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Abstract
Categorization at different levels of abstraction have distinct time courses, but the different levels are often considered
separately. Superordinate-level categorization is typically faster than basic-level categorization at ultra-rapid exposure
durations (< 33 ms) while basic-level categorization is faster than superordinate-level categorization at longer exposure
durations. This difference may be due to a competitive dynamic between levels of categorization. By leveraging object
substitution masking, we found a distinct time course of masking effects for each level of categorization. Superordinate-level
categorization showed a masking effect earlier than basic-level categorization. However, when basic-level categorization
first showed a masking effects, superordinate-level categorization was spared despite its earlier masking effect. This unique
pattern suggests a trade-off between the two levels of categorization over time. Such an effect supports an account of
categorization that depends on the interaction of perceptual encoding, selective attention, and competition between levels of
category representation.
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Introduction

Categorization, the ability to rapidly link perceptual input from
the environment onto semantic knowledge, is a fundamental
aspect of human experience. This ability is marked by a bal-
ance of detecting the regularities and co-occurrences of
object features (e.g., dogs have four legs, fur, and a snout;
birds have two legs, feathers, and a beak) and cognitive util-
ity (e.g., labeling an object as a dog as opposed to an animal
or Golden Retriever is most informative to most situations;
Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976). In
fact, most objects are most quickly and accurately catego-
rized at an intermediate level of abstraction in the semantic
hierarchy known as the basic level (e.g., dog). However, sev-
eral factors can influence this entry level of categorization
including development (Mandler, Bauer, & McDonough,
1991), expertise in visual domains (e.g., Tanaka & Taylor,
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1991; Johnson & Mervis, 1997), and social relevance (e.g.,
Mack & Palmeri, 2010). Most strikingly, when exposure to
visual information is severely limited, objects are more eas-
ily categorized at superordinate levels relative to basic levels
(e.g., animal instead of dog; Macé, Joubert, Nespoulous, &
Fabre-Thorpe, 2009; Mack & Palmeri, 2015; Thorpe, Fize,
& Marlot, 1996; Vanmarcke, Calders, & Wagemans, 2016).
Here, we extend this research to ask if interactions across
the levels of the semantic hierarchy itself play an important
role in the time course of rapid visual categorization with
a novel application of object substitution masking (OSM;
Enns & Di Lollo, 1997).

Research on the time course of visual categorization is dom-
inated by carefully controlled studies that limit exposure to
visual stimuli with brief presentations and backward mask-
ing (e.g., Bacon-Macé, Macé, Fabre-Thorpe, & Thorpe,
2005; Bacon-Macé, Kirchner, Fabre-Thorpe, & Thorpe,
2007; Fabre-Thorpe, 2011; Macé et al., 2009; Mack &
Palmeri, 2011; Mack & Palmeri, 2015; Thorpe et al.,
1996). By limiting the duration of visual input and effec-
tively halting further perceptual processing with a backward
visual pattern mask (a spatially overlapping meaningless
image appearing after the inputs), these paradigms have
revealed important mechanistic trade-offs for categoriza-
tion at different levels of abstraction. However, there is a
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common assumption in this literature that visual pattern
masks serve simply to erase visual input from further pro-
cessing. Theories on backward masking posit that backward
masks may, in fact, have more complex effects on visual
processing (Breitmeyer & Ogmen, 2000; 2006; Smith et al.,
2004). Rather than just stopping visual processing in its
tracks after a specified duration, the barrage of visual input
from a backward pattern mask may supplant the encoded
perceptual representations of visual objects and disrupt
downstream categorization processes (Ratcliff R & Rouder
JN, 2000). If so, time course manipulations in past work
may have altered perceptual encoding with distinct impacts
across the time course for categorization at different lev-
els of abstraction. At a minimum, it is prudent to examine
the time course of visual categorization with alternative
masking methods.

