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Salience by Competitive and Recurrent Interactions: Bridging
Neural Spiking and Computation in Visual Attention
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Decisions about where to move the eyes depend on neurons in frontal eye field (FEF). Movement neurons in
FEF accumulate salience evidence derived from FEF visual neurons to select the location of a saccade target
among distractors. How visual neurons achieve this salience representation is unknown.We present a neuro-
computational model of target selection called salience by competitive and recurrent interactions (SCRI),
based on the competitive interaction model of attentional selection and decision-making (Smith & Sewell,
2013). SCRI selects targets by synthesizing localization and identification information to yield a dynami-
cally evolving representation of salience across the visual field. SCRI accounts for neural spiking of
individual FEF visual neurons, explaining idiosyncratic differences in neural dynamics with specific
parameters. Many visual neurons resolve the competition between search items through feedforward
inhibition between signals representing different search items, some also require lateral inhibition, andmany
act as recurrent gates to modulate the incoming flow of information about stimulus identity. SCRI was tested
further by using simulated spiking representations of visual salience as input to the gated accumulator model
of FEF movement neurons (Purcell et al., 2010, 2012). Predicted saccade response times fit those observed
for search arrays of different set sizes and different target-distractor similarities, and accumulator trajectories
replicated movement neuron discharge rates. These findings offer new insights into visual decision-making
through converging neuro-computational constraints and provide a novel computational account of the
diversity of FEF visual neurons.

Keywords: visual search, salience, saccade, single neuron, model-based cognitive neuroscience

Decisions about where to shift gaze are crucial to adaptive
search of the visual environment. Such decisions also represent a
microcosm of the computational and neural mechanisms of
decision-making in general. Studies of visual decision-making
have spurred the development of both computational and neural
models that characterize decision-making as a process of evidence
accumulation over time (Bogacz et al., 2006; Brown & Heathcote,
2008; Ratcliff, 1978; Smith & Ratcliff, 2004; Wong & Wang,

2006) realized by the spiking activity of neurons (Cassey et al.,
2016; Gold & Shadlen, 2007; Hanes & Schall, 1996; O’Connell
et al., 2018; Schall, 2019). What these models do not address are
the neuro-computational processes that generate the evidence to
be accumulated, which ultimately determines the difficulty and
final outcome of a saccade decision. To address this gap, we
introduce a neuro-computational model called SCRI,1 for salience
by competitive and recurrent interactions. SCRI jointly accounts
for visual search performance as well as the spiking dynamics of
the individual neurons that generate evidence for target selection
in visual search. By explaining neural dynamics in terms of
cognitive processes, SCRI establishes a bridge between levels
of description of how the visual system maintains a representation
of salience that evolves over time (Marr, 1982). This bridge
supports two-way traffic. SCRI’s account of neural dynamics
leads to a cognitive account of how the selection is accomplished
by integrating multiple streams of information across different
regions in the visual field into a dynamic representation of
salience. At the same time, SCRI provides an explanation for
the diversity of neural spiking patterns in formal, functional, and
not just descriptive, physiological terms. Finally, the architecture
of and mechanisms within SCRI connect it with larger theories of
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visual search and attention, while also offering specific predictions
about anatomical connectivity, both of which can frame and
motivate new research.
To develop SCRI, we focused on a simple, common version of a

visual search task. In this task, the subject must locate a target
stimulus embedded in a circular array of distractors and indicate
their decision by making a saccadic eye movement to look at the
target (for examples of visual search displays, see Figure 1A, B).
We focused on this task because of how clearly it demonstrates the
basic processes we are trying to explain. Evidence generation
involves determining, for each location in the array, the likelihood
that it contains the target; evidence accumulation involves using
this information—a form of salience—to direct a saccade to one of
the locations in the array. Evidence generation in this task can
be subdivided into two main processes: localization of the
stimuli in the array; and identification of the stimuli in the array
as either targets or nontargets. We emphasize that in delineating
these various processes, we do not mean to imply that they must
occur in strictly serial or independent fashion; indeed, SCRI is
based on the idea that these processes jointly unfold and interact
over the time between search array presentation and saccade
initiation.

By restricting our focus to this simple version of visual search, we
were in a position to characterize in detail the component processes
involved and the nature of their interactions over time. Moreover,
nonhuman primates can perform this task, making it possible to
record the spiking activity of relevant individual neurons while they
are performing the task. This enables us to characterize the compo-
nent processes and their dynamics at the level of individual neurons
while jointly relating them to behavior. The component processes
that SCRI is designed to explain are present in some form across
theories of visual search, including the pertinence-based attention
weights in the Theory of Visual Attention (Bundesen, 1990;
Bundesen et al., 2005; Logan, 2002) and the feature-based guidance
involved in Guided Search (J. M.Wolfe, 1994, 2007, 2021; J. Wolfe
et al., 2015; J. M. Wolfe et al., 1989). What SCRI contributes is an
understanding of how localization and identification proceed and
interact over time to enable selection of items at locations to guide
attention and gaze, and how those dynamics are realized in the
spiking activity of individual neurons. A simplified visual search
task gives us a clearer picture of these dynamics. To further situate
SCRI in the theoretical landscape, we first provide more detail on
what SCRI is meant to explain and then lay out the computational
principles that led us to the particular modeling framework we used.
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Figure 1
Examples of Visual Search Conditions and Fits of SCRI to FEF Visual Neuron Spiking Activity Recorded in Each Condition, Averaged Over
Neurons
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Note. (A) An example of different visual search arrays of different set sizes. (B) An example of different visual search arrays with similar (hard) or dissimilar
(easy) distractors relative to the target. Subsequent panels show fits of the full SCRI model (including recurrence) to observed FEF visual neural activity in each
condition depending on whether a target or distractor is in the neuron’s receptive field (RF). SCRI was fit to unsmoothed instantaneous firing rates, but for
visualization, predicted and observed spike rates were convolved with a kernel representing postsynaptic response (Thompson et al., 1996). Shaded regions
depict 95% confidence intervals about the mean. (C) Average spike rates over all neurons recorded under set size manipulations. (D) Average spike rates over all
neurons recorded under similarity manipulations. SCRI = salience by competitive and recurrent interactions; FEF = frontal eye field. See the online article for
the color version of this figure.
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Evidence Generation and Accumulation by Frontal
Eye Field Neurons

The prefrontal brain area known as the frontal eye field (FEF) is
an important locus for the evidence generation and accumulation
processes involved in target selection and saccade initiation. FEF is
a unique confluence of dorsal and ventral visual processing streams,
in which “what” is bound to “where” to guide attention and gaze
(Figure 2; Schall, Morel, et al., 1995). FEF, like all cortical areas, is
composed of a diverse collection of neurons with various functional
properties (Lowe & Schall, 2018). One subset of neurons in FEF,
called “visual” neurons (also called “visually selective” or “visually
responsive” neurons), uses information from these streams of visual
inputs to select targets from among the objects in the search array
(Costello et al., 2013; Murthy et al., 2001; Thompson et al., 1996,
1997, 2005), thereby representing a form of “salience” (Fecteau &
Munoz, 2006; Itti & Koch, 2000). Other neurons in FEF, called
“movement” neurons (also known as “movement-related,” “pre-
motor,” or “saccade” neurons), can use the selective information
from the visual neurons to guide a saccade to the location of the
target selected by the visual neurons (Hanes et al., 1998; Hanes &
Schall, 1996; Hauser et al., 2018; Woodman et al., 2008). Broadly
speaking, the results obtained in multiple laboratories can be
summarized as follows: visual neurons in FEF generate the evidence
that is accumulated by movement neurons in FEF.
This feedforward relationship between target selection by visual

neurons and saccade preparation by movement neurons was firmly
established by the gated accumulator model (GAM; Purcell et al.,
2010, 2012; Servant et al., 2019). GAM used observed FEF visual
neuron spiking activity representing the evolving representation of
target salience as the input to a network of accumulators corre-
sponding to the FEF movement neurons. Using this input, GAM
closely fits the response proportions and distributions of saccade
response times in various kinds of search tasks. GAM accumulator
units also replicated in quantitative detail the dynamics of movement

neurons. GAM’s ability to do this illustrates how the speed and
accuracy of saccade decisions are strongly coupled with the dynam-
ics of the FEF visual neurons that select targets and generate the
evidence to be accumulated by FEF movement neurons. These
dynamics are complex and individual neurons demonstrate a wide
range of often idiosyncratic variability that has yet to be explained
computationally or neurally. Nonetheless, the canonical qualitative
form of FEF visual neuron spiking activity during visual search can
be described as having three phases (Figure 3): In the initial phase,
the neuron’s spike rate remains steady at a baseline level of spiking
activity. Starting around 60 ms after the appearance of the search
array, the neuron enters a second phase during which its spike rate
increases from baseline, regardless of the type of object in the
neuron’s receptive field (RF). Finally, at a later point in time that we
refer to as target selection time (TST), the neuron’s spike rate
evolves to differentiate whether the object in its RF is the target
or a distractor (Thompson et al., 1996).

The main evidence demonstrating that FEF visual neuron spiking
can be identified with visual salience is the sensitivity of their
dynamics to manipulations that affect the difficulty of search. We
focus on two factors that are widely recognized to affect the
difficulty of search and which clearly demonstrate the importance
of localization and identification for selection: set size and similar-
ity. When targets and distractors are confusable, increasing the
number of distractors in the search array—the “set size”—leads
to longer response times (Atkinson et al., 1969; Schneider &
Shiffrin, 1977; Shiffrin & Schneider, 1977; Treisman & Gelade,
1980). As set size increases, FEF visual neurons show reduced spike
rates, delayed TST, and a smaller difference between target- and
distractor-evoked spiking activity. These differences in neural
spiking are correlated with longer saccade response times (Cohen
et al., 2009). Increasing the similarity between targets and distractors
also increases response times (Duncan & Humphreys, 1989). For
FEF visual neurons, higher target-distractor similarity results in
reduced target-evoked spiking activity, higher distractor-evoked
spiking activity, and delayed TST. Again, these changes in neural
activity are correlated with response time (Sato et al., 2001; Sato &
Schall, 2003).

GAMwas able to account for the behavioral effects of set size and
similarity because of their systematic effects on FEF visual neuron
spiking, which is the evidence that is accumulated by GAM to
initiate saccades. By increasing the similarity between targets and
distractors, identification of any one stimulus is made more difficult.
By increasing set size, it is harder to localize each individual
stimulus; this may also impair identification of each stimulus. It
is the effects of these manipulations on the component processes
leading to target selection that, in turn, produce behavioral effects of
search difficulty. A key sign of the success of SCRI is, therefore, to
account for these effects on FEF visual neuron dynamics, such that
the resulting evidence signals lead to attendant consequences for
behavior when accumulated by GAM.

Computational Principles

The effects of set size and similarity on the spiking activity of FEF
visual neurons when they have targets in their RFs suggests that their
dynamics are subject to competition from neurons with distractors in
their RFs. Competition is one of the core computational principles
behind our choice of modeling framework and is present in many
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Figure 2
Schematic Depiction of the Convergence of Visual Information in
Frontal Eye Field (FEF)
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Note. Signals from the lateral intraparietal (LIP) area and middle temporal
(MT) area provide fast information about stimulus locations. Signals from
areas V4, TE, and TEO provide slower information for color and form
identification. Signals from area MT provide information for motion identi-
fication. FEF can influence processing in each area through recurrent
connections (dashed arrows).
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cognitive models of target selection (Bundesen, 1990; Desimone &
Duncan, 1995; Lee et al., 1999; Logan, 2002; Shiffrin & Schneider,
1977; Treisman &Gelade, 1980; J.Wolfe et al., 2015). Another core
principle is that the model be dynamic in order to account for the
evolving response profiles of FEF visual neurons. This narrows our
focus considerably because most of the models above make use of
the outcome of a competition but do not describe how that competi-
tion plays out over time. In many of those models, the outcome of
the competition takes the form of a normalization (Carandini &
Heeger, 2012; Heeger, 1992; Reynolds & Heeger, 2009); for
example, the attention weights in the Theory of Visual Attention
(TVA; Bundesen, 1990) are normalized to sum to one. We, there-
fore, consider normalization to be another core computational
principle to be embodied by SCRI—more precisely, the ability
of the SCRI’s dynamics to yield normalization.
The final consideration in choosing the modeling framework for

SCRI derives from its scientific function. Our goal is to use SCRI to
explain neural spiking dynamics not in biophysical terms, but in
functional terms. That is, we want SCRI to represent the localization
and identification processes that contribute to target selection in a
reasonably transparent way and to describe the nature of their
interactions in terms of information content, rather than in terms
of ion channels or membrane potentials (cf. Hamker, 2005; Heinzle
et al., 2007). Adopting this principle of “functional transparency” is
what enables SCRI to act as a bridge between cognitive and neural
levels of description. By explaining both cognitive and neural
dynamics using the same terms, it is possible to directly relate
spiking activity of neurons with the computational function they are
performing from moment to moment.
In summary, the core computational principles that motivated our

choice of modeling framework for SCRI were: competition, dynam-
ics, normalization, and functional transparency. This led us to adopt
as our starting point the competitive interaction (CI) model (Smith et
al., 2015; Smith & Sewell, 2013). Though not a neural model, CI is

based on the idea that selection involves integration of dynamic
“where” and “what” information (Smith, 1995), thus transparently
representing the same types of localization and identification signals
that converge on FEF. These information streams drive CIs between
representations of different regions of the visual field, and CI
describes the dynamics by which this competition plays out. The
result is a type of selection that, at least when certain competitive
mechanisms are engaged, yields a form of normalization (Grossberg,
1980; Smith et al., 2015). The CI model framework allows for
exploration of a wide variety of CIs, providing a way for us to
explore the relative importance of these mechanisms in accounting for
FEF visual neuron spiking dynamics. Further, the CI model includes
recurrent interactions between stimulus localization and stimulus
identification, offering an opportunity to explore the importance of
feedback processes in shaping FEF visual neuron spiking. Hence, the
CI model framework offers a unique capacity to gain insights into the
information processing dynamics of prefrontal visual neurons and the
computational processes they embody in the context of visual search.

Overview

In the remainder of this article, we develop SCRI as an adaptation
and extension of the CI model. We show that SCRI provides an
accurate quantitative account of the millisecond-by-millisecond
spiking of individual and idiosyncratic FEF visual neurons during
visual search. Of the competitive mechanisms in SCRI, we find that
feedforward inhibition is particularly important for explaining FEF
visual neuron dynamics. This is the samemechanism that is required
for SCRI’s dynamics to yield normalization (Grossberg, 1980;
Smith et al., 2015), underlining the importance of this principle
for visual processing and attention (Carandini & Heeger, 2012;
Reynolds & Heeger, 2009). SCRI also illustrates that the character-
istic dynamics of FEF visual neurons are due in part to their role as
attention-like recurrent gates, whereby greater FEF visual neuron
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Figure 3
Typical Responses of Visual Neurons in Frontal Eye Fields
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Note. (A) An example of a visual search array, with the receptive fields of two visually selective neurons in Frontal Eye Fields (FEF) indicated by
the dashed circles. (B) Examples of the canonical response profiles for those neurons, depending on whether the object in their receptive field is a
target or distractor. In phase 1, the neuron remains at its prearray baseline spike rate. In phase 2, the neuron increases its firing rate in response to the
presence of any kind of object in its receptive field (RF). In phase 3, the neuron’s spiking activity evolves such that it has a higher firing rate when a
target is in its RF relative to a distractor. See the online article for the color version of this figure.
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spiking activity is associated with faster uptake of information
within their RF. Mirroring the diversity of FEF neuron dynamics
(Lowe & Schall, 2018), different SCRI mechanisms are more
prominent in different neurons. In addition to a distinction between
neurons that do or do not act as recurrent gates, we distinguished
neurons by the degree to which they rely on lateral inhibition and not
just feedforward inhibition.
We demonstrate the validity of SCRI as a model of evidence

generation by showing that simulated FEF visual neuron spiking
activity from SCRI drives the GAMevidence accumulation process to
accurately reproduce the quantitative details of saccade response times
as well as properties of FEF movement neuron dynamics. GAM fits
behavior and neural dynamics just as well using simulated input from
SCRI as it did using input derived from actual FEF visual neurons. By
“closing the loop” from stimulus to target selection to saccade, SCRI
represents a major advance in the theory of visual processing. SCRI
explains the computational role of FEF neurons engaged in visual
search, how this role is realized by individual neurons, and how these
neurons generate evidence that is accumulated for making decisions
about where to move the eyes. This advance demonstrates the
scientific utility of model-based cognitive neuroscience, a symbiotic
relationship whereby cognitive modeling acts as a bridge between
behavior and its neural underpinnings (Logan et al., 2015; Palmeri,
2014; Turner et al., 2017; Wiecki et al., 2015).

