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Abstract

Early theories of categorization assumed that either rules, or prototypes, or exemp-

lars were exclusively used to mentally represent categories of objects. More recently,

hybrid theories of categorization have been proposed that variously combine these

different forms of category representation. Our research addressed the question of

whether there are representational shifts during category learning. We report a series

of experiments that tracked how individual subjects generalized their acquired cate-

gory knowledge to classifying new critical transfer items as a function of learning. In-

dividual differences were observed in the generalization patterns exhibited by subjects,

and those generalizations changed systematically with experience. Early in learning,

subjects generalized on the basis of single diagnostic dimensions, consistent with the

use of simple categorization rules. Later in learning, subjects generalized in a manner

consistent with the use of similarity-based exemplar retrieval, attending to multiple

stimulus dimensions. Theoretical modeling was used to formally corroborate these

empirical observations by comparing fits of rule, prototype, and exemplar models

to the observed categorization data. Although we provide strong evidence for shifts

in the kind of information used to classify objects as a function of categorization ex-

perience, interpreting these results in terms of shifts in representational systems under-

lying perceptual categorization is a far thornier issue. We provide a discussion of the
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challenges of making claims about category representation, making reference to a

wide body of literature suggesting different kinds of representational systems in per-

ceptual categorization and related domains of human cognition.

� 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

An enduring debate in cognitive science is whether key aspects of human

cognition are rule-based or similarity-based. Intuitively, some decisions

seem to require deliberate, analytic reasoning by applying abstract rules,

whereas other decisions seem to spring to mind automatically based on sim-
ilarity to prior experiences (Sloman, 1996). These qualitatively different

modes of cognition have been studied in such varied domains as language

processing (e.g., Pinker, 1999), reasoning (e.g., Sloman, 1996; Smith, Lang-

ston, & Nisbett, 1992), skill acquisition (e.g., Anderson, Fincham, & Dou-

glass, 1997; Logan, 1988), problem solving (e.g., Medin & Ross, 1989;

Ross, 1987), categorization (e.g., Brooks, 1978; Medin & Smith, 1981;

Shanks & St. Johns, 1994), and other aspects of human cognition. The pres-

ent paper examines the use of rules and similarity to examples in perceptual
categorization with a focus on how experience might modulate the use of

these different types of category knowledge.

Early theories assumed that people represent categories by forming ab-

stract logical rules, and research focused on what kinds of rules people

found more or less difficult to learn (e.g., Bourne, 1970; Bruner, Goodnow,

& Austin, 1956; Hunt, Marin, & Stone, 1966). Subsequent research instead

assumed that people formed abstract category representations based on pro-

totypes, statistical central tendencies of experienced category exemplars
(e.g., Homa, 1978; Posner & Keele, 1968; Reed, 1972). Later developments

showed that theories that assume similarity to stored category exemplars

could account for many phenomena allegedly demonstrating formation of

abstract rules or prototypes (e.g., Busemeyer, Dewey, & Medin, 1984; Choi,

McDaniel, & Busemeyer, 1993; Hintzman, 1986; Nosofsky, 1986; Shin &

Nosofsky, 1992). A large body of subsequent research demonstrated the the-

oretical success of exemplar-based models in accounting for a wide range of

categorization phenomena (e.g., Estes, 1994; Kruschke, 1992; Lamberts,
1995; Nosofsky, 1988; Nosofsky & Palmeri, 1997).

More recently, however, investigators have begun to reexamine the po-

tential role of more abstract forms of representation, such as rules or proto-

types, in category learning. Various hybrid theories have been proposed

recently that involve mixtures of rules and exemplars (e.g., Anderson &

Betz, 2001; Erickson & Kruschke, 1998; Johnstone & Shanks, 2001; Nosof-

sky, Palmeri, & McKinley, 1994; Palmeri, 1997; Smith, Patalano, & Jonides,
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1998; Thomas, 1998), prototypes and exemplars (e.g., Anderson, 1990;

Love, Medin, & Gureckis, in press; Smith & Minda, 1998), and various

kinds of linear and nonlinear decision boundaries (e.g., Ashby, Alfonso-Re-

ese, Turken, & Waldron, 1998). The research presented in this paper exam-

ines the questions of whether multiple kinds of category representation are
used and whether categorization experience modulates the use of these dif-

ferent representations.

Let us intuitively motivate the difference between rule-based and similar-

ity-based categorization with this example. We can imagine that a novice

searching the woods for prized Chanterelle mushrooms must refer to a set

of fairly complex rules for telling them apart from many similar, yet quite

poisonous species, such as the Jack O� Lantern mushroom (Phillips,

1991). Although these rules may become internalized, without requiring ref-
erence to a field guide, categorizing mushrooms as edible versus poisonous

may still appear to involve deliberate use of explicit rule-based knowledge.

With experience, however, a mushroom gatherer eventually seems to shift

from this potentially slow, deliberate, attention-demanding mode of catego-

rizing to a far more rapid and automatic mode of processing that seems to

characterize more expert-like performance. What kinds of changes occur

that allow someone to become a skilled mushroom gatherer who can recog-

nize the prized Chanterelle so quickly and effortlessly, with little thought or
conscious awareness, and without needing to make recourse to explicit

rules?

A way of characterizing these shifts is to view categorization as another

domain in which people develop skills with experience. According to

Logan�s (1988) instance theory, automaticity in a range of cognitive skills

is attributed to a shift from strategic and algorithmic processes, such as

the use of explicit rules, to the retrieval of exemplars from memory. Could

such shifts characterize the development of automaticity in categorization
whereby people initially use simple rules but eventually come to rely on sim-

ilarity-based retrieval of exemplars? Palmeri (1997) found evidence for shifts

from rules to exemplars in a paradigm in which subjects were supplied an

explicit counting rule for initially classifying objects into different categories.

In a different paradigm, Brooks and colleagues (Allen & Brooks, 1991; Reg-

ehr & Brooks, 1993) found evidence for intrusions of similarity-based re-

trieval even when subjects were supplied an explicit categorization rule.

But in many experimental paradigms and in many real world situations,
people are not supplied categorization rules prior to learning about catego-

ries of objects. Do people adopt an analytic strategy of developing simple

rules at the outset of category learning? If so, do these rules eventually give

way to exemplar retrieval, or other forms of category representation, with

increased experience? Although a number of current theories have posited

combinations of rules and exemplars, little research has investigated how

the use of these different kinds of category knowledge might change with ex-
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perience. Indeed, an alternative view has recently been proposed that people

initially abstract prototypes when learning about categories but may eventu-

ally rely on memory for specific examples with no generalization to those

stored exemplars (Smith & Minda, 1998).

In this paper, we have followed other investigators (e.g., Erickson & Kru-
schke, 1998; Kalish & Kruschke, 1997; Nosofsky & Palmeri, 1998) by lim-

iting our use of the term rule to refer to single-dimension categorization

rules. In addition to being the same operational definition used by others,

such unidimensional rules can be verbalized, another operationalization of

rule-based categorization (Ashby et al., 1998). Obviously, we would not

want to preclude learning more complex conjunctive, disjunctive, or other

logical categorization rules, for people can clearly learn such rules (e.g., Sal-

atas & Bourne, 1974) and can use complex rules when explicitly provided
(e.g., Allen & Brooks, 1991; Nosofsky, Clark, & Shin, 1989; Smith et al.,

1998). But it is clear that subjects do not find such rules as easy to learn

as unidimensional rules (e.g., Bourne, 1970; Feldman, 2000; Nosofsky

et al., 1994). Also, during unsupervised categorization, where subjects are

free to form their own categories without any corrective feedback, unidi-

mensional rules clearly dominate categorization performance (e.g., Ahn &

Medin, 1992; Ashby, Queller, & Berretty, 1999; Regehr & Brooks, 1995).

Importantly, all of the category structures that were used in the experiments
reported in this paper permitted the formation of imperfect single-dimension

rules. We will return to a more general discussion of rule-based categoriza-

tion at the end of this paper.

This paper begins by reviewing previous empirical and theoretical evi-

dence suggesting that people may learn perceptual categories by forming

simple rules. A closer examination of this prior research will reveal evidence

for exemplar-based categorization as well, with the relative proportion of

presumed rule-based and exemplar-based categorization modulated by ex-
perience. To directly test for possible shifts from rules to exemplars, we then

report three experiments tracking how people generalized their acquired cat-

egory knowledge as a function of learning. The results show that early in

learning, subjects generalized on the basis of single diagnostic dimensions,

consistent with the use of simple categorization rules. Later in learning, sub-

jects generalized in a manner consistent with exemplar-based categorization,

utilizing multiple dimensions to assess similarity to stored exemplars. Theo-

retical modeling is then used to formally corroborate these empirical obser-
vations by comparing the fits of rule, prototype, and exemplar models to the

observed categorization data. The combination of empirical and theoretical

results provides strong evidence for shifts in the kind of information that is

used to classify stimuli as a function of categorization experience. However,

interpreting these results in terms of shifts in the kind of representational

system underlying perceptual categorization is far more difficult. In the final

section of this paper, we discuss the challenges of making claims about rep-
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resentation on the basis of empirical data and theoretical modeling and re-

view various aspects of the categorization literature and related domains

suggesting multiple representational systems.

2. Background and overview

Perceptual categorization has been studied using a variety of experimen-

tal paradigms. This paper focuses on a widely used paradigm in which sub-

jects learn to classify stimuli composed of binary-valued dimensions with

corrective feedback but without being provided any explicit rules before-

hand. Other categorization studies have provided explicit rules at the outset

of learning (e.g., Allen & Brooks, 1991; Nosofsky et al., 1989). Some have
used stimuli that vary along continuous rather than discrete dimensions

(e.g., Ashby & Gott, 1988; Homa, Sterling, & Trepel, 1981). Others have ex-

amined unsupervised category learning without corrective feedback (e.g.,

Ahn & Medin, 1992; Ashby et al., 1999), implicit learning without knowl-

edge that categories are even being acquired (e.g., Berry & Dienes, 1993;

Johnstone & Shanks, 2001), and other learning modes such as category

learning by feature inference (e.g., Yamauchi & Markman, 1998). Although

there have been many paradigms used to investigate categorization, we have
chosen a paradigm that has one of the longest histories in categorization re-

search and that has been a dominant paradigm for developing and testing

formal models of categorization.

The category structure we used in our first experiment is shown in Table 1

and will be used here to introduce some key points we will be addressing in

this paper. This is the structure first used in the classic studies by Medin and

Schaffer (1978) and has been used in many studies since then (e.g., Lamberts,

1995; Medin & Smith, 1981; Nosofsky, 2000; Nosofsky et al., 1994; Palmeri
& Nosofsky, 1995; Smith & Minda, 2000). Each stimulus is composed of

four dimensions and each dimension can take on one of two possible values.

Table 1

Category structure used by Nosofsky et al. (1994), Palmeri and Nosofsky (1995), and in our Ex-

periment 1 (from Experiments 2 and 3 of Medin & Schaffer, 1978). Each stimulus was composed

of four dimensions. Each dimension could take on one of two possible values

Category A Category B Transfer

A1 1 1 1 2 B1 1 1 2 2 *T1 1 2 2 1

A2 1 2 1 2 B2 2 1 1 2 *T2 1 2 2 2

A3 1 2 1 1 B3 2 2 2 1 T3 1 1 1 1

A4 1 1 2 1 B4 2 2 2 2 *T4 2 2 1 2

A5 2 1 1 1 *T5 2 1 2 1

*T6 2 2 1 1

T7 2 1 2 2

Note. * Highlights the five critical transfer items.
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In the original Medin and Schaffer experiment, the dimensions were size,

color, form, and position. So, for example, the stimulus 1 1 1 2 might corre-

spond to a large red square to the right, whereas the stimulus 1 2 1 1 might

correspond to a large blue square to the left. Five items are assigned to cat-

egory A, four are assigned to category B, and the remaining seven are des-
ignated transfer items. The categories are ill-defined in that no single feature

along a dimension can be used to perfectly classify the items. Rather, the

categories have a family resemblance structure in that category A items tend

to have value 1 along each dimension, and category B items tend to have

value 2 along each dimension.

In this paradigm, subjects are presented training items one at a time, ran-

domly drawn from category A or category B, they categorize the presented

item as a member of one of the two categories, and they receive corrective
feedback. At the start of training, subjects have no idea how to correctly cat-

egorize the training items and must resort to guessing, but they are told that

by paying attention to the corrective feedback provided by the computer

they should be able to eventually learn the categories. Our key empirical

measure was how subjects applied their acquired category knowledge to

classifying the transfer items. In this paradigm, subjects are typically pre-

sented transfer items along with training items to be categorized without

corrective feedback after some fixed number of training blocks. Because
we were interested in how category knowledge develops with training, we in-

stead presented test blocks of transfer and training items at various stages

throughout category learning.

In the original Medin and Schaffer (1978) studies, prototype (additive in-

dependent cue) and exemplar (multiplicative interactive cue) models were

compared on their ability to account for the average probability that each

stimulus was classified as a member of category A or B. According to a pro-

totype model, subjects form prototypes 1 1 1 1 for category A and 2 2 2 2 for
category B with items classified according to their relative similarity to the

prototypes. According to an exemplar model, subjects store the specific

training instances of the categories with items classified according to their

relative summed similarity to the exemplars of the two categories. Medin

and Schaffer reported better qualitative and quantitative accounts of the ob-

served data by an exemplar model (the context model) than a prototype

model, a finding that was instrumental in launching the (arguable) theoret-

ical dominance of exemplar models of categorization over the last two de-
cades (see Nosofsky, 2000; Smith & Minda, 2000, for a recent debate

regarding the theoretical implications of these classic results).

Most investigations of the Medin and Schaffer paradigm have focused on

average probabilities of classifying items as members of the two categories.

Although averaging performance across numerous subjects may have statis-

tical appeal, there have been arguments that such averaging obscures impor-

tant individual differences in the kinds of strategies subjects employ to
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categorize stimuli. Indeed, questions of averaging may have important the-

oretical consequences in that some models of categorization may be able to

provide superior accounts of the average subject data but may show system-

atic weaknesses in accounting for individual subject data (e.g., Ashby, Mad-

dox, & Lee, 1994; Maddox, 1999; Martin & Caramazza, 1980; Nosofsky
et al., 1994; Palmeri & Nosofsky, 1995; Smith & Minda, 1998).

As a particularly relevant example, Nosofsky et al. (1994) reported that

both an exemplar model and a rule-plus-exception model provided compa-

rable accounts of average data in a replication and extension of the classic

Medin and Schaffer (1978) study. However, when they systematically exam-

ined categorization at the individual subject level, they obtained results sug-

gesting the use of simple rules, not the storage and retrieval of exemplars, as

the basis for learning these categories. Indeed, an exemplar model provided
an exceedingly poor account of the individual subject data, even though the

model had provided an excellent account of the average data. By contrast,

the rule-plus-exception model they formulated provided a very good ac-

count of both the individual subject data and the average data.

There are two primary approaches to examining individual differences in

categorization. One approach is to test a small number of subjects over

many sessions, collecting thousands of observations per individual (e.g.,

Ashby & Gott, 1988; Nosofsky, 1986; Nosofsky & Palmeri, 1997). Models
are tested on how well they can account for detailed aspects of the responses

made by each individual subject. A quite different approach is to collect a

small amount of data from a large number of individuals tested within a sin-

gle session and then to try to characterize whether clusters of different re-

sponse profiles may be present across those many individuals (e.g.,

Nosofsky et al., 1989; Nosofsky & Palmeri, 1998; Nosofsky et al., 1994).

Models are tested on how well they account for the variability in responses

across those numerous individuals. (The final approach of testing many in-
dividuals for many sessions may be both logistically and financially prohib-

itive.) Testing many subjects a limited number of times each is especially

beneficial when the focus is on how subjects generalize their acquired cate-

gory knowledge to classifying new transfer items. When subjects are tested

on new stimuli multiple times, those stimuli may influence category judg-

ments in unexpected ways because the transfer stimuli may become part

of the learned category representations (e.g., Nosofsky, 1986). In other

words, new transfer stimuli may no longer be ‘‘new’’ if subjects are required
to categorize those stimuli too many times.

In the present experiments, we systematically examined performance by

large numbers of individual subjects using an empirical measure called a dis-

tribution of generalization patterns (Nosofsky et al., 1989; Nosofsky et al.,

1994; Pavel, Gluck, & Henkle, 1988). A generalization pattern for an individ-

ual subject is defined by how that subject classified each new transfer item.