Here, we leverage OSM in a novel manner to characterize
the time course of basic- and superordinate-level categoriza-
tion. OSM arises from the brief presentation of an image
surrounded by simple visual shapes, typically small squares
or circles. The shapes acts as the cue to attend to (and
usually make responses for) the central image. When the
offset of the surrounding shapes is delayed relative to the
central image, a masking effect is observed such that accu-
racy or speed for reporting some aspect of the central
image is significantly reduced. Rather than disrupting the
formation of perceptual representations, initial reports sug-
gested OSM results from competitive dynamics between
object-based representations of the cued object and the
surrounding shapes (e.g., Di Lollo et al., 2000, Lleras &
Moore, 2003, Moore & Lleras, 2005). Indeed, recent stud-
ies further support the notion that OSM disrupts higher-level
representations of visual input (Harrison et al., 2016, Good-
hew et al., 2013, Goodhew, 2017). For categorization, OSM
reduces perceptual awareness and increases reaction times
for categorization at the superordinate level (Koivisto et al.,
2014). Thus, OSM offers an ideal paradigm for characterizing
the time course of visual categorization without altering
the encoding of visual information. By selectively disrupt-
ing higher-level representations at different times, OSM
can interrogate how these representations may serve both
superordinate- and basic-level categorization simultane-
ously and how they interact. Across two studies (one a
replication) we find evidence for a competitive dynamic
between rapid superordinate- and basic-level categorization.

Methods

Participants andmaterials

In Experiment 1, 34 participants (21 female, 13 males;
18–23 years old, average 19.1 years old) were recruited

from the Vanderbilt University participant pool for course
credit. One participant was excluded for failing to respond
or responding faster than 150 ms on at least 15% of
trials leaving a total sample size of 33. All participants
reported normal or corrected-to-normal vision. The target
sample size for Experiment 1 (N = 30) was based on
sample sizes tested in prior studies of object categorization
with backward masking (e.g., Mack & Palmeri, 2015).
Procedures were approved by the Vanderbilt Institutional
Review Board. Informed written consent was obtained
before the experiment.

In Experiment 2, 81 participants (56 female, 25 males;
17-30 years old, average 18.8 years old, two participants
did not report age) were recruited from the University
of Toronto participant pool for course credit. Seven
participants were excluded for failing to respond or
responding faster than 150 ms on at least 15% of trials
leaving a total sample size of 74. All participants reported
normal or corrected-to-normal vision. The target sample
size for Experiment 2 (N = 70) was based on two factors: 1)
a power analysis of the change in masking effect observed
in Experiment 1 (see Fig. 3; Cohen’s f=0.387, α=0.05,
β=0.05), which suggested a target sample size of 36, and
2) the expectation that less precise display equipment in
Experiment 2 would add noise to our behavioral measures.
Considering both factors, we doubled the target sample
size of the power analysis (N = 72). Procedures were
approved by the University of Toronto Research Ethics
Board. Informed written consent was obtained before the
experiment.

Stimuli were collected from online image searches
for four basic-level categories (birds, dogs, planes, and
cars) and two superordinate-level categories (animals and
vehicles). Each category had 144 unique images and the
superordinate-level categories did not include objects that
could appear in the basic-level categories. Images with
backgrounds were roughly cropped with the figure centered
and scaled to 120 x 120 pixels (4.3◦x4.3◦ of visual angle)
then converted to greyscale. For Experiment 1, stimuli were
presented on a 19” Sony Trinitron CRT monitor with a
refresh rate of 120 Hz. For Experiment 2, stimuli were
presented on a 24” AOC LCD monitor (G2460PQU) with
a refresh rate of 120 Hz. In both experiments, participants
were placed such that the visual array subtended 18.5◦ of
visual angle. Both experiments were programmed and ran in
Matlab using Psychtoolbox3 (Brainard, 1997; Kleiner et al.,
2007; Pelli, 1997).

Procedure

The same general procedure was used for both experiments.
Participants were tasked with verifying whether a label
matched a cued image in a two-alternate forced-choice task
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Fig. 1 Trial schematic. Images were presented equally spaced on an invisible circle with a radius of 200 px in a pseudo-random configuration

(Fig. 1). Each trial began with either a superordinate-level
label (vehicle or animal) or a basic-level label (car, plane,
dog, or bird) for 1000 ms. This was followed by a fixation
cross for 500-1000 ms, sampled from a uniform distribution.
The target and two distractor images were presented on an
invisible circle with a radius of 200 pixels (7.3◦ of visual
angle) at the center of the screen for 33 ms. Each image was
equally spaced from one another. Four black 20 x 20 pixel
squares (0.73◦x0.73◦ of visual angle) were presented at the
corners of the target image simultaneously with the stimulus
onset. Critically, the offset of the black squares was delayed
by 0, 17, 33, 50, 68, or 125 ms after the target offset. Mask
offset times were randomized across trials. These black
squares would act as the cue for the target and if the offset
delay was greater than 0, also act as a mask. Participants
were instructed to make a keyboard response as quickly and
accurately as possible after stimuli onset indicating whether
the label and the cued target matched with either yes or no
(using the 1 or 2 key, respectively). No corrective feedback
was given.

