogmen, 2000).1 The empirical goal was to 
compare the time course of verification at detection, cat-
egorization, and identification.

First, performance on subordinate identification was 
significantly worse than object detection and basic-level 
categorization at all exposure durations. Second, and most 
intriguing, performance on object detection and basic-
level categorization was identical at all exposure dura-
tions. Participants were just as accurate at categorizing 
an object at the basic level as they were at detecting the 
presence of any object. The conclusion was stated in the 
article’s title: “As soon as you know it is there, you know 
what it is” (Grill-Spector & Kanwisher, 2005).

Although rapid categorization itself is consistent with a 
variety of theories of object processing that largely posit 
feedforward mechanisms (Nosofsky & Kruschke, 1992; 
Riesenhuber & Poggio, 1999; Thorpe & Fabre-Thorpe, 
2001), Grill-Spector and Kanwisher’s (2005) results 
could pose serious challenges to extant theories of object 
processing and categorization. They argue that because 
object detection and basic-level categorization have iden-
tical time courses, and because their time course is differ-
ent from that of subordinate-level categorization, object 
detection and basic-level categorization may be the very 
same mechanism. In other words, basic-level categori-
zation cannot occur without object detection and, criti-
cally, object detection cannot occur without basic-level 
categorization.

The notion that detection and basic-level categori-
zation are linked in a stage of processing that precedes 
subordinate-level categorization runs counter to many ex-
tant computational models of perceptual categorization. 
According to such models, detection, basic-level catego-
rization, and subordinate-level categorization are different 
perceptual decisions that can be made, not different stages 
of object processing. The speed of such perceptual deci-
sions is based on factors such as the similarity of an object 
to stored category exemplars and how quickly exemplars 
are retrieved from memory (Nosofsky & Palmeri, 1997), 
and on the availability of perceptual dimensions over time 
(Lamberts, 2000). Similarly, many extant models of ob-
ject recognition (e.g., Riesenhuber & Poggio, 1999; Tong, 
Joyce, & Cottrell, 2005) assume that categorization and 
identification are decisions that take place after perceptual 
processing and access to stored knowledge.

A tight temporal coupling between detection and basic-
level categorization would have important implications 
for most extant models of categorization and object rec-
ognition. Our aim was to test whether the time courses of 

these decisions could be dissociated. Following the argu-
ments presented by Grill-Spector and Kanwisher (2005), 
if object detection and basic-level categorization are the 
same mechanism, they should show the same time course 
irrespective of task manipulations. Such a finding would 
force a major reconceptualization of current models. But, 
if the time courses of detection and categorization can be 
dissociated, this would significantly weaken the evidence 
for an initial stage of detection and categorization in vi-
sual processing. Instead, detection, basic-level categoriza-
tion, and subordinate-level categorization might best be 
characterized as different kinds of perceptual decisions 
that can be manipulated by a variety of task factors.

The task manipulations used in the following two ex-
periments were stimulus inversion and stimulus degra-
dation, respectively. Inversion has been shown to impair 
the recognition of objects and faces (Yin, 1969) and the 
recognition of animals in briefly presented scenes (Rous-
selet, Macé, & Fabre-Thorpe, 2003). We predicted that 
while inversion may disrupt information critical for 
basic-level categorization, object detection may not be af-
fected because information sufficient for detection (e.g., 
lower level visual properties and local object parts) will 
be preserved. Stimulus degradation limits the amount of 
perceptual information available for visual processing. We 
predicted that basic-level categorization may require more 
visual information than object detection leading to signif-
icantly worse performance on visually degraded stimuli 
for categorization than detection.

In both of our experiments we exactly followed the 
experimental procedures outlined in Grill-Spector and 
Kanwisher (2005). The only difference was including an 
inversion (Experiment 1) or stimulus degradation (Exper-
iment 2) manipulation.