For example, for the category structure shown in Table 1, a subject who
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classified T1-T3 as members of category A and T4-T7 as members of cate-

gory B would be said to have exhibited a generalization pattern AAABBBB,

whereas a subject who classified T3, T4, and T6 as members of category A

and the remaining transfer items as members of category B would have ex-

hibited pattern BBAABAB. The distribution of generalization patterns is a
tally of the number of subjects who displayed each of the possible general-

ization patterns. With seven transfer items, each of which could be classified

into one of two categories, there are 27 ¼ 128 possible generalization pat-

terns that subjects could exhibit.

As we will see, examining such distributions of generalization patterns

can be particularly informative as to what information subjects are using

to categorize items. Before discussing how these distributions can be used

to understand categorization, we must briefly digress to discuss how the dis-
tributions will be visually displayed. Displaying the full distribution of gen-

eralization patterns for the Medin and Schaffer category structure would

require generating a bar graph with observed proportions for all of the

128 possible generalization patterns. Clearly, a graph with that many entries

would be quite difficult to read and interpret. Therefore, for illustrative pur-

poses, throughout this paper we decreased the number of generalization pat-

terns that needed to be displayed in a figure to just those generalizations

involving the most critical transfer items. To do this, we collapsed across re-
sponses to what reasonably can be considered noncritical transfer items.

These noncritical items were those which most subjects should and did con-

sistently classify into the same category. For example, T3 (1 1 1 1) in Table 1

is the prototype of category A; whether subjects have acquired rules, proto-

types, or exemplars, this item should be classified into category A with high

probability. Similarly, T7 (2 1 2 2) is very similar to the category B proto-

type, differing along the least diagnostic dimension; regardless of what kind

of information subjects have acquired, this item should be classified as a
member of category B with high probability. Categorization judgments

for the remaining five items (T1, T2, T4, T5, and T6) are critical transfer

items in that individual subjects do categorize these items differently and

in that different theoretical models make different predictions as to how

these items should be classified. Thus, for example, the full generalization

patterns AAABBBB, AABBBBB, AABBBBA, and AAABBBA were com-

bined into a single generalization pattern AABBB, collapsing across re-

sponses to the noncritical items T3 and T7. For this category structure,
focusing on just the five critical transfer items decreases the number of gen-

eralization patterns that need to be displayed in a figure down to 25 ¼ 32

patterns. That said, in all of the quantitative tests of formal models reported

later in this paper, the models were fitted to the full distributions of gener-

alization patterns, not the abbreviated distributions displayed in the figures.

Now, how can these distributions of generalization patterns be used to

distinguish between models of categorization? Nosofsky et al. (1994) sug-
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gested that subjects learn categories, such as those of Medin and Schaffer

(1978), by forming simple rules and perhaps remembering exceptions to

those rules, rather than storing and retrieving detailed exemplar informa-

tion. To test this idea, they formalized a rule-plus-exception (RULEX)

model of categorization. One of the key assumptions of RULEX is that
different subjects may learn different rules and probabilistically store excep-

tions to those rules to varying degrees. Averaging across the idiosyncratic

behaviors of different subjects resulted in predictions at the level of average

data that were indistinguishable from those of an exemplar model. How-

ever, RULEX does predict systematic differences in categorization behav-

ior at the individual-subject level. To examine individual differences in

categorization, Nosofsky et al. (1994) replicated the Medin and Schaffer ex-

periment but tested over 200 subjects and examined the distribution of gen-
eralization patterns.

Turning to the structure shown in Table 1, although no perfect single-di-

mension rule can be used to classify the training items, several imperfect sin-

gle-dimension rules can be formed that work quite well. For example, a

subject who formed a rule that value 1 along dimension one signals category

A and value 2 along dimension one signals category B would need to learn

the exceptions A5 and B1. A subject who instead formed a rule that value 1

along dimension three signals category A and value 2 along dimension three
signals category B would need to learn the exceptions A4 and B2. Although

numerous other single-dimension or conjunctive rules are also possible,

these other rules require memorizing more exceptions. Rules along dimen-

sions one and three were predicted to be formed more frequently because

they are far more efficient rules. The use of such simple single-dimension cat-

egorization rules can be discovered by examining distribution of generaliza-

tion patterns. Specifically, application of rules along dimension one or

dimension three would result in those subjects exhibiting generalization pat-
terns AABBB and BBABA, respectively (using the truncated notation de-

scribed above).

The left panel of Fig. 1 displays the distribution of generalization patterns

observed by Nosofsky et al. (1994). The two most prominent generalization

patterns, AABBB and BBABA, are those consistent with rules along dimen-

sions one and three, respectively. RULEX accounted for 99.0% of the var-

iance in the average transfer data and 85.7% of the variance in the

distributions of generalization patterns. By contrast, the context model only
accounted for 35.9% of the variance in the distribution of generalization pat-

terns. Palmeri and Nosofsky (1995) conducted another replication and ex-

tension of the Medin and Schaffer (1978) experiment in order to

additionally test predictions made by RULEX and the context model re-

garding recognition memory and speeded categorization. The right panel

of Fig. 1 displays the distribution of generalization patterns from that later

study, again showing the prominent rule-based generalization patterns,
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AABBB and BBABA. The predominance of these rule-based patterns ap-

pears inconsistent with the exemplar-based categorization process that

had previously been thought to underlie the learning of these categories

(but see Nosofsky & Johansen, 2000).
However, as can be seen in both panels of Fig. 1, in both of these previ-

ous studies, another prominent generalization was also observed, ABBBA.

This generalization is consistent with exemplar-based categorization in that

models that assume generalization by similarity to stored exemplars predict

ABBBA to be the most prominent generalization across a wide set of pa-

rameters. By contrast, this pattern is not predicted by RULEX to show

any particular prominence in the predicted distribution of generalizations

across any set of parameter values (in fact, other patterns, in addition to

Fig. 1. The left panel displays the distributions of generalization patterns from Nosofsky et al.

(1994), in which subjects were given 16 training blocks. The right panel displays the distribu-

tions of generalization patterns from Palmeri and Nosofsky (1995), in which subjects were given

25 training blocks. Each of the 32 generalization patterns is one of the possible ways that a sub-

ject could classify the five critical transfer items (T1, T2, T4, T5, and T6, respectively) from the

category structure shown in Table 1. For example, pattern AABBB denotes classifying T1–T2

as members of category A and T4–T6 as members of category B. White bars highlight the two

prominent rule-based generalization patterns. The hatched bar highlights the prominent exem-

plar-based generalization pattern.
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the two rule-based patterns, are predicted to be more prominent than this

exemplar pattern, as shown by Nosofsky et al., 1994). Examining the left pa-

nel of Fig. 1, we see that this exemplar-based generalization was quite prom-

inent in the Nosofsky et al. (1994) experiment, in which subjects were

provided 16 training blocks. Examining the right panel of Fig. 1, we see that
ABBBA was the most prominent pattern in the Palmeri and Nosofsky

(1995) experiment, where 25 training blocks were provided.

Relatively little attention was paid to this exemplar-based generalization

in either of these previous studies, apart from noting its presence and sug-

gesting that it could reflect use of exemplar retrieval. Nor was it suggested

that the relative prominence of this generalization might be influenced by ex-

perience. By contrast, our initial study was motivated by what appears to be

an increased prominence in apparent exemplar-based generalizations as a
function of categorization experience across these two independent studies.

Indeed, might this increased prominence in the ABBBA pattern with in-

creased training reflect a shift from rules to exemplars as a function of expe-

rience, as suggested by some automaticity theories? The first experiment

attempted to address that issue.

3. Experiment 1

In this first experiment, subjects were trained on the Medin and Schaffer

(1978) category structure for a total of 32 training blocks. Unlike previous

studies, we provided single transfer blocks at various points throughout cat-

egory learning, testing subjects on all stimuli without feedback after 2, 4, 8,

16, 24, and 32 blocks of training.2 The key empirical measure was how the

distribution of generalization patterns evolved as a function of learning.

Would there be evidence of rule use early in training, indexed by the relative
prominence of the rule-based generalizations AABBB and BBABA? Would

there be evidence for a gradual emergence of exemplar retrieval with more

training, indexed by the relative prominence of the presumed exemplar-

based generalization, ABBBA?

2 We acknowledge that there are potential problems raised by testing subjects multiple times

during training. As noted by one of the reviewers, exposure to transfer items could encourage

rule formation because it makes subjects aware of items outside the training set, emphasizing

the requirements to generalize beyond the training set. Alternatively, interleaving categorization

tests within category training could hinder rule formation because it disrupts any hypothesis-

testing strategies subjects may be using to learn the categories. Unfortunately, given the large

number of subjects required to measure distributions of generalization patterns, it was simply

unfeasible to conduct these experiments using between-subjects designs.
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3.1. Method

3.1.1. Subjects

Subjects were 198 undergraduate students who received credit in an intro-

ductory psychology course. All subjects were tested individually.

3.1.2. Stimuli

Stimuli were computer-generated drawings of rockets that varied along

four binary-valued dimensions: The shape of the wing (triangular or rectan-

gular), tail (jagged or boxed), nose (staircase or half-circle), and porthole

(circular or star). The rockets were adapted from those used by Hoffman

and Ziessler (1983) and were the same as those used by Nosofsky et al.

(1994) and Palmeri and Nosofsky (1995). As shown in Table 1, five stimuli
belonged to category A, four belonged to category B, and seven were new

transfer items. The assignment of physical dimensions to abstract dimen-

sions and physical values to abstract values along dimensions was random-

ized for every subject. In all experiments, stimulus presentation and response

recording were controlled by customized computer programs.

3.1.3. Procedure

In all experiments, subjects were trained to categorize stimuli as members
of one of two categories with feedback. At varying points during training,

they were tested with a single transfer block in which they categorized the

sixteen training and transfer items without corrective feedback.

In this experiment, subjects received a total of 32 training blocks. Each of

the nine training items was presented once per block. Stimuli were presented

in random order within each block, subject to the constraint that the same

stimulus was not shown on consecutive trials. Subjects classified each item

as a member of category A or B and then received corrective feedback for
2 s. There was a 500ms interval between trials. Subjects responded by press-

ing one of two response keys on a computer keyboard.

One transfer block was presented after 2, 4, 8, 16, 24, and 32 blocks of

training (labeled TB2, TB4, TB8, TB16, TB24, and TB32 in tables and fig-

ures). In each block, all 16 stimuli from Table 1 were presented just once, in

randomized order, without corrective feedback. After the subject classified

an item as a member of category A or category B, the computer responded

‘‘OK’’ for one second and proceeded to the next item. There was a 500ms
blank interval between trials.

3.2. Results

Sixty-eight subjects with an error rate of more than 25% on the last four

training blocks were removed from further analyses. One justification for

this strict criterion is that we were interested in examining performance that
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approached asymptotic levels of accuracy by the end of training. We could

not train our subjects for more than 32 blocks within a single experimental

session. Providing more training would have required bringing subjects back

for multiple sessions, which was logistically impossible given such large

numbers of subjects. Excluding poor performers seemed a reasonable solu-
tion. That said, we did examine the data excluding no subjects and observed

qualitatively similar results to those we report here. Moreover, 75.4% of ex-

cluded subjects did not perform significantly greater than chance when cat-

egorizing during the last four training blocks, providing further justification

for our exclusion of these subjects. This exclusion criterion was used in all

three experiments.

An a level of .05 was established for all statistical tests used in this paper.

3.2.1. Average transfer data

The average probabilities of categorizing each of the 16 training and

transfer stimuli as a member of category A as a function of the six transfer

blocks is shown in the bottom portion of Fig. 2. An important goal of our

later theoretical modeling will be to attempt to account for the full spectrum

of these average probabilities as well as the distributions of generalization

patterns using various formal models of categorization. Because our empir-

ical focus will be on the generalizations, we will just highlight a couple of
important aspects of the transfer data. Throughout training, more errors

were made on A5 (2 1 1 1) and B1 (1 1 2 2), and A4 (1 1 2 1) and B2

(2 1 1 2), which can be characterized as the exceptions to rules along dimen-

sions 1 and 3, respectively; significantly more errors were made on the excep-

tions than the nonexceptions in each transfer block [tð129Þ > 5:214]. Not

surprisingly, we also found clear evidence for learning as a function of train-

ing in the decrease in the number of errors made categorizing old training

items; a within-subjects ANOVA on the proportion of categorization errors
within each block revealed a significant effect of block [F ð5; 645Þ ¼ 85:94,
MSe ¼ :019] and a significant linear contrast on blocks [F ð1; 129Þ ¼
247:43, MSe ¼ :031].

3.2.2. Distributions of generalization patterns

We defined a generalization pattern for each subject as the pattern of

responses that subject gave to each of the seven new transfer items. For

purposes of fitting computational models to the distributions of generaliza-
tion patterns, discussed later in this paper, we used the full empirical dis-

tributions of generalization patterns from all experiments (these can be

obtained from the authors). As outlined earlier, to simplify the illustra-

tions, we used a truncated generalization that included only the five critical

transfer items T1, T2, T4, T5, and T6. The top portion of Fig. 2 displays

the distributions of generalization patterns observed within each transfer

block.
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Fig. 2. The top row shows distributions of generalization patterns and the bottom row shows average categorization probabilities PðAÞ for training and

transfer items after 2 (TB2), 4 (TB4), 8 (TB8), 16 (TB16), 24 (TB24), and 32 (TB32) blocks of training in Experiment 1. For the distributions, white bars

highlight the two prominent rule-based generalization patterns and the hatched bar highlights the prominent exemplar-based generalization pattern. For

the average categorization probabilities, hatched bars are training items, white bars are critical transfer items, and gray bars are noncritical transfer items.

M
.K
.
J
o
h
a
n
sen

,
T
.J
.
P
a
lm

eri
/
C
o
g
n
itive

P
sy
ch
o
lo
g
y
4
5
(
2
0
0
2
)
4
8
2
–
5
5
3

4
9
5



In this empirical analysis, we will focus on the presence of prominent gen-

eralizations in the distributions as a function of learning. In the theoretical

section, we will test the ability of models to account for the entire set of

observed distributions. First, as discussed earlier, we can define simple

rule-based generalizations for the two most likely single-dimension rules.
Application of a dimension-1 rule yields generalization AABBB, whereas

application of a dimension-3 rule yields generalization BBABA. Examining

Fig. 2, we see that these two highlighted rule-based generalizations were

most prominent during the early stages of learning but became proportion-

ately less prominent in later stages of learning (although their absolute pro-

portions did not change considerably).

Indeed, with more training, pattern ABBBA emerged as the most prom-

inent generalization. One way of characterizing this pattern is that it may
serve as a marker for exemplar-based categorization in that this generaliza-

tion is predicted by exemplar models to be the most prominent one in the

distribution. To show this, we conducted a large set of simulations of two

exemplar models, the context model (Medin & Schaffer, 1978) and AL-

COVE (Kruschke, 1992). As with all formal models, these models have free

parameters. In the context model, parameters are attention weights along

the four dimensions used to compute similarities (Nosofsky, 1984). AL-

COVE is a connectionist version of the context model that learns dimen-
sional attention weights and learns association weights between exemplars

and categories; parameters govern the rate of learning and map output acti-

vations onto response probabilities. Ideally, one would like to report param-

eter-free predictions. Because both the context model and ALCOVE have

free parameters, we instead generated predicted distributions of generaliza-

tion patterns across over 10,000 different sets of parameter values, as de-

scribed in Appendix A. Summarizing the results of those simulations, both

models were highly constrained in terms of which generalizations they could
predict to be maximally prominent in the distributions. In fact, the models

were relatively inflexible in that they never predicted certain generalizations

to be maximally prominent. Indeed, for both models, pattern ABBBA

emerged as the most prominent pattern across a wide range of possible pa-

rameter values under optimal conditions that produced high accuracy at cat-

egorizing training items (Nosofsky, 1998a,b). Both models do make a priori

predictions about the distributions of generalization patterns; they are not

just sophisticated curve fitting techniques that can fit any pattern of observed
data. Given these simulations, we felt justified in characterizing ABBBA as a

potential marker of exemplar-based generalization for this structure. Turn-

ing again to the data reported in Fig. 2, we can confirm one of our key pre-

dictions, that exemplar-based generalizations would gradually gain

prominence with training. In the later theoretical analyses, we will corrobo-

rate this observation by demonstrating excellent fits of an exemplar model to

the generalizations observed during the later stages of category learning.
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Our next analysis provided a further summary of the proportion of rule-

and exemplar-based generalizations as a function of experience. Because of

the discrete nature of category responding, subjects may be using a simple

rule or exemplar strategy but may classify one of the transfer items in the

‘‘wrong’’ category because responses are not entirely deterministic. There-
fore, as a conservative measure, we tallied the proportion of dimension-1

generalizations as the proportion of AABBB generalizations and those that

differed by one response (e.g., AABBA, AABAB, etc.), the proportion of di-

mension-3 generalizations as BBABA and those that differed by one re-

sponse, and the proportion of exemplar generalizations as ABBBA and

those that differed by one response. Note that some of the generalizations

(e.g., BBBBA) may be counted in more than one group (analyses in which

we ignored generalizations that counted in multiple groups were qualita-
tively similar). Because each subject categorized each transfer item just once

during each block, we believed it was sensible to permit generalizations that

differed by one response into our tally from our target generalization; also,

we believed that our approach was a simpler and more theoretically neutral

approach than tallying specific patterns as rule- or exemplar-based.3 Fig. 3

displays the proportion of dimension-1, dimension-3, and exemplar general-

izations as a function of learning. Again, the most prominent finding was

that exemplar generalizations became more prominent as a function of
training. However, in this experiment, rule generalizations did not diminish

with training.