The study began with paper instructions followed by five
practice trials. Then, participants performed six blocks of
96 trials each for a total of 576 trials. Each block consisted
only of labels from one level of categorization and the
blocks were grouped such that participants completed all
blocks of one level of categorization before moving onto
the other blocks with the order counterbalanced across
participants. Participants were offered a short break between
each block. Trial order within blocks was randomized for
each participant. Each trial included a target image from one
of the four basic-level categories and two distractor images,
one from each superordinate-level category. Images were
pseudo-randomly selected from their respective categories.
The target images never repeated and distractor images
repeated four times each. Half of the trials had images that
matched the label and half did not.

Experiment 2 replicated Experiment 1 with a larger
sample size using the same materials and followed
similar procedures with the following exceptions: stimulus

exposure was increased to 50 ms1 and mask offset durations
were limited to 0, 17, 33, 50, and 68 ms. We omitted
the 125 ms offset to both focus on the mask offsets
from Experiment 1 that demonstrated the first masking
effects across categorization levels and to reduce the overall
experiment duration. Additionally, the trial structure was
reduced to four blocks (two blocks each of superordinate-
and basic-level categorization) of 120 trials each. These
paradigm changes provided a more efficient and feasible
experiment that targeted a replication of Experiment 1’s
primary results in a larger sample of participants.

Analysis

We characterized categorization performance by estimating
sensitivity (d′) according to standard signal detection theory
methods (Green & Swets, 1966). Hits, the proportion of
yes responses to trials in which the cued object matched
the specified label, and false alarms, the proportion of
yes responses to trial in which the cue object did not
match the specified label, were calculated separately for
each mask offset and category level (see Fig. 2). Our
analyses focused on the masking effect for conditions with
mask offsets longer than 0 ms. Specifically, we took the
difference between d′ at mask offset of 0 ms versus all
other mask offsets (see Fig. 3). We also characterized the
speed of responses by analyzing response times for hits.
Statistical analyses were conducted in R (version 4.0.2)
with rstanarm (version 2.21.1) using Bayesian estimation
of mixed effects linear regression. The existence of effects
were evaluated by the probability of direction (pd) which

1Stimulus exposure was lengthened to best match the stimulus
intensity of the CRT monitors used in Experiment 1. Although the
LCD monitors used in Experiment 2 are gaming-style monitors with
fast refresh rates (120 Hz) and response times (2 ms grey-to-grey), the
amount of luminance change the monitors can provide with very brief
exposures is limited. As such, we increased the exposure duration of
the stimulus array to best match performance at the 0-ms mask offset
condition.
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Fig. 2 Categorization d′ and masking effects. d′ (left) for Experiments
1 (top) and 2 (bottom) is plotted according to mask offset delay (ms)
separately for superordinate- (cyan) and basic-level (magenta) cate-
gorization. The masking effect (right), calculated separately for each
participant as the difference between d′ at mask offset of 0 ms versus
all other mask offsets, is plotted according to the same conventions.

A positive masking effect means performance was lower than perfor-
mance at the 0-ms mask offset. Error bars represent bootstrapped 95%
confidence intervals of the mean. Asterisks note significant (pd>0.95)
masking effects relative to 0-ms mask offset. The gray boxes note time
points used in the analysis presented in Fig. 3
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Fig. 3 Change in masking effect at short mask offsets. The change in
masking effect between the shortest mask offsets showing significant
masking effects (Experiment 1: 17 and 33 ms, Experiment 2: 33
and 50 ms) is plotted separately for basic- and superordinate-level
(super.) categorization. Positive values correspond to an increase in
masking effect with longer mask offsets, negative values correspond
to a decrease in masking effects. Participant-specific masking effects
are depicted with transparent points and lines. Colored points and
error bars represent group means and bootstrapped 95% confidence
intervals. Asterisks note significant differences (pd>0.95) between
basic- and superordinate-level conditions

quantifies the proportion of posterior samples in the most
probable direction (i.e., pd ranges from 0.5 to 1 with values
closer to 1 for more likely effects). pd is akin to the
frequentist p value and is best interpreted as the degree
of evidence against a null effect (Makowski, Ben-Shachar,
Chen, & Lüdecke, 2019). In addition to pd, we report
median values (β) and 95% confidence intervals (CI) for
each effect of interest.