Salience by Competitive and Recurrent Interactions

SCRI takes as its starting point the Smith and Sewell CI model,
which describes the dynamics of information processing involved in
visual selection and attention (Smith, 1995; Smith et al., 2015;
Smith & Ratcliff, 2009; Smith & Sewell, 2013). We first give a
conceptual overview of SCRI before describing its technical imple-
mentation. In subsequent sections, we demonstrate the fit of SCRI to
the spiking of individual FEF visual neurons; perform model
comparisons to determine which features of SCRI are most impor-
tant for explaining FEF visual neuron spiking activity; and finally,
use SCRI to generate evidence that is accumulated by the GAM
model of FEF movement neurons to reproduce saccade response
times in visual search.

Conceptual Overview

The dynamics of SCRI are governed by a set of excitatory signals
and inhibitory interactions (Figure 4). Two excitatory signals are
involved: A transient localization signal indicates the appearance of
an object at a location in the visual field but provides no information
about the identity or relevance of that object. A sustained identifi-
cation signal indicates the degree to which an object at a location is
relevant for the task, that is, possesses features similar to those of the
visual search target. These two signals loosely correspond to the
“where” (localization) and “what” (identification) streams in visual
processing that converge in FEF (Schall, Morel, et al., 1995). The
localization signal likely arises from rapid dorsal stream areas like
the middle temporal (MT) visual area while the identification signal
originates from slower ventral-stream areas like V4, TEO, and TE,
and possibly also prefrontal areas receiving temporal lobe inputs
(Bichot et al., 2015).
In SCRI, each FEF visual neuron is excited by the localization and

identification signals from input units with corresponding RF

locations. FEF visual neurons with nonoverlapping RFs then compete
with one another to represent the relative salience of objects across the
search array, thereby acting to select regions most likely to contain
conspicuous search targets. This competition is resolved through
different types of inhibitory interactions. Inhibitory interactions are of
two basic types: feedforward and lateral. Feedforward inhibition
occurs when, in addition to exciting FEF neurons with an overlapping
RF, the localization and/or identification signals also inhibit neurons
with nonoverlapping RFs. Lateral inhibition occurs between FEF
visual neurons with nonoverlapping RFs and between units repre-
senting the identification signals with nonoverlapping RFs.

Excitation and inhibition interact in a nonlinear manner to drive
FEF visual neuron dynamics according to what are called “shunt-
ing” equations (Grossberg, 1980). These are described in detail
below, but the resulting dynamics have two key properties: First, the
degree to which an FEF visual neuron is excited depends on how far
the neuron is from saturation; second, the degree to which an FEF
visual neuron is inhibited depends on the current level of activation
of the neuron. Taken together, these two properties keep the spiking
activity of the neuron within a bounded range and, as illustrated by
Smith et al. (2015), give rise to asymptotic states that represent a
form of normalization (Carandini & Heeger, 2012; Heeger, 1992;
Reynolds & Heeger, 2009).

In addition, SCRI includes recurrent connections from FEF visual
neurons to identification units, which represent the sources of the
identification signals for different RFs. The choice of the term
“unit,” in contrast to “neuron,” indicates that we are agnostic about
whether these identification signals arise from individual neurons or
from a pool of neurons. The maximum level of activity for an
identification unit is determined by the similarity between the object
in that unit’s RF and a representation of the search target. The rate at
which an identification unit grows toward this level is governed by
the level of activity of FEF visual neurons with the same RF. This
recurrent interaction is implemented as a multiplicative gate—the
more active the FEF visual neuron, the faster its afferent identifica-
tion unit will approach its asymptote. Because the initial excitation
of FEF visual neurons comes from a localization signal indicating
the presence of an object but not its identity, recurrent gating of the
identification units by FEF visual neurons essentially says that
specifying what an object is cannot happen before specifying where
it is. While recurrent gating helps explain why FEF visual neurons
take time to distinguish between targets and distractors, SCRI also
allows for an additional delay in the time at which identification
information becomes available to FEF.

Comparing SCRI and CI

SCRI and the CI model share the same core computational
principles. Both CI and SCRI describe the dynamic integration
of two types of signal: A transient localization signal that indicates
the presence of an object in an RF; and a sustained identification
signal that is sensitive to the feature values of the object in an RF.
Both CI and SCRI describe how representations of different regions
in the visual field compete with one another for selection via both
feedforward and lateral inhibition. In both CI and SCRI, excitatory
and inhibitory interactions take place within systems of nonlinear
“shunting” dynamics. Finally, both CI and SCRI assume that there is
recurrent gating between the dynamically evolving representation of
a part of the visual field and the identification signal associated with
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that part of the visual field, essentially saying that the more strongly
an RF is selected, the more quickly information about the content of
that RF is accrued.
Most of the differences between CI and SCRI arise because SCRI

eschews many elements of the full CI model that were not directly
related to the localization and identification processes SCRI was
built to explain. CI includes mechanisms for self-excitation and a
visual short-term memory store that enable it to act as a general-
purpose “front end” for a variety of vision-based decisions, but these
mechanisms go beyond those needed by SCRI’s specific domains of
application at this time. The function of self-excitation in CI is to
maintain a representation of a briefly presented stimulus in the

absence of externally driven input; in addition, CI allows for
different forms of self-excitation depending on the nature of the
task. Neither of these considerations is relevant to this formulation
of SCRI because monkeys produced speeded responses to displays
which remain visible. Likewise, a short-term memory is not neces-
sary for SCRI, at least in its current incarnation, because the tasks we
model here involve only the selection of a target and making a
saccade, and do not require memory over longer time spans or the
need to make more complex decisions. We consider more complex
situations, including the possibility of incorporating additional
mechanisms like those involved in self-excitation and short-term
memory, in the Discussion section.
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Figure 4
Joint SCRI-GAM Model of Frontal Eye Field (FEF) Neurons

Note. The task is visual search, with a target “T” among a field of distractors shaped like rotated “L”s. An initial transient localization signal (xi)
reflects the appearance of an object within a specific receptive field (RF) in a search display, and is equivalent for targets and distractors. The
localization signal excites FEF visual neurons (vi) with the same RF and sends feedforward inhibition (αx) to FEF visual neurons centered on other
RFs. FEF visual neuron activation represents the momentary degree of salience attached to the part of the visual field that falls within their RF. FEF
visual neurons receive a small amount of tonic excitation (b) and their spiking activity decays in the absence of additional excitation (λv). FEF visual
neurons laterally inhibit one another (βv). FEF visual neurons can act as recurrent multiplicative gates (when R = 1 ) to govern the rate at which a
sustained identification signal (zi) grows toward an asymptotic value which tends to be higher for targets than distractors. These identification units
are also subject to decay (λz) and laterally inhibit one another (βz). Identification units excite FEF visual neurons with the same RF and send
feedforward inhibition (αz) to neurons with different RFs. FEF visual neuron spiking activity that exceeds a threshold gate (g) excites FEF
movement unitsmiwith “movement fields” analogous to visual neurons’ RFs. These movement units are subject to decay (λm) and laterally inhibit
one another (βm). When a movement unit reaches a critical level of spiking activity (θ), a saccade is initiated to the unit’s movement field. SCRI =
salience by competitive and recurrent interactions; GAM = gated accumulator model. See the online article for the color version of this figure.
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The biggest difference between SCRI and CI is the nature of the
phenomena they are meant to explain. While CI is purely a cognitive
model, SCRI is a model of FEF visual neurons. It is therefore
interesting to note that SCRI provides an accurate account of the
spiking dynamics of individual FEF visual neurons while being
arguably simpler (in the sense of containing fewer mechanisms)
than the cognitive model on which it was based. As we shall see, the
success of SCRI is owed to the fact that it allows for an appropriate
level of complexity to account for neural spiking dynamics while still
affording a clear computational interpretation of what those neurons
are doing based on the mechanisms included in SCRI.

Implementation

We implemented SCRI as a system of differential equations with
terms corresponding to different excitatory, inhibitory, and recurrent
mechanisms. The dynamics of SCRI are described by a form of
“shunting” equation (Grossberg, 1980). Shunting equations are
differential equations with the following general form:

dy
dt

= ½S − yðtÞ$ × EðtÞ − yðtÞ × IðtÞ, (1)

where y(t) describes a dynamical variable that is a function of time t,
E(t) represents the total excitation at time t, I(t) represents the total
inhibition at time t, and S is a saturation point. The nonlinear
dynamics that result from shunting equations have two properties
that are useful for modeling neural spiking activity: First, the degree
to which a neuron is inhibited by incoming signals depends on the
current level of activity of that neuron, as reflected in the y(t) × I(t)
term in Equation 1. This ensures that spiking activity is never
negative. Second, the degree to which a neuron is excited by
incoming signals depends on how far its current level of activity
is from a saturation point, as reflected in the [S − y(t)] × E(t) term in
Equation 1. This limits the maximum possible spike rate.

Dynamical Equations

Wedivide the visual field intoNRFs corresponding to the potential
locations of search stimuli. For the present applications, N = 8

corresponding to the eight potential locations of search stimuli (for
set sizes smaller than eight, the empty RFs simply do not receive any
externally driven excitation).We denote the level of activation at time
t of an FEF visual neuron with RF centered on region i by vi(t). In
SCRI, the level of activation vi(t) represents the probability that the
neuron will generate a spike in the next millisecond following time t
(this scale was chosen because spiking activity was recorded at
millisecond resolution). Meanwhile, xi(t) describes the transient
localization signal for RF i and zi(t) describes the sustained identifi-
cation signal for RF i. The equations describing how these values
change over time in SCRI are as follows; the complete set of model
parameters and variables are summarized in Table A1:

xiðtÞ = χi,A × γðt; s, rÞ, (2)

(See above)
(See below)

In Equation 2, γ(t; s, r) is the density of a Gamma distribution with
shape s and rate r evaluated at time t, where the Gamma distribution
models the shape of the transient localization signal. SCRI is not
committed to the specific choice of the Gamma distribution; rather,
we use it as a simple way to describe a response profile that has a
single peak with a positive real domain (since no localization signal
is possible before time 0, the time of array onset). That said, the
Gamma distribution admits a ready mechanistic interpretation of its
parameters, where s can be thought of as the number of processing
stages interposed between array onset and the arrival of the locali-
zation signal at FEF, where each stage takes an exponentially
distributed amount of time with rate r. The time integral of this
same Gamma density—that is, a cumulative Gamma distribution
function—appears in Equation 4 as Γ[t; (1 + κ)s, r]. The integral
represents the fact that sustained identity information is available no
earlier than the localization signal (Smith, 1995), while the κ
parameter reflects a potential delay in the onset of identity informa-
tion relative to the localization signal. In mechanistic terms, κ can be
thought of as a proportional increase in the number of processing
stages beyond those reflected in the localization signal.

The dynamics of FEF visual neurons are described by the shunting
equation given in Equation 3 (Grossberg, 1980). Excitatory input is
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dvi
dt

= ½1 − viðtÞ$½b + xiðtÞ + ziðtÞ$ − viðtÞ

2

66666666666664

λv + αx
X

j≠i
xjðtÞ

zfflfflfflfflfflffl}|fflfflfflfflfflffl{

Localization
feedforward
inhibition

+ αz
X

j≠i
zjðtÞ

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Identification
feedforward
inhibition

+ βv
X

j≠i
σv,ijvjðtÞ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

FEF lateral
inhibition

3

77777777777775

, (3)

dzi
dt

= ½ηi,A − ziðtÞ$ vRi ðtÞ
zffl}|ffl{

Recurrent
gating

Γ½t; ð1 + κ⎵Þ s, r$

Identification
delay

− ziðtÞ

2

66666664

λz + βz
X

j≠i
σz,ijzjðtÞ

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

Identification
lateral inhibition

3

77777775

:(4)
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modulated by how far the neuron is from saturation, here reflected in
the 1− vi(t) term. The saturation point of 1 was a natural choice in the
present application of the model, in which we use SCRI to model the
probability of a neuron generating a spike within 1 ms intervals (this
is the maximum recording resolution). As a result, we can interpret
vi(t) as the probability of generating a spike in the next millisecond. In
general, however, vi(t) can be thought of as the rate of a time-
inhomogeneous Poisson process that generates spikes. Excitation of
FEF visual neurons is the sum of the transient localization (xi(t)) and
sustained identification signals (zi(t)) in their RFs, as well as a
background level of excitation b that affects the baseline firing
rate of the neuron. Inhibition, modulated by the neuron’s current
level of activity (vi(t)), is the sum of feedforward inhibition due to
localization and identification signals from other RFs, as well as
lateral inhibition from other FEF visual neurons centered on other
RFs. Lateral inhibition has a spatial distribution such that neurons
with nearby RFs inhibit one another more strongly than neurons with
more distant RFs. The degree to which FEF visual neurons i and j
laterally inhibit one another is σv,ij, which in turn is defined by
Equation 5 below. Finally, there is a constant decay term λv.
Identification units (Equation 4) have their own shunting dynam-

ics. They are subject to a decay term (λz) as well as lateral inhibition,
both of which are modulated by the current level of activity in the unit
(zi(t)). As with FEF visual neurons, the lateral inhibition between
identification units is spatially distributed with the degree of inhibi-
tion between units i and j denoted as σz,ij, which in turn is defined by
Equation 6. Identification unit activity grows toward a saturation
point defined by the degree to which the object in their RF in visual
search display A matches the search target (ηi,A). Generally, ηi,A is
higher for targets than distractors. Among distractors, ηi,A would be
higher the more similar the distractor is to the target. As noted above,
the degree to which this match information is available at time t is
represented by the cumulative distribution function Γ[t; (1 + κ)s, r].
Identification unit excitation is also modulated by the level of FEF

visual neuron activity in their RF, that is, vi(t). For model compari-
son purposes, this role of FEF visual neurons as a “recurrent gate”
for identification information can be turned “on” or “off” in SCRI
according to the indicator variable R that appears as an exponent in
Equation 4. If SCRI allows recurrence, R = 1, and if not, R = 0;
because any number to the zeroth power is 1, setting R = 0 has the
effect of removing the vi(t) term from Equation 4. Note that, even if
recurrence is not allowed, the growth of identification information is
constrained by the Γ[t; (1+ κ)s, r] term, which still allows for a delay
in the onset of identification information relative to localization via
the κ parameter. It is just that, in a nonrecurrent model, this delay is
not causally related to FEF visual neuron activity.

Phases of the Canonical FEF Visual Neuron Response

The three phases of the canonical FEF visual neuron response
(Figure 3) map onto the different sources of excitation in SCRI.
Activity during the initial phase is driven only by background
excitation (b). Activity during the second phase is driven by the
transient localization signal (xi(t)). Activity during the final phase is
driven by the sustained identification signal (zi(t)). However,
because the rate at which identification units accrue information
about an object in a particular RF depends on the level of activity of
FEF visual neurons with that same RF, the third phase is not
necessarily independent of the second phase.

Representing Different Receptive Fields

All search arrays in the studies we model present stimuli on the
radius of a circle centered around an initial fixation point such that
stimuli could appear in one of eight possible locations. Arrays of
different set sizes always presented stimuli as equally spaced around
this circle, such that, for example, a display of set size two would
have two stimuli on opposite sides of the circle. By convention, we
label the eight locations sequentially in clockwise manner from the
topmost position (which is position 1). Further, we align all displays
such that the target is at position 1 and all other positions contain
either a distractor or no object at all.

Specifying Visual Inputs

Specifying the inputs depends on the configuration of the search
array A that is provided to the subject. For each search array A we
specify the χi,A and ηi,A according to whether each location i ϵ 1 : : : N
contains a stimulus and, if so, whether it is a target or distractor.
As noted above, the maximum size of search arrays for data modeled
in this article is eight, so we fixed N = 8 for all arrays. Then, for
example, an array of set size 2 with a target at location 1 and a
distractor at location 5 (where locations are numbered sequentially in
a clockwise manner, so the distractor is exactly opposite the target)
would be specified by setting χ1,A = χ5,A = ι, χ2,A = χ3,A = χ4,A =
χ6,A= χ7,A= χ8,A= 0, η1,A= μT, η5,A= μD, and η2,A= η3,A= η4,A=
η6,A = η7,A = η8,A = 0. As summarized in Table A1, ι is the total
stimulation provided by the presence of a stimulus, μT is the match
value provided by a target, and μD is the match value provided by a
distractor. Because the match value represents the degree of similarity
between an object and a search target, μT ≥ μD. Moreover, increasing
the similarity between a distractor and the search target would increase
μD (below, we denote the match for a high-similarity distractor μDH).
By specifying inputs this way, it is possible to provide the model with
all search array configurations examined in this article.