One final question emerging from an analyses of the distribution of gen-

eralization patterns is whether they really do reveal any information that

could not be discovered by simply examining the average data. Specifically,

is there information presented in the top row of Fig. 2 that is not already

present in the bottom row of Fig. 2? Clearly, not every subject will display

the same generalization pattern. But that is a necessary consequence of how
the transfer items are classified on average. Suppose a particular item has a

.5 probability of being classified into category A. If all subjects respond on

the basis of this probability and if each subject provides only a single cate-

gorization response, then half of the subjects will classify that item as an A

and half will classify it as a B. Extending this to two items, each classified

with .5 probability, all of the possible generalizations from two items

(AA, AB, BA, and BB) should be observed with equal likelihood. Examin-

3 We used this scoring system in all three experiments. Although it may be theoretically

neutral, it could possibly misrepresent the categorization strategies used by subjects. Our intent

in presenting these analyses was to provide a simple alternative summary of the empirical results

that are present within the evolving distributions of generalization patterns. The conclusions

gleaned from the figures showing these simple analyses are corroborated by direct examination

of the distributions of generalization patterns and by the theoretical modeling results presented

later in this paper.
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ing distributions of generalization patterns allows us to detect deviations

from this possibility, which can be theoretically important. For example,
two items may be classified with probability of .50 when averaged across

subjects, but in the extreme, all subjects may show generalization AA or

BB and no subjects may show generalization AB or BA.

For the following analysis, consider the null hypothesis that the average

transfer probabilities shown in the bottom of Fig. 2 govern the behavior of

every individual subject. Given that each subject produced a single response

for each item in each transfer block, we can directly calculate the expected

probability of observing any given generalization from those average prob-
abilities. For example, the expected probability of observing generalization

ABBBA is given by P ðAjT1Þ � PðBjT2Þ � P ðBjT4Þ � P ðBjT5Þ � P ðAjT6Þ.
The statistical question is whether any observed generalization probability

in the distribution significantly exceeds the expected generalization probabil-

ity calculated from the average transfer probabilities. Using a bootstrapping

procedure, we generated 50,000 simulated distributions of generalization

patterns using the observed transfer probabilities. For each generalization

pattern, we then statistically determined whether the observed probability
of that generalization fell within the tail of the distribution of probabilities

across those 50,000 simulations. Finding probabilities in the observed distri-

Fig. 3. The percentage of observed generalization patterns consistent with dimension-1 rule

generalizations (filled squares), dimension-3 rule generalizations (open squares), and exemplar

generalizations (open triangles) as a function of transfer block in Experiment 1.
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bution of generalization patterns that exceed this statistical criterion pro-

vides evidence that distributions provide information that is not present in

the average transfer probabilities.

As shown in Table 2, six of thirty-two generalizations were observed sig-

nificantly more frequently than expected from the average probabilities.

Most importantly, the proportions of the two rule generalizations (BBABA

and AABBB) were significant early in training, and the proportion of the

exemplar generalization (ABBBA) was significant later in training. One of
the rule-based generalizations (BBABA) was also significant later in train-

ing, but as observed by Nosofsky et al. (1994), exemplar models do predict

this high proportion. Other patterns were also significant. Pattern BBAAB

was only significant during the first block. Pattern BBAAA was significant

at various stages of learning, but the observed probabilities were small. Only

pattern AABAB was significant and observed with relatively high probabil-

ity. Indeed, at the end of learning, generalization AABAB was observed

with comparable probability to the rule generalization AABBB. As can be
seen in the theoretical section, our representational shift model accounted

for the observed probability of this particular generalization.

3.3. Discussion

The goal of this first experiment was to find evidence for a shift from rule-

based to exemplar-based categorization as a function of category learning.

The experiment was partially motivated by a reexamination of earlier pub-
lished data extending the classic Medin and Schaffer (1978) study. Nosofsky

et al. (1994) observed that with 16 training blocks, rule-based generaliza-

tions were dominant, a result consistent with a rule model but inconsistent

with an exemplar model, but an exemplar-based generalization was also rel-

atively prominent. Palmeri and Nosofsky (1995) observed that with 25 train-

ing blocks, the single-dimension rule-based generalizations were also

relatively prominent, but an exemplar-based generalization was dominant.

Table 2

Generalization patterns that were observed significantly more frequently than expected from the

observed average transfer probabilities in Experiment 1 (see text for details)

Pattern TB2 TB4 TB8 TB16 TB24 TB32

(2) (4) (8) (16) (24) (32)

BBABA *** *** * * *** ***

BBAAB *

BBAAA * ** ** *

ABBBA ** ** **

AABBB *** *** * ** **

AABAB * * ** *** ***

Note. *** Indicates significance at the p < :001 level; ** indicates significance at the p < :01

level; * indicates significance at the p < :05 level.
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The present experiment examined the evolution of the distribution of gener-

alization patterns as a function of training, testing participants at various

stages of category learning.

We observed that early in learning there was evidence for a relative prom-

inence of generalizations based on single dimensions (BBABA and AABBB)
with little evidence for exemplar-based generalizations. With additional

training, however, an exemplar-based generalization (ABBBA) gradually

gained prominence. These empirical results are consistent with the hypoth-

esis of a shift from rule-based to exemplar-based category representations as

a function of training, as suggested by some theories of automaticity. In the

theoretical modeling section at the end of this paper, we will attempt to cor-

roborate this descriptive finding by comparing the fits of various models to

the observed data.
We should emphasize that the Medin and Schaffer category structure was

designed to contrast predictions of independent-cue (prototype) models and

interactive-cue (exemplar) models of categorization. Perhaps this fact led to

our finding little evidence for a decrease in rule generalizations over learning,

even though we did find evidence for an increase in exemplar generalizations.

Indeed, some of the purported rule generalizations are actually predicted to

show moderately high levels of prominence by exemplar-based models (No-

sofsky et al., 1994). The structures developed for the next two experiments
specifically were designed to contrast predictions of rule-based and exem-

plar-based models. Because of the reemerging interest in prototype models

(e.g., Smith & Minda, 1998), we also aimed to contrast predictions of a pro-

totype model with those of rule-based and exemplar-based models as well.

4. Experiments 2 and 3

These experiments aimed to contrast predictions by rule and exemplar

models regarding distributions of generalization patterns. Developing theo-

retically diagnostic category structures can be best characterized as a trial

and error process. What is especially challenging is that predictions of exem-

plar models can change dramatically with subtle changes to the category

structures (e.g., Nosofsky, 2000), something not nearly so true for rule or

prototype models. So, the approach that we used was to develop a number

of category structures meeting certain ‘‘design principles’’ and then to test
predictions regarding distributions of generalizations for rule-based and ex-

emplar-based models. For these two experiments, we retained category

structures (see Tables 3 and 4) that proved especially diagnostic with respect

to the generalizations predicted by rule-based and exemplar-based models.

We also discovered that the category structure used in Experiment 3 proved

to be additionally diagnostic for contrasting prototype- and exemplar-based

categorization as well.

500 M.K. Johansen, T.J. Palmeri / Cognitive Psychology 45 (2002) 482–553



Various design principles were established for constructing category

structures used in these experiments. First, because our goal was to examine

distributions of generalization patterns, and because displaying distributions

with fewer generalizations is preferred, we constructed structures with only

four critical transfer items, highlighted by asterisks in Tables 3 and 4. This

yields only sixteen possible generalizations which needed to be displayed. As

in Experiment 1, the ‘‘noncritical’’ transfer items were those deemed theoret-
ically less diagnostic. In Experiment 2, the noncritical items were the cate-

gory prototypes; in Experiment 3, the noncritical items were a prototype

and items that differed from a prototype along a relatively non-diagnostic

dimension. A subsidiary benefit of limiting the total number of generaliza-

tions is that it allowed us to test fewer subjects than we tested in the first ex-

periment.

Another design principle was to have critical transfer items that were

classified into the two categories with roughly equal probability throughout
training. Providing transfer items that produce average categorization prob-

abilities of .5 maximizes the amount of individual subject variability in how

those items could be classified. Maximizing individual subject variability

maximizes the information that can be revealed in the distributions of gen-

eralization patterns.

Another design principle was to vary the likelihood that subjects would

form rules along particular dimensions. In both experiments, rules were

Table 4

Category structure used in Experiment 3

Category A Category B Transfer

A1 1 1 1 2 B1 1 1 2 2 T1 2 2 2 2

A2 1 2 1 2 B2 2 2 1 2 *T2 2 2 1 1

A3 1 1 1 1 B3 2 2 2 1 T3 2 1 2 2

A4 1 2 2 1 B4 2 1 2 1 *T4 2 1 1 2

A5 2 1 1 1 *T5 1 2 2 2

T6 1 2 1 1

*T7 1 1 2 1

Note. * Highlights the four critical transfer items.

Table 3

Category structure used in Experiment 2

Category A Category B Transfer

A1 2 1 1 1 B1 1 2 2 2 T1 2 2 2 2

A2 1 2 1 1 B2 2 1 2 2 T2 1 1 1 1

A3 1 1 2 1 B3 2 2 1 2 *T3 2 2 1 1

A4 1 1 1 2 B4 2 2 2 1 *T4 2 1 1 2

A5 1 2 1 2 B5 2 1 2 1 *T5 1 2 2 1

*T6 1 1 2 2

Note. * Highlights the four critical transfer items.
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far more likely along dimensions one and three than dimensions two and

four. As can be seen in Tables 3 and 4, rules along dimensions one and three

produce fewer exceptions, making those dimensions more likely to be se-

lected. Use of rules along these dimensions yields two rule-based generaliza-

tions for the critical transfer items. For both experiments, rule-based
generalizations are BBAA and AABB for rules along dimensions one and

three, respectively.

We also required category structures for which a rule model and an exem-

plar model would predict contrasting distributions of generalization patterns.

Generating predictions by an exemplar model for the category structures

used in Experiments 2 and 3 is complicated because predictions, even at a

qualitative level, are sensitive to the parameter values used to generate those

predictions. As in Experiment 1, in order to generate a priori predictions of
an exemplar model, we simulated the context model and ALCOVE across

a wide spectrum of the parameter space, as reported in Appendix A. For each

of the two category structures, both the context model and ALCOVE con-

verged on the same two generalization patterns emerging as most prominent

ones in the distributions. These exemplar-based generalizations were ABAB

and BABA in Experiment 2, and ABBA and BAAB in Experiment 3. We dis-

covered that a prototype-based model could account for the ‘‘exemplar-

based’’ generalizations from Experiment 2 under certain parameter settings.
However, the prototype model could not account for the ‘‘exemplar-based’’

generalizations from Experiment 3, regardless of parameter settings.

Finally, although a rule-based model, such as RULEX, predicts that a

high proportion of subjects will display single-dimension rule-based general-

izations listed above, other generalizations are predicted as well. In addition

to rules, RULEX assumes that subjects will attempt to memorize exceptions

to those rules, which can also be used to generalize when classifying new

transfer items. We systematically examined the predictions of the RULEX
model formalized by Nosofsky et al. (1994) and found that it could not pre-

dict the prominence of the so-called exemplar-based generalizations in the

distributions of generalization patterns for either category structure. As will

be discussed at the end of this paper, although it may be possible to formal-

ize a rule-based model that does predict these prominent ‘‘exemplar-based’’

generalizations, to our knowledge there does not currently exist a rule-based

model that does so.

Following procedures established in Experiment 1, subjects were trained
to categorize stimuli with corrective feedback. At various stages during

learning, subjects were tested on training and transfer items without correc-

tive feedback. The critical data for consideration were the distributions of

generalization patterns observed at each stage of training, with a specific

eye to how those distributions evolved with experience. The aim of our ini-

tial analysis will be to examine the relative prominence of the rule-based and

exemplar-based generalizations in the distributions as a function of learning.
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Our first step will be a descriptive analysis of the observed distributions of

generalization patterns. We will later test the ability of various formal mod-

els to account for the observed distributions of generalization patterns in all

three experiments. Our goal in these theoretical analyses was not to test spe-

cifically the predictive power of these models per se, but to use the models to
test specific hypotheses regarding which of the representations may be used

at various stages of category learning.

4.1. Methods

4.1.1. Subjects

Subjects in Experiment 2 were 63 undergraduates, and subjects in Exper-

iment 3 were 121 undergraduates. Subjects received credit in a psychology
course, and all were tested individually.

4.1.2. Stimuli

The stimulus set was the same in Experiments 2 and 3. Stimuli were com-

puter-generated cartoon faces that varied along four binary-valued dimen-

sions: Hair color (red or yellow), nose size (small or large), ear size (small

or large), and mouth shape (line or circle). These faces were similar in some

respects to stimuli used by Lamberts (1995).
The category structures used in Experiments 2 and 3 are given in Tables 3

and 4, respectively. For both experiments, the categories were linearly sep-

arable. In addition, for both experiments, each dimension was partially di-

agnostic (with value 1 along each dimension associated with category A and

value 2 along each dimension associated with category B), but dimensions 1

and 3 were more diagnostic than dimensions 2 and 4. The assignment of

physical dimensions to abstract dimensions and physical values to abstract

values along dimensions was randomized for every subject.

4.1.3. Procedure

The experimental procedures for Experiments 2 and 3 were identical to

the experimental procedures for Experiment 1, except for the schedule of

transfer blocks. In Experiment 2, a transfer block was presented after 4,

6, 8, 12, 16, and 32 blocks of training (these are labeled TB4, TB6, TB8,

TB12, TB16, and TB32 in the tables and figures in the subsequent analyses).

In Experiment 3, a transfer block was presented after 4, 8, 12, 16, 24, and 32
blocks of training (these are labeled TB4, TB8, TB12, TB16, TB24, and

TB32 in the tables and figures in the subsequent analyses).

4.2. Experiment 2 results

Following the exclusion criteria established in Experiment 1, eighteen

subjects with an error rate of more than 25% on the last four training blocks
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were removed from further analyses; 27.8% of these excluded subjects did

not categorize greater than chance during the last four training blocks.

4.2.1. Average transfer data

Average probabilities of categorizing each stimulus as a member of cate-
gory A as a function of the six transfer blocks are shown in the bottom row

of Fig. 4. Early in training, more errors were made classifying A1 and B1,

and A3 and B3, which can be characterized as exceptions to rules along di-

mensions 1 or 3, respectively; significantly more errors were made on the ex-

ceptions than nonexceptions in the first four blocks [tð44Þ > 3:014].
Categorization probabilities for the four critical transfer items, T3–T6,

showed little change over the course of learning, and never differed signifi-

cantly from a .5 probability by a z-test for proportions. If distributions of
generalization patterns simply reflected average transfer probabilities, we

would expect to observe all of the sixteen possible generalizations to be

equally likely throughout training. As shown below, this possibility was

not observed. Finally, we also saw evidence for learning in the decrease in

categorization errors made on the old training items in each block; a with-

in-subjects ANOVA revealed a significant effect of block [F ð5; 220Þ ¼ 43:49,
MSe ¼ :014] and a significant linear contrast on blocks [F ð1; 44Þ ¼ 212:851,
MSe ¼ :013].

4.2.2. Distributions of generalization patterns

Fig. 4 displays the distributions of generalization patterns observed with-

in each transfer block. Early in training we saw evidence for rule use by the

relative prominence of the rule-based generalizations AABB and BBAA.