Experiment 1

Method
Participants. Thirty-six undergraduate students at Vanderbilt 

University participated for course credit.
Stimuli. Following Grill-Spector and Kanwisher (2005), some 

stimuli were images of objects from the animal and vehicle domains. 
Because our inversion manipulation required that the objects have 
some conventional orientation, our experiment replaced the musi-
cal instruments domain used by Grill-Spector and Kanwisher with 
images of furniture. The images of animals and vehicles were from 
the same database used by Grill-Spector and Kanwisher and the im-
ages of furniture were collected from various Web sources. Each 
of the three domains consisted of images belonging to three differ-
ent basic-level categories (from animals, dog, bird, and fish; from 
furniture, chair, bed, and table; from vehicles, car, boat, and plane). 
Following Grill-Spector and Kanwisher, nonobject textures were 
created by randomly scrambling 8 3 8 pixel squares from natural 
images, and pattern masks were created by randomly scrambling 
1 3 1 pixel squares from the images used as targets (see Figure 1). 
Stimuli subtended approximately 5.2º 3 5.2º of visual angle and 
were presented on a 19-in. computer monitor that sat approximately 
60 cm from the participants.

Procedure. The experimental procedure was identical to that of 
Grill-Spector and Kanwisher (2005), with two exceptions. First, we 
included trials with inverted stimuli. Second, because our study fo-
cused on comparing the time course of object detection and basic-
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level categorization, subordinate categorization was not tested; add-
ing an inversion manipulation for subordinate categorization as well 
would have made the experimental session too long.

Each block began with an instruction defining the target category 
for a given block. This instruction was “Object?” in the detection 
blocks and “Dog?,” “Car?,” or “Chair?” in the categorization blocks. 
After these instructions, the block of trials began. On each trial, a 
stimulus image was presented for 17, 33, 50, 68, or 167 msec fol-
lowed by a mask; the mask was presented until 2,000 msec had 
elapsed from the onset of the stimulus image. On categorization tri-
als, target images contained an object from one of three basic-level 
categories (dog, chair, or car) and distractor images were from other 
basic-level categories within the same domain (bird and fish, bed 
and table, boat and plane, respectively). On detection trials, target 
images contained an object from any of the basic-level categories 
listed above and distractors consisted of nonobject textures. The 
poststimulus mask of each trial also served as a prestimulus mask 
for the next trial (see Figure 2A).

Participants responded by pressing a key labeled “yes” or “no” 
on each verification trial. A response could be made as soon as the 
stimulus was presented. If 2,000 msec elapsed before a response was 
made, the trial was flagged for removal and the next trial began. The 
experiment consisted of 12 blocks (6 detection and 6 categorization 
blocks) with each block having 60 trials, for a total of 720 trials in 
the experiment. The entire experiment lasted roughly 45 min. All 
participants completed 15 detection and categorization practice tri-
als on stimuli not used during the experiment. The order of detec-
tion and categorization blocks was randomized for each participant, 
and exposure duration and stimulus order were randomized within 
a block.

Results
Performance was measured using d′, with a “hit” de-

fined as correctly verifying a target image from the in-
structed category and a “false alarm” defined as errone-
ously verifying a distractor image from that category. We 
also measured reaction times of hits. The data from nine 
participants were removed from analysis because these 

participants failed to respond on more than 15% of the 
trials.

The key results of Experiment 1 are shown in Figure 2B. 
The four graphs plot the participants’ performance mea-
sured by d′ and reaction times for upright (top two graphs) 
and inverted (bottom two graphs) stimuli as a function 
of task (categorization vs. detection) and as a function 
of stimulus exposure duration. Replicating Grill-Spector 
and Kanwisher (2005), the time course of object detection 
and basic-level categorization were the same for upright 
stimuli. However, for inverted stimuli, the time course of 
detection and categorization were dissociated, with poorer 
performance on categorization than detection.