Modeling Spatial Effects

To allow for the possibility that lateral inhibition either among
FEF visual neurons or between identification units has a spatial
component, such that neurons with closer RFs engage in stronger
lateral inhibition, we introduce two parameters: ρv and ρz. We
assume that lateral inhibition is distributed in a Gaussian manner
such that the strength of inhibition between neurons centered on
region i and those centered on region j depends on the Euclidean
distance between the centers of those regions, dij:

σv,ij = exp
"
−

d2ij
2ρ2v

#
, (5)

σz,ij = exp
"
−

d2ij
2ρ2z

#
: (6)

By convention, we compute distances using standardized units
where the radius of the search array equals one. Thus, since the
regions we model all lie along the circumference of a circle with
radius one, their distances are a function of their relative angles from
the center of that circle (where ϕi and ϕj are the angles of i and j
relative to vertical orientation), that is,
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dij = 2 sin
jϕi − ϕjj

2
: (7)

The SCRI Account of FEF Visual Neuron Spiking

In this section, we fit SCRI to spiking activity recorded from FEF
visual neurons during visual search. First, we evaluate how well
SCRI accounts for the dynamics of FEF visual neurons and how
they vary with manipulations of set size and similarity, both in
aggregate and at the level of individual neurons. Being able to
account for the idiosyncratic dynamics of individual neurons using
the same set of mechanisms represents a distinct advance over
previous models that, at best, reproduce average or curated spiking
activity patterns (Dominey & Arbib, 1992; Hamker, 2005; Heinzle
et al., 2007; Mitchell & Zipser, 2003). In addition to fitting the full
version of SCRI to these data, we fit a wide variety of restricted
versions of SCRI that systematically excise different combinations
of interactive mechanisms from the model. The aim of this is
twofold: First, by identifying the combination of SCRI parameters
that best balance fit against complexity for each neuron, the variation
across neurons can be understood in terms of the relative promi-
nence of SCRI mechanisms. Second, by identifying the combination
of SCRI parameters that best balances fit against complexity for the
entire set of neurons, we can determine which SCRI mechanisms
explain the major features of FEF visual neuron dynamics and how
they are affected by manipulations of search difficulty. Appendix B
provides example illustrations of how each of SCRI’s competitive
and recurrent interaction mechanisms manifest in its predictions of
FEF visual neuron dynamics. The complete set of fitted parameter
values for each SCRI variant to each neuron may be found at https://
osf.io/wtch4/ (Cox et al., 2022).

Data

SCRI was evaluated using recordings of spiking activity of
individual visual neurons from the FEF of macaque monkeys
performing visual search tasks (Cohen et al., 2009; Sato et al.,
2001). The search tasks involved manipulations of set size and
similarity, which have important consequences for both behavior
and neural dynamics. These manipulations reveal the contributions
of different parameters of SCRI to neural dynamics. More crucially,
the spiking activity of visual neurons in this data set has been used to
generate input to the GAM model of FEF movement neuron
evidence accumulation (Purcell et al., 2010, 2012). Hence, the
neurons fit by SCRI are those that generate evidence for saccade
decisions.

Subjects

FEF visual neuron spiking activity and saccade behavior were
recorded from five adult male macaques (Macaca mulatta and
Macaca radiata) surgically implanted with head post, subconjunc-
tival eye coil, and recording chambers. Neural spiking activity was
recorded from the rostral bank of the arcuate sulcus using insulated
tungsten microelectrodes. All procedures were conducted in accor-
dance with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals and were approved by the Vanderbilt
Institutional Animal Care and Use Committee.

Procedure

Each session recorded neural spiking during a visual search task
and a memory-guided-saccade task. Neural spiking during the
memory-guided saccade task was used to identify whether the
neuron recorded that session was sensitive to visual stimuli, saccade
preparation, or both (C. J. Bruce & Goldberg, 1985).

The visual search task for each monkey had the same basic
structure. Each trial began when the monkey fixated a central spot
for approximately 600 ms. A search array then appeared containing a
target at one of eight locations of equal eccentricity from the fixation
point; the other seven locations contained either a distractor or no
stimulus (e.g., Figure 1A, B). For each set size, stimuli in the array
were equally spaced along the perimeter of the array, as illustrated in
Figure 1A). Monkeys were rewarded for shifting gaze to the target in
the array and fixating it for 1,000 ms. The features distinguishing the
target and distractors were varied by session.

Manipulations of Search Difficulty

Set size manipulations (Cohen et al., 2009) were recorded from two
monkeys (Q, 40 visual neurons; and S, 19 neurons) that engaged in a
form search for either a rotated “T”- or “L”-shaped target (varying
between sessions) among 1, 3, or 7 rotated “T”- or “L”-shaped
distractors (Figure 1A). Similarity manipulations (Sato et al., 2001)
were recorded from three monkeys (F, 18 visual neurons;
L, 5 neurons; and M, 12 neurons) during singleton search for a target
distinguished by color or motion (Figure 1B). Monkey F engaged in
color search for either a green or red target (varying between sessions)
among seven distractors that were either similar (“hard” condition) or
dissimilar in color to the target (“easy” condition).Monkey L engaged
in motion search for a target that was either a leftward- or rightward-
moving random dot kinematogram (varying between sessions) among
seven distractor kinematograms moving in the opposite direction. In
“easy” motion search, the dots in each kinematogram moved with
100% coherence. In “hard” motion search, each kinematogram had
50%–60% coherence. Monkey M engaged in both color and motion
search, which we distinguish using the labels MC for color search (six
neurons) and MM for motion search (six neurons).

Fitting Procedure

Neural spiking was recorded at millisecond resolution and stored
as a binary vector of spikes across time. For each trial from each
neuron, we fit SCRI to the spiking activity recorded between the
presentation of the search array (denoted time t = 0) and the
initiation of the gaze shift. Only trials with saccades to the search
target were used.

For each of the 94 FEF visual neurons, we found SCRI parameters
that maximized the likelihood of the spiking observed from that
neuron.2 For eachmillisecond time window t in each condition k (i.e.,
each level of set size or target/distractor similarity) recorded from
neuron j, we tabulated the number of trials on which that neuron
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2 We assumed that the same SCRI parameters that describe the recorded
neuron also describe the other—unobserved—neurons and units with dif-
ferent RFs that interact with the recorded neuron. While this is clearly a
simplification, it is consistent with the neuron–antineuron approach that
underlies comparisons of spiking activity from the same neuron in different
conditions (Britten et al., 1992; Thompson et al., 1996).
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produced a spike in that millisecond (Sjk(t)) as well as the total number
of trials for which that neuron was observed in that condition during
that millisecond (Njk(t)). Because we truncated observations at the
initiation of the gaze shift, Njk(t) decreases with t as it gets more and
more likely that the monkey had made their saccade by that time.
Given this representation of the neural data, the quantity to be
maximized when fitting neuron j was the binomial log-likelihood
across all times t and conditions k recorded from neuron j

LLj =
X

k

X

t

log Binomial½SjkðtÞ; vjkðtÞ,NjkðtÞ$, (8)

where vjk(t) is the level of activation of neuron j in condition k at time
t according to SCRI (Equation 3). To find vjk(t), we solved the
system of differential equations defining SCRI numerically via
backward differentiation. We used a combination of gradient
descent methods including several random initial starting points
to ensure convergence of SCRI parameters for each neuron that were
likely to be at a global maximum.
Due to the nature of the different experimental manipulations,

different parameters were estimated for different neurons. These
differences reflect both the nature of the manipulations as well as
whether a given parameter could be uniquely identified from the
conditions observed. For neurons recorded during a similarity manip-
ulation, we estimated different match values for the identification
signal for hard and easy distractors in each condition. In addition,
because the motion search similarity manipulation involved changing
the target as well as distractor stimuli, we estimated different match
values of the identification signal for the target in hard and easy
motion search conditions. The similarity manipulation did not affect
the spatial layout or number of objects in the search array, meaning
that parameters that are only sensitive to these features of the task
would not be identifiable for these neurons. These parameters pertain
to localization-based feedforward inhibition (αx, which is sensitive
only to the number of objects in the array) and the spatial distribution
of lateral inhibition (ρv and ρz). As a result, these three parameters
were fixed for neurons recorded under similarity manipulations
(specifically, we set αx = 0 and ρv = ρz = ∞ for these neurons,
thereby “turning off” the corresponding SCRI mechanisms).

Model Fit

SCRI reproduces the canonical form of FEF visual neural responses
(Figure 1C,D): An initial peak of spiking activity that is equivalent for
targets and distractors which later settles into an asymptotic phase in
which targets have higher activity than distractors. SCRI captures the
qualitative effects of set size and similarity on FEF visual neuron
spiking activity (see Appendix D for details on how we quantified
these qualitative measures): As documented by Cohen et al. (2009),
increasing set size results in lower peak spiking rates for SCRI
(Wilcoxon signed-rank tests for set sizes 2 vs. 4, 2 vs. 8, and 4 vs.
8 yieldW = 313,W = 155, andW = 151, respectively, all p < .0001)
and decreased separation between asymptotic target and distractor
activity (set sizes 2 vs. 4,W= 189; 2 vs. 8,W= 97; 4 vs. 8,W= 94; all
p ≈ 0) as well as longer TST (set sizes 2 vs. 4,W = 700; 2 vs. 8,W =
628; 4 vs. 8,W= 675.5; all p≈ 0; Figure 1C). As documented by Sato
et al. (2001) and Sato and Schall (2003), target-distractor similarity
results in higher asymptotic distractor spiking (W= 606, p≈ 0), lower
asymptotic target activity (W = 0, p ≈ 0), and longer TST (W = 740,

p ≈ 0; Figure 1D). In addition to reproducing these population-
level qualitative effects, SCRI accounts for the quantitative de-
tails of idiosyncratic dynamics of individual neurons (Figure 5).
Across neurons, SCRI accounts for a median of 91% of the
variance (10th percentile: 72%, 90th percentile: 96%) in the
observed spike density functions.

Accounting for Diversity of FEF Visual Neurons

While it is clear that SCRI can explain both qualitative and
quantitative features of FEF visual neuron dynamics during target
selection, it is not necessarily clear how it does so. Inspection of the
best-fitting SCRI parameters, summarized in Table 1, gives a sense of
the relative magnitude of different SCRI parameters representing
different mechanisms. Some of these parameters can be readily
interpreted. For example, the localization signal for color and motion
stimuli appears to peak earlier and more sharply than for the
comparatively more complex form stimuli used for set size manip-
ulations. In addition, under similarity manipulations, high-similarity
distractors are associatedwith comparatively higher degrees ofmatch
to the target. However, it is difficult to directly interpret the values of
parameters related to SCRI’s interactive mechanisms because, by
their nature, they do not operate in isolation.

Therefore, to get a better understanding of the relative importance
of different SCRI mechanisms for accounting for FEF visual neuron
dynamics, we systematically eliminated SCRI mechanisms both
individually and in combination (by fixing their corresponding
parameters) and fit the resulting simplified versions of SCRI to
each neuron. Afterward, we used the Akaike information criterion
(AIC; Akaike, 1974) to select, for each neuron, the combination of
SCRI mechanisms that were sufficient for balancing fit against
complexity. The choice of AIC as a selection criterion was motivated
by our desire to find a set of mechanisms that were jointly sufficient
for reproducing the quantitative details of FEF visual neuron spiking
activity. Accordingly, we make no claims that AIC (or any other
selection criterion) necessarily selects a “true” model, just a model
with a minimal set of parameters that does not sacrifice quality of fit
(the Bayesian information criterion [BIC], for example, would be
more likely to sacrifice quality of fit because it imposes a stronger
penalty on the number of free parameters; Schwarz, 1978).Moreover,
given that each neuron contributes a large number of observations,
AIC is a good approximation to the widely used leave-one-out cross-
validation criterion, which selects for models that can better predict
future data from the same set of conditions (Stone, 1977).

SCRI Variant Parameters

All variants of SCRI shared a core set of eight parameters: A
baseline level of tonic excitation (b), the total amount of stimulation
provided by stimulus onset (ι), the degree of match between an
(easy) search target and a target stimulus (μT), the degree of match
between an (easy) search target and a distractor stimulus (μD), the
shape (s) and rate (r) of the Gamma density describing the transient
excitation from stimulus onset, the rate at which FEF visual neuron
spiking activity decays over time (λv), and the rate at which
identification-unit activity decays over time (λz).

Set Size. For neurons recorded under manipulation of set size
(Q, 40 neurons; S, 19), we fit 144 SCRI variants. The variants were
defined by either fixing at 0 or allowing to vary parameters for
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Figure 5
SCRI Mechanisms Selected by AIC for Each Neuron
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Note. Each column represents the minimal set ofmechanisms needed to account for each neuron’s spiking pattern. The presence of a bar indicates that
the mechanismwas included in the set. If a bar is not present, the parameter corresponding to that mechanism is fixed at zero in the AIC-preferred set. A
small open square indicates a mechanism that was not applicable to that neuron, either because it represents an experimental manipulation not
performed with that neuron (similarity parameters for neurons recorded under set size manipulations) or because that mechanism was not identifiable
given the conditions recorded from that neuron (localization-based feedforward inhibition and spatial distributions for neurons recorded under similarity
manipulations). Mechanism labels are colored corresponding to the colors depicting that mechanism in Figure 3. A dendrogram constructed by
hierarchical agglomerative clustering based on the AIC-selected mechanisms for each neuron broadly divides neurons into three groups. Below are fits
of the full SCRI model to representative neurons (one recorded under set size manipulations, one recorded under similarity manipulations) from each of
the three groups. As in Figure 4, for visualization purposes, predicted and observed spike rates were convolved with a kernel representing postsynaptic
response (Thompson et al., 1996). Shaded regions depict 95% confidence intervals about the mean. SCRI = salience by competitive and recurrent
interactions; AIC = Akaike information criterion. See the online article for the color version of this figure.
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localization feedforward inhibition (αx), identification feedforward
inhibition (αz), FEF visual neuron lateral inhibition (βv),
identification-unit lateral inhibition (βz), and delayed onset of
identification information (κ). In addition, for model variants
with lateral inhibition, we fit versions with and without a parameter
governing the spatial distribution of lateral inhibition (ρv for FEF
visual lateral inhibition and ρz for identification lateral inhibition).
For model variants without a spatial component, it was assumed that
all neurons inhibited one another equally regardless of the distance
between their RFs, that is, ρ = ∞.
Similarity. For neurons recorded under manipulation of target/

distractor similarity (F, 18 neurons; L, 5;M, 6 during color search and
6 during motion search), we fit 64 SCRI variants for color search and
128 for motion search. These variants were defined by different
combinations of parameters than for set size. This is partially a
consequence of the fact that, as noted above, without a set size
manipulation it was not possible to uniquely identify either the spatial
extent of lateral inhibition (since this would trade-off with the overall
level of lateral inhibition) or the presence of localization feedforward
inhibition (since this would trade-off with the total amount of
localization stimulation). Other forms of inhibition are identifiable,
however, because the similarity manipulation affects the degree to
which items match the search target. The variants were defined by
fixing at zero or allowing to vary parameters for identification-based
feedforward inhibition (αz), FEF visual neuron lateral inhibition (βv),
identification-unit lateral inhibition (βz), identification information
delay (κ), and a potentially different (higher) distractor match in the

hard condition (μDH > μD). In addition, for neurons recorded during
motion search, we fit model variants with a different (lower) match for
targets in the hard condition (μTH < μT) since the similarity manipu-
lation in motion search involved adjusting the motion coherence of
both target and distractor stimuli.

Selection Criterion

Selection of the SCRI variant that achieved a satisfactory balance
between quality of fit and complexity was based on the AIC
(Akaike, 1974), defined for model variant m fit to neuron j as

AICjm = −2 × LLjm + 2 × Pjm,

where Pjm is the number of free parameters of modelm fit to neuron j
and LLjm is the summed log-likelihood as defined above (Equation 8).