Later in training we saw evidence for exemplar use by the relative promi-

nence of the exemplar-based generalizations ABAB and BABA. As a sum-

mary, we tallied the proportion of rule-based generalizations as the
proportion of AABB and BBAA generalizations and those differing by

one response, and we tallied the proportion of exemplar-based generaliza-

tions as the proportion of BABA and ABAB generalizations and those dif-

fering by one response. The left panel of Fig. 5 displays these proportions

and shows additional corroborating evidence of early rule use which gave

way to later exemplar use.

Recall that average probabilities of around .5 were observed for classify-

ing all of the critical transfer items throughout training. Distributions of
generalization patterns generated directly from these average probabilities

would yield distributions in which all generalizations were equally likely.

As shown in Fig. 4, this possibility was not observed. For statistical corrob-

oration, we found that in each transfer block except the first one, the ob-

served distributions were significantly different from ‘‘null distributions’’

in which all generalizations were equally likely using a v2 test

[v2ð15Þ > 25:033]; the observed distribution for the first block was margin-
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Fig. 4. The top row shows distributions of generalization patterns and the bottom row shows average categorization probabilities PðAÞ for training and

transfer items after 4 (TB4), 6 (TB6), 8 (TB8), 12 (TB12), 16 (TB16), and 32 (TB32) blocks of training in Experiment 2. For the distributions, white bars

highlight the two prominent rule-based generalization patterns and hatched bars highlight the two prominent exemplar-based generalization patterns. For

the average categorization probabilities, hatched bars are training items, white bars are critical transfer items, and gray bars are noncritical transfer items.
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ally significantly different from a null distribution (v2ð15Þ ¼ 23:629,
p ¼ :072).

Finally, following procedures from Experiment 1, we tested whether gen-

eralization probabilities in the distributions were significantly different from

those predicted from the average transfer data. With the bootstrapping pro-

cedure, we found that four of the 16 generalizations were observed signifi-
cantly more frequently than expected from average probabilities at some

point in training, as shown in Table 5. The dimension-3 rule generalization,

AABB, was significant relatively early in training; for some reason, the di-

mension-1 rule generalization, BBAA, only emerged as significant in block

TB16. The two exemplar generalizations, BABA and ABAB, were signifi-

Fig. 5. The percentage of observed generalization patterns consistent with rule-based general-

izations (filled squares) and exemplar-based generalizations (open triangles) as a function of

transfer block in Experiment 2 (left panel) and Experiment 3 (right panel).

Table 5

Generalization patterns that were observed significantly more frequently than expected from the

observed average transfer probabilities in Experiment 2 (see text for details)

Pattern TB4 TB6 TB8 TB12 TB16 TB32

(4) (6) (8) (12) (16) (32)

BBAA *

BABA *** ** ***

ABAB * * ** ***

AABB ** *

Note. *** Indicates significance at the p < :001 level; ** Indicates significance at the p < :01

level; * Indicates significance at the p < :05 level.
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cant relatively late in training. These results are consistent with the hypoth-

esis of early rule use and later exemplar use.

4.3. Experiment 3 results

Twenty-seven subjects with error rates greater than 25% on the last four

blocks were removed from analyses; 57.5% of those subjects did not perform

greater than chance during those blocks.

4.3.1. Average transfer data

Average probabilities of categorizing each stimulus as a member of cate-

gory A as a function of the six transfer blocks are shown in the bottom row

of Fig. 6. In each block, significantly more errors were made classifying A5
and B1, and A4 and B2, which can be characterized as exceptions to rules

along dimensions 1 and 3, respectively [tð93Þ > 4:158]. The four critical

transfer items, T2, T4, T5, and T7, showed little change over learning and

did not significantly differ from a .5 probability by a z test at any point in

training. Evidence for learning was established by a decrease in errors over

blocks; a within-subjects ANOVA revealed a significant effect of block

[F ð5; 465Þ ¼ 54:59, MSe ¼ :017] and a significant linear contrast on blocks

[F ð1; 93Þ ¼ 182:87, MSe ¼ :024].

4.3.2. Distributions of generalization patterns

The top row of Fig. 6 displays the distributions of generalization pat-

terns observed in the six transfer blocks using generalizations com-

posed of critical transfer items T2, T4, T5, and T7. Early in learning,

we saw evidence for rule use by the relative prominence of generalizations

AABB and BBAA. Later in learning, we saw evidence for exemplar use

by the relative prominence of generalizations ABBA and BAAB. As an
additional summary, we tallied the proportion of rule generalizations as

the proportion of AABB and BBAA generalizations and those differing

by one response, and tallied the proportion of exemplar generaliza-

tions as the proportion of ABBA and BAAB generalizations and those

differing by one response. The right panel of Fig. 5 displays the propor-

tion of rule-based and exemplar-based generalizations as a function of

training. The figure shows clear evidence of early rule use and later exem-

plar use.
Because we observed .5 categorization probabilities for all four critical

transfer items, we next conducted a v2 test of the hypothesis that that all six-

teen possible generalization patterns were observed with equal likelihood.

Confirming the impressions obtained from visually examining Fig. 6, we

found that within each transfer block, the observed distribution of general-

ization patterns was significantly different from a null distribution in which

all patterns were equally likely [v2ð15Þ > 42:845].
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Fig. 6. The top row shows distributions of generalization patterns and the bottom row shows average categorization probabilities P ðAÞ for training and

transfer items after 4 (TB4), 8 (TB8), 12 (TB12), 16 (TB16), 24 (TB24), and 32 (TB32) blocks of training in Experiment 3. For the distributions, white bars

highlight the two prominent rule-based generalization patterns and hatched bars highlight the two prominent exemplar-based generalization patterns. For

the average categorization probabilities, hatched bars are training items, white bars are critical transfer items, and gray bars are noncritical transfer items.
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We next tested whether any generalizations were observed with probabil-

ities significantly greater than expected from the average transfer probabil-
ities. With the bootstrapping procedure, we found that four of the sixteen

generalizations were observed significantly more frequently than expected

from the transfer data at some point in training, as shown in Table 6.

The proportion of rule generalizations was significant relatively early in

training. The proportion of exemplar generalizations was significant rela-

tively late in training, consistent with the hypothesis of early rule use and

later exemplar use.

4.4. Discussion

Experiment 1 found evidence for a gradual emergence of exemplar-based

representations through the growth of the predicted exemplar-based gener-

alization pattern, but that experiment did not find evidence for a de-empha-

sis of rule-based generalizations with training. By contrast, the category

structures used in Experiments 2 and 3 were specifically designed to contrast

the predictions of models assuming rule-based representations and models
assuming exemplar-based representations. Systematic analyses of the evolu-

tion of the distributions of generalization patterns obtained in both experi-

ments revealed a prominence of rule-based generalizations early in training

and a shift to a prominence of exemplar-based generalizations later in train-

ing, consistent with our a priori hypotheses.

5. Theoretical modeling

The results from these experiments suggest a shift from rules to exemplars

as a function of experience. That said, it may be imprudent to base these

broad conclusions on just a cursory examination of patterns of observed

data. It is well known that complex nonlinear models, such as the frame-

work used in the forthcoming theoretical modeling, can produce nonintu-

Table 6

Generalization patterns that were observed significantly more frequently than expected from the

observed average transfer probabilities in Experiment 3 (see text for details)

Pattern TB4 TB8 TB12 TB16 TB24 TB32

(4) (8) (12) (16) (24) (32)

BBAA ** ** ** *

BAAB * *** *** ***

ABBA * *** *** ***

AABB *** ** **

Note. *** Indicates significance at the p < :001 level; ** indicates significance at the p < :01

level; * indicates significance at the p < :05 level.

M.K. Johansen, T.J. Palmeri / Cognitive Psychology 45 (2002) 482–553 509



itive predictions. As stated by Hintzman (1990, pp. 110–111), formal models

‘‘force the theorist to be explicit, so that assumptions are publicly accessible

and the reliability of derivations can be confirmed. . . Surprises are likely

when the model has properties that are inherently difficult to understand,

such as variability, parallelism, and nonlinearity—all, undoubtedly, proper-
ties of the brain.’’ So, although our results seem to suggest a shift from rules

to exemplars, it could be the case that a model that assumes a single cate-

gory representation throughout the entire course of category learning could

account for the full spectrum of our observed results. So, the following the-

oretical analyses formulate rule-based, prototype-based, and exemplar-

based representational assumptions within the same general theoretical

framework.

There are a variety of approaches to using formal modeling to under-
stand categorization behavior. Common to all approaches is instantiating

hypothetical psychological processes involved in representing category in-

formation, retrieving category information, and making decisions within a

computational or mathematical formalism. One approach to employing for-

mal modeling is aimed at developing a new model to account for some novel

set of psychological phenomena, testing that model at accounting for the ob-

served findings, and perhaps contrasting that model with existing models.

Another related approach is to select a number of existing formal models
and to compare them on their ability (or inability) to account for a set of

empirical data. One potential shortcoming of both of these approaches is

that various models may differ on a number of critical assumptions and it

may be difficult to decide just on the basis of fits to data which of these fun-

damental assumptions underlies the adequacy (or inadequacy) of a particu-

lar model. For example, models may differ in their representational

assumptions (say exemplar storage versus decision boundaries) but may also

make different assumption regarding the form of the decisions process (say
probabilistic versus deterministic); success (or failure) of particular models

may be attributed to representations but they could just as well be attributed

to the form of the decision rule (e.g., see Maddox & Ashby, 1998; Nosofsky,

1998a,b).

The modeling described here aims to provide converging tests of hypoth-

eses regarding representational shifts during category learning and to com-

pare the results of those tests with our empirical analyses. Toward this end,

we required a modeling framework with formal mechanisms that allowed
for category learning and that allowed for different types of category repre-

sentation to be instantiated within the same general architecture. Numerous

models of category learning have recently been proposed. A non-exhaustive,

but representative list includes Nosofsky et al.�s (1994) rule-plus-exception

model (RULEX), Anderson�s (1990) rational model, Erickson and Kru-

schke�s (1998) attention to rules and instances model (ATRIUM), Love

et al.�s (in press) SUSTAIN model of category learning, Vandierendonck�s
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(1995) parallel rule activation and synthesis model (PRAS), and Ashby et

al.�s (1998) competition between verbal and implicit systems model

(COVIS). Although each of these models has been successful in accounting

for particular empirical results, they each tend to be quite committed to a

specific, perhaps mixed, form of category representation. Because our pur-
pose was not to develop yet another model of category learning whose per-

formance could be compared and contrasted with other models, we required

a theoretical framework in which we could compare the predictions of pro-

totype, rule, and exemplar representations while keeping all other aspects of

the models as identical as possible.

We believe that Kruschke�s (1992) ALCOVE model may provide an ideal

framework for our purposes. Arguably, ALCOVE (Kruschke, 1992) has

been subjected to some of the most rigorous tests and has proved capable
of accounting for a variety of categorization phenomena (e.g., Nosofsky

& Kruschke, 1992). ALCOVE is a connectionist category learning model

that formally instantiates key assumptions of a successful exemplar model

of categorization, the generalized context model (Nosofsky, 1984, 1986).

However, as will be outlined below, the ALCOVE architecture is flexible

in that prototypes or rules can be substituted for the exemplars without

changing most other aspects of the model. The ALCOVE architecture thus

provides a framework for testing representational assumptions (prototypes,
rules, or exemplars) while keeping all other aspects of the learning process

and the decision process identical across different models. Our aim, then,

is not to test ALCOVE per se, but to use the ALCOVE architecture as a

means of providing formal tests of our hypotheses regarding category rep-

resentations.

5.1. The ALCOVE architecture

ALCOVE is a three-layered feedforward connectionist network in which

activation is passed from a stimulus input layer with a node for each psycho-

logical dimension, which is gated by a selective attention weight, to a repre-

sentational hidden layer, and on to a category output layer via association

weights. Category learning in the model involves adjusting both the selective

attention weights on each dimension and the association weights between

hidden layer representational nodes and category output nodes through

the process of gradient descent on error.
In its traditional form, ALCOVE represents categories in terms of

stored exemplars in the representational hidden layer. The exemplar nodes

are activated based on their similarity to the input stimulus presented

along the attentionally weighted psychological dimensions. A version of

ALCOVE using prototype representations can be created by simply replac-

ing the exemplar nodes with a single prototype node for each category.

Likewise, a version of ALCOVE using simple single-dimension rules can
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be created by forcing the model to attend to only a single dimension, but

to allow different simulated subjects to attend to different dimensions.

Hence exemplar, prototype, and rule models within the general ALCOVE

architecture can be created that use the same stimulus input representa-

tions, the same category response mechanisms, and the same learning
mechanisms.

In our simulations, the stimulus input layer consisted of four binary-val-

ued dimension nodes, with a given input node i denoted by aini ; a stimulus is

represented as a vector of activations across those inputs. For the standard

exemplar version of ALCOVE, each hidden node corresponds to an exem-

plar. A particular hidden exemplar node (ahidj ) is activated according to its

similarity to the input stimulus, where similarity is computed as in the gen-

eralized context model (Nosofsky, 1984). Similarity between a presented
item and a stored exemplar is inversely related to the psychological distance

between them. For separable-dimension stimuli, the activation of exemplar

node ahidj is given by

ahidj ¼ exp

"
� c

X
in i

aijhji � aini j
#
; ð1Þ

where aini is the value of the input stimulus along dimension i, hji is the value
of the hidden exemplar along dimension i, ai is the attention to dimension i,

and c is a similarity scaling parameter. When optimally allocated, the se-

lective attention weights tend to emphasize differences along diagnostic di-

mensions and de-emphasize differences along nondiagnostic dimensions

(Nosofsky, 1984, 1998a,b). Because the present experiments used binary-
valued dimensions, the above equation can be simplified to

ahidj ¼ exp

"
� c

X
in i

aiDji

#
; ð2Þ

where Dji equals 0 if input stimulus and exemplar j match on dimension i

and equals 1 if they mismatch.

ALCOVE learns to associate exemplars with category outputs. The acti-

vation of category output node k, aoutk , is given by

aoutk ¼
X
hid j

wkjahidj ; ð3Þ

where wkj is the learned association weight between exemplar j and output

node k. The probability of categorizing the input stimulus as a member of

category K is given by

P ðKÞ ¼ expðuaoutK ÞP
out k expðuaoutK Þ ; ð4Þ

where u is a response mapping parameter.
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Both attention weights (ai) and association weights (wkj) are learned by

gradient descent on error (see Kruschke, 1992). A parameter ka is the learn-

ing rate for attention weights. We employed attention weight normalization

in which the sum of the weights was constrained to sum to 1 (see Nosofsky

& Johansen, 2000). A parameter kw is the learning rate for association
weights. Following Kruschke (1992), so-called humble teachers were used

in that the teaching signal, tk, was set to the maximum of +1 and aoutk for

the correct category and was set equal to the minimum of �1 and aoutk for

the incorrect category. Over the course of learning, the association weights

tend to represent the degree to which each exemplar is associated with each

category. Over the course of learning, the attention weights tend to reflect an

optimal allocation of dimensional attention, which has the effect of stretch-

ing the psychological space along diagnostic dimensions and shrinking it
along nondiagnostic ones. In the simulations, attention learning and associ-

ate weight learning only took place during the learning blocks in which cor-

rective feedback was provided on every trial with no learning allowed during

the transfer blocks.

To create a prototype model within the ALCOVE architecture, the exem-

plar nodes in the hidden layer were replaced with just two prototype nodes,

one for each of the two learned categories. The positions of each prototype

in psychological space corresponded to the central tendencies of the two cat-
egories. In each of our three experiments, these two prototypes were 1 1 1 1

and 2 2 2 2 (versions of the prototype model in which we allowed the loca-

tion of the prototypes to be learned did not result in qualitatively different

predictions). Activation of a prototype node in the hidden layer was calcu-

lated the same way as the activation of an exemplar node in the hidden layer

of the exemplar version of ALCOVE. We should emphasize that the use of

such a multiplicative similarity function is not the only way to formulate a

prototype model. Indeed, others have suggested an additive similarity func-
tion instead (e.g., Medin & Schaffer, 1978; Smith & Minda, 1998). We chose

the multiplicative version because it has provided a superior account of

some recent categorization data (Minda & Smith, 2000).