Result

For Experiment 1, the mixed-effects linear regression
of d′ revealed significant masking effects across both
categorization levels. Figure 2 shows both the average
d′ across mask offsets (left), as well as the masking
effect (right) which was calculated as the difference in
d′ between the 0-ms mask offset conditions and each
other mask offsets (see also Table 1). Positive values
of masking effect correspond to lower performance for
a mask offset relative to the 0-ms mask offset baseline.
For basic-level categorization, mask offsets at 33 ms
(β=-0.312, CI=[-0.5,-0.144], pd=0.998), 50 ms (β=-0.269,
CI=[-0.456,-0.091], pd=0.992), 68 ms (β=-0.302, CI=[-
0.488,-0.124], pd=0.994), and 125 ms (β=-0.29, CI=[-
0.462,-0.091], pd=0.994) led to significantly lower d′ than
in the 0-ms mask offset condition. For superordinate-
level categorization, the pattern differed: mask offsets
at 17 ms (β=-0.188, CI=[-0.363,-0.011], pd=0.957), 50
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ms (β=-0.247, CI=[-0.429,-0.071], pd=0.984), and 125
ms (β=-0.221, CI=[-0.388,-0.039], pd=0.98) resulted in
significantly lower d′ than in the 0-ms mask offset
condition. When compared directly, the masking effect
was reliably higher for basic- than superordinate-level
categorization at 33-ms mask offset (pd=0.993).

For Experiment 2, the mixed-effects linear regression
of d′ revealed similar effects as Experiment 1, but with
critical mask offsets shifted towards longer durations
(Fig. 2, bottom row). For basic-level categorization, d′

was significantly lower than baseline for mask offsets
at 50 ms (β=-0.117, CI=[-0.219,-0.001], pd=0.953) and
68 ms (β=-0.121, CI=[-0.234,-0.019], pd=0.963). For
superordinate-level categorization, masking effects were
observed for mask offsets at 33 ms (β=-0.145, CI=[-
0.248,-0.034], pd=0.983) and 68 ms (β=-0.13, CI=[-0.225,-
0.011], pd=0.973). The masking effect was reliably higher
for superordinate- than basic-level categorization at 33-ms
mask offset (pd=0.975).

For both experiments, mixed-effects linear regression
models of hit response times revealed no significant mask-
ing effects (Experiment 1: all pds<0.94; Experiment 2:
all pds<0.78) nor significant differences between lev-
els of abstraction (Experiment 1: pd=0.89; Experiment 2:
pd=0.94).

Both experiments demonstrated a similar overall pattern
of masking effects, but with a temporal shift towards longer
offsets in Experiment 2. Given that the two experiments
included data from different participant pools and utilized
different experimental equipment, such a shift in the base-
line effect may be expected. As such, we performed a post
hoc analysis to temporally align the masking effect patterns
by focusing on the earliest mask offsets within each experi-
ment that demonstrated a significant masking effect relative
to the 0ms mask offset (see gray boxes in Fig. 2). In Exper-
iment 1, this corresponded to mask offsets at 17 and 33 ms;
for Experiment 2, this was the mask offsets at 33 and 50
ms. In particular, we were interested in the apparent trade-
off in performance between superordinate- and basic-level
categorization due to selective masking effects. To exam-
ine this trade-off, we calculated the difference in masking
effects between the two mask offsets for the two levels of
categorization (Fig. 3). In both experiments, an increased
masking effect for basic-level categorization was coupled
with a decreased masking effect for superordinate-level cat-
egorization (Experiment 1: β=-0.427, CI=[-0.625,-0.196],
pd>0.999; Experiment 2: β=-0.245, CI=[-0.392,-0.093],
pd=0.995. In both experiments, a majority of participants
showed this trade-off in categorization performance (Exper-
iment 1: 23/33, 70%; Experiment 2: 49/74, 66%).