Results

Different neurons more strongly exhibit different combinations of
mechanisms, mirroring the diversity in the spiking dynamics of the
neurons themselves (Figure 5). To understand the variability
between neurons in terms of SCRI mechanisms, we clustered
neurons based on their AIC-preferred mechanisms. Clustering
was done using hierarchical agglomerative clustering based on
“complete linkage.” Each branch in the resulting dendrogram con-
nects the two most similar clusters of neurons, where similarity is
based on the maximum distance between each pair of neurons in
each cluster. Distance between any two neurons i and j was
calculated based on NCommon(i, j), the number of mechanisms,
out of the 10 allowed to be present or absent, which were included
in the AIC-preferred SCRI variant for both neurons. Because not all
of the 10 varied mechanisms could apply to all neurons (e.g., set size
neurons did not allow for parameters representing different levels of
target-distractor similarity), the number of shared mechanisms was
divided by NPossible(i, j), the number of possible shared mechanisms
between neurons i and j. For example, if neuron iwas recorded from
a set size manipulation while neuron j was recorded from a color-
similarity manipulation, NPossible(i, j) = 5 (for recurrent gating,
identification onset delay, identification-based feedforward inhibi-
tion, FEF lateral inhibition, and identification lateral inhibition).
This yields a similarity value between 0 and 1, and the distance is
just one minus this value:

distanceði, jÞ = 1 −
NCommonði, jÞ
NPossibleði, jÞ

: (9)

As shown in Figure 5, neurons cluster into three major groups
based on which combination of SCRI mechanisms are most impor-
tant for explaining their spiking dynamics. All groups contain
neurons recorded under both set size and similarity manipulations,
demonstrating that differences between neurons are not merely due
to different measurement conditions. The groups differ primarily in
two ways: the prevalence of recurrent gating and the presence of
lateral inhibition between identification units. Only 2 out of 30
neurons in Group 1 act as recurrent gates, all 43 neurons in Group 2
act as recurrent gates, and Group 3 contains an even mix of neurons
that do (10/21) and do not (11/21) act as recurrent gates (Kruskal–
Wallis test comparing mean AIC weight for recurrence
between groups, χ22 = 40.2, p ≈ 0). All neurons in Group 3 exhibit
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Table 1
Median Best-Fitting SCRI Parameter Values (See Table A1 for
Definitions)

Parameter All Set size

Similarity

Color Motion

b 0.0017 0.0021 0.0006 0.0008
ι 0.1240 0.1830 0.0516 0.0366
ωp 81.0 110.0 66.9 40.1
ωs 13.20 18.80 2.75 2.37
λv 0.0541 0.0712 0.0533 0.0347
λz 0.3760 0.6100 0.2490 0.0247
μT 0.0332 0.0221 0.1460 0.0083
μTH — — — 0.0033
μD
μT

0.464 0.401 0.726 0.394
μDH
μTH

— — 0.882 0.608
αx — 0.0065 — —
αz 0.0675 0.0035 0.8350 0.1990
βv 0.0621 0.5880 0.0095 0.0043
βz 0.5980 0.6040 0.7240 0.0275
ρv — 0.368 — —
ρz — 2.37 — —
κ 0.197 0.000 0.281 0.561

Note. Empty cells (—) indicate parameters that were not applicable or
identifiable depending on the experimental manipulation. Note that match
values for distractors are given in terms of the ratio of their match to that of a
corresponding target (i.e., μDμT and μDH

μTH
). In addition, the shape s and rate r of

the Gamma distribution used to model the localization signal are transformed
for interpretability into the peak (mode; ωp) and spread (standard deviation;
ωs) of the distribution, which are measured in milliseconds after array onset.

Specifically, r = ωp+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
p + 4ω2

s

p
2ω2

s
and s= 1+ωpr. SCRI= salience by competitive

and recurrent interactions.
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identification-based lateral inhibition, but only 4/43 neurons in
Group 2 and none in Group 1 do (Kruskal–Wallis test comparing
mean AIC weight for identification lateral inhibition between
groups, χ22 = 51.4, p ≈ 0). Otherwise, the groups represent similar
prevalence for other mechanisms, with no significant differences in
AIC weights between groups (based on Kruskal–Wallis tests with
a Bonferroni-corrected significance level of 0.005).
The differences in mechanisms between groups of neurons have

consequences for their dynamics. Neurons in Group 1 show a weaker
effect of target-distractor similarity on model TST than neurons in
Group 2 (Wilcoxon signed-rank test for TST in easy vs. hard similarity
yields W = 20, p = .06 for Group 1; W = 105, p = .001 for Group 2;
test not performed for Group 3 since it contains only two neurons
recorded under similarity manipulations). Neurons in Group 1 show a
weaker effect of increasing set size from 2 to 4 than neurons in Groups
2 or 3 (Group 1:W= 46, p= .06; Group 2:W= 78, p= .002; Group 3:
W = 102, p = .002), as well as a weaker effect of increasing set size
from 2 to 8 (Group 1: W = 57, p = .03; Group 2: W = 78, p = .003;
Group 3: W = 104, p = .001). Neurons in Group 3 show a stronger
effect of increasing set size from 4 to 8 than neurons in Groups 1 or 2
(Group 1: W = 51, p = .12; Group 2: W = 61, p = .09; Group 3:
W = 105, p = .001). Recurrent gating—only weakly exhibited in
Group 1—thus appears important for accounting for the relationship
between TST and search difficulty, though additional downstream
lateral inhibition (exhibited by Group 3) contributes as well.

Importance of Recurrence and Feedforward Inhibition

To determine what combination of model mechanisms is most
important overall, rather than for specific neurons or clusters of
neurons, we converted the AIC values for each individual neuron
into AICweights (Wagenmakers & Farrell, 2004), which sum to one
across all the SCRI variants fit to each neuron j:

Δjm = exp
%
−
1
2

"
AICjm −min

m
AICjm

#&
,

wAICjm =
ΔjmP
m
Δjm

,

where minmAICjm is the minimum AIC across all model variants m fit
to neuron j and wAICjm is the final AIC weight for model m fit to
neuron j. For each possible combination of SCRI mechanisms, we
found the average AIC weight for all SCRI variants containing that
combination across neurons.3 As shown in Figure 6, the set with the
highest averageAICweight includes recurrent gating and an additional
source of identification delay (κ). It also includes both feedforward
inhibition parameters (αx and αz) but neither lateral inhibition parame-
ter, suggesting that feedforward inhibition is more important than
lateral inhibition for explaining FEF visual neuron dynamics. This
restricted version of the model does not fit as well as the full version,
though the reduction in variance explained is small (median R2 for the
restricted model is 91%, 10th percentile 68%, 90th percentile 96%;
mean reduction in R2 relative to the full model is 0.8%).
Because the presence or absence of recurrent gating does not affect

the number of free parameters in the model, we can directly compare
the log-likelihood of observed neural spiking patterns under the
model with and without recurrent gating. Across neurons, the
summed log-likelihood for SCRI without recurrence (but otherwise

including all other mechanisms) is −450,048, while that for the full
model with recurrence is −447,762. The difference in log-likelihood
was 2,286, equivalent to an odds ratio of roughly 10993. This extreme
value is strong evidence that many FEF visual neurons act as
recurrent gates on visual identification circuits.

Interim Discussion

In this section, we showed that SCRI accounts for both qualitative
and quantitative details of FEF visual neuron spiking activity as they
select targets for visual search. SCRI accounts not just for the
population average or the typical neuron, but for the idiosyncratic
spiking dynamics of individual neurons. These idiosyncrasies can
be explained formally by the extent to which different neurons
exhibit different SCRI mechanisms, such as whether or not they
exhibit recurrent interactions and downstream lateral inhibition
between identification units. Across the full sample of neurons,
recurrent interactions were necessary for explaining FEF dynamics,
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Figure 6
Average AIC Weight (wAIC) Across All Neurons for Each Combi-
nation of SCRI Mechanisms
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Note. The bottom panel indicates the presence (filled) or absence (open) of
each mechanism. Colors for each box correspond to those used in Figure 3.
Combinations are ordered by their average AIC weight across neurons. Of all
576 possible combinations, the plot is restricted to those with the 20 highest
average AIC weights. AIC = Akaike information criterion; SCRI = salience
by competitive and recurrent interactions. See the online article for the color
version of this figure.

3 See Appendix G for alternative approaches to identifying preferred
aggregate models. These approaches involve summing raw AIC or BIC
values across neurons and lead to the same mechanisms being preferred, plus
lateral inhibition between FEF visual neurons (either with, for AIC, or
without, for BIC, a spatial distribution).
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as was feedforward inhibition. These explorations illustrate how
SCRI explains the effects of set size and similarity on the neural
dynamics of target selection in visual search.

Competition Explains Set Size Effects

Competitive mechanisms enable SCRI to explain set size effects.
With more objects in the search array, there is more feedforward
inhibition from both localization and identification. Though less
critical, there is also more lateral inhibition as more input flows into
FEF. Because of recurrent gating, increased competition has the
effect of delaying TST—if early competition leads to lower overall
FEF visual activity, this translates into slower uptake of identifica-
tion information.

Similarity Effects Arise From Both Competition
and the Identification Signal

For nearly all neurons recorded during color search, the pre-
ferred SCRI variant allowed the identification signal for distractors
to be higher in the hard than easy condition. The higher identifica-
tion signal for high-similarity distractors leads not just to higher
asymptotic FEF spiking activity to distractors, but to lower asymp-
totic FEF spiking activity for targets because they are subject to
more identification-based feedforward inhibition, and to a lesser
extent more lateral inhibition. The situation is somewhat more
complex in motion search, because the similarity manipulation
involved reducing the coherence of both target and distractor
stimuli. For a minority of neurons recorded in motion search,
the preferred model required only the distractor identification
signal to be sensitive to this manipulation. For most of the neurons,
the preferred model allowed the target identification signal to be
affected as well. This suggests that lower target activity in hard
motion search is due not just to increased competition, but to a
weaker match between a low-coherence motion patch and the
target motion direction.
The fact that SCRI produced a systematic difference in spiking

rate for low- versus high-similarity distractors independent of the
target representation offers an explanation of an earlier neurophysi-
ological observation that the response of neurons in FEF to dis-
tractors presented with no target still displayed activity that was
sensitive to the similarity of the distractors to the absent target (Sato
& Schall, 2003). FEF visual neurons exhibited significantly greater
asymptotic spiking when the array was comprised entirely of
distractors that were similar to the (absent) target, relative to
when the array was comprised of distractors that were dissimilar
to the target. Despite not being fitted to these data, the fits of SCRI to
neurons recorded under similarity manipulations reproduce exactly
this pattern of results, as shown in the simulation depicted in Figure 7.
The observation that a template of the absent target can still influence
the selection process in FEF also suggests that the neural instantiation
of SCRImechanisms does not varymuch if at all across trials within a
testing session. As we discuss below, further work can investigate
how the target selection process described by SCRI is influenced by
memory at long (Bichot et al., 1996; Lowe & Schall, 2019),
intermediate (Bichot & Schall, 1999), and shorter (Bichot &
Schall, 2002; Westerberg et al., 2020) time scales.

Simulated Neural Dynamics Predict Saccade Behavior

In the previous section, we showed that SCRI accounts for the
spiking dynamics of individual FEF visual neurons as they select
targets in visual search. In so doing, SCRI explains the dynamics of
the neurons that generate evidence guiding saccade decisions in this
task. As we noted, the very same neural activity that we fit in the
previous section was used to provide input to the GAM of saccade
decision-making. By accumulating the evidence generated by these
neurons, GAM predicted saccade RT distributions from the same
conditions in which the neurons in our data set were recorded
(Purcell et al., 2010, 2012). In this section, we close the loop and
replace the observed neural activity previously used to drive GAM
with simulated neural activity from SCRI. After summarizing GAM,
we show that the resulting combined model of evidence generation
(SCRI) and accumulation (GAM) reproduces the details of saccade
response time distributions, encompassing the entire set of processes
from stimulus to behavior.

Gated Accumulator Model

The accumulators in GAM are models of FEF movement neu-
rons.4 Each GAM accumulator is responsible for saccades to a
specific location in the visual field called its “movement field,” by
analogy to a visual neuron’s “receptive field.” When a GAM
accumulator reaches a threshold level of activity, a saccade is
initiated into its movement field. Each accumulator receives excit-
atory input in the form of neural spiking produced by multiple FEF
visual neurons with RFs corresponding to the accumulator’s
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Figure 7
Average Over Neurons of SCRI Spiking Rates on Simulated Trials in
Which No Target Was Present in the Search Array
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Note. For each neuron recorded under a similarity manipulation, we used
the fitted SCRI parameters to predict the neuron’s spiking dynamics on trials
without a target in both the easy (low target-distractor similarity) and hard
(high target-distractor similarity) conditions. Note that these simulations
represent an out-of-sample prediction of SCRI, since there were no target-
absent trials in the data to which SCRI was fit. SCRI = salience by
competitive and recurrent interactions.

4 As with our explorations of different variants of the full SCRI model,
Purcell et al. (2010) and Purcell et al. (2012) explored different variants of
GAM. Here, we employ only the GAM variant identified by that prior work
to best balance fit against complexity when evaluated against both behavioral
measures and properties of FEF movement neuron dynamics.
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movement field. The total amount of input must exceed a minimum
value before it is accumulated. This minimum acts as a threshold
“gate” that prevents accumulation of weak, noisy inputs. Accumu-
lators inhibit one another via lateral inhibition.

GAM Accumulator Dynamics

Accumulator dynamics in GAM are governed by:

dmi

dt
= −λmmiðtÞ + max½0, v∼iðtÞ − g$ − βm

X

j≠i
σm,ijmjðtÞ

+ εiðtÞ, (10)

miðtÞ = max½0,miðtÞ$,

where λm is a leakage parameter, g is a “gate” that specifies the
minimum input level needed to excite the accumulator, βm is
the total degree of lateral inhibition between accumulators, σm,ij
is the strength of lateral inhibition between accumulators centered
on locations i and j, and εi(t) is time-varying Gaussian noise with
mean zero and standard deviation ν

ffiffiffiffi
dt

p
. The max operator returns

the largest of its arguments, such that input that falls below the gate
level g provides no excitation to the accumulator and the activity of
accumulator units is constrained to be nonnegative. Similar to how
the spatial distribution of lateral inhibition was defined for SCRI, we
assume that the strength of lateral inhibition between GAM accu-
mulators i and j (σm,ij in Equation 10) is a Gaussian function of the
distance dij between the centers of their movement fields, parame-
terized by range parameter ρm:

σm,ij = exp
"
−

d2ij
2ρ2m

#
: (11)

Making a Saccade Decision

As soon as the activity of one of the accumulators exceeds a
threshold value θ, a saccade is initiated into the movement field of
that accumulator. In this way, the model simultaneously predicts
saccade direction (which unit was first to exceed threshold) and
saccade timing (how long it took for this unit to reach the threshold
value). The final predicted response time is the sum of the time taken
for the first accumulator to reach threshold plus a constant ballistic
interval of 15 ms to account for the time required for brainstem
circuits to produce the saccade (Scudder et al., 2002).

Results

To generate input to GAM from SCRI, we followed the procedure
used by Purcell et al. (2010, 2012) to convert FEF visual neuron
spiking activity into evidence signals to be accumulated by GAM
(see Figure 8 and Appendix E). For each simulated visual search trial
for a given monkey, we simulated activity for eight GAM accu-
mulators corresponding to the eight stimulus locations in the array,
even if a stimulus was not presented in all eight locations on that
trial. The inputs to each GAM accumulator were an average of spike
trains produced by SCRI fits to neurons from that monkey, simu-
lating the responses of FEF visual neurons to the stimulus (or lack
thereof) in the RF covered by the accumulator’s movement field in
that condition. The simulated gaze choice and response time on each

trial were determined by the first GAM accumulator to reach
threshold.

We found parameters for GAM to help it fit observed saccade RT
distributions (fitting methods are described in Appendix F while
parameter values are reported and discussed in Appendix H; note
that because GAM is a simulation model, these parameter values are
not “optimal,” but approximately yield a good fit). The predicted RT
distributions from GAM when driven by activity from our model
closely match those that were observed across conditions and
monkeys (Figure 9), reproducing the behavioral effects of similarity
and set size. The joint SCRI-GAMmodel explains between 87% and
99% of the variance in RT quantiles for each monkey, equivalent to
the best-fitting models that used observed spiking activity as inputs
to GAM (Purcell et al., 2010, 2012).

In addition, the dynamics of GAM accumulators using simulated
SCRI input reproduce the qualitative features of FEF movement
neuron dynamics, examples of which are shown in Figure 10. For
each simulated trial, we used the trajectory of the accumulator
associated with the target location to calculate measures of baseline,
the average level of accumulator activity prior to accumulation;
onset time, the time at which accumulator activity began to increase
beyond baseline; and growth rate, the average rate at which
accumulator activity increased from baseline to threshold (see
Appendix I for a detailed description of how these measures
were calculated). In observed FEF movement neurons, there is a
strong positive correlation between onset time and RT, a weaker
negative correlation between growth rate and RT, and a weak
negative or near-zero correlation between baseline and RT
(P. Pouget et al., 2011; Purcell et al., 2010, 2012; Purcell &
Palmeri, 2017; Woodman et al., 2008).5 GAM with SCRI-produced
input reproduces these features, just as it did when using input
derived from observed visual neuron spike trains. Across monkeys
and conditions, the mean Pearson correlation between onset time
and RT was r = 0.498, 95% CI [0.301, 0.694]; the mean Pearson
correlation between growth rate and RT was r = −0.356, 95% CI
[−0.598, −0.114]; and the mean Pearson correlation between
baseline and RT was r = −0.114, 95% CI [−0.229, −0.0002].

Taken together, these results illustrate that SCRI explains not just
the dynamics of individual FEF visual neurons, but their role in
generating the evidence that is accumulated to make saccade
decisions.