There may be several ways of instantiating a rule model in the ALCOVE

architecture. We chose a simple approach which was surprisingly effective in

accounting for some of the empirical data, a criteria we deemed sufficient

for our goal of evaluating potential rule-use early in learning. This simple

rule model started with the original version of ALCOVE. A rule along di-
mension N was achieved by fixing the selective attention weight on dimen-

sion N (aN ) to 1 and fixing all of the other attention weights to 0; no

conjunctive, disjunctive, or more complex rules were investigated (see Choi

et al., 1993). Like RULEX (Nosofsky et al., 1994), different simulated sub-

jects were assumed to form rules along different dimensions. We did not at-

tempt to directly incorporate any specific rule-learning mechanism into the

model. Instead, we assumed that the number of simulated subjects who
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formed rules along a given dimension was proportional to the relative diag-

nosticity of that dimension; specifically, the number of subjects forming a

rule along a dimension was proportional to the correlation between the fea-

ture value along that dimension and the correct category label across all

stimuli from both categories. Essentially, the number of simulated subjects
using a rule along a dimension was roughly proportional to how accurately

the categories could be learned by just forming a simple rule along that

dimension.

5.2. Details of the modeling procedures

In the various versions of ALCOVE, four parameters were allowed to

freely vary: The scaling parameter, c, the response mapping parameter, u,
the attention learning rate, ka, and the association weight learning rate,

kw; because the rule version of ALCOVE had fixed attention weights, the at-

tention learning rate parameter was not used. A standard hill-climbing pa-

rameter fitting procedure was used to adjust these four parameters so as to

maximize the fits of the models to the entire set of observed data.

Because we were simultaneously fitting both the average transfer data

and the distributions of generalization patterns, we needed to use a fit sta-

tistic that combined fits to both subsets of the observed data. The average
transfer data and the distributions of generalizations have different numbers

of data points (e.g., in Experiment 1, there were 16 transfer probabilities but

there were 128 generalizations probabilities in each block) and the variances

of these two subsets of data were also different, so simply combining the two

subsets directly (e.g., in Experiment 1, fitting 864 undifferentiated data

points) was not acceptable for our purposes; for example, simply calculating

the root mean squared error (RMSE) combined across the two subsets of

data may cause the fits to one subset of data to dominate the overall fits
at the expense of the fits to the other subset of data. There are numerous

ways of combining the fits across both subsets of data. We chose the follow-

ing procedure: For a given set of parameters at some point in the hill-climb-

ing procedure, we calculated the percentage of variance accounted for by the

predicted average transfer data and the percentage of variance accounted

for by the predicted distributions of generalization patterns for each of

the six transfer blocks individually. These twelve summary fits were then

added together to yield an omnibus measure of the overall fit of the model
to the entire set of observed data. This method of combining the individual

fits puts equal weight on the fits to the average transfer data and the fits to

the distributions and equally weights the fits for each transfer block as well.

One important reason for simultaneously fitting both the average data and

the distributions is that the model must be able to account for the average

categorization probabilities for the training stimuli, which are not included

in the generalization patterns tallied in the distributions.
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The hill-climbing procedure adjusted the four parameters incrementally

to find the maximum value of this derived omnibus measure of fit. For all

of the model fits, we began the hill-climbing procedure at several different

initial values of the parameters so as to decrease the possibility of settling

upon a local maxima. In Experiments 1 and 3, the four-parameter prototype
and exemplar models, and the three-parameter rule model, needed to ac-

count for 6� 16 transfer probabilities and 6� 128 generalization propor-

tions, or a total of 864 data points. In Experiment 2, the models needed

to account for 6� 16 transfer probabilities and 6� 64 generalization pro-

portions, or a total of 480 data points.

Like many category learning models (e.g., Anderson, 1990; Nosofsky

et al., 1994), and presumably like human subjects, ALCOVE is sensitive

to the particular sequence of training items. At each point in the hill-climb-
ing search procedure, a set of parameters was used to generate predictions

from 800 simulated subjects, each of which was provided a different ran-

domized sequence of training items (like the actual subjects in our experi-

ments). Model predictions were generated by averaging across these 800

simulated subjects. Unlike human subjects, who produce discrete category

responses, each simulated ALCOVE subject generates a set of continuous

categorization response probabilities. To generate the predicted average

transfer data, the predicted transfer probabilities were simply averaged
across all 800 simulated subjects. To generate the predicted distribution of

generalization patterns, we first needed to generate a distribution of gener-

alization patterns from the predicted transfer probabilities from each indi-

vidual simulated subject. The predicted distribution of generalization

patterns from a single simulated subject was computed from the average

probability vector predicted by the model. Let p1 denote the probability that

transfer item T1 is classified into category A, then the proportion p1 of the
generalization patterns had an A in their first position and the proportion
1� p1 of the generalization patterns had a B in their first position; for exam-

ple, the predicted probability for generalization AAABBBB would be

p1 � p2 � p3 � ð1� p4Þ � ð1� p5Þ � ð1� p6Þ � ð1� p7Þ (see Nosofsky et al.,

1994). We then averaged the individual predicted distributions of generaliza-

tion patterns across all 800 simulated subjects to generate an overall pre-

dicted distribution of generalization patterns that we compared with the

observed data.

5.3. Theoretical modeling results

Using the procedure described above, we fitted the exemplar, prototype,

and rule versions of ALCOVE to the average transfer data and the distribu-

tions of generalization patterns from each of the three experiments. We will

begin by describing the fits of the models to the transfer blocks of each ex-

periment. Then we will describe the fits of a shift model that instantiates
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shifts from single-dimension rules to exemplar retrieval within a single

framework.

5.3.1. Theoretical accounts of Experiment 1

The best-fitting parameters for the exemplar, prototype, and rule models
for fits to data from Experiment 1 are shown in Table 7. The predicted av-

erage transfer probabilities and the predicted distributions of generalization

patterns for the three models in each of the six transfer blocks are shown in

Figs. 7 and 8, respectively. The summary fit statistics of the models in terms

of percent of variance accounted for by the predicted transfer data and the

predicted distributions as a function of transfer block are shown in the left

and right panels of Fig. 9, respectively.

As shown in Fig. 9, the rule model provided a good quantitative account
of the data from the first two transfer blocks, accounting for over 90% of the

variance in the average transfer data and about 70% of the variance in the

distributions of generalizations. In these early blocks, the rule model per-

formed at least as well as the other two models in accounting for the average

transfer data and much better than the other models in accounting for the

Table 7

Best-fitting parameters for the exemplar, prototype, rule, and shift model

Parameter Exemplar Prototype Rule Shift

Experiment 1

c 17.858 3.367 39.000 7.020

kw .290 .335 .059 .056

ka 1.033 .040 — .201

u 1.410 1.005 1.510 2.995

j0 1.859

q .142

Experiment 2

c 18.734 1.108 40.000 20.734

kw .170 .033 .027 .170

ka .875 2.342 — .675

u 1.920 9.028 1.388 2.535

j0 .800

q .138

Experiment 3

c 9.989 11.804 35.000 16.033

kw .476 .688 .053 .125

ka .290 .966 — .125

u 2.420 3.289 1.488 3.084

j0 1.075

q .032

Note. c¼ sensitivity parameter, kw ¼ association weight learning rate, ka ¼ attention weight

learning rate, u¼ response mapping parameter, j0 ¼ initial attention weight reallocation pa-

rameter, q¼ annealing rate for j.
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Fig. 7. Predicted average transfer probabilities from Experiment 1. Each column contains predicted transfer probabilities after 2, 4, 8, 16, 24, and 32

blocks of training. The four rows display the predicted probabilities for the exemplar, prototype, rule, and shift models. Hatched bars are training items,

white bars are critical transfer items, and gray bars are noncritical transfer items.
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Fig. 8. Predicted distributions of generalization patterns from Experiment 1. The generalization

patterns within each distribution are ordered the same as those shown in Fig. 2, so refer to that

figure for generalization pattern labels. Each column contains predicted distributions as a func-

tion of transfer after 2, 4, 8, 16, 24, and 32 blocks of training. The four rows display the pre-

dicted distributions of generalization patterns for the exemplar, prototype, rule, and shift

models, respectively.
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distribution data. As can be seen in Fig. 8, the rule model accounted for the

two rule-based generalization peaks that were observed in this experiment

early in training. However, in the later transfer blocks, the performance

of the rule model declined rapidly; by the final transfer block, the rule model

accounted for 64% of the variance in the average transfer data and only 19%
of the variance in the distributions of generalization patterns. Not surpris-

ingly, as can be seen in Fig. 8, the rule model completely failed to account

for the prominent exemplar-based generalization peak later in learning.

Consistent with our a priori hypotheses, the rule model provided a good ac-

count of the data early in training but provided a very poor account of the

data later in training.

Mirroring the theoretical results for the rule model, the exemplar model

performed poorly in the first three transfer blocks, accounting for only 69%
of the transfer data and only 44% of the distribution of generalizations in

the first transfer block. As can be seen in Fig. 8, the exemplar model com-

pletely failed to account for the prominent rule-based generalizations early

in learning. However, in the last three transfer blocks, the exemplar model

accounted for over 95% of the variance in the average transfer data and over

85% of the variance in the distributions of generalization patterns. As can be

Fig. 9. Percent of variance accounted for in fitting the categorization transfer probabilities (left

panel) and distributions of generalization patterns (right panel) as a function of transfer block

for the prototype, rule, exemplar, and shift model in Experiment 1.
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seen in Fig. 8, the exemplar model nicely accounted for the gradually in-

creasing prominence of the exemplar-based generalization pattern as a func-

tion of learning. So, the performance of the exemplar model can be

characterized as nearly opposite to that of the rule model; the exemplar

model did a poor job of accounting for the observed data from the early
transfer blocks but did an excellent job of accounting for the observed data

from the later transfer blocks, again consistent with our a priori hypotheses.

Finally, for comparison, the performance of the prototype model was in-

termediate to that of the exemplar and rule models. The prototype model

performed almost as well as the rule model in the first two transfer blocks

in terms of accounting for the average transfer data, but it performed con-

siderably worse than the simple rule model in accounting for the distribu-

tions of generalization patterns. As can be seen in Fig. 8, the prototype
model was unable to account for the qualitative trends in the distributions

of generalization patterns early in learning. In the later transfer blocks,

the performance of the prototype model improved considerably, as shown

in Fig. 9. Although the prototype model was able to qualitatively account

for the distributions of generalization patterns, predicting the growing peak

‘‘exemplar-based’’ generalization pattern ABBBA, the overall quantitative

fits to both the transfer data and the distributions were considerably worse

than that of the exemplar model.

5.3.2. Theoretical accounts of Experiments 2 and 3

The results from the modeling of Experiments 2 and 3 converged with

those of Experiment 1, so we combined the theoretical modeling of these

two experiments into a single section. The best-fitting parameter values

for the exemplar, prototype, and rule models for fits to all six transfer blocks

in Experiments 2 and 3 are shown in Table 7. For Experiments 2 and 3, the

predicted average transfer data for the three models are shown in Figs. 10
and 13, respectively, and the predicted distributions of generalization pat-

terns are shown in Figs. 11 and 14, respectively. The summary fit statistics

for the predicted average transfer data and for the distributions of general-

ization patterns as a function of transfer block are shown in Figs. 12 and 15,

respectively.

For both experiments, the simple rule model provided a better account of

both the average transfer data and the distributions of generalization pat-

terns early in category learning than either the exemplar model or the pro-
totype model. As shown in Figs. 11 and 14, the rule model successfully

accounted for the prominent rule-based generalization patterns in the initial

transfer blocks. However, as shown in Figs. 12 and 15, the fits of the rule

model to the data from both experiments dropped precipitously in later

transfer blocks, accounting for only around 10% of the variance in the dis-

tributions of generalization patterns by the last transfer block in both exper-

iments. Not surprisingly, the rule model was completely unable to

520 M.K. Johansen, T.J. Palmeri / Cognitive Psychology 45 (2002) 482–553



Fig. 10. Predicted average transfer probabilities from Experiment 2. Each column contains predicted transfer probabilities after 4, 6, 8, 12, 16, and 32

blocks of training. The four rows display the predicted probabilities for the exemplar, prototype, rule, and shift models. Hatched bars are training items,

white bars are critical transfer items, and gray bars are noncritical transfer items.
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Fig. 11. Predicted distributions of generalization patterns from Experiment 2. The generaliza-

tion patterns within each distribution are ordered the same as those shown in Fig. 4, so refer to

that figure for generalization pattern labels. Each column contains predicted distributions as a

function of transfer after 4, 6, 8, 12, 16, and 32 blocks of training. The four rows display the

predicted distributions of generalization patterns for the exemplar, prototype, rule, and shift

models, respectively.
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qualitatively account for the distributions of generalization patterns and

also provided a very poor account of the average transfer data as well.

As in Experiment 1, the exemplar model provided a poor fit to data ob-

served in the early transfer blocks compared to the rule model. Although the

exemplar model did predict the rule generalizations to be somewhat prom-

inent early in learning, the exemplar model systematically underpredicted

the magnitude of these rule generalizations and somewhat overpredicted

the magnitude of the exemplar generalizations for both experiments. For
Experiment 3, even though the exemplar model provided a reasonable qual-

itative account of the distributions of generalizations observed in the early

transfer blocks, it provided a very poor account of the average transfer data

in the first transfer block of that experiment. By contrast, the exemplar mod-

el provided a very good account of both the average transfer data and the

distributions of generalizations in the final three transfer blocks. As can

be seen in Figs. 11 and 14, the exemplar model successfully accounted for

the growing exemplar-based generalization peaks observed in both experi-
ments. As we observed in the theoretical fits to Experiment 1, in fits to both

Experiments 2 and 3, the exemplar model provided a relatively poor account

of the data early in learning but provided a very good account of the data

later in learning, consistent with our hypotheses.

Fig. 12. Percent of variance accounted for in fitting the categorization transfer probabilities

(left panel) and distributions of generalization patterns (right panel) as a function of transfer

block for the prototype, rule, exemplar, and shift model in Experiment 2.
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Fig. 13. Predicted average transfer probabilities from Experiment 3. Each column contains predicted transfer probabilities after 4, 8, 12, 16, 24, and 32

blocks of training. The four rows display the predicted probabilities for the exemplar, prototype, rule, and shift models. Hatched bars are training items,

white bars are critical transfer items, and gray bars are noncritical transfer items.
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Fig. 14. Predicted distributions of generalization patterns from Experiment 3. The generaliza-

tion patterns within each distribution are ordered the same as those shown in Fig. 6, so refer to

that figure for generalization pattern labels. Each column contains observed and predicted dis-

tributions as a function of transfer after 4, 8, 12, 16, 24, and 32 blocks of training. The four rows

display the predicted distributions of generalization patterns for the exemplar, prototype, rule,

and shift models, respectively.
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By contrast, the prototype model provided a relatively poor account

compared to the rule model early in training and the exemplar model later

in training. For both experiments, the prototype model systematically un-

derpredicted the prominence of the rule-based generalization patterns early

in learning. More problematic was that the prototype model could not ac-

count for the qualitative trends in the observed distributions of generaliza-

tion patterns later in learning. For both experiments, the prototype model

did not predict the so-called exemplar-based generalization patterns to be-
come most prominent, but instead predicted the rule-based generalization

patterns to remain prominent throughout learning. This poor performance

of the prototype model for the data from experiment 3 was not improved by

just fitting the model to the distributions of generalization patterns. Hence,

even a prototype plus exemplar memorization model of the sort put forth by

Smith and Minda (1998) would have difficulty accounting for our observed

data since generalization to new items in their model is based solely on sim-

ilarity to the category prototypes.

5.3.3. Theoretical accounts of individual transfer blocks

In the above theoretical modeling, we required each of the three models

to attempt to account for the observed data throughout the entire course of

Fig. 15. Percent of variance accounted for in fitting the categorization transfer probabilities

(left panel) and distributions of generalization patterns (right panel) as a function of transfer

block for the prototype, rule, exemplar, and shift model in Experiment 3.
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category learning; in no case did any of the three models perform well

throughout learning. Since we are testing the possibility that category repre-

sentations may shift during learning, it seemed prudent to test the three

models on their ability (or inability) to account for data from individual

transfer blocks. Perhaps the poor performance of some of the models, most
notably the prototype model, was a result of forcing the models to account

for the full course of category learning instead of just that portion of cate-

gory learning where that particular representational model may indeed

dominate performance.