The accuracy data were statistically analyzed by a 
2 (task) 3 2 (orientation) 3 5 (exposure duration) 3 3 
(stimulus domain) within-subjects ANOVA. Greenhouse–
Geisser correction for nonsphericity was applied to all re-
ported ANOVA results, and all analyses were conducted 
with an α level of .05. Of particular interest was the signif-
icant interaction of orientation 3 task 3 exposure dura-
tion [F(4,104) 5 7.34, MSe 5 1.94]. Planned comparisons 
revealed no significant difference between categorization 
and detection of upright stimuli at most exposure dura-
tions [except at 17 msec and 50 msec; t(27) 5 2.84 and 
3.12, respectively]; by contrast, there was a significant 
difference between categorization and detection of in-
verted stimuli at all exposure durations [t(27) . 2.5], ex-
cept at 17 msec. Furthermore, planned comparisons also 
revealed no significant difference for detecting upright 
versus inverted stimuli at all exposure durations [t(27) 5 
3.16], except at 68 msec; but there was a significant dif-
ference for categorizing upright versus inverted stimuli at 
all exposure durations [t(27) . 2.09], except at 17 msec 
and 33 msec.

Figure 1. Examples of the stimuli used during the experiment. The left panel 
shows examples of the stimuli used for object detection trials, with the left col-
umn containing examples of target stimuli (images of objects) and the right 
column containing examples of nonobjects. The right panel shows examples of 
stimuli used for basic-level categorization trials, with the left column containing 
examples of target stimuli (dogs, chairs, cars) and the two right columns show-
ing examples of distractors (birds, fish, beds, tables, boats, planes).

Targets Distractors DistractorsTargets
Object Detection Basic-Level Categorization
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Not surprisingly, a significant main effect of exposure 
duration was also observed [F(4,104) 5 368.96, MSe 5 
437.32], with increased performance with increased ex-
posure duration. Significant main effects of orientation 
[F(1,26) 5 5.31, MSe 5 1.09] and task [F(1,26) 5 22.32, 
MSe 5 24.22] were also observed, but these can be ex-
plained largely through the interactions described above.

The same kind of ANOVA was performed on the re-
action time data. A significant interaction of orientation 
by task was found [F(1,26) 5 18.7, MSe 5 2,547], with 
longer reaction times for categorization than detection 
on inverted trials, but not on upright trials. A significant 

orientation by exposure duration interaction was also ob-
served [F(4,104) 5 4.25, MSe 5 6,427], with shorter re-
action times for upright trials across exposure durations. 
Finally, a significant task by exposure duration interac-
tion was observed [F(4,104) 5 2.97, MSe 5 4,789], with 
longer reaction times for categorization at most exposure 
durations. Significant main effects for orientation, task, 
and exposure duration where also observed, but these are 
largely explained by the interactions described above.

Some significant high-order interactions that included 
the factor of stimulus domain were also revealed by the 
ANOVAs for both accuracy and reaction times. However, 

Figure 2. (A) Procedure for Experiment 1. Participants completed both detection and categorization blocks. A block began with 
presentation of a word describing what participants were to respond “yes” to during the block. A series of trials followed in which 
a stimulus image was presented for a variable duration of 17, 33, 50, 68, or 167 msec, followed by a mask that was shown until 2 sec 
had elapsed since the onset of the stimulus image. On half of the trials, the stimulus image was presented inverted. Participants could 
respond with the onset of the stimulus image and throughout the presentation of the post mask. (B) Accuracy (d′) and reaction time 
(msec) from Experiment 1. The first and third graphs plot accuracy versus stimulus exposure duration, and the second and fourth 
graphs plot reaction time versus stimulus exposure duration for basic-level categorization (black line) and object detection (gray line). 
The top two graphs contain data for upright trials, and the bottom two graphs contain data for inverted trials. Error bars represent 
95% confidence intervals.
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these interactions were driven by quantitative difference in 
performance across domains, not qualitative differences in 
the effects of other factors. Because we made no explicit 
attempt to equate the stimulus domains on any perceptual 
characteristics, it was not surprising to find modest quan-
titative differences across domains.