Discussion

We have presented SCRI, an account of target selection during
visual search and, when combined with GAM, saccade decision-
making in visual search. By accounting for the spiking dynamics of
FEF visual neurons, SCRI offers an explanation of their computa-
tional functions. SCRI is based on the CI model (Smith & Sewell,
2013), a cognitive model of visual selection. By adapting this model
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5 In studies of observed FEF movement neurons (e.g., P. Pouget et al.,
2011; Woodman et al., 2008), the threshold level of activity has also been
measured and found to be uncorrelated with RT (Hanes & Schall, 1996). In
GAM, the threshold is a parameter θ that does not vary from trial to trial and
so is, by definition, uncorrelated with RT. Even when threshold variability is
approximated by binning trials or measuring GAM accumulator activity over
a time window prior to responding (e.g., Purcell et al., 2010, 2012), this does
not result in any correlation between threshold and RT (Purcell & Palmeri,
2017).
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to offer a computational account of FEF visual neuron activity, we
identified the important role that these neurons play as recurrent
gates, jointly representing the degree of attention allocated to objects
in different parts of the visual field as well as their relevance in the
context of specific tasks (i.e., whether they could be search targets).
We also identified the importance of feedforward inhibition in
explaining the dynamics of target selection by FEF visual neurons.
With a limited set of mechanisms, SCRI accurately fits the idiosyn-
cratic diversity of spiking dynamics across FEF visual neurons as
well as the systematic effects of set size and target-distractor
similarity. Finally, we “closed the loop” by demonstrating that
simulated spiking derived from SCRI serves as evidence for the
GAM model of evidence accumulation to reproduce saccade
response time distributions.
It was not guaranteed a priori that a cognitively inspired model

motivated by computational principles and the basic organization of
the visual pathway would nonetheless account for the vast majority
of variance in spiking activity of FEF visual neurons. This surprising
success of SCRI mirrors the success of similarly cognitively inspired
evidence accumulation models like GAM in accounting for FEF
movement neuron dynamics (Purcell et al., 2010, 2012). These
successes demonstrate that accounting for how neurons represent
information (by their latent spike rates) and process it over time (via
recurrent and CIs) can go a long way toward understanding their
essential physiological characteristics. Conversely, the additional
constraints required to account for spiking rates of individual

neurons provide insights into the computational processes of vision
and decision-making that would not otherwise have been possible.

Dynamics of Salience

SCRI provides a perspective that unites many of the concepts that
have come to be described using the overloaded term “salience”
(Bisley & Mirpour, 2019; Fecteau & Munoz, 2006; Itti & Koch,
2000; Krüger et al., 2017; Parr & Friston, 2019; Scerra et al., 2019;
Thompson & Bichot, 2005; Zelinsky & Bisley, 2015). As described
by SCRI, salience is a dynamic property of the brain’s representation
of the visual environment that evolves over time as visual neurons in
FEF—in parallel with other brain regions like lateral intraparietal
area (Ipata et al., 2006; Meyers et al., 2018; Mirpour &Bisley, 2013;
Nishida et al., 2013; Ogawa&Komatsu, 2009; Steenrod et al., 2013;
Thomas & Paré, 2007) and superior colliculus (Lovejoy & Krauzlis,
2017; McPeek & Keller, 2002; Shen & Paré, 2007; White et al.,
2009, 2017)—receive and process information from different
sources (Glaser et al., 2020). Exogenous salience, as represented
by the transient localization signal, orients visual processing toward
specific regions of the visual field. For the FEF visual neurons that
act as recurrent gates, this early orienting signal enables faster
processing of the visual features in these regions, another sense
in which their activity represents a form of salience. This in turn
leads FEF visual neurons to evolve from an exogenously driven
representation of salience to one that is endogenously driven by the
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Figure 8
Pipeline From Observed Spiking Activity Through SCRI and GAM to Predicted Saccade Behavior

Observed spike trains from 
FEF visual neurons

Firing rates from model fit to 
each neuron

Simulated spike trains from 
model fit to each neuron

Simulated spike trains convolved 
with postsynaptic potential function

Simulated FEF visual neuron 
input to GAM GAM accumulator activation

Saccade to target

Note. The first column shows spikes observed from three FEF visual neurons when the target (blue) or distractor (red) appeared in the RF. Observed spiking
activity is used to fit parameters of SCRI which describes the latent spike rates of each neuron (second column). The SCRI spike rates are used to simulate
Poisson spike trains for each neuron with each RF for each condition (third column). To simulate the visual evidence available for accumulation by a particular
monkey in a particular visual search trial, we sampledmultiple simulated spike trains from the SCRI fits to neurons from that monkey corresponding to the RFs
and condition on that trial. Each simulated spike train was convolved with the postsynaptic response filter used in the original descriptions of these neurons
(fourth column). The input to each GAM accumulator was the average of the convolved spike trains from neurons with RFs corresponding to the
accumulator’s movement field, weighted by the inverse of the expected maximum spike rate for the neuron that generated the spike train (fifth column).
Response choice and time were determined when one of the GAM accumulators reached a threshold level of activity (sixth column). SCRI = salience by
competitive and recurrent interactions; GAM = gated accumulator model; FEF = frontal eye field; RF = receptive field. See the online article for the color
version of this figure.
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degree to which the features at each location match search targets.
Finally, because the activity of FEF visual neurons generates
evidence for accumulators that lead to saccade decisions, the
eventual representation maintained by FEF visual neurons becomes
one of “priority,” representing the behavioral relevance of objects in
different parts of the visual field (Bisley & Mirpour, 2019).

Recurrence and Identification

Our explorations with SCRI illustrated the importance of recur-
rent gating for explaining visual neuron dynamics. The importance
of this mechanism is amplified by multiple demonstrations of the
necessity of recurrent circuits over the years (e.g., Di Lollo et al.,
2009; Donohue et al., 2020; Kar & DiCarlo, 2021; Kar et al., 2019;
Lamme & Roelfsema, 2000). SCRI required recurrent feedback
from FEF visual neurons to identification units. These identification
units correspond to neurons in occipital and temporal lobe areas that
represent the features of items such as color, shape, and motion. The
SCRI implementation of feedback from FEF to visual identification
units contrasts with that used in a previous model of the contribution

of FEF to attention and gaze (Hamker, 2004, 2005). That model also
embodies the premise that a target template is conveyed through
recurrent feedback from the frontal lobe to visual areas in the
temporal lobe to increase the sensitivity and gain of appropriate
neurons to give them the advantage in the competition for gaze.
However, for Hamker’s model to account for the spiking of neurons
outside FEF, the model assumed feedback from FEF movement and
not visual neurons. Like SCRI, the Hamker model explains the
dynamics of FEF visual and movement neurons, as well as the
dynamics of neurons in extrastriate visual areas. How shall we
resolve this apparent incompatibility? While additional modeling
could further explore the relative importance of these different forms
of recurrence, neuroanatomical constraints may be informative
because these models make explicit assumptions and predictions
about connectivity. To the extent that a model is meant to explain
neural function, it should not require anatomical connections that do
not exist.

Neuroanatomical and neurophysiological investigations have
described the organization and properties of connections from
prefrontal areas to extrastriate visual areas in the occipital and
temporal lobes. Most work has focused on the relationship between
FEF and area V4. The projection from V4 to FEF is reciprocated by
neurons located predominantly in the upper Layers 2 and 3 (L2/3) of
FEF with a minority in Layer 5 (L5) also terminating in V4 (P.
Pouget et al., 2009). P. Pouget et al. (2009) also showed that the L5
neurons projecting to V4 do not branch and also project to the SC;
this indicates that the FEF saccade neurons of L5 do not deliver the
accumulation signal to V4 and related areas. Indeed, the density of
L2/3 neurons relative to L5 neurons in FEF projecting to V4 is so
high that it could be described as a feedforward projection (Barone
et al., 2000). The projections from FEF to V4 form excitatory
synapses predominantly on spines of pyramidal neurons in all
cortical layers but most densely in L2/3 (Anderson et al., 2011).
FEF neurons send axons to many other cortical areas in the dorsal
and ventral visual processing streams. However, different areas are
innervated by distinct FEF neurons that have different inputs
(Ninomiya et al., 2012). Taken together, these results mean that
the signal delivered by FEF to V4 is not necessarily identical to that
delivered to other areas contributing to visual identification of other
features. Amodel like SCRI can help frame a computational account
for such anatomical differences.

Neurophysiological studies have characterized the influence of
the FEF projection to V4. Weak electrical stimulation in FEF of
monkeys can enhance the visual responsiveness of V4 neurons with
overlapping RF and suppress activity of V4 neurons with nonover-
lapping RF (Moore & Armstrong, 2003). The same weak electrical
stimulation of FEF in monkeys can improve the discrimination of
visual features by V4 neurons (Armstrong &Moore, 2007) whereas
temporary inactivation of FEF caused a reduction in feature dis-
crimination by V4 neurons and increased suppression by stimuli
outside the RF (Noudoost et al., 2014). FEF also influences temporal
lobe visual areas that contribute to more elaborate object identifica-
tion (Monosov et al., 2010, 2011; Monosov & Thompson, 2009).
These results demonstrate the capacity of FEF to influence visual
processing in extrastriate visual areas. This capacity is enabled by
the fact that target selection in FEF occurs no later than, if not before,
selection in extrastriate visual areas, particularly when search is less
efficient (Buschman & Miller, 2007; Cohen et al., 2009; Gregoriou
et al., 2012; Ibos et al., 2013; Katsuki & Constantinidis, 2014;
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Figure 9
Observed (Points) and Predicted (Lines) Cumulative Distribution
Functions for Correct Saccade Response Times (RT)
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Note. Points depict the 10%, 30%, 50%, 70%, and 90% quantiles of the
observed correct RT distributions for eachmonkey in each condition (“SS”=
“set size”). Lines represent the cumulative distribution of correct RTs
simulated by GAM using simulated FEF visual neuron activity from our
model as evidence. GAM parameter settings are given in Table H1. GAM =
gated accumulator model. See the online article for the color version of this
figure.
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Monosov et al., 2010; Pooresmaeili et al., 2014; Purcell et al., 2013;
Zhou & Desimone, 2011). Finally, when V4 and FEF neurons are
recorded simultaneously, FEF visual, but not movement or
visuomovement neurons, interact with V4 during attention alloca-
tion (Gregoriou et al., 2012). Taken together, the neurophysiology
supports the recurrent structure in SCRI whereby FEF visual
neurons act as recurrent gates on the identification information
provided by regions like V4. The function of recurrence in
SCRI, as in the primate brain, is to enhance task-relevant contrasts
by prioritizing processing in regions likely to contain targets.

Normalization Arises From Feedforward Inhibition

Feedforward inhibition was a critical mechanism that allowed
SCRI to explain the dynamics of target selection by FEF visual
neurons. This form of inhibition is closely tied to normalization, in
that feedforward inhibition coupled with the kind of nonlinear
dynamics present in SCRI leads a set of neurons to evolve to a
state where their activity is normalized with respect to the total
amount of excitation flowing into the pool of neurons (Grossberg,
1980; Smith et al., 2015). Normalization of this kind is central to
many theories of visual attention (Bundesen, 1990; Logan, 2002;
Reynolds & Heeger, 2009) and has even been labeled a “canonical
neural computation” (Carandini & Heeger, 2012). Normalization
can be a consequence of capacity limitations, but it also serves an
important computational function. Because it is sensitive to context,
normalization allows individual neurons to effectively represent
more information than is present in their RF alone. This enables
more efficient computation of contrasts, such as that between targets
and distractors, yielding representations that approximately adhere

to Weber-law relationships (Grossberg, 1980; Heeger, 1992).
Rather than representing a limitation, feedforward inhibition may
be critical to efficient visual behavior.

Normalization is also interesting from a computational perspec-
tive in that it enables the representation of probability distributions, a
prerequisite for performing Bayesian computations in the brain
(e.g., A. Pouget et al., 2013). While we do not take a position
here on whether this interpretation applies to SCRI, we note that it
can help explain why there might be normalized representations in
multiple regions operating on information from the same RF.
Normalization models (e.g., Heeger, 1992; Reynolds & Heeger,
2009) were originally proposed to explain properties observed in
V4, which we view as a likely source of the identification informa-
tion in SCRI. That SCRI also exhibits normalization by feedforward
inhibition implies that there are multiple stages of normalization,
perhaps representing distributions over different quantities or
“locally Bayesian” processing (Kruschke, 2006). These may then
be combined to yield, for example, an approximate posterior
distribution of target probability across the visual field (Rao, 2005).

Lateral inhibition within cortical areas is well-known, and it was a
key element of GAM (Purcell et al., 2012). The fact that feedforward
inhibition was more important than lateral inhibition in our applica-
tions of SCRI, therefore, suggests that the tasks we focused on did
not tap into the functions served by lateral inhibition. Moreover, the
neural bases of feedforward inhibition are less well understood than
that for lateral inhibition. Because we view SCRI as building a
bridge between computation and individual neurons, it behooves us
to consider two alternatives (shown in Figure 11) for the anatomical
connectivity that could enable feedforward inhibition from extra-
striate visual areas to FEF. The pattern of connections must respect
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Figure 10
Examples of Simulated SCRI Visual Neuron Input and Associated GAM Accumulator
Trajectories
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Note. Simulated trials are for monkey F. Trajectories are averaged over 10 trials centered around the
0.2 RT quantile (“Fast”), 0.5 RT quantile (“Medium”), and 0.8 RT quantile (“Slow”). Note that the
“slow” trajectories in the Hard condition illustrate a case where a distractor had initially accrued activity
in its associated GAM accumulator, leading to a slow response because of the time needed for the target
accumulator to accrue enough activity to overwhelm the distractor accumulator. SCRI = salience by
competitive and recurrent interactions; GAM= gated accumulator model; RF= receptive field. See the
online article for the color version of this figure.
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the visuotopic organization of extrastriate visual areas and FEF. The
connectivity between extrastriate visual areas and FEF is topo-
graphic in eccentricity (Schall, Morel, et al., 1995). Consequently,
in FEF, neighboring neurons have similar RF eccentricity and
contribute to similar amplitude saccades, with RF eccentricity
and saccade amplitude increasing from lateral to medial. In contrast,
no systematic map of the upper and lower visual fields has been
described in the macaque FEF. The irregular representation of the
visual field in FEF may enable feedforward inhibition through
convergence of inputs from neurons in extrastriate visual areas
representing different parts of the visual field. If feedforward
inhibition were accomplished through extrinsic inputs to FEF,
then the target selection process should be evident in the input
Layer 4 (L4), which receives afferents from upstream areas. Alter-
natively, the feedforward inhibition across the visual field represen-
tation could be accomplished through the intrinsic circuit in FEF
from L4 to L2/3.
Articulating these alternatives highlights specific gaps in our

knowledge about the functional architecture of FEF. While target
selection neurons have been found in all layers of FEF (Thompson
et al., 1996), the density of neurons with different properties has not
been described in any detail. Also, not every neuron in FEF takes
part in the target selection process, and we do not know if these
nonselective neurons are concentrated in L4. Finding that neurons in

L4 did contribute to target selection would endorse the extrinsic
circuitry hypothesis. Finding that neurons in L4 did not contribute to
target selection would endorse the intrinsic circuitry hypothesis.
Another source of information about the nature of the connectivity
can be derived from the profile of activation around the RF of FEF
visual neurons. Many FEF neurons exhibit greater suppression of
the distractor in the RF if the target is near relative to far from the RF
(Schall et al., 2004; Schall, Hanes, et al., 1995). Although it was not
a major contributor to SCRI’s ability to account for the set size and
similarity effects explored in this article, flanking suppression is a
natural consequence of allowing lateral inhibition between FEF
visual neurons (and between identification units) to have a spatial
distribution, as shown in Figure 12. The scale of flanking suppres-
sion in SCRI is directly related to the distance in visual field
representations spanned by inhibitory connections, making it pos-
sible to infer at least some properties of the detailed microcircuitry of
which SCRI is a part (cf. Heinzle et al., 2007).