The prototype, rule, and exemplar versions of ALCOVE were individu-

ally fitted to just the first, the third, and the sixth transfer blocks of each ex-

periment; the parameters of the models were allowed to vary freely in the fits

to each block. The quality of the fits to the average transfer data and distri-
butions of generalization patterns as a function of transfer block in each of

the three experiments are shown in Fig. 16. Overall, the trends in these fits to

individual transfer blocks were similar to the fits to the entire dataset. By the

final block, the exemplar model provided a far better fit than the prototype

or rule model; the advantage of the exemplar model over the prototype

model was largely of a quantitative nature in Experiments 1 and 2, but

the prototype model provided a poor qualitative and quantitative account

of Experiment 3. The fit of the rule model was very good for the early trans-
fer blocks and very poor for the later transfer blocks. The most notable dif-

ference between the individual-block fits and the overall fits is that the three

models provided very similar qualitative and quantitative accounts of the

first transfer block. This perhaps surprising result can easily be explained

by examining the distribution of selective attention weights for individual

simulated subjects within the exemplar and prototype frameworks—essen-

tially, these two models were behaving very much like our simple rule model

in that most of the learned selective attention was placed along a single di-
mension, with different simulated subjects maximally attending to different

dimensions. To summarize, the model fits to individual transfer blocks from

the three experiments provided further converging evidence for the use of

simple single-dimension rules early in category learning and for the retrieval

of exemplars later in category learning.

5.3.4. A representational shift model

Our results are consistent with the hypothesis that there is a representa-
tional shift in category learning from rules to exemplars. In the theoretical

modeling described thus far, the rule model and the exemplar model were

both instantiated within a common ALCOVE framework. Building on this

previous theoretical modeling, in this section, we attempted to instantiate a

simple representational shift model within the ALCOVE framework and

test whether such a model could account for the entire set of observed data

from the three experiments.
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There may be many ways of instantiating the hypothesized representa-
tional shifts within the ALCOVE framework. We chose a relatively simple

approach of instantiating a shift model by gradually relaxing a winner-

take-all allocation of dimensional attention over the course of training.

Fig. 16. Percent of variance accounted for in fitting the categorization transfer probabilities

(left panel) and distributions of generalization patterns (right panel) from the first, third, and

last transfer block for the prototype, rule, exemplar, and shift models in Experiments 1, 2,

and 3. In these fits, the models were separately fitted to each individual transfer block.
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Early in learning, most attention is reallocated to the dimension with the

greatest selective attention weight (forming something like a simple rule).

Later in learning, dimensional attention is allowed to spread across multiple

dimensions. As in the original ALCOVE model, dimensional selective atten-

tion weights were learned via gradient descent on error. In this representa-
tional shift model, attention weights were reallocated dynamically on every

trial in such a way that the dimension with the highest attention weight is

additionally allocated much of the attention that would have gone to the

other dimensions. Formally, the reallocated attention on dimension N, a�
N ,

is given by

a�
N ¼ aj

NP
m aj

m

; ð5Þ

where am is the original attention weight on dimension m, and j is an at-
tention weight reallocation parameter; the new reallocated attention

weights, a�
m, were then used in computing similarities in Eq. (1). Large values

of j cause most of the attention to be reallocated to the single dimension

with the most attention; with all of the attention allocated to a single di-

mension, the shift model reduces to the simple rule model we tested. Setting

j equal to 1 reduces the shift model to the original version of ALCOVE in

which attention was allowed to spread across multiple dimensions. The

initial value of the attention weight reallocation parameter, j0, was an ad-
ditional free parameter of the model.

On every learning trial, in addition to adjusting the attention weights and

the association weights, the attention weight reallocation parameter was in-

crementally annealed (e.g., Kruschke & Johansen, 1999) from its starting va-

lue j0 using the following schedule

jt ¼ j0 1

1þ qt
þ 1; ð6Þ

where jt is the value of the attention weight reallocation parameter on trial t

(the value of j on the first trial is j0 þ 1), and q is the annealing rate for that

parameter. This has the effect of gradually shifting representation from rule-

like when j is high to exemplar-like when j approaches one over training.

In fits to Experiments 1–3, the best-fitting parameter values for the shift
model are shown in Table 7; the predicted average transfer data are shown

in Figs. 7, 10, and 13; the predicted distributions of generalization patterns

are shown in Figs. 8, 11, and 14; the summary fit statistics are shown in Figs.

9, 12, and 15. As expected, the shift model combined the successes of the rule

model and the exemplar model. For each experiment, the shift model per-

formed as well as the rule model early in learning and performed as well

as the exemplar model later in learning. Examining the predicted distribu-

tions of generalizations for each experiment, we see that the shift model ac-
curately predicted the early rule generalizations, which were gradually
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replaced by exemplar generalizations later in learning. It should be empha-

sized that this simple model used the number of training trials as the sole

modulator of the shift from a single dimension to multiple dimensions; a

more realistic model might also use some internal criterion to modulate that

shift, such as categorization accuracy.

6. General discussion

For the general discussion, we will begin by summarizing the empirical

and theoretical results we have reported in this paper. We will then move

to a discussion of how to interpret our results with respect to the central

question regarding representational shifts in category learning. We provide
a discussion of the challenges of making claims about representation, refer-

ring to a body of literature suggesting different kinds of representation in

categorization and related domains of human cognition.

6.1. Summary

In three experiments, subjects learned to categorize stimuli with feed-

back. We tracked how our subjects generalized their category knowledge
by testing them on critical transfer items without feedback. Specifically,

we examined how each individual subject categorized each of the transfer

items to create a generalization pattern for that subject. Doing this for all

subjects, we created a distribution of generalization patterns and tracked

how the distributions evolved over learning. Summarizing across the three

experiments, we observed systematic shifts in the distributions of general-

ization patterns as a function of learning, with different prominent gener-

alizations appearing early in learning versus later in learning. The presence
of these shifts was almost entirely masked when average categorization

probabilities were examined rather than distributions of generalization pat-

terns.

Our empirical results revealed systematic changes in how subjects gener-

alized their category knowledge as a function of category learning. The first

challenge confronting us was how best to characterize the differences be-

tween early generalizations and later generalizations. For each of the cate-

gory structures subjects were trained on, two of the stimulus dimensions
were highly diagnostic in that a particular value along that dimension

tended to be associated with a single category; but these dimensions were

not perfectly diagnostic in that there was an ‘‘exception’’ stimulus in each

category. In all three experiments, the prominent generalizations observed

early in learning were those that followed one of these highly diagnostic di-

mensions. Specifically, for some subjects, if a transfer item had the value

along dimension one that was associated with category A then that item

530 M.K. Johansen, T.J. Palmeri / Cognitive Psychology 45 (2002) 482–553



was classified as a member of category A, otherwise it was classified as a

member of category B. For other subjects, if a transfer item had the value

along dimension three that was associated with category A then that item

was classified as a member of category A, otherwise it was classified as a

member of category B.
Our empirical observations were based on examining the prominent

generalizations in the distributions early in learning. But other generaliza-

tions were also observed and subjects also categorized training items as

well. To test whether this single-dimension generalization hypothesis could

account for the entire set of observed data, and not just the most prom-

inent generalizations, we fitted a simple model in which all attention was

allocated to a single dimension, with different simulated subjects attending

to different dimensions in proportion to their diagnosticity. This highly re-
stricted version of ALCOVE provided a surprisingly good account of the

early learning data, including both the distributions of generalization pat-

terns as well as the average categorization probabilities for all items. Thus,

both the direct examination of the prominent generalizations combined

with the model-based analysis provided strong evidence for single-dimen-

sion generalizations during the early stages of category learning. One rea-

son these results are important is that an alternative hypothesis has

recently been proposed that subjects initially may learn categories by
forming prototypes (Smith & Minda, 1998; Smith, Murray, & Minda,

1997). We found little evidence for early prototype abstraction in our

three experiments. Another reason why these results are important is that

they may bear on the issue of a rules to exemplars shift in the develop-

ment of automaticity in categorization, a point we will return to later

in this discussion.

A more challenging question is how to characterize the generalizations

observed later in learning. In all three experiments, the prominent gener-
alizations observed later in learning were clearly inconsistent with gener-

alization along a single diagnostic dimension. RULEX (Nosofsky et al.,

1994) assumes that subjects form simple, typically single-dimension, rules.

But these rules can be supplemented by the probabilistic storage of excep-

tions. Coupling rules and memory for exceptions, RULEX can predict a

wide variety of generalizations, not just those based on a single dimen-

sion. However, RULEX in no way predicts, a priori, any prominence

of the particular generalizations that we observed to be most prominent.
That is, although the prominent generalizations we observed at the end

of learning might be consistent with some particular hand-selected set

of rules and probabilistically stored exceptions, the process by which RU-

LEX learns rules and probabilistically stores exceptions does not predict

these particular selections of rules and exceptions to be any more likely

than many other possible selections of rules and exceptions. Thus, the

rule-plus-exception process formalized in RULEX does not provide a vi-
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able candidate for explaining the prominent generalizations we observed

at the end of learning.

We also considered the possibility that the prominent generalizations

might be consistent with prototype abstraction. Although the multiplica-

tive prototype model we investigated could qualitatively account for the
prominent generalizations observed in the first two experiments, it was un-

able to account for the prominent generalizations observed in the third ex-

periment. Thus, prototype abstraction also does not provide a viable

candidate for explaining the generalizations observed at the end of learning

either.

Instead, we argue that the prominent generalizations observed later in

learning are consistent with exemplar-based categorization. First, an exem-

plar model, ALCOVE, provided excellent accounts of both the distributions
of generalization patterns and the average categorization probabilities at

the end of learning, providing a far better account than the prototype

and rule models. However, one reasonable question emerging from this

model-based analysis is whether an exemplar model is simply a sophisti-

cated curve-fitting algorithm that can fit any pattern of data or whether it

can actually predict, in a priori manner, the prominence of particular gen-

eralizations over other ones. To address this, we systematically examined

the predictions of two exemplar models (see Appendix A), the context
model and ALCOVE, across a wide range of their possible parameters.

First, both exemplar models never predicted many of the possible general-

izations to ever be most prominent in their predicted distributions of gener-

alization patterns. Moreover, under conditions that maximized the accuracy

with which training items are classified into their respective categories, both

exemplar models predicted particular generalization patterns to be most

prominent. These were the same generalizations that we observed to be

most prominent by the end of learning in all three experiments. Although
these model-based analyses cannot unequivocally prove that generalizations

in the later stages of learning are based on exemplar retrieval, they are cer-

tainly consistent with the predictions of formalized exemplar models of cat-

egorization.

To summarize, across three experiments, we observed shifts in how sub-

jects generalized their learned category knowledge. Early in learning, sub-

jects appeared to generalize on the basis of single diagnostic dimensions.

Later in learning, subjects generalized on the basis of multiple dimensions
in a manner consistent with the use of exemplar-based category knowledge.

We believe our results provide strong evidence for shifts in the information

that is used to categorize stimuli as a function of learning. We will soon

turn to the more controversial issue of whether these results reveal some-

thing about shifts in the representations and processes used to categorize

stimuli as a function of learning: Is there a rules-to-exemplars shift in cat-

egory learning as suggested by some theories of the development of auto-
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maticity? But we first need to review some of the extant evidence for a dis-

tinction between rule-based and exemplar-based categorization more gen-

erally.

6.2. Rules and exemplars in categorization

The question of whether human cognition is rule-based or similarity-

based predates modern psychology and continues to be a topic of great in-

terest and debate. In a recent review of the empirical case for two systems of

human reasoning, Sloman (1996) contrasted one mode of cognition that

seems largely symbolic and logical, based on the use of abstract rules, with

one that is largely associative, of which exemplar-similarity is one possible

manifestation. To motivate the distinction between these two modes of cog-
nition, Sloman suggested that ‘‘sometimes conclusions simply appear at

some level of awareness, as if the mind goes off, does some work, and then

comes back with the result, and sometimes coming to a conclusion requires

doing the work oneself, making an effort to construct a chain of reasoning

. . .’’ (1996, p. 3). Intuitively, these different modes of cognition seem to char-

acterize different ways in which people categorize objects as well. Indeed,

one motivation for the present work was our own intuitions about how

we learned many perceptual categories ourselves. When first learning cate-
gories, we seemed to begin by testing hypotheses about various explicit rules

for categorizing items. As training continued, our subjective impression

changed to one of ‘‘knowing’’ which category an item belonged in without

needing to make recourse to those explicit rules. These impressions have

been confirmed by informal interviews we have conducted with subjects

across a variety of categorization paradigms over the years. Although these

intuitions may be useful for generating hypotheses regarding the various ba-

ses for human cognition, they constitute exceedingly weak evidence for the
existence of two different systems underlying human cognition. Indeed,

awareness itself may provide a fallible heuristic for telling apart rule-based

from similarity-based cognition (e.g., Shanks & St. Johns, 1994). Fortu-

nately, we can marshal some empirical and theoretical evidence for differ-

ences between presumably rule-based and similarity-based categorization.

In this section we will review some of this evidence across a variety of exper-

imental domains. We will then return to the specific issue of whether there

may be shifts from rule-based to exemplar-based categorization with expe-
rience.

6.2.1. Empirical evidence for rules versus exemplar similarity

One classic paradigm that was used to distinguish between apparent

rule-based categorization and similarly based categorization involved a

simple sorting task. In this task, three stimuli (A–C) vary along two sepa-

rable dimensions (e.g., color and size). Stimuli A and B match along one
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dimension but differ considerably along the other dimension, whereas stim-

uli B and C are similar along both dimensions but match along neither di-

mension. When asked which two stimuli ‘‘go together,’’ children sort B and

C together, presumably because they are perceptually more similar to one

another along both dimensions. By contrast, adults sort A and B together,
possibly because they are using an analytic rule based on dimensional iden-

tity, irrespective of overall similarly (e.g, Smith & Kemler, 1977). Adults

can be driven to sort based on overall similarity, rather than a dimensional

rule, by requiring fast responses or by providing a concurrent task load

(e.g., Smith, 1981; Smith & Kemler Nelson, 1984; Ward, 1983). One inter-

pretation of these results has been that sorting by similarity is the default

mode of processing that is overridden by a presumably slower and more

attention-demanding rule-based mode. Forcing rapid responses and pro-
viding a concurrent task have been claimed to disrupt this analytic mode

of sorting.

This bias by adults to sort on the basis of a single analytic dimension has

been further investigated using richer stimulus sets in other experimental

paradigms. Across a number of experiments, Ahn and Medin (1992) pro-

vided subjects with a large number of stimuli with discrete features that

could be sorted according to their family resemblance, creating clusters of

stimuli that differed somewhat from unseen prototype stimuli. Although this
similarity-based sorting was available to subjects, most instead sorted stim-

uli on the basis of a single diagnostic dimension, producing sorts that vio-

lated the family resemblance structure embedded within the stimulus set.

Regehr and Brooks (1995) followed up on these perhaps surprising results

using other stimuli and other sorting methods, showing that this bias to sort

on the basis of a single diagnostic dimension was quite resilient. Ashby et al.

(1999) further investigated this phenomena by presenting subjects with con-

tinuous-dimension stimuli sampled from two bivariate normal distributions.
Although the stimuli could be sorted into two clear clusters based on overall

similarity, subjects instead tended to sort on the basis of a single diagnostic

dimension. As with the Ahn and Medin (1992) results, the resulting sorts

fractured the similarity-based family resemblance structure embedded with-

in the stimulus set.

Together, these sorting studies suggest that people approach the task of

creating categories through unsupervised sorting by adopting an analytic,

perhaps rule-based, strategy of sorting on the basis of a single diagnostic di-
mension. Perhaps these results may help explain why subjects in our exper-

iments seem to approach the task of learning categories through explicit

supervision with corrective feedback through a similar analytic strategy of

searching for simple rules that can distinguish members of one category

from members of another category.

Further evidence for a distinction between apparent rule-based and exem-

plar-based categorization comes from a recent study by Waldron and Ashby
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(2001; but see Nosofsky & Kruschke, 2001).4 They had subjects learn cate-

gories either defined by a single-dimension rule or by family resemblance

along multiple dimensions. Subjects either learned categories under a con-

current task load (performing a concurrent numeric Stroop task) or under

no task load. The load manipulation had little effect on learning categories
defined by family resemblance but had a large effect on learning categories

defined by a simple rule. As suggested by some of the sorting results de-

scribed earlier, the hypothesis testing (or selective attention) required to

learn single-dimension, rule-based categories seems to require resources of

some sort that are tapped by this concurrent load manipulation.

Thomas (1998) also provided evidence for a distinction between rule-

based and similarity-based categorization using a feature prediction task.