Discussion

Here, we leveraged an OSM paradigm to target higher-level
processes that link encoded visual information to object
knowledge without the introduction of a spatially overlap-
ping mask. In doing so, we find that superordinate-level
categorization performance is significantly affected at ear-
lier time points during the time course of categorization
with a masking effect on basic-level categorization appear-
ing later, similar to previous reports with backward masking
(Mack & Palmeri, 2015; Macé et al., 2009). Addition-
ally, in a novel departure from prior work, we demonstrate
that the masking effect on superordinate-level categoriza-
tion is eliminated at the first time point exhibiting an OSM
effect on basic-level categorization. Importantly, this mask-
ing effect trade-off between superordinate- and basic-level
categorization was replicated in a second study that targeted
the earliest time window of categorization in a much larger
sample of participants.

In characterizing the time course of categorization with
an OSM paradigm, our findings are largely consistent with
previous work. That superordinate-level categorization was
impacted by OSM at earlier time points converges well with
the rich literature on ultra-rapid superordinate categoriza-
tion. Indeed, several decades of research point to important
behavioral and neural signatures of fast categorization pro-
cesses for superordinate categories (Thorpe et al., 1996;
VanRullen & Thorpe, 2001b; 2001a; Fabre-Thorpe, 2011;
Vanmarcke et al., 2016), with evidence showing a distinct
speed advantage for superordinate- relative to basic-level
categorization (Macé et al., 2009). Reconciling these find-
ings with the classic basic-level advantage (Rosch et al.,
1976) has revealed important empirical factors like block-
ing trials by category level and brief exposure durations
that lead to faster superordinate decisions (Mack & Palmeri,
2015), both of which were used in the current study. Thus,
our findings that superordinate-level categorization was the
first to demonstrate disruption from OSM offers further
evidence for such rapid superordinate-level categorization
processes.

Basic-level categorization did show a strong masking
effect in both studies; however, this effect was delayed rela-
tive to the masking effect in superordinate-level categoriza-
tion. Surprisingly, the disruption to basic-level categoriza-
tion was momentarily coupled with the elimination of the
masking effect for superordinate-level categorization. This
simultaneous sparing of superordinate-level categorization,
notably occurring after a clear masking effect earlier in
the time course, is not well explained in the context of
leading current theories. Biologically-inspired models that
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Table 1 Mean d′ values (95% CI) for each mask offset and category level in the two experiments

mask offset (ms)

level 0 17 33 50 68 125

E1 basic 1.05 (.247) 0.997 (.238) 0.732 (.232) 0.783 (.218) 0.749 (.258) 0.763 (.179)

superordinate 0.943 (.216) 0.755 (.226) 0.916 (.219) 0.694 (.209) 0.794 (.199) 0.721 (.191)

E2 basic 0.925 (.141) 0.921 (.152) 0.929 (.160) 0.808 (.131) 0.804 (.116)

superordinate 0.992 (.135) 1.02 (.134) 0.847 (.134) 0.973 (.143) 0.862 (.145)

formalize feed-forward mechanisms of visual categorization
(Serre et al., 2007) offer compelling descriptions of rapid
categorization. Similarly, recent studies with this class of
model suggest advantages for superordinate- versus basic-
level categorization may arise due to key differences in
representational discriminability within and between cate-
gories (Sofer et al., 2015). These findings converge with
decades of research on cognitive models of categoriza-
tion that posit distinct advantages at different levels of
abstraction based on the time course of perceptual encoding
(Cohen & Nosofsky, 2003; Lamberts, 2000) and similar-
ity in multidimensional representational spaces (Nosofsky,
1986; 1988; Nosofsky & Palmeri, 1997; Palmeri, 1999;
Mack & Palmeri, 2011; Love et al., 2004). Although both
classes of models offer compelling accounts for speeded
categorization decisions, neither explicitly define a com-
petitive dynamic between levels of abstraction. One pos-
sible explanation is that the activation of representations
in category knowledge are partly modulated by inhibition
across levels of abstraction. When considered alongside
the well-established centrality of basic-level categories in
conceptual knowledge (e.g., Rosch et al., 1976; (Richler
et al., 2011), 2011), a potential account emerges: Activa-
tion of basic-level representations may inhibit activation of
an object’s categories at different levels. If masking dis-
rupts the activation of basic-level category representations,
inhibition across levels would lessen and weakly activated
superordinate-level category representations may have a
greater impact on category decisions potentially leading to
the type of masking effect recovery we see in the current
work. This account is speculative, but the role of inhibition
across category levels offers a compelling hypothesis for
future work.