Insight Into Variability Between Neurons

Based on which SCRI mechanisms were most prominent in
different neurons, we found that FEF visual neurons could be
distinguished by two factors: whether they acted as recurrent gates
and whether they were subject to “downstream” lateral inhibition in
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Figure 11
Schematic Depictions of Two Ways in Which Identification-Based Feedforward Inhibition
From Area V4 Might Be Physically Realized

Extrinsic feedforward inhibition

Saccade 
direction

FEF

V4

Receptive 
field location

Intrinsic feedforward inhibition

Note. Saccades in one of three directions (arrows in top row) result from activation in one of three
columns of neurons in FEF (second row) that are innervated by neurons in V4 (third row) with receptive
fields representing the three possible saccade endpoints. A simplified rendering of the circuitry of FEF is
illustrated with the upper and lower layers populated by pyramidal neurons (triangles) sandwiching the
middle layer populated by stellate neurons (stars). Inputs from V4 terminate in the middle layer. The three
columns in FEF producing saccades in each direction receive topographically organized input from
columns in V4. Neural inhibition is mediated by the vertically elongated red neurons. The left panel
illustrates feedforward inhibition mediated through the pattern of extrinsic inputs from V4 to FEF, which
converge in the middle layers of FEF such that V4 neurons with nonoverlapping receptive fields send
inhibitory signals to Layer 4 of FEF. The right panel illustrates feedforward inhibition mediated through
the intrinsic circuitry in FEF wherein the inhibition occurs between the middle and upper layers of FEF.
FEF = frontal eye field. See the online article for the color version of this figure.
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addition to feedforward inhibition. The presence of different neuron
types in FEF has long been acknowledged (C. J. Bruce & Goldberg,
1985; Schall, 1991), and recent work suggests the diversity of
neuron types may be even more complex than initially envisaged
(Lowe & Schall, 2018). Prior distinctions between neuron types in
FEF have been based on spiking modulation patterns. By charac-
terizing the computational mechanisms associated with different
patterns of discharge rates, SCRI provides additional insight. For
example, the distinction between neurons on the basis of lateral
inhibition may map onto a distinction between visual and memory
neurons that has appeared in prior models of FEF in different
contexts with delayed responses and brief displays (Dominey &
Arbib, 1992; Mitchell & Zipser, 2003). Lateral inhibition is a key
element in neural systems that must deal with attenuated or dynamic
input (Drugowitsch et al., 2014; Rao, 2004) and has been docu-
mented in FEF (Schall et al., 2004). Lateral inhibition (in combina-
tion with self-excitation) would enable neurons in FEF to use
information retained from a brief display to resolve the location
of a search target that was no longer present (Smith & Sewell, 2013).
It is intriguing that we could use SCRI to identify neurons that may
have this capacity even though memory is not strictly required for
the tasks we modeled.
Variability in neuron function arises from variability in structure

and connectivity. The architecture of SCRI entails particular pat-
terns of anatomical connectivity. For example, to enable the recur-
rent loop, FEF neurons must have axons terminating in the
extrastriate visual areas representing the features of the items, which
they do (Anderson et al., 2011; Barone et al., 2000; P. Pouget et al.,
2009). However, different areas are innervated by distinct FEF
neurons (Ninomiya et al., 2012), suggesting that an FEF visual

neuron identified with recurrence when one class of stimuli are used
may not act in a recurrent manner with a different class of stimuli
that is processed through different regions. SCRI predicts that an
FEF visual neuron identified as recurrent during search with static
color or form stimuli should project to V4, where the relevant
features are processed. An intriguing possibility is that these same
neurons may not be identified as recurrent during search with
dynamic motion stimuli because V4 contributes little if at all to
motion representations. Conversely, neurons in our sample that
were identified as recurrent during motion search should project to
area MT and may not be identified as recurrent during search with
static color or form stimuli. Unfortunately, none of the FEF visual
neurons in our sample were recorded during both static color/form
search and motion search, so this possibility will need to be explored
in future research.

Extensions

SCRI can provide insight into many aspects of visual processing
beyond those we modeled here. The extensions we discuss below
touch on decision-making, attention, and learning, as well as how
eye movement decisions manifest in other cognitive tasks like
reading. That SCRI makes contact with such a diverse set of
domains is a product of its ability to bridge levels of description
and, jointly with GAM, to address the entire pipeline of visual
processing from stimulus to behavior.

Errors and “Tightening the Loop”

Since our goal with SCRI was to develop a theory of how search
targets were selected by FEF visual neurons, we focused only on
trials in which saccades were correctly made to the target. In such
trials, there is a clear connection between stimuli (what is a target/
distractor), task goals (to earn reward by shifting gaze to the target),
and behavior (an accurate goal-directed saccade to the target). This
connection was necessary for us to “close the loop” by using GAM
to connect SCRI with saccade behavior. This is certainly not the
whole story, however, because errors also occur with some regular-
ity. For example, the average error rate for monkeys Q and S varied
between 14% for set size 2, 12% for set size 4, and 13% for set size 8
while the average error rate for monkeys F, L, MM, and MC
increased from 5% in the easy similarity conditions to 21% in
the hard conditions. SCRI puts us in a better position to understand
the causes of those errors by identifying possible sources of
variability in generating salience evidence.

In the kinds of visual search tasks with saccade responses that we
addressed, erroneous saccades are often made to locations in the
visual field associated with higher FEF visual neuron activity (Heitz
et al., 2010; Thompson et al., 2005). This suggests that these kinds
of errors arise from an imperfect representation of the search target,
which could occur if, for example, some objects in the display failed
to be localized correctly or if there was variability or uncertainty
regarding the features that identify a target. In any case, these types
of variability would lead to a “misplaced” identification signal that
then selects the wrong location and drives FEF movement accu-
mulators to make an error. This explanation is consistent with
models of decision-making that produce errors via variability in
the quality of evidence between trials, rather than via noise within
trials (e.g., Brown & Heathcote, 2008, also see the discussion in
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Figure 12
Illustration of Flanking Suppression by SCRI in a Display Contain-
ing a Target and Seven Distractors
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Note. Spiking activity for distractors near the target is lower than for
distractors farther from the target. Simulated activity is averaged over SCRI
fits to cells recorded under set size manipulations. Set size manipulations
enabled us to estimate the spatial distributions of FEF and identification-unit
lateral inhibition. These forms of inhibition lead to flanking suppression.
SCRI= salience by competitive and recurrent interactions; FEF= frontal eye
field.
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Appendix H for further support of the relative importance of
between-trial variability in accounting for these visual search
data). Complicating this picture, however, in a visual search task
in which monkeys made manual responses instead of eye move-
ments, FEF visual neurons often selected the correct target location
even when an error was made (Trageser et al., 2008). This suggests
that errors can also arise from a misalignment between evidence and
response or from noise in the motor system. Indeed, GAM allows for
both intrinsic noise within trials as well as variability between trials
in which neurons contribute to the evidence accumulated by a given
accumulator. Though this possibility is not (yet) part of GAM, it is
possible that movement neurons may, on some trials, accumulate
evidence from visual neurons with RFs that do not overlap with their
movement fields, essentially “getting their wires crossed.” SCRI and
GAM thus identify more targets for future work addressing the
relative contributions of different types of variability: variability in
whether objects are correctly localized, variability in identification
information, variability inherent in spiking activity, variability in
which visual neurons contribute to the evidence accumulated by
different accumulators, and intrinsic variability in the accumulator
dynamics themselves.
Accomplishing this work is currently impeded by the absence of

critical data which would tighten the loop we have established in this
article using SCRI and GAM. This loop manifests at the level of trial
types: SCRI accounts for the dynamic form taken by salience
evidence when a particular type of object is in a neuron’s RF in
a particular task condition; GAM accounts for how that salience
evidence is accumulated to make a saccade decision in that same
task condition. Investigating the various forms of variability identi-
fied above requires tightening this loop such that it manifests at the
level of individual trials. Only then would it be possible to attribute
variability in one dimension (e.g., whether a correct or incorrect
saccade was produced on a given trial) to a specific type of
variability in another dimension (e.g., in a failure to localize a
target object). Tightening the loop this way would require simulta-
neous recordings from visual and movement neurons that were
known to be connected with one another, and these data do not yet
exist for this task. However, the ongoing development of more
sophisticated multielectrode arrays (Luan et al., 2020) suggests that
such data will be available, possibly in the near future.

Speed–Accuracy Trade-off

Considering the potential processes that can lead to errors invites
consideration of speed–accuracy trade-off. If errors are due largely to
variability in the quality of evidence generation rather than problems
with evidence accumulation, this emphasizes the importance of
jointly accounting for both of these processes in order to understand
decision behavior in context (Cox & Shiffrin, 2017; Rae et al., 2014).
In visual search under speed versus accuracy emphases, FEF visual
neurons produce more spikes overall (in all three phases) under speed
emphasis. This elevated spike rate has two important effects (Heitz &
Schall, 2012): First, visual neurons send more activity to FEF
movement neurons over the course of a trial, leading movement
neurons to initiate a saccade more quickly. Second, TST is earlier
under speed emphasis than accuracy emphasis. This observation was
replicated in the superior colliculus (Reppert et al., 2018).
An apparent boost to TST relative to accuracy emphasis may

seem counterintuitive if speed emphasis is meant to result in more

error-prone processing. However, the result makes sense from an
SCRI perspective: Because of recurrent gating, higher overall FEF
visual neuron activity means faster uptake of identification infor-
mation, leading to earlier TST. Even so, more saccade errors are
made because the higher level of FEF visual neuron activity makes it
easier for their corresponding movement neurons to reach a thresh-
old prematurely. This explanation implies that noise in motor
accumulation processes can generate saccade errors, in addition
to imperfect representations of the search target. While much
remains to be understood regarding the neural implementation of
speed–accuracy trade-off (Servant et al., 2019), these neural data
and the candidate explanation offered jointly by SCRI and GAM
suggest that understanding the trade-off between speed and accuracy
requires understanding both how evidence is computed and how
evidence is accumulated.

Popout Search and the Identification Signal

Popout search—in which the target is not prespecified but is
defined by being unique relative to the distractors such that it “pops
out” from the surrounding context—is associated with similar neural
dynamics as the target search tasks we modeled in this article (Schall
& Bichot, 1998). This suggests that the identification signal in both
popout and target search results from similar types of processing
involving comparisons between object representations. In target
search, the comparison is between objects in the display and a target
representation; in popout search, the comparison is between objects
in the display and one another. In both cases, the representations
depend on ventral-stream visual areas like V4 and areas in inferior
temporal cortex (Westerberg et al., 2020; Zhou & Desimone, 2011)
as well as prefrontal areas (Bichot et al., 2015, 2019). The proces-
sing involved in popout is likely related to the identification-based
feedforward inhibition we already identified as important for target
selection. If, for example, the degree of inhibition was proportional
to similarity, this would give rise to popout by virtue of the
distractors inhibiting one another more than the dissimilar target.

Cuing and Priming

Although our account focused on dynamics within trials, SCRI
provides insights into dynamics across trials, such as those involved
in cuing and priming. FEF visual neurons show increased spiking if
their RF is cued prior to the onset of a search array, but even if the
cued location ends up containing a distractor, neural activity evolves
such that the target location has higher asymptotic activity
(Monosov & Thompson, 2009). In the context of SCRI, the cue
provides a partial target identification signal. Recurrent gating
means that higher early activity of FEF neurons at the cued location
leads to faster uptake of both positive target information (if a target is
present at the cued location) and negative mismatch information (if a
distractor is present at the cued location). Likewise, repetition of
target features across trials produces effects on behavior and neural
dynamics that are the same as those that result from manipulating
target-distractor similarity (Bichot & Schall, 1999; Maljkovic &
Nakayama, 1994). This suggests that the identification signal is
sensitive to recent experience, with repetition leading to a stronger
target representation that, in turn, suppresses distractor activity via
competition. This sensitivity would explain why popout search also
benefits from repetition of (popout) target features from trial to trial
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(Bichot & Schall, 2002) and why repetition affects neural dynamics
of both FEF and V4 neurons (Westerberg et al., 2020). Repetition of
target features essentially produces a weak target template repre-
sentation which facilitates selection when features repeat and inter-
fere with popout selection when features switch.
Repetition of targets over longer timespans can enable the

localization signal—rather than just the identification signal—to
carry information about target locations. We view the localization
signal as the degree of energy in specific feature maps corresponding
to basic visual features like color, orientation, contrast, etc. These
features were not sufficient to reliably distinguish between targets
and distractors in the experiments we modeled because they em-
ployed varied mapping (Schneider & Shiffrin, 1977; Shiffrin &
Schneider, 1977). If stimuli are consistently mapped to the target
and distractor roles across sessions, basic features could be used to
filter out irrelevant distractor stimuli. This would enable the locali-
zation signal to be sensitive only to the features specific to targets, a
phenomenon observed in just these conditions by Bichot et al.
(1996). Early selectivity by the localization signal takes many
sessions to develop, suggesting that it requires considerable recon-
figuration of the input stream to FEF, analogous to perceptual
learning (Dosher et al., 2013) or perhaps to the emergence of
new features by which to encode stimuli (Cao et al., 2017;
Salasoo et al., 1985).

More Complex Tasks

The visual search tasks we addressed with SCRI and GAM were
rather simple, involving a single saccade to a single search target
defined on a relatively restricted set of feature dimensions (color,
form, motion direction). Other studies of visual search, particularly
with human participants, use more complex stimuli like pictures of
real objects or words. While these stimuli have semantic and
contextual dimensions that increase their dimensionality, they can
still be incorporated into SCRI in a relatively straightforward
manner. SCRI’s localization signal is, in the absence of extensive
experience with consistent mapping as described above, essentially
agnostic to the features that comprise an object, such that it should
not operate differently for more complex objects. Meanwhile,
SCRI’s identification signal represents the relevance of an object
in the visual field for a given task, regardless of which features of the
object make it relevant (analogous to the “categorizations” in TVA;
Bundesen, 1990; Logan, 2002). Of course, greater stimulus com-
plexity might also make it hard to distinguish target (relevant) from
distractor (irrelevant) objects, but this would be equivalent to the
high similarity “hard” search conditions to which we applied SCRI
in this article. Ultimately, localization and identification signals
would still take part in the same competitive and recurrent interac-
tions that enable FEF visual neurons to build a representation of
salience across the visual field.
Accounting for other increases in task complexity may require

going beyond the mechanisms currently included in SCRI. For
example, tasks like change detection that are typically used to
investigate visual short-term memory involve multiple (potential)
targets (e.g., Luck & Vogel, 1997). In the full CI model, situations
with multiple targets are handled in terms of self-excitation; in one
“mode,” self-excitation supports a winner-take-all type of selection
that is suited to tasks with a single target, while in another mode,
self-excitation operates to allow multiple objects to get selected at

the same time (Smith & Sewell, 2013). While self-excitation is not
currently part of SCRI, it would be possible to incorporate it; doing
so would imply that FEF visual neurons themselves maintain
activity to represent salience across multiple objects. Alternatively,
SCRI’s sustained identification signal may be sufficient to provide
the excitation necessary to maintain multiple targets simultaneously.
The latter alternative would be more consistent with the role FEF
visual neurons play in SCRI, namely, as “adjudicators” between
multiple sources of excitation. Just like we did with the recurrent and
competitive mechanisms explored in this article, it may be possible
to use neural spiking dynamics to distinguish these possibilities.

Finally, we note that other tasks increase complexity by involving
multiple saccades. For example, in scene scanning, the neural
dynamics of target selection and saccade production differ from
what is observed in simpler visual search tasks and reveal the
influence of other processes such as planning sequences of saccades
(Phillips & Segraves, 2010; Zhou&Desimone, 2011). Other models
of FEF have been applied to sequential saccade production in
reading (Heinzle et al., 2010), suggesting that despite these differ-
ences in neural activity, many of the same fundamental mechanisms
may yet be at work. In particular, reading and scene scanning still
require that FEF visual neurons come to ignore initially salient but
irrelevant items (Cosman et al., 2018) while selecting important but
less initially salient items for saccade targets. That said, it remains
unclear whether or how the salience representation produced by FEF
visual neurons is preserved across eye movements and the extent to
which the resulting behavior can be described in terms of individual
saccades as compared to preprogrammed saccade sequences
(Zingale & Kowler, 1987) or error corrections (Murthy et al.,
2007). Just as multiple targets may entail adapting some of the
self-excitatory mechanisms from the CI model into SCRI, account-
ing for sequences of saccades may entail more sophisticated
evidence accumulation, decision, and planning mechanisms. As
daunting as this might seem, our work with SCRI illustrates how
casting models of these processes jointly in neural and cognitive
terms enable spiking activity to decide between cognitive mechan-
isms that would be indistinguishable from behavior alone.

Relationships to Other Models

SCRI is designed to explain the neuro-computational processes
involved in integrating localization and identification information to
select targets in a specific form of visual search. We do not intend
SCRI—or SCRI in combination with GAM—as a complete model
of visual search and attention, for which there are currently many
complementary and competing theories. Theories with a primarily
cognitive focus include the Theory of Visual Attention (Bundesen,
1990; Logan, 2002), COntour DEtector (Logan, 1996), Feature Gate
(Cave, 1999), and Guided Search (J. M.Wolfe, 1994, 2007, 2021; J.
Wolfe et al., 2015; J. M. Wolfe et al., 1989). Other computational
approaches are designed to solve pragmatic, real-world search
problems (e.g., N. D. B. Bruce et al., 2015; Itti & Koch, 2000).
Finally, some of these theories are primarily focused on neural-level
descriptions at various levels of specificity, from identification with
specific brain structures and circuits (e.g., Adeli et al., 2017;
Bundesen et al., 2005; Murray et al., 2017; Schwemmer et al.,
2015) to the microcircuitry of a cortical area (Heinzle et al., 2007).