She had subjects learn two categories with feedback that were defined by bi-
variate normal distributions. After learning, she presented subjects with

stimuli possessing just one dimension and asked them to predict the value

of the missing dimension. Some subjects were able to predict the missing di-

mension in a manner consistent with the underlying category distributions,

suggesting that they had learned the categories by remembering information

about the statistical properties of the category distributions (perhaps by

storing exemplars). Other subjects, while having also learned the categories,

could not predict the missing stimulus dimensions. Presumably, these sub-
jects had learned the categories by forming simple single-dimension rules,

without storing information about the individual category members, there-

by being unable to predict missing stimulus dimensions. Although these re-

sults do not show evidence for use of both rules and exemplars within an

individual, they do suggest that two different modes of categorizing objects,

by similarity or by rules, may exist, with some subjects showing a preference

for one learning mode over another.

Other studies have shown that when subjects are explicitly provided a
complex categorization rule, similarity to stored examples may still exert

considerable influence. Brooks and colleagues (Allen & Brooks, 1991; Reg-

ehr & Brooks, 1995) provided subjects with a complex multidimensional

rule for categorizing stimuli into one of two categories. After given experi-

ence applying this rule to training items, subjects were asked to classify

4 Ashby and colleagues (Ashby et al., 1998; Ashby & Waldron, 1999) have distinguished

between verbal (rule-based) and implicit (procedural-memory-based) category learning systems,

not rule-based and exemplar-based category learning systems. Although Ashby and colleagues

have dismissed exemplar models as viable candidates for the ‘‘implicit’’ category learning

system, the nonparametric procedural learning model proposed by Ashby and Waldron (1999)

is extremely similar to both a ‘‘covering map’’ version of ALCOVE (Kruschke, 1992) and the

rational model (Anderson, 1990, 2001). Both of these models are extremely similar to exemplar

models and are formally identical to exemplar models under certain conditions (see Nosofsky,

1991).
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transfer items without feedback. Brooks and colleagues observed that sub-

jects showed a sensitivity to similarity to observed examples that interacted

with how well those examples followed the categorization rule. Although

‘‘good’’ and ‘‘bad’’ transfer items followed the categorization rule equally

well, subjects were more likely and more rapid to classify the ‘‘good’’ exam-
ples as members of a category because they were more similar to the training

examples. Thus, even when subjects are supplied an explicit categorization

rule, similarity to examples exerts an influence. In a more realistic experi-

mental setting, Brooks, Norman, and Allen (1991) also showed that expert

dermatologists, who presumably could make recourse to complex rules for

categorizing various skin disorders, showed systematic influences of similar-

ity to previously viewed cases.

Finally, the distinction between rule-based and exemplar-based categori-
zation has played a central role in understanding the task of artificial gram-

mar learning. Originating in classic studies by Reber (1967, 1969), subjects

view letter strings created using a complex finite state grammar. The gram-

mar specifies the rules for initial letters and all subsequent letters of a string.

These grammars are complex and their rules cannot be easily verbalized. In

a typical experiment, subjects view a series of strings without being told that

they were generated by rules of any kind. Often they are simply told to re-

member the strings for a later memory test. After viewing the strings, sub-
jects are told that the strings were generated by a complex grammar and

are asked to discriminate new grammatical strings from ungrammatical

strings, which subjects can do better than chance. A central question in this

literature is whether subjects learn the strings by forming complex implicit

rules or by remembering exemplars (or exemplar fragments). The literature

surrounding this task is vast, and the issues surrounding it are controversial,

but the emerging picture is that people use both simple explicit rules and

similarity to exemplars (or exemplar fragments) to make their grammatical-
ity judgments (e.g., Johnstone & Shanks, 2001).

6.2.2. Neuropsychological evidence for rules versus exemplar similarity

There is also some emerging evidence for a distinction between rule-based

and exemplar-based categorization in studies testing neuropsychological pa-

tient populations and in studies using functional brain imaging. For exam-

ple, Smith, Tracy, and Murray (1993), compared depressed and

nondepressed individuals on two different category learning tasks. As in
the study by Waldron and Ashby (2001), described earlier, subjects either

learned categories that had a family resemblance structure or learned cate-

gories that were defined by a perfect single-dimension rule. Depressed sub-

jects were significantly impaired at learning categories defined by a simple

rule, but were not impaired at learning categories defined by family resem-

blance. Presumably, hypothesis-testing strategies required to learn rule-de-

fined categories were selectively impaired by the biochemical, structural,
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or strategic changes underlying depression, which may include changes in

the operation of prefrontal working memory areas. Some further evidence

for this conjecture is that depressed individuals also show deficits on the

Wisconsin Card Sorting task (e.g., Franke et al., 1993), a test that requires

verbal rule following and rule switching.
Parkinson�s disease appears to lead to the impaired functioning of the ba-

sal ganglia, prefrontal cortex, and the anterior cingulate, all areas that may

be critical for rule-based categorization (see Ashby et al., 1998). Indeed, Par-

kinson�s patients are impaired at the Wisconsin Card Sorting task (Brown &

Marsden, 1988). Furthermore, Parkinson�s patients have also been shown to

be impaired at learning categories defined by probabilistic cues (Knowlton,

Mangels, & Squire, 1996). Although one interpretation of this deficit has

been one of impaired probabilistic learning, this task may also require hy-
pothesis testing in that the probabilistic cues that were used in the task var-

ied considerably in their individual diagnosticity (Flanery & Palmeri, 2001).

By contrast, Parkinson�s patients are not impaired at category learning tasks

that appear not to demand hypothesis testing, such as dot pattern categori-

zation and artificial grammar learning (Reber & Squire, 1999). Such neuro-

psychological studies suggest that there may be different brain areas critical

for analytic rule-based categorization and for more ‘‘implicit’’ exemplar-

based categorization, though they do not necessarily imply that rule-based
and exemplar-based systems are independent, nor that they even need to

be separate systems.

Some recent functional brain imaging studies have also suggested differ-

ences between rule-based and exemplar-based categorization. Smith et al.

(1998) provided subjects with complex categorization rules in an extension

of the Brooks paradigm described earlier (Allen & Brooks, 1991). They used

subjects� performance on critical transfer items to separate ‘‘rule-based’’ and

‘‘exemplar-based’’ categorizers; the ‘‘exemplar-based’’ categorizers were
those that showed more pronounced effects of similarly on categorization

of ‘‘good’’ transfer items in the Brooks paradigm. Using positron emission

tomography (PET), they localized a variety of brain areas that were signif-

icantly activated for the rule-based categorizers but not for the exemplar-

based categorizers. One of the prominent areas of activation was a parietal

lobe area thought to be involved in critical aspects of selective attention, a

process that may be more critical for explicit rule use than exemplar re-

trieval. In addition, areas of prefrontal cortex thought to be involved in
working memory were also active for rule-based categorizers.

Flanery and Palmeri (2001) used functional magnetic resonance imaging

(fMRI) to compare brain activity elicited by two classic categorization par-

adigms that have been used to test brain damaged individuals. Within a sin-

gle fMRI run, subjects categorized dot patterns with feedback (adapting the

paradigm originally used by Knowlton & Squire, 1993), they categorized

probabilistic cues with feedback (adapting the paradigm originally used
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by Knowlton et al., 1996) and were shown a series of appropriate controls

and baseline stimuli. In one experiment, all categories were learned within

the fMRI run, referred to as early learning trials. In another experiment,

all categories were prelearned prior to the fMRI run, referred to as later

learning trials. The results most relevant to the present discussion were
the presence of significant activation of both the anterior cingulate and

the caudate of the basal ganglia during the early learning trials of probabi-

listic cues, but not dot patterns. Again, recall that these are two of the crit-

ical brain areas that have been argued to play an important role in rule

abstraction and rule use during category learning (Ashby et al., 1998). Thus,

these fMRI results suggest that the deficits shown by Parkinson�s patients in
the probabilistic task may not necessarily emerge from the probabilistic na-

ture of the task, as argued by Knowlton et al. (1996), but rather because the
task may require hypothesis testing. This possibility is under exploration in

current brain imaging studies.

To summarize, results emerging from neuropsychological studies, includ-

ing patient studies and functional brain imaging studies, also suggest that

there may be differences between rule-based and exemplar-based categoriza-

tion. Although a typical interpretation of these neuropsychological results is

that these are functionally independent neural systems, we prefer the far

more conservative interpretation that they just indicate some kind of ana-
tomical distinction between the demands of apparently rule-based and ex-

emplar-based categorization tasks. Whether these are independent

systems, interacting systems, or a single system with dissociable components

is an issue that requires further investigation (Palmeri & Flanery, 2002), as

we will elaborate later.

6.2.3. Theoretical evidence for rules versus exemplar similarity

This brief review has highlighted some of the empirical differences be-
tween apparent rule-based and similarity-based categorization. But to truly

say that some aspect of categorization behavior is based on rules or based

on similarity to exemplars is a statement about particular kinds of mental

representation. However, neither behavior of normal subjects, nor behav-

ior of neuropsychological patients, nor patterns of brain activity can truly

reveal the contents of the mental representation of categories. Functional

brain imaging reveals where information may be processed in the human

brain, but cannot directly reveal how that information is represented nor
what processes act on that represented information. And observed behav-

ior is necessarily a combination of representations and the processes that

act upon those representations. No behavioral study can uniquely reveal

representation without process (see Barsalou, 1990). Indeed, Barsalou

has argued that on the basis of behavioral data alone ‘‘trying to determine

whether people use exemplars or abstracted representations is futile’’ (p.

62). That said, although patterns of behavior by themselves cannot be used
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to conclude whether people use rules or exemplars, we can test formal

mathematical and computational models that combine specific representa-

tions and processes on how well (or how poorly) they can account for ob-

served behavior. ‘‘Perhaps, the best empirical research can do is to test

particular models of each kind, not �rules� and �similarity� generally’’ (Hahn
& Chater, 1998, p. 199). ‘‘We can only conclude that particular models

(i.e., representation-process pairs) are either supported or rejected’’ (Barsa-

lou, 1990, p. 63).

Representations and processes underlying exemplar-based categorization

have been reasonably well specified. This paper has reviewed a series of re-

lated models based on relatively low-dimensional spatial representations

(e.g., Kruschke, 1992; Medin & Schaffer, 1978; Nosofsky, 1984); there are

also classes of exemplar models based on high-dimensional feature represen-
tations as well (e.g., Hintzman, 1986). Rule-based models constitute a far

broader class of potential theories, so we need to narrow the scope of pos-

sible candidates. Without specifying a clear operational definition for what

can count as a categorization rule, a ‘‘rule’’ could include just about any

method for categorizing items. Indeed, categorizing according to exemplar

similarity could be characterized by the following rather unrule-like rule:

‘‘put item i in category J if it is more similar to exemplars of category J than

it is to exemplars of any other category.’’ Therefore, in order to make the
distinction between rule-based and exemplar-based categorization at all

meaningful, we need to preclude such a broad, all-encompassing scope for

possible categorization rules (see Hahn & Chater, 1998; Nosofsky et al.,

1989; Sloman, 1996).

One simple operational definition of rule-based categorization is that the

rules are verbalizable, unlike exemplar-based and other more ‘‘implicit’’

modes of categorization (e.g., Ashby et al., 1998). The use of verbal rules

seems to characterize the explicit intuitions people have when first learning
categories. The functional imaging and neuropsychological studies de-

scribed above seem to implicate a variety of frontal brain areas involved

in verbal rule selection and rule switching (see Ashby et al., 1998; Waldron

& Ashby, 2001). Verbalization also emerges as one potential criterion for

rule-based reasoning more generally (e.g., Smith et al., 1992). Although ver-

balization is not directly instantiated within most formal models of rule-

based categorization, this verbalization criterion seems to have had an indi-

rect influence on how these models have been formalized. Rules, unlike ex-
emplars, are typically assumed to rely on just a limited number of stimulus

dimensions, perhaps because people can only verbalize limited combinations

of features/dimensions. For example, the original RULEX model (Nosofsky

et al., 1994) assumes that people begin category learning by testing various

single-dimension rules, but then attempt to learn conjunctive rules if single-

dimension rules fail. The continuous-dimension version of RULEX (Nosof-

sky & Palmeri, 1998) also emphasizes single-dimension rules. Rule modules
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in ATRIUM (Erickson & Kruschke, 1998) and COVIS (Ashby et al., 1998)

assume single-dimension rules as well. Specifically, a rule in ATRIUM and

COVIS is operationally defined as a boundary that is orthogonal to a single

psychological dimension (e.g., ‘‘large objects are A�s, and small objects are

B�s,’’ or ‘‘squares are A�s, and circles are B�s’’). Clearly, such unidimensional
rules can be verbalized, unlike the ‘‘rules’’ that may underlie exemplar-based

categorization.

Numerous architectures combining such rule-based and exemplar-based

representations have been proposed recently. Comparisons between many

of these various models have been more fully reported in other papers

(e.g., Ashby et al., 1998; Erickson & Kruschke, 1998; Nosofsky & Palmeri,

1998), so we will just briefly outline some of them here. At one extreme are

models that posit functionally independent rule-based and exemplar-based
systems that race to completion (e.g., Logan, 1988; Palmeri, 1997); exem-

plar-based representations gain strength with repeated exposure to cate-

gory exemplars and eventually win the race. Alternatively, rule-based

and exemplar-based modules may be functionally independent, but the

outputs of these systems may compete based on strength of evidence rather

than completion time (e.g., Ashby et al., 1998). Erickson and Kruschke

(1998) proposed a related architecture (ATRIUM) in which there are sep-

arate rule-based and exemplar-based modules that compete, but the exem-
plar information serves to gate the relative contribution of those individual

modules; in this way, the model learns whether rule-based or exemplar-

based information should be used to select the appropriate response for

a particular category instance. Finally, there have been architectures pro-

posed that combine rules, exemplars, and perhaps other representations

within a single representational system; these include the parallel rule acti-

vation and synthesis model (PRAS) of Vandierendonck (1995), the SUS-

TAIN model of Love et al. (in press), and the ACT-R framework of
Anderson and Betz (2001). Anderson and Betz specifically implemented

the exemplar-based EBRW model of Nosofsky and Palmeri (1997) and

the rule-based RULEX model of Nosofsky et al. (1994) within the ACT-

R framework. Following Nosofsky and Palmeri (1997), this implementa-

tion assumed that exemplar representations became stronger with repeated

experience with category instances and eventually dominated categoriza-

tion performance. Indeed, Anderson and Betz suggested that this ACT-R

implementation could account for the shifts from rules to exemplars that
we reported in this paper. Although the architectures of these mixed mod-

els vary considerably, the conclusions of the papers summarizing these

models each argue for mixed category representations combining rules

and exemplars rather than a single representational system (see, however,

Nosofsky & Johansen, 2000).

For most of these formal models, the distinction between ‘‘rules’’ and

‘‘exemplars’’ is probably best characterized as describing different contents
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of category knowledge rather than qualitatively different kinds of represen-

tational media. The models differ in their assumptions about where rule-

based and exemplar-based information is stored—distinct modules (e.g.,

ATRIUM and COVIS) or a single module (e.g., SUSTAIN, RULEX,

PRAS, and ACT-R)—but the representational medium for rules and for
exemplars are typically quite similar within any particular model. Gener-

ally, rules are more abstract than exemplars, and rules may require a stric-

ter matching criteria than exemplars (e.g., Hahn & Chater, 1998). For

example, RULEX (Nosofsky et al., 1994) assumes a combination of rules

and memory for exceptions. The notation 1 � �� ! A would indicate a sin-

gle-dimension rule, the notation 2 � �1 ! A would indicate a conjunctive

rule, and the notation 2 � 12 ! A would indicate a memorized exception

(where � matches any stimulus value). Although rules and memory for ex-
ceptions play a distinct conceptual role in RULEX, the primary difference

between them is their level of abstraction, not a fundamental difference in

their underlying representational medium. In the PRAS model (Van-

dierendonck, 1995), rules are rectangular regions in psychological space

whereas exemplars are individual points in psychological space. In the lim-

it, a very small rule region becomes formally indistinguishable from a point

exemplar representation, thus rules and exemplars differ quantitatively not

qualitatively. SUSTAIN (Love et al., in press) can form clusters based on
single dimensions (rules) or based on multiple dimensions (prototypes or

exemplars). Again the distinction is based on the number of dimensions

utilized in creating a category representation, not a fundamental difference

in how information is essentially represented. In the ACT-R framework of

Anderson and Betz (2001), rules in the RULEX module and exemplars in

the EBRW module are both represented as chunks within the same declar-

ative memory with various production rules deciding which module to ex-

ecute on a given categorization trial. As in RULEX, rules are one-
dimensional mappings from stimulus features to categories. As in EBRW,

exemplars are multidimensional mappings from stimulus representations to

categories. In COVIS, a verbal rule partitions psychological space with a

linear decision boundary orthogonal to a single psychological dimension.

