
Composite Faces are not (Necessarily) Processed Coactively: A Test Using
Systems Factorial Technology and Logical-Rule Models

Xue Jun Cheng and Callum J. McCarthy
The University of Melbourne

Tony S. L. Wang
Brown University

Thomas J. Palmeri
Vanderbilt University

Daniel R. Little
The University of Melbourne

Upright faces are thought to be processed more holistically than inverted faces. In the widely used
composite face paradigm, holistic processing is inferred from interference in recognition performance
from a to-be-ignored face half for upright and aligned faces compared with inverted or misaligned faces.
We sought to characterize the nature of holistic processing in composite faces in computational terms.
We use logical-rule models (Fifić, Little, & Nosofsky, 2010) and Systems Factorial Technology
(Townsend & Nozawa, 1995) to examine whether composite faces are processed through pooling top and
bottom face halves into a single processing channel—coactive processing—which is one common
mechanistic definition of holistic processing. By specifically operationalizing holistic processing as the
pooling of features into a single decision process in our task, we are able to distinguish it from other
processing models that may underlie composite face processing. For instance, a failure of selective
attention might result even when top and bottom components of composite faces are processed in serial
or in parallel without processing the entire face coactively. Our results show that performance is best
explained by a mixture of serial and parallel processing architectures across all 4 upright and inverted,
aligned and misaligned face conditions. The results indicate multichannel, featural processing of
composite faces in a manner inconsistent with the notion of coactivity.

Keywords: face processing, serial versus parallel, coactivity, categorization, Systems Factorial
Technology

Supplemental materials: http://dx.doi.org/10.1037/xlm0000479.supp

A hallmark of research on face processing is that upright faces
seem to be processed in a qualitatively different manner compared
with nonface objects (Scapinello & Yarmey, 1970; Yin, 1969). This
conclusion has been extended to include differences in processing

between upright faces and inverted faces and between aligned faces
and misaligned faces (Chance & Goldstein, 1981; Rossion & Bore-
manse, 2008). For example, the famous Thatcher illusion (Thompson,
1980) shows that the same distortions in a face are difficult to detect
in an inverted face but obvious in an upright face. In addition,
recognition performance is less accurate and slower for inverted faces
or misaligned faces than for upright faces (see, e.g., Chance &
Goldstein, 1981). A large number of compelling demonstrations of
this sort have been identified, highlighting differences in face recog-
nition depending on various forms of face presentation.

Holistic Processing

The concept of holistic processing has been proposed to explain the
apparent difference between recognizing upright faces and recogniz-
ing other classes of common objects (including inverted or misaligned
faces). It commonly refers to the notion that an object’s features are
simultaneously integrated into a single perceptual representation such
that each object is represented as an emergent whole rather than by its
parts, or indeed by the sum of its parts (Richler, Palmeri, & Gauthier,
2012; Rossion, 2008; Shen & Palmeri, 2015).

Two paradigms widely used to test for holistic processing are
the part–whole paradigm (Farah, Tanaka, & Drain, 1995; Tanaka
& Farah, 1993) and the composite face paradigm (Hayward,
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Crookes, Chu, Favelle, & Rhodes, 2016; Richler, Tanaka, Brown,
& Gauthier, 2008; Rossion & Boremanse, 2008; Young, Hel-
lawell, & Hay, 1987). The purpose of this article is to characterize
the recognition mechanisms used to process upright, inverted,
aligned, and misaligned face stimuli in composite face tasks using
methods that allow us to differentiate a large number of different
processing strategies. We begin by introducing both the part whole
and composite tasks, noting how these tasks identify holistic
processing, and follow by introducing concepts that allow us to
make more detailed temporal predictions that one should expect if
a face is processed holistically.

Part–Whole Paradigm

The part-whole paradigm (Tanaka & Farah, 1993) was devel-
oped based on the notion that processing an entire face should
show configural superiority over and above the summed informa-
tion of each of its parts. Holistic processing in this task is defined
as better recognition of the whole face rather than parts of the face,
scrambled parts of the face, or the parts in a new context. In this
task, participants are first trained to recognize members of differ-
ent classes of stimuli (e.g., upright faces and scrambled faces) that
differ on a single feature such as the eyes. Recognition of the target
feature (in this case, the eyes) is then measured either in the
context of the study stimulus (i.e., the specific face—e.g., Mary—
that participants were trained on), in isolation, or embedded in a
different context (e.g., Mary’s eyes on Jane’s face). Tanaka and
Farah argued that it is possible to differentiate featural processing
(independent processing of each part) from holistic processing (the
face as a whole) by comparing recognition performance between
conditions. Specifically, there should be a difference in recognition
for a target feature in its studied upright face context compared
with in isolation but no difference for scrambled faces compared
with in isolation. Indeed, Tanaka and Farah found evidence of
configural superiority for upright faces but not scrambled faces.

In a subsequent study, Farah, Tanaka, and Drain (1995) em-
ployed the part–whole paradigm to investigate differences in pro-
cessing between upright and inverted faces. They reported a con-
figural superiority effect for only the upright faces even though the
same faces were used in both upright and inverted conditions.
Farah et al. argued that inverting a face may disrupt second-order
configural cues (i.e., relational spatial information between fea-
tures, such as the distance between the mouth and the nose; Bartlett
& Searcy, 1993) available in upright faces. As configural cues are
important for holistic processing, due to their providing additional
information to aid recognition (Schwaninger & Mast, 2005), in-
verted faces are not processed holistically in the part-whole task as
they lack these cues.

Composite Face Paradigm

In the composite face paradigm (Young et al., 1987), novel
composite faces are formed by aligning top and bottom halves
from different people’s faces (for a review of different versions of
the composite task, see Gauthier & Bukach, 2007). Young, Hel-
lawell, and Hay (1987) showed that recognition of either face half
when embedded in a composite is poorer than recognition of that
half in its original configuration (called the composite face effect).
This poorer identification is assumed to arise from an inability to

attend to the top or bottom half of a face while ignoring the other
half of a face (Richler et al., 2012; Rossion, 2008).

This composite face effect disappears when the halves of the
composite faces are misaligned. Even though the misaligned faces
have the same visual information as the aligned faces, spatially
offsetting the top and bottom halves leads to better recognition of