Discussion
The results of Experiment 1 replicate the finding of 

Grill-Spector and Kanwisher (2005) that for canonically 
oriented stimuli, the time course of object detection and 
basic-level categorization are the same. However when 
stimuli are inverted, the time course of basic-level catego-
rization, but not object detection, is significantly impacted 
in both accuracy and reaction times. This dissociation of 
the time course of categorization from that of detection 
suggests that these two kinds of perceptual decisions need 
not be intrinsically linked.

Experiment 2

As a complement to an inversion manipulation, we 
sought converging evidence for a temporal dissociation 

of detection and categorization using a stimulus degra-
dation manipulation. Experiment 1 varied both exposure 
duration and inversion. But for both practical and statisti-
cal reasons, Experiment 2 used a single exposure dura-
tion (100 msec) but varied stimulus degradation across a 
relatively wide range of values. To the extent that basic-
level categorization, at this particular exposure duration, 
requires more visual information than object detection, 
we predicted that degrading stimuli will lead to worse per-
formance for categorization than detection. As was the 
case in Experiment 1, this experiment exactly followed 
the experimental procedures outlined in Grill-Spector and 
Kanwisher (2005), except for the inclusion of stimulus 
degradation at just one stimulus exposure duration for up-
right stimuli.

Method
Participants. Twenty-three undergraduate students at Vanderbilt 

University participated in this experiment to satisfy credit require-
ments for introductory psychology courses.

Stimuli. The stimulus set was identical to the first experiment. 
Each image was degraded using the random image structure evo-
lution (RISE) procedure (Sadr & Sinha, 2004). The RISE method 
degrades images by systematically introducing randomization to the 

Figure 3. (A) Procedure for Experiment 2. Participants completed both detection and categorization blocks. A block began with a 
word describing the target category during the block. This was followed by a series of trials in which a stimulus image was presented 
for 100 msec, followed by a mask that was presented for 1,900 msec. The stimuli were degraded to a variable level. Participants could 
respond with the onset of the stimulus image and throughout the presentation of the post mask. (B) Accuracy (d′) and reaction time 
(msec) from Experiment 2. Accuracy versus phase coherence percentage is plotted in the top graph, and reaction time versus phase 
coherence percentage is plotted in the bottom graph for basic-level categorization (black line) and object detection (gray line). An ex-
ample of the RISE degradation is shown at the bottom along the horizontal axis. The source image, shown on the right at 100% phase 
coherence, can be systematically degraded to specific levels with RISE. The images below the graph show the range of phase coherence 
levels used in Experiment 2. From left to right, the images are examples of 65%, 73.75%, 82.5%, 91.25%, and 100% phase coherence. 
Error bars represent 95% confidence intervals.
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phase component of the image while preserving the power spectrum. 
This results in an image that is degraded to a particular level of phase 
coherence, but also retains all the low level attributes from the power 
spectrum of the original image. In this experiment, the degrada-
tion of the images ranged from 65% to 100% phase coherence with 
8.75% steps (see Figure 3B).

Procedure. This experiment was conducted in the same manner as 
Experiment 1, with the following exceptions: Stimulus exposure dura-
tion was fixed at 100 msec, an exposure duration that yielded identical 
performance for categorization and detection in Experiment 1. The in-
tegrity of the images was manipulated by presenting the stimuli with a 
phase coherence of 65%, 73.75%, 82.5%, 91.25%, or 100% using the 
RISE procedure (see Figure 3A for example trials). The experiment 
had six blocks (three categorization blocks and three detection blocks) 
with each block containing 120 trials (24 trials at each degradation 
level) for a total of 720 trials. All participants completed a 15 trial 
detection and categorization practice block on stimuli from categories 
that were not used during the experiment. Detection and categoriza-
tion block order was randomized for each participant and degradation 
level and stimulus order within a block were randomized.