SCRI, in keeping with its role building a bridge between cognitive
and neural levels of description, complements these diverse
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approaches. SCRI can be interpreted as providing a dynamic
account of how the initial feature-based guidance comes about in
the context of Guided Search (J. M. Wolfe, 1994, 2007, 2021; J.
Wolfe et al., 2015; J. M.Wolfe et al., 1989) or as a description of the
processes that lead to TVA’s normalized attention weights
(Bundesen, 1990; Bundesen et al., 2005; Logan, 2002). Similarly,
the recurrent gating and combination of “bottom-up” (localization)
and “top-down” (identification) signals are similar to how the
information flow from multiple streams is managed in Feature
Gate (Cave, 1999). We have also described how SCRI provides
an account of how different sources of information contribute and
interact to yield an evolving representation of salience which, in
asymptote, resembles the more sophisticated but nondynamic mod-
els of salience used to model free looking behavior (Itti & Koch,
2000). From these perspectives, SCRI describes the neuro-
computational “front end” to cognitive theories of visual search
and attention, the dynamics and neural instantiation of which are
generally left unspecified by those cognitive theories.
Relative to more neurally focused models of visual processing,

SCRI explains neural dynamics not in terms of biophysical vari-
ables, but in terms of representations and transformations. By
describing neurons in functional rather than physical terms, SCRI
is inspired by models of the brainstem saccade generator (Lefèvre
et al., 1998; Robinson, 1973, 1975; Shaikh et al., 2008) and is
aligned with connectionist models of FEF which focused on its role
in visual short-term memory (Dominey & Arbib, 1992; Mitchell &
Zipser, 2003). Yet this connectionist approach was not capable of
explaining the details of the dynamics of FEF neurons. Even more
physical models of FEF have difficulty reproducing the spiking
activity of individual neurons, as opposed to average or representa-
tive activity (Hamker, 2005; Heinzle et al., 2007). As discussed
above, even though SCRI takes a functional approach toward
explaining neural activity, it makes distinct predictions regarding
connectivity that can inform the construction of more biophysically
oriented models.

Concluding Remarks

This work makes an important advance in uniting a dynamic
model of evidence accumulation (GAM) with a dynamic model of
evidence generation (SCRI). Evidence accumulation has been a
productive framework for building cognitive models of decision-
making (Bogacz et al., 2006; Brown & Heathcote, 2008; Ratcliff,
1978) and for forging connections between cognitive and neural
dynamics (Cassey et al., 2016; Gold & Shadlen, 2007; O’Connell
et al., 2018; Purcell et al., 2010, 2012; Schall & Hanes, 1993). But
while an evidence accumulation model can explain how certain
kinds of evidence lead to slower or more error-prone behavior, a
model like SCRI explains why the evidence has those properties in
the first place. Jointly accounting for evidence generation and
evidence accumulation is especially important in saccade
decision-making, where differences in behavior result not just
from how FEF visual neurons generate evidence, but from how
that evidence gets accumulated by FEF movement neurons (Hanes
et al., 1998; Schall, 2004b). Our approach continues developments
across cognition and neuroscience that illustrate how the dynamics
of evidence accumulation arise from the dynamics by which re-
presentations are formed and used to generate evidence for decisions
(Cox & Criss, 2020; Cox & Shiffrin, 2017; Kent et al., 2014; Logan,

2002; Nosofsky & Palmeri, 1997; Smith & Ratcliff, 2009). While
this integrative approach necessarily leads to more complex models,
that complexity is balanced against the additional constraints of
accounting for the quantitative details of both behavior and neural
activity. The complexity also reveals specific gaps in our under-
standing at the neuroanatomical and neurophysiological level. The
end result is a deeper and more comprehensive account of both the
cognitive processes leading to visual behavior and their neural
implementation.

Our integrative approach exemplifies the burgeoning field of
model-based cognitive neuroscience and the power of integrating
computational cognitive models and neuroscience. Without the
cognitive principles behind models like SCRI and GAM, we would
not be able to understand the computational role played by individ-
ual neurons involved in visual behavior. Without the detailed picture
of neural dynamics provided by single-unit recordings, we would
not have the constraints required to identify important properties of
cognitive processes and their interactions. By building a bridge
between cognitive and neural levels of description, we achieve a
more complete understanding of cognition and neural systems than
would be available from either level of description alone (Marr,
1982; Schall, 2004a; Teller, 1984). By taking a limited set of
computational mechanisms, we explained the diverse and idiosyn-
cratic dynamics of FEF visual neurons in terms of the role they and
their interactions play in forming the cognitive representations of
salience that guide visual behavior.
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Appendix A

Summary of Model Variables and Parameters
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Table A1
Summary of Model Variables and Parameters

Quantity Description

xi(t) Transient localization signal at time t after array onset to FEF visual neurons with RF centered on region i (Equation 2)
vi(t) Level of activity for an FEF visual neuronwith RF centered on region i at time t, reflecting the probability that the neuronwill generate a

spike in the next millisecond (Equation 3)
zi(t) Level of activity for an identification unit centered on region i at time t (Equation 4)
mi(t) Level of activity at time t for an FEF movement unit corresponding to a saccade targeted at region i (Equation 10)
~viðtÞ Input signal at time t to an FEF movement unit corresponding to a saccade targeted at region i (Equation E2)

b Baseline excitatory input to an FEF visual neuron
ι Total amount of excitation provided by the localization signal
μT Maximum level of identification activity for a search target
μD Maximum level of identification activity for a distractor
s Shape parameter of Gamma distribution describing transient localization signal
r Rate parameter of Gamma distribution describing transient localization signal
λv Rate at which FEF visual neuron activity decays over time
λz Rate at which identification-unit activity decays over time

χi,A Strength of localization signal in location i of search array A, which equals ι if a stimulus is present at that location of that array and zero
if not

ηi,A Strength of match between search target and the object in region i of search array A, which may be μT if the object is a target, μD if it is a
distractor, or zero if there is no object at location i of array A

R Indicator variable reflecting whether the growth of identification-unit activity is multiplicatively gated by FEF activity (R = 1) or not
(R = 0)

αx Strength of feedforward inhibition of FEF visual neurons due to localization
αz Strength of feedforward inhibition of FEF visual neurons due to identification
βv Strength of lateral inhibition between FEF visual neurons
βz Strength of lateral inhibition between identification units
ρv Range parameter describing spatial extent of lateral inhibition between FEF visual neurons (in standard units where the search array has

a radius of one unit; see Equation 5)
ρz Range parameter describing spatial extent of lateral inhibition between identification units (in standard units where the search array has

a radius of one unit; see Equation 6)
κ Relative delay in conveying identity information to FEF visual neurons
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Appendix B

Examples of SCRI Mechanisms

SCRI includes many ways for FEF visual neurons to interact with
one another (via inhibitory interactions) and with identification units
(via recurrent interactions). In this Appendix, we present several
examples to illustrate how SCRI’s different mechanisms manifest in
its predictions of neural activity, how they are related to the
canonical FEF visual neuron response, and how these mechanisms
can be detected by manipulations of set size and target-distractor
similarity. We do this by simulating the dynamics of an FEF visual
neuron during visual search for a single target among seven dis-
tractors in a circular array. In these simulations, all but one of the
inhibitory interaction parameters is set to zero, to reveal the effect of
the designated mechanism in isolation. In addition, we compare the
effects of each inhibitory mechanism with (R = 1 ) or without
(R = 0) recurrent interactions.
For these simulations, other model parameters were set as fol-

lows: b= 0.001, ι= 0.15, s= 19.309, r= 0.146 (s and rwere chosen
so that the localization signal would reach a peak at 125 ms and have
a spread [standard deviation] of 30 ms), λv = 0.1, λz = 0.05, μT =
0.002, μT = 0.00075 for different levels of set size and “low”
similarity, μD = 0.0012 for “high” similarity.
We also illustrate the discriminability of the simulated neurons to

show the effect of these mechanisms on when and how well an FEF
visual neuron can select a target from a distractor. We calculate the
discriminability as

UðtÞ = viðtjTargetÞ
viðtjTargetÞ + viðtjDistractorÞ

, (B1)

where vi(t| Target) is the simulated neuron’s probability of generat-
ing a spike at time t when a target is in its RF and vi(t| Distractor) is
the simulated neuron’s probability of generating a spike at time t
when a distractor is in its RF. The resulting quantity U(t) represents
the conditional (posterior) probability that the object in the neuron’s
RF is a target, given that it produced a spike at time t (and assuming
that the object is equally likely a priori to be a target or a distractor).

Localization Feedforward Inhibition (αx)

This form of feedforward inhibition means that an excitatory
localization signal for one RF acts as an inhibitory signal for FEF

visual neurons centered on other RFs. Because the localization
signal is the same for both targets and distractors, this form of
feedforward inhibition is sensitive only to the number of objects in
the array, that is, set size. As illustrated in Figure B1, the effect of
this form of inhibition is primarily to reduce the size of the initial
transient peak in Phase 2. Recurrent gating between FEF visual
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Figure B1
How Localization Feedforward Inhibition (αx) Manifests in the
Dynamics of FEF Visual Neurons and Their Corresponding Iden-
tification Units as a Function of Set Size

Identification

FEF visual neuron

Discriminability

0 100 200 300 400
Time from array (ms)

(A) Recurrent

Identification

FEF visual neuron

Discriminability

0 100 200 300 400
Time from array (ms)

(B) Non−recurrent

Stimulus in RF

Target

Distractor

Set size

2

8

Note. FEF = frontal eye field. See the online article for the color version of
this figure.

Table A1 (continued)

Quantity Description

L Number of FEF visual spike trains used to generate input signals to FEF movement units
βm Strength of lateral inhibition between FEF movement units
λm Rate at which FEF movement unit activity decays over time
ρm Range parameter describing spatial extent of lateral inhibition between FEF movement units (in standard units where the search array

has a radius of one unit; see Equation 11)
g “Gate” representing the minimum input activity needed to excite an FEF movement unit
ν Standard deviation of momentary Gaussian noise in FEF movement units
θ Threshold level of activity at which an FEF movement unit initiates a saccade

Note. FEF = frontal eye field; RF = receptive field.

(Appendices continue)
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neurons and the identification units results in the initially lower
activity in FEF slowing the rate at which identification units
approach their asymptotes, effectively delaying TST without affect-
ing the asymptotic level of activity.

Identification Feedforward Inhibition (αz)

Because feedforward inhibition from the identification units is, by
definition, sensitive to whether an object is a target (high identifica-
tion asymptote) or distractor (lower identification asymptote), this
form of inhibition is sensitive to manipulations of both set size and
similarity. Because increasing the number of distractors increases
the amount of inhibition for all RFs, increasing set size suppresses
activity for both targets and distractors regardless of recurrent gating
(Figure B2, top). Increasing the similarity between targets and
distractors (Figure B2, bottom) suppresses asymptotic target activity
due to the increased feedforward inhibition from the distractors’
identification units. Recurrent gating of identification units by FEF
visual neurons means that this suppression of target FEF activity
also results in a suppression of the target identification units.

Lateral Inhibition Between FEF Visual Neurons (βv)
Lateral inhibition between FEF visual neurons impacts their

patterns of activity at all time points, such that increasing set size
or similarity leads to reduced discriminability (Figure B3). Only in
the presence of recurrent gating, however, do these manipulations
also affect the dynamics of discriminability by slowing the separa-
tion of target and distractor activity. In the absence of recurrent
interactions, increasing set size or target-distractor similarity simply
scales the whole discriminability function.

Lateral Inhibition Between Identification Units (βz)
When there is lateral inhibition between the identification units,

the effects on FEF visual neuron dynamics and their discriminability
tend to be localized to the final phase of their response (Figure B4),
such that the size of the initial peak in Phase 2 is not strongly affected
by set size or similarity, whereas asymptotic activity—and, in the
presence of recurrence, the rate of approach to that asymptote—is
sensitive to these manipulations.

Delayed Availability of Identification Information (κ)
In the previous examples, SCRI spike rates in the absence of

recurrent gating between FEF visual neurons and identification units
began to discriminate between targets and distractors as soon as the
neuron began to enter its second phase and respond to the presence
of a stimulus in its RF. This illustrates how recurrent gating helps
explain this difference between Phases 2 and 3 of the canonical FEF
visual neuron response. However, we also allow in SCRI for a delay
in the availability of identification information relative to the initial
localization signal (via the parameter κ) which can permit a nonre-
current model to show a difference in discriminability between
Phases 2 and 3. This is illustrated in Figure B5. Figure B5 also
illustrates that, in the presence of recurrence, delayed availability of

identification information also slows the rate at which identification
units accrue activation because by the time the relevant information
is available, the initial excitation of FEF visual neurons by the
localization signal has begun to decay.
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Figure B2
How Identification Feedforward Inhibition (αz) Manifests in the
Dynamics of FEF Visual Neurons and Their Corresponding Iden-
tification Units as a Function of Set Size and Target-Distractor
Similarity
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Note. FEF = frontal eye field. See the online article for the color version of
this figure.
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Figure B3
How Lateral Inhibition Between FEF Visual Neurons (βv) Manifests
in the Dynamics of FEF Visual Neurons and Their Corresponding
Identification Units as a Function of Set Size and Target-Distractor
Similarity
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Note. FEF = frontal eye field. See the online article for the color version of
this figure.

Figure B4
How Lateral Inhibition Between Identification Units (βz) Manifests
in the Dynamics of FEF Visual Neurons and Their Corresponding
Identification Units as a Function of Set Size and Target-Distractor
Similarity
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Note. FEF = frontal eye field. See the online article for the color version of
this figure.
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Appendix C

SCRI Parameter Recovery

To verify that it was possible to estimate SCRI parameters from
neural spike trains, we conducted a parameter recovery exercise. We
first randomly sampled values for SCRI parameters that we deemed a
priori plausible based on initial explorations to find parameter settings
that gave a rough approximation to observed FEF visual neuron
spiking dynamics. Using those parameters, we simulated different
numbers of trials from SCRI in a visual search task in which there
were three set size conditions (2, 4, and 8, as in the set size data to
which SCRI was fit). On each trial, we simulated a spike train from a
single neuronwith either a target or distractor in its receptive field. For
each millisecond between array presentation (at t = 0 ms) and t= 500
ms after array onset, the simulated neuron i produced a spike with
probability vi(t). Note that in these simulations, we simply truncated
the trial at 500 ms without simulating a saccade. For each set of SCRI
parameters, we simulated either 100, 200, or 400 trials with a target in
the recorded neuron’s RF and the same number of trials with a
distractor in its RF (the distractor was always in the position directly
opposite the target). This was done for each level of set size (2, 4, 8),

with the result that the number of simulated trials per trial type
approximately spans the range of numbers of trials recorded from the
actual FEF visual neurons in our data set. After simulating spike
trains, we then used the same gradient descent procedure used to fit
SCRI to spike trains from real neurons to instead fit SCRI to the
simulated neural spiking activity.

The distributions from which SCRI parameters were sampled for
each parameter recovery simulation are given in Table C1. Each
parameter was sampled independently of the others. Because these
distributions were based on preliminary simulations rather thanmodel
fits, the distributions were chosen to cover a wide range to test for
recovery across a broad set of possible parameter values. To ensure
that the predictions from a set of sampled parameters would still
produce plausible target-distractor discrimination within a reasonable
time, we only used a set of sampled parameters if two conditions were
met: First, identification information needed to be completely avail-
able by the end of the trial at 500 ms after array onset, in other words,
Γ(500; s(1+ κ), r)≈1; second, the difference in firing rates between a
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Figure B5
How Delayed Availability of Identification Information (κ) Manifests in the Dynam-
ics of FEF Visual Neurons and Their Corresponding Identification Units
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Note. FEF = frontal eye field. See the online article for the color version of this figure.
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target and distractor at 500 ms after array onset needed to be at least
0.02, that is, vi(500) − vj(500) > 0.02, where i is the RF where the
target is located and j is the RF opposite the target. The choice of 0.02
was somewhat arbitrary, but helped ensure that the randomly sampled
parameters still produced plausible target-distractor discrimination
within a reasonable time. Note that our recovery simulations did not
include a spatial distribution for either type of lateral inhibition; as a
result, these simulations assume that lateral inhibition has the same
strength regardless of the distance between RFs. Simulations and
fitting assumed recurrent gating between FEF visual neurons and
identification units (i.e., R = 1).