Another potential avenue for reconciling the current find-
ings with extant cognitive theories is the emerging fruitful
approach of combining convolutional neural networks with
cognitive models (Annis et al., 2020). Recent work has
demonstrated the distinct ability of recurrent deep neu-
ral networks to characterize representations throughout the
ventral visual system (Kietzmann et al., 2019; Kar et al.,
2019). By leveraging the ability to form representations
over time, these networks can instantiate a representational

bottleneck wherein category-specific information is most
relevant first for superordinate-level features then giving
way to basic-level features. We speculate that a recurrent
network that experiences “masking” as disruption to recur-
rent connections across its layers may demonstrate a similar
competitive dynamic favoring one categorization level over
another as observed in our behavioral experiments. Inte-
grating the representational dynamics of these sophisticated
models of biological vision with well-established models of
category learning and decision making (Love et al., 2004;
Nosofsky & Palmeri, 1997; Usher & McClelland, 2001)
could provide insight into how representations within and
across different layers of the visual hierarchy influence cat-
egory decisions (Annis et al., 2020) and how masking may
shift the balance of decision evidence between different
levels of abstraction.

Backward masking paradigms have played a major role
in investigating the time course of object categorization, but
other paradigms have offered important insights. One such
example is a variant of the signal-to-respond paradigm in
which participants verify that a visually presented object
belongs to a category by making a yes or no response after a
specified interval denoted by a signal cue (e.g., an auditory
tone; Rogers & Patterson, 2007, Mack et al., 2009). In
this paradigm, the interval between object presentation and
response signal is manipulated to characterize performance
across the time course of categorization. Importantly, no
visual backward mask is used thus eliminating concerns
with interfering visual processing of the visual mask
stimulus. However, by dictating when responses are to
be made, the signal-to-respond paradigm may in fact
additionally interfere with or cut short processes related to
decision making and response execution rather than simply
limiting visual perception. In contrast, OSM potentially
offers a more precise tool for isolating processes that link
visual representations to object knowledge (Goodhew et al.,
2013; Goodhew, 2017).

One notable methodological difference in the current
study to related prior work (Bacon-Macé et al., 2005;
Bacon-Macé et al., 2007; Fabre-Thorpe, 2011; Macé et al.,
2009; Mack & Palmeri, 2011; 2015; Thorpe et al.,
1996) is that target stimuli were presented peripheral to
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fixation and attention likely had to shift to the target to
enable perceptual encoding of visual features important for
categorization. Spatially distributed attention is considered
a central aspect of the OSM paradigm (but see Filmer
et al. 2015), thus was likely key to revealing the masking
effects we observed. However, this initial attention shift
did impact overall categorization performance–relative to
prior work that used the similar stimuli presented centrally
with brief exposure durations and backward masking
(Mack & Palmeri, 2015), categorization performance in the
current studies at the baseline condition (i.e., 0-ms mask
offset) was notably lower. It may be that the attention
shift in the OSM paradigm weakens the initially encoded
perceptual representation. Although such weakening may
make successful categorization depend more on the type
of top-down processes OSM is thought to disrupt (Di
Lollo et al., 2000; Goodhew et al., 2013; Goodhew, 2017),
the impact of attention shifts in categorization should be
further explored. Looking ahead, a combined approach with
studies employing backward masking, OSM, and signal-to-
respond methods with the same participants categorizing
the same set of objects may offer the best opportunity for
comprehensively characterizing the time course of object
categorization.

In conclusion, the current findings are, to our knowledge,
the first empirical evidence suggestive of a competitive
dynamic between levels of abstraction during visual object
categorization. Although future studies are necessary to
validate and expand on these findings, the current results
present a notable challenge for current theories of visual
categorization.
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