Results
The results of Experiment 2 are shown in Figure 3B. d′ 

and reaction times are plotted for object detection (gray 
lines) and basic-level categorization (black lines) as a func-
tion of level of phase coherence. Data were analyzed with 
a 2 (task) 3 5 (degradation) 3 3 (domain) within-subjects 
ANOVA. Participants were more accurate at object de-
tection than basic-level categorization at lower phase co-
herence levels, as evidenced by a significant interaction 
of task and phase coherence [F(4,88) 5 19.52, MSe 5 
6.01]. A significant main effect of task was also observed 
[F(1,22) 5 19.73, MSe 5 10.96], with better performance 
for object detection than basic-level categorization. Not 
surprisingly, there was a main effect of stimulus degrada-
tion [F(4,88) 5 285.96, MSe 5 125.76], with better perfor-
mance with higher levels of phase coherence. There were 
also modest quantitative differences found in the domain 
and phase coherence interaction [F(8,176) 5 3.58, MSe 5 
0.97], although the key qualitative difference between de-
tection and categorization was present across domains. 
For reaction times, the ANOVA revealed significant main 
effects of task [F(1,22) 5 5.9, MSe 5 9,719] and phase 
coherence [F(4,88) 5 52.1, MSe 5 9,091]. Reaction times 
were slower for categorization and were slower at increas-
ing levels of stimulus degradation.

Discussion
Experiment 2 focused on one temporal snapshot from 

Experiment 1, where conventionally oriented (upright) 
stimuli produced identical performance for object detec-
tion and basic-level categorization. Within this snapshot, 
limiting the amount of perceptual information through 
stimulus degradation resulted in significantly worse per-
formance (lower accuracy and slower reaction times) on 
basic-level categorization than object detection. Manipulat-
ing the phase coherence of stimuli affected both detection 
and categorization, but affected categorization significantly 
more. Manipulating the integrity of stimuli through degra-
dation uncovers another example of a temporal dissociation 
between object detection and basic-level categorization.

General Discussion

Grill-Spector and Kanwisher (2005) reported a tight 
temporal coupling between object detection and basic-
level categorization. We replicated this finding for upright 
images. But we were able to dissociate the time course of 
object detection and categorization by image inversion 
(Experiment 1) and image degradation (Experiment 2).

Grill-Spector and Kanwisher’s (2005) original find-
ings were so provocative because they suggested that a 
single stage of processing that both segments an image 
into objects and categorizes those objects at a basic lev-
el—and does so at the very same time—might precede 
processing that identifies objects at more specific levels 
(and perhaps at more abstract levels as well). Whereas 
Peterson and colleagues (e.g., Peterson & Gibson, 1993, 
1994) have suggested that categorization may influence 
image segmentation, this is the first suggestion we know 
of that categorization and segmentation may be the very 
same mechanism or that segmentation cannot occur 
without categorization, and vice versa. In addition, any 
suggestion that basic-level categorization is a perceptual 
stage of processing intimately tied with figure–ground 
segmentation that precedes subordinate-level identifi-
cation poses a significant theoretical challenge. Many 
models of perceptual categorization (see, e.g., Nosofsky 
& Kruschke, 1992) and object recognition (e.g., Riesen-
huber & Poggio, 1999) assume that categorization and 
identification represent different kinds of perceptual 
decisions, not different stages of perceptual processing. 
And most models assume that some process of image 
segmentation, if not an explicit decision about the pres-
ence of an object per se, precedes categorization and 
identification.

Subordinate-level identification may take more time 
than either basic-level categorization or object detection 
because of a slower accumulation of perceptual evidence 
favoring one perceptual decision over another (see, e.g., 
Nosofsky & Palmeri, 1997). For example, deciding that 
an image contains a dog can be made quickly because 
most of the perceptual information unequivocally favors 
the decision that a dog is present. By contrast, deciding 
that an image contains a Labrador retriever rather than 
a German shepherd takes more time because a lot of the 
perceptual information is consistent with either decision. 
So why might deciding that an image contains any object 
take the same amount of time as deciding that an image 
contains a dog? It is possible that for upright images, the 
most salient information for deciding that any object is 
present in the image may indeed be the very same coarse 
shape information that is used for a rapid basic-level 
categorization.