Implicit categorizations permit partitions with decision boundaries that

can have any orientation in psychological space and can include nonlinear

boundaries. Thus ‘‘rules’’ and ‘‘implicit’’ representations differ quantita-

tively, not qualitatively. Similarly, when ATRIUM is applied to binary-
valued stimuli, such as we used in the present experiments, rules are

single-dimension abstractions whereas exemplars are multidimensional

representations. As described below, our distinction between rules and ex-

emplars similarly follows the approach used by other investigators: Rule-

based category representations are single-dimension abstractions and

exemplar-based category representations are multidimensional category

instances.
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6.3. Is there a rules to exemplars shift in categorization?

Rather than commit ourselves to a particular functional architecture of

competing, interacting, or mixed representations of rules and exemplars,

we instead chose to examine the use of single-dimension rules versus multidi-
mensional exemplars within a single system based on the well-known AL-

COVE model. In our theoretical modeling, we implemented rule-based

categorization in individual simulated subjects by forcing a version of the AL-

COVE model to selectively attend to a single psychological dimension. We

also implemented a hybrid model that shifted frommore rule-like to more ex-

emplar-like representation by gradually unrestricting selective attention away

from a single dimension over the course of learning. In this way, our theoret-

ical modeling seems to imply a single system that is constrained in various
ways to behave in a more ‘‘rule-like’’ or more ‘‘exemplar-like’’ manner at dif-

ferent stages of category learning. Yet, irrespective of our particular approach

to modeling, our description of rule-based and exemplar-based categoriza-

tion at several points in this paper may seem to imply quasi-independent pro-

cessing modules. So, are rules and exemplars largely independent systems

(Ashby et al., 1998; Erickson & Kruschke, 1998; Palmeri, 1997) or are they

manifestations of the same underlying system (Nosofsky & Johansen, 2000)?

Although our results demonstrate more rule-like and more exemplar-like
behavior at different stages in category learning, our results probably cannot

be used to unequivocally decide the relative functional independence or de-

pendence of rule-based and exemplar-based representations and processes in

a theoretically neutral manner. Indeed, on the basis of behavioral data

alone, it may be quite difficult to completely distinguish between multiple-

and single-system accounts (e.g., Nosofsky & Johansen, 2000; Nosofsky &

Zaki, 1998). For example, Nosofsky and Johansen showed that much of

the evidence for multiple systems for categorization (e.g., Ashby et al.,
1998; Erickson & Kruschke, 1998; Knowlton & Squire, 1993; Nosofsky

et al., 1994; Smith & Minda, 1998) could be given an alternative interpreta-

tion in terms of a plausibly elaborated single-system exemplar model. As a

particularly relevant example, they reexamined the observed distributions of

generalization patterns reported by Nosofsky et al. (see Fig. 1). Nosofsky

and Johansen extended the generalized context model (Nosofsky, 1984,

1986) to allow four subgroups of ‘‘rule-based’’ subjects that each primarily

attended to just one of the four stimulus dimensions and another ‘‘exemplar-
based’’ subgroup that optimally attended to all of the stimulus dimensions

(Nosofsky, 1984, 1998a,b); this relatively high-parameter static model of

categorization is similar in some important respects to the shift model of cat-

egory learning that we investigated in the theoretical results section. Their

elaborated version of the generalized context model with five subgroups per-

formed as well as RULEX and much better than the simple context model in

accounting for the observed distributions of generalization patterns.
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Both this elaborated version of the generalized context model and our

elaborated version of ALCOVE (the shift model) assume that subgroups

of subjects largely attend to single stimulus dimensions. Both models assume

the formation of simple single-dimension categorization rules, according to

our operational definition of a rule. But what causes individual subjects to
decide to attend to just a single dimension when the optimal categorization

strategy is to divide attention across multiple dimensions? Arguably, a hall-

mark theoretical assumption of the generalized context model (Nosofsky,

1986) is that selective attention weights are eventually set by subjects in such

a way so as to optimize categorization performance. The optimality assump-

tion has been verified in a variety of experiments (e.g., Nosofsky, 1984, 1986,

1998a,b). And we observed in the present experiments that when subjects are

supplied sufficient categorization training, they show generalization patterns
that are consistent with a more optimal distribution of attention weights

across multiple dimensions. Arguably, this optimality assumption is also

theoretically important because it increases the testability (and falsifiability)

of the generalized context model by significantly constraining the freely

varying attention weight parameters.

So, what mechanism might cause individuals to choose a suboptimal at-

tentional allocation when learning categories such as those that we investi-

gated? Certainly, one possibility is that distributing attention across multiple
dimensions is resource demanding in some way, causing subjects to adopt a

less resource demanding strategy of attending to just a single dimension.

Although plausible, this seems rather theoretically unsatisfying because it

requires a new assumption that has no a priori justification and that has

not been required in previous applications of exemplar models. Moreover,

if attention weight distribution is resource demanding, why do subjects seem

to eventually shift attention across multiple dimensions with additional

training? If this attentional allocation is resource demanding early in learn-
ing, it should be resource demanding later in learning as well, unless yet

another set of assumptions about an interaction between resource demands

and training is also adopted.

An alternative possibility is that subjects are indeed engaging in hypoth-

esis testing to form simple categorization rules. The rules that are formed

may then be used to explicitly set the distribution of attention weights in

a top–down manner, thereby initially biasing the attentional allocation to

appear rule-based (see Choi et al., 1993). Indeed, in the original formulation
of the context model, Medin and Schaffer (1978) suggested that the dimen-

sional attention weights may reflect the operation of explicit hypothesis test-

ing that subjects may engage in when learning categories. It may be that as

subjects gain more experience with the categories, this top–down influence

may gradually be relaxed so as to allow a more optimal distribution of at-

tention weights to be learned, as suggested by Nosofsky (1984, 1998a,b).

Lin and Murphy (1997) have also suggested that background knowledge
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can act to modify patterns of selective attention to reflect expectations based

on prior experience or based on high-level causal knowledge. So, although

hypothesis testing may be one mechanism that influences attention to di-

mensions, expectations based on other kinds of knowledge can be another

source for such top–down influences on selective attention to stimulus di-
mensions.

In a recent model of visual attention, Logan and Gordon (2001) sug-

gested that high-level executive processes may operate by setting parameters

of a relatively autonomous attention, categorization, and response selection

system. Perhaps in the context of learning categories, high-level processes

may engage in hypothesis testing or knowledge retrieval with the aim of set-

ting parameters of a relatively autonomous low-level exemplar-based cate-

gory learning system; these parameters may include the initial selective
attention weights as well as other parameters such as learning rates, re-

sponse biases, and response criteria (e.g., Nosofsky & Johansen, 2000). In

this characterization, rule-based (read high-level executive agent) and exem-

plar-based systems may be separate systems, but they interact in a complex

manner. One theoretical implication of this possibility is that the boundary

between single and multiple systems may become rather blurred. These may

not be independent modules engaged in rule-based or exemplar-based cate-

gorization. They may instead be highly interactive subsystems, perhaps op-
erating at different levels of explicit awareness or with different levels of

executive control, that operate in conjunction to learn novel perceptual cat-

egories.

A number of the various formal models described earlier could possibly

account for our results showing a shift from rules to exemplars, perhaps

with some quite reasonable modifications (see Anderson & Betz, 2001). Al-

though our results do not conclusively dictate which of these various archi-

tectures is the appropriate one to model human category learning, we would
argue that our results do provide support for the notion that people employ

multiple representations when learning categories and that the relative dom-

inance of rules and exemplars changes with categorization experience. To

our knowledge, such a finding has not previously been documented in cat-

egory learning paradigms in which subjects are not explicitly provided a cat-

egorization rule. We believe our results will serve as an important

benchmark for evaluating various proposed models of category learning.

Determining which of these various architectures, if any, best describes hu-
man category learning will likely require a combination of basic behavioral

experiments and theoretical modeling, along with evidence obtained using

various cognitive neuroscience techniques. A convergence of evidence seems

to be suggesting that there are multiple ways categories can be represented,

and there are multiple component processes that can be engaged during cat-

egory learning and category use. What remains to be determined is how

these various pieces fit together so as to develop a complete picture of
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how humans learn novel perceptual categories and how this basic aspect of

human cognition might be implemented in a neural architecture. Are there

functionally independent categorization systems, or are there instead highly

interacting systems, or is there a single system with mixed representations

and multiple processes?
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Appendix A

A.1. Context model and ALCOVE predictions of Experiments 1–3

In this section, we attempted to generate a priori predictions of the distri-

butions of generalization patterns made by the context model (Medin &

Schaffer, 1978) and ALCOVE (Kruschke, 1992).

A.1.1. Context model predictions

According to the context model, the probability of classifying item i into

category A, P ðAjiÞ, is given by the summed similarity of i to exemplars of

category A divided by the summed similarity of i to all exemplars from all

learned categories. The similarity between i and j is a multiplicative function

of matches and mismatches along each dimension m

Sij ¼
YM
m

Sdmði;jÞ
m ; ðA:1Þ
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where M is the number of dimensions, 06 sm 6 1 are free parameters rep-

resenting the similarity of mismatching values along dimension m, and

dmði; jÞ is an indicator function equal to one when i and j mismatch along

dimension m and equal to zero otherwise. In generating predictions for the

experiments reported in this paper, four free similarity parameters were
required for the four stimulus dimensions. Diagnostic dimensions require

small values of sm, causing mismatches along a diagnostic dimension to have

a relatively large influence on similarity, and relatively nondiagnostic di-

mensions require large values of sm, causing mismatches along those di-

mensions to have little influence on similarity.

Our goal was to determine whether the context model predicted prom-

inent ‘‘exemplar-based’’ generalizations under assumptions of optimal pa-

rameter selection (Nosofsky, 1998a,b). In other words, for similarity
parameters that yielded high levels of predicted accuracy on training

items, were there particular generalizations that were predicted to be

prominent in the distribution? If so, we will characterize those patterns

as ‘‘exemplar-based’’ because they are consistent with exemplar generaliza-

tion. Of course, an alternative possibility is that, through judicious param-

eter selection, the context model could predict any generalization to be

maximally prominent in the distribution, a scenario not supported by

our analyses.
For each experiment, our first step was to generate predictions by the

context model across a full spectrum of parameter values. Each of the four

similarity parameters was incremented in a geometric progression across

twenty different values in a range from 0 to 1, yielding a 20� 20� 20 �
20 grid of possible vectors of similarity parameters. For each vector of sim-

ilarities, predicted classification probabilities were then generated using the

equations provided above. We then ordered the context model predictions

according to overall accuracy at classifying the training items. Optimal pa-
rameter settings were defined as those that gave high levels of accuracy on

training items. Finally, we generated predicted distributions of generaliza-

tion patterns, focusing our attention on the most prominent generalizations

in the distribution.

Let us begin with the context model predictions for Experiment 1. For

vectors of similarity parameters yielding predicted accuracies greater than

97.5% on training stimuli (nearly 11,000 parameter sets met this criterion),

the exemplar-based generalization pattern, ABBBA, was predicted to be
the most prominent generalization for 56.4% of the parameter sets; some

other patterns were also predicted to be maximally prominent for some

other parameter sets, but 26 generalization patterns never emerged as the

most prominent pattern. Moreover, in addition to emerging as the most fre-

quently predicted peak generalization based on this systematic grid search

for optimal parameter settings, ABBBA most often emerged as the peak

generalization pattern if the similarity parameters were explicitly set as a
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function of the diagnosticity of each dimension (i.e., dimensions 1 and 3 re-

ceive high weight, dimension 4 receives intermediate weight, and dimension

2 receives low weight).

For Experiment 2, for vectors of similarity parameters yielding pre-

dicted accuracies greater than 97.5% (over 17,000 parameter sets met this
criterion), the two exemplar-based generalizations, ABAB and BABA,

were predicted to be most prominent for 82.4% of the parameter sets.

For comparison, the two rule-based generalizations, AABB and BBAA,

were predicted to be most prominent for just 17.2% of the parameter sets.

And for Experiment 3, for vectors of similarity parameters yielding pre-

dicted accuracies greater than 97.5% (over 15,000 parameter sets met this

criterion), the two exemplar-based generalization patterns, ABBA and

BAAB, were predicted to be most prominent for 85.0% of the parameter
sets. For comparison, the two rule-based generalization patterns, AABB

and BBAA, were predicted to be most prominent for just 3.7% of the pa-

rameter sets.

So, under those conditions that yielded optimal classification of the train-

ing items, particular generalizations were predicted to be maximally prom-

inent in the distributions of generalizations. We characterized these as the

‘‘exemplar-based’’ generalizations in the three experiments. Although the

context model can also predict prominent ‘‘rule-based’’ generalization as
well, similarity parameters that yielded these generalizations produced

sub-optimal learning of the training items.

A.1.2. ALCOVE predictions

As outlined in Section 5, ALCOVE learns categories by adjusting di-

mensional selective attention weights and association weights via gradient

descent on error (Kruschke, 1992). The rate of learning is governed by the

attention learning rate parameter, ka, and the association learning rate pa-
rameter, kw. The outputs of the network are also governed by the similarity

scaling parameter, c, in Eq. (1), and the response mapping parameter, u, in
Eq. (4). As with the simulations conducted using the context model, our

goal in the following simulations was to determine whether ALCOVE pre-

dicts particular prominent generalization patterns across numerous combi-

nations of possible parameters. Unlike the context model simulations, we

did not need to focus on model parameters that led to optimal classifica-

tion performance because the connectionist learning algorithm employed
by ALCOVE is explicitly designed to adjust attention weights and associ-

ation weights in a way that minimizes classification errors on training

items.

For each experiment, our initial step was to generate ALCOVE predic-

tions across a large spectrum of parameter values. We selected a range of

parameters that contained values previously found to produce best-fitting

predictions by ALCOVE. The similarity scaling parameter, c, was varied
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between 3 and 30 in steps of 3; the response mapping parameter, u, was
varied between .5 and 5.0 in steps of .5; the attention learning rate pa-

rameter, ka, was varied between .1 and 1.0 in steps of .1; and the associ-

ation weight learning rate parameter, kw, was varied between .05 and .50

in steps of .05. We also trained the network for 32, 48, or 64 training
blocks since some combinations of parameters led to overall slower learn-

ing rates than other combinations of parameters. In addition, some com-

binations of parameters led to degenerate predictions in that

categorization performance did not exceed chance; for example, if the

learning rate parameters were relatively too large, the attention weights

or association weights tended to change value dramatically from trial

to trial, causing a complete lack of convergence during learning. So, we

excluded any simulations where the average classification performance
on the training items by the end of training did not significantly exceed

chance. We used the same procedures for generating predicted distribu-

tions of generalization patterns that we used in the Theoretical Modeling

section. Generating predictions from these 30,000 combinations of param-

eter values, each of which was used in averaging across 800 simulated

runs of the ALCOVE model, required several weeks of computer time

on a dual-processor workstation.

We focused on the most prominent generalizations predicted for each
vector of parameters for each experiment. For Experiment 1, the exem-

plar-based generalization pattern, ABBBA, was the most prominent pat-

tern for 72.4% of the parameter sets. For comparison, the two rule-based

generalization patterns, AABBB and BBABA, were the most promi-

nent patterns for 25.6% of the parameter sets. For Experiment 2, the

two exemplar-based generalization patterns, ABAB and BABA, were

the most prominent patterns for 72.6% of the parameter sets; the two

rule-based generalization patterns, AABB and BBAA, were the most
prominent patterns for 27.4% of the parameter sets. And for Experiment

3, the two exemplar-based generalization patterns, ABBA and BAAB,

were the most prominent patterns for 66.1% of the parameter sets; the

two rule-based generalization patterns, AABB and BBAA, were the most

prominent patterns for 33.5% of the parameter sets. As was the case for

the context model predictions, parameters that yielded the ‘‘rule-based’’

generalizations produced relatively sub-optimal learning of the training

items.
Our simulation results with ALCOVE converge with our simulation re-

sults using the context model. In both cases, particular ‘‘exemplar-based’’

generalization patterns were predicted to be the most prominent generaliza-

tion patterns in the predicted distribution of generalization patterns across a

wide spectrum of possible parameter values. Thus, we can characterize these

particular patterns as ‘‘exemplar-based’’ generalizations in that are pre-

dicted by the exemplar models in an a priori manner.
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