We simulated and fit SCRI to 500 data sets of each size (100, 200,
or 400 trials per item type per set size) to estimate how well the
original generating SCRI parameters could be recovered and the
degree to which this ability depended on set size. Figure C1 shows the
generating versus fitted values of each SCRI parameter across these
simulations. In general, recovery is quite good even for just 100 trials
per item type per set size. The most difficult parameter to recover is
the strength of the transient localization signal (ι), particularly when
fewer trials are available. Beyond demonstrating the viability of
estimating SCRI parameters from neural spike trains, this parameter
recovery confirms that parameters related to the competitive mechan-
isms that were a major point of comparison in the main text (e.g., αx,
αz, βv, and βz) are all recovered well (r≥ 0.9) even with only 100 trials
per item type per set size. This suggests that these model comparisons
are not driven solely by difficulties in parameter recovery.
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Table C1
Distributions From Which SCRI Parameters Were Sampled
for Parameter Recovery Simulations

Parameter Distribution

b Γ(2, 2000)
ι Γ(2, 100)
μT Γ(2, 100)
μD
μT

B(2, 2)
ωp Γ(1.93, 0.015)
ωs Γ(1.44, 0.06)
λv Γ(2, 20)
λz Γ(2, 20)
αx Exponential(0.001)
αz Exponential(0.001)
βv Exponential(0.001)
βz Exponential(0.001)
κ Exponential(1)

Note. To ensure that distractor-evoked identification signals would
be weaker on average than target-evoked identification, we sampled a
value for the ratio of distractor to target identification (μDμT) from a β
distribution, which can only range between 0 and 1; we then
multiplied this ratio by the sampled value of target identification
(μT) to get μD. Parameters s and rwere derived from parametersωp and
ωs below which are the peak (mode) and spread (standard deviation)
of the Gamma distribution describing the transient localization signal.

Specifically, r = ωp +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
p + 4ω2

s

p
2ω2

s
and s = 1 + ωpr. SCRI = salience by

competitive and recurrent interactions.
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Figure C1
Results From Parameter Recovery Simulations for Different SCRI Parameters
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trials. Axes are on logarithmic scales. Dashed lines show the line of equality. SCRI = salience by competitive and recurrent interactions. See the online article
for the color version of this figure.
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Appendix D

Summarizing SCRI Neural Dynamics

Model Firing Rate Measures

To find the maximum firing rate and asymptotic firing rates from
the model, we followed standard practice for finding these quantities
using observed neural activity and focused only on the time between
array onset and the median RT in each condition for the neuron’s
recording session. Thus, the maximummodel firing rate for neuron j
in condition k was the maximum firing rate predicted by the model
within the time from array onset and the median RT in condition k
during the session in which neuron j was recorded. Asymptotic
firing rates were the predicted firing rates for neuron j in condition k
at the median RT in condition k during the session in which neuron j
was recorded.

Model Target Selection Time

Because the latent firing rate from the model is known, it is
straightforward to calculate TST from the model. Let vTjkðtÞand vDjkðtÞ
be the model’s predicted firing probabilities at time t for neuron j in
condition k when a target and distractor is in its RF, respectively.
Target selectivity at time t is the degree to which the neuron is more

likely to fire with a target in its RF than with a distractor. This is
given by

UjkðtÞ =
vTjkðtÞ

vTjkðtÞ + vDjkðtÞ
: (D1)

Thus, for any given time t,Ujk(t) measures the degree to which the
model predicts neuron j selects targets in condition k, with a value of
0.5 indicating no selectivity and a value of 1 indicating perfect
selectivity. We define TST as the earliest time t at which Ujk(t)
exceeds a threshold value Qjk. To maintain a resemblance between
the statistical test used for model TST and that traditionally used for
observed TST, the threshold value is the critical value for a one-
sided Mann–Whitney test with p = .01. Qjk is approximated by the
99% percentile of a normal distribution with mean 1

2 and variance
NT

jk +ND
jk + 1

12 × NT
jk × ND

jk
, where NT

jk and ND
jk are the number of trials recorded

from neuron j in condition k with a target in its RF and with a
distractor in its RF, respectively.

Appendix E

Simulating Input to GAM

Following the procedure used by Purcell et al. (2010, 2012) to
generate model inputs from observed spike trains, we generated
inputs by simulating a set of spike trains, convolving each of them
with a postsynaptic response filter, and averaging the result to
produce an input signal (~viðtÞ) to each movement unit on each
simulated trial, as summarized in Figure 8. There are some key
technical differences between our approach and that used in the
above-mentioned articles, which we highlight after describing our
approach in detail. Nonetheless, the result of this procedure is a
Poisson shot noise process (Campbell, 1909) which is both theoret-
ically and mathematically related to evidence accumulation based
on diffusion processes (Smith, 2010; Smith & McKenzie, 2011).
To generate the input signal ~viðtÞ to movement unit mi(t) on trial n

with search array An for subject k, we first drew a sample of L
individual FEF visual neurons from subject k, where each neuron
had an equal chance to be sampled and sampling was with replace-
ment (meaning the same neuron might appear multiple times in a
particular draw). This yields a sequence of randomly drawn neurons
from subject k, denoted N1, N2, : : : , NL, such that the jth element in
that sequence corresponds to a neuron Nj which might appear more
than once among the L samples. For each sample j from 1 to L, we
simulated a spike train ŷjðtÞfrom neuron Nj responding to region i of
search array An, where the probability that neuron Nj generates a
spike in each millisecond t is given by vi(t) using the parameters of
the overall preferred model as fit to neuron Nj and input settings
determined by the stimulus at location i of array An.

Each of the resulting L simulated spike trains was then convolved
with a filter meant to simulate the postsynaptic response of a neuron
(Thompson et al., 1996) given by

f ðtÞ =
%
1 − exp

"
−

t
τg

#&
exp

"
−

t
τd

#
, t ≥ 0, (E1)

where the first term represents a growth phase with time constant
fixed at τg = 1 ms and the second term represents a decay phase with
time constant fixed at τd = 20 ms. We denote the result of this
filtering operation by ½f × ŷj$ðtÞ.

The final input signal is a weighted average of these filtered spike
trains:

~viðtÞ =
1
L

XL

j=1

wj½f × ŷj$ðtÞ, (E2)

where the weight wj of each neuron Nj is the reciprocal of its
maximum expected spike rate, that is,

wj =
1

maxi∈A½f × vi$ðtÞ
,

where the maximum is taken over all times at all locations across all
search arrays shown to that neuron (i.e., for a neuron recorded
during a set size manipulation, the maximum is over all locations in

(Appendices continue)
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all set sizes). This weighting helps balance the influence of different
neurons which may have different overall firing rates.
The first major difference between our approach toward generat-

ing movement unit inputs and that of Purcell et al. (2010, 2012) is,
obviously, that the spike trains used to generate the input are
simulated rather than observed. This means that we do not need
to artificially extend spike trains from trials with short response
times, as was done in previous work, since we can continue to
simulate inputs to movement units until a saccade is made. Simu-
lating spike trains also means that there is essentially zero chance of

multiple copies of the same spike train entering into the input—a
possibility in the prior work—since even if the same simulated
neuron appears among the L used to generate the input signal,
different spike trains are simulated independently. The secondmajor
difference is in how we weight different neurons. Purcell et al.
(2010, 2012) weighted spike trains by the reciprocal of their
maximum observed firing rate, but because this estimate is based
on a finite sample of observed spike trains rather than a model which
can generate an infinite number of spike trains, we normalized by the
maximum expected firing rate of each neuron.

Appendix F

Estimating GAM Parameters

Because there is no way to obtain closed-form likelihoods for the
GAM, GAM parameters were estimated using a stochastic variant of
differential evolution (Ter Braak, 2006; Turner & Sederberg, 2012),
a type of genetic algorithm. As defined in the main text, there are
seven free parameters of GAM, though for similarity manipulations
it was not possible to uniquely estimate the spatial component of
lateral inhibition between movement units (ρm) for the same reason
that it was not possible to estimate spatial distributions of visual
processing under those manipulations, that is, without a way of
varying distances there is no way to distinguish between a variation
in spatial extent from a variation in overall strength of lateral
inhibition.
Estimation took place by simulating the evolution of a population

of sets of parameter values over one hundred generations. Estima-
tion was performed separately for each of the six subjects (where the
color and motion search for MonkeyMwere treated as two different
subjects). For the four Monkeys recorded during similarity manip-
ulations, the population contained 60 sets of parameter values while
for the two monkeys recorded during set size manipulations, the
population contained 70 sets of parameter values (to account for the
additional free spatial parameter).
For each set of parameter values in the population, we simulated

200 trials in each condition, generating simulated FEF visual inputs
for each GAM movement unit as described above and simulating
their dynamics until a movement unit reached a threshold and
initiated a saccade. These 200 trials were binned according to
whether the simulated response was correct (to the search target)
or not (to a different location) and, for correct responses, according

to the 0.1, 0.3, 0.5, 0.7, and 0.9 probability quantiles of the observed
correct RT distributions in that condition. The number of simulated
trials in each bin was treated as a stochastic estimate of the
probability of observing an outcome in each bin and quality of
fit was quantified via the Dirichlet-Multinomial log-likelihood that
these (noisy) estimated probabilities assigned to the observed
frequencies in each bin. These observed frequencies are a joint
function of the chosen quantiles. Because we only fit trials with
correct saccades, the observed frequency of errors was zero, mean-
ing GAM would be severely penalized if it produced too many
simulated errors.

The initial population was defined by sampling parameter values
from a multivariate normal distribution, where parameter values
were transformed in order to lie on the real line (i.e., parameters
restricted to [0, ∞) were log-transformed and those restricted to
[0, 1] were logit-transformed). To simulate evolution toward an
optimum, a new candidate parameter set was proposed for each
member k of the current population according to Equation 4 from
Turner and Sederberg (2012) which drives evolution of the popu-
lation toward an optimum, but in a stochastic manner in accord
with the use of simulation to compute model fit. The final parame-
ter estimate for the GAM model is the average of the final (100th)
generation, weighted by the relative likelihoods of each of the
members of that final population. Because of the stochastic nature
of this search process, the resulting estimate may not be the best
possible set of values, but as shown in the main text these estimates
still yield predictions that closely match observed saccade timing
and accuracy.
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Appendix G

Summed AIC and BIC for Combinations of SCRI Mechanisms

In this Appendix, we present results from two alternative
approaches to aggregate model selection across all neurons. Figure G1
presents the 20 most preferred SCRI variants in terms of AIC values
summed across neurons. Figure G2 presents the same, but using BIC
(Schwarz, 1978), which imposes a stronger penalty on the number of
free parameters than AIC. In terms of the preferred SCRI variant
(i.e., rank 1), summedAIC includes the same parameters as preferred
by average AIC weight as reported in the main text (Figure 6) plus

lateral inhibition between FEF visual neurons with a spatial distri-
bution. Summed BIC prefers the same set of SCRI parameters as
reported in the main text, plus FEF visual neuron lateral inhibition
but without a spatial distribution. Across all approaches, recurrence
(R), delayed availability of identification information (κ), and both
forms of feedforward inhibition (αx and αz) are included, reinforcing
the relative importance of these mechanisms for SCRI’s account of
spiking dynamics of FEF visual neurons.

Figure G1
Summed AIC Across All Neurons in the Data set for Each Combi-
nation of SCRI Mechanisms
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Note. Filled boxes in the bottom panel indicate the mechanism is included,
empty boxes that it is not. Colors for each box correspond to the colors used
to illustrate the corresponding mechanism in Figure 3. Combinations are
ordered by their summed AIC across neurons. There are a total of 576
possible combinations, but the plot is restricted to those with the 20 lowest
summed AIC. AIC = Akaike information criterion; SCRI = salience by
competitive and recurrent interactions. See the online article for the color
version of this figure.

Figure G2
Summed BIC Across All Neurons in the Data set for Each Combi-
nation of SCRI Mechanisms
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Note. Filled boxes in the bottom panel indicate the mechanism is included,
empty boxes that it is not. Colors for each box correspond to the colors used
to illustrate the corresponding mechanism in Figure 3. Combinations are
ordered by their summed BIC across neurons. There are a total of 576
possible combinations, but the plot is restricted to those with the 20 lowest
summed BIC. SCRI = salience by competitive and recurrent interactions;
BIC = Bayesian information criterion. See the online article for the color
version of this figure.
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Appendix H

GAM Parameters

Parameters of the GAMmodel used to simulate saccades for each
monkey, using SCRI to simulate the inputs to GAM accumulators,
are provided in Table H1. Because GAM is a simulation model with
no closed-form likelihood expression, the parameters in Table H1
should be considered sufficient to provide a good fit but cannot be
thought of as “optimal” (see Appendix F for details on how these
parameter values were found). In addition, because inputs to GAM
were simulated from the fits of SCRI to a finite sample of neurons,
these parameters are conditional on the specific sample of visual
neurons obtained from each monkey.
With the caveats above in mind, it is possible to make some

remarks about the relative values and interpretation of each param-
eter. For example, the values of ρm for the two monkeys for which it
was possible to estimate this parameter are relatively large. Recall
that this parameter is in units of distance within the visual search

display, where scaled such that the display has a radius of one unit.
Given that both values of ρm are larger than one, this suggests that
lateral inhibition between GAM accumulators does not need to fall
off substantially with distance in order to provide a decent account
of saccade RT distributions.

With respect to the sources of variability in GAM that manifest in
the shape of that RT distribution, ν represents the degree of intrinsic
within-trial variability in GAM while L represents the degree of
between-trial variability in GAM. L represents between-trial vari-
ability because it is the number of spike trains that contribute to the
input signal to each accumulator on each trial. The larger L is, the
more closely the input signals hew to the average simulated spike
density across FEF visual neurons for that monkey, and the less
variability those signals will show from trial to trial. While ν and L
cannot be compared because they are on different scales, we can
directly compare νwith the threshold θ because they are both in units
of “evidence.” Comparing ν and θ gives a sense of how much
responding is driven by within-trial variability in evidence. For all
monkeys, the ratio ν/θ is small, ranging from 0.0003 (monkey MC)
to 0.002 (monkey Q), that is, ν is less than one percent of θ for all
monkeys. This suggests that within-trial variability does not need to
play a substantial role for GAM to satisfactorily reproduce saccade
RT distributions. Instead, GAM is able to account for the shapes of
those distributions chiefly in terms of between-trial variability in the
incoming evidence signals from SCRI as well as competition
between accumulators and leakage within accumulators. We note
that the between-trial variability in SCRI arises from both the
random sampling of neurons that contribute to the evidence signal
as well as Poisson spike noise from each of those neurons.

Table H1
Parameter Values Used to Produce SCRI-GAM Predictions (as
Shown in Figure 9)

Monkey L βm λm ρm g ν θ

Q 45 0.015 0.000 3.669 0.641 0.033 15.504
S 57 0.285 0.143 6.735 0.398 0.006 3.048
F 498 0.066 0.036 0.292 0.016 9.846
MC 174 0.161 0.021 0.424 0.002 6.209
L 34 0.000 0.000 0.341 0.062 43.127
MM 27 0.001 0.013 0.084 0.018 25.771

Note. SCRI = salience by competitive and recurrent interactions; GAM =
gated accumulator model.
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Appendix I

Measuring GAM Dynamics

To produce summary measures of the accumulator dynamics of
GAM, we calculated for each simulated trial three quantities: the
baseline level of activity; the onset time at which activity began to
increase; and the average growth rate of activity between baseline
and threshold. We found these quantities by fitting a bilinear
function to the activity on each trial of the GAM accumulator
associated with initiating a saccade to the target, from the time of
array onset (time t = 0) until the time its activity reached threshold
θ.I1 Only the onset time was a free parameter: For any given choice
of onset time, the baseline activation was the mean activation
between time t = 0 and onset time and the growth rate was the
difference between threshold (θ) and baseline divided by the
difference between saccade initiation time and onset time. As a
result, the bilinear function was always constrained to reach
threshold at the time of saccade initiation (see the lower panel
of Figure I1).

Quality of fit was assessed by assuming that the bilinear
function specified in the inverse rate of an exponential distribution
from which the GAM accumulator activity on that trial was
sampled. The choice of an exponential distribution (rather than,
say, a Gaussian) was based on the fact that GAM activity was
constrained to be nonnegative and on the fact that, like the Poisson
distribution, its variance grows along with its mean. The “badness
of fit” (upper panel of Figure I1) was the summed negative
exponential log-likelihood across all time points. Onset time
was chosen as the time which minimized this quantity. The result
is a measurement of onset time, baseline, and growth rate for a
specific simulated GAM trial. This fitting procedure was repeated
for each simulated GAM trial to obtain measurements of these
quantities for each simulated trial.
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Figure I1
Bilinear Function Used to Measure Properties of GAM Accumu-
lator Dynamics on Individual Simulated Trials
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Note. The top panel illustrates the “badness of fit” in terms of the negative
summed log-likelihood conditional on each possible choice of onset time. The
measured onset time is the one with the smallest “badness of fit.”GAM= gated
accumulator model.

I1 Although GAMwas not constrained to always make correct saccades to
the target, because it was fit only to correct trials, the chosen parameters in
combination with the input derived from SCRI would almost always result in
a correct saccade, hence the accumulator associated with making a saccade to
the target was always the winner in the present simulations.
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