However, we observed that by inverting or by degrad-
ing the image, categorization was significantly slowed 
down relative to object detection. So although detection 
and categorization may use the same perceptual informa-
tion when it is possible and advantageous to do so—for 
upright intact images—detection and categorization do 
not always show the same time course. The speed of per-
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ceptual decisions can be influenced by a variety of task 
factors. We conjecture that while rapid detection decisions 
can be made using coarse shape information salient in up-
right intact images, rapid detection decisions could also be 
made on the basis of a whole host of local image features 
whose recognition would far be less impacted by either 
inversion or degradation. These ideas need to be formally 
evaluated using computational models.

It is clear that some perceptual decisions can be made 
more quickly than others. But of course, just because one 
kind of decision is made more quickly than another kind 
of decision, this does not mean that one decision has to 
be made before the other decision can be made (see, e.g., 
Mack, Wong, Gauthier, Tanaka, & Palmeri, 2007; Palmeri, 
Wong, & Gauthier, 2004). It is also just as clear that some 
kinds of perceptual information may be available before 
other kinds of perceptual information (e.g., Lamberts, 
2000; Oliva & Schyns, 1997). But the availability of per-
ceptual information does not mean that decisions about 
early perceptual information must be made before deci-
sions about later perceptual information. Suggesting that 
coarse perceptual information is available relatively early, 
and that this information may be sufficient for knowing 
that an object is there or knowing what it is, is quite dif-
ferent from suggesting that early categorization decisions 
must be made before later categorizations at more subor-
dinate or superordinate levels can be made.

One possible criticism of our experiments is that both 
stimulus inversion and degradation do not represent situ-
ations of “normal” object categorization. In other words, 
the significant differences in the time course of detection 
and categorization that we report may reflect differences 
between a normal recognition process for visually intact, 
upright objects and a specialized recognition process for 
degraded or inverted objects. Indeed, Grill-Spector and 
Kanwisher (2005) noted that there may exist “extreme” 
situations in which a dissociation between object detec-
tion and basic-level categorization would be expected. 
For example, a distant bird soaring against a blue sky may 
easily be mistaken for an airplane without any doubt of 
its being an object. The manipulations used in our experi-
ments hardly represent extreme situations. Any model of 
object recognition will need to account for intact object 
recognition as well as the effects of continuously increas-
ing image degradation. It is unlikely that a model would 
need to posit different systems for intact versus degraded 
objects in order to account for our results. Furthermore, 
our visual system successfully recognizes noncanonically 
oriented objects every day. Although different recognition 
mechanisms for upright versus inverted faces have been 
suggested, we know of no such suggestion for familiar 
everyday object categories.

To summarize, the evidence we report suggests that object 
detection and basic-level categorization are different types 
of perceptual decisions that can be made easier or harder, 
slower or faster depending on a variety of task factors. They 
do not necessarily represent a common mechanism of early 
perceptual processing. As soon as you know that an object 
is there, you do not necessarily know what it is.
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be extracted from a stimulus. So, like Grill-Spector and Kanwisher (2005), 
we must also examine reactions times in order to fully understand the tem-
poral dynamics of processing. There are other complementary techniques 
for examining temporal dynamics, such as varying the speed–accuracy 
instructions to participants and providing a response signal (e.g., Mack, 
Wong, Gauthier, Tanaka, & Palmeri, 2007). We elected to work within 
Grill-Spector and Kanwisher’s masking paradigm in order to address their 
recent findings most directly.
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Note

1. Of course, this assumes that masking directly truncates visual pro-
cessing. If it did, this technique would provide a direct window into the 
temporal dynamics of object processing. But masking does not disrupt all 
processing following mask onset (see, e.g., Keysers, Xiao, Foldiak, & Per-
rett, 2001), so this technique influences the amount of time available for 
direct visual processing, limiting the amount of visual information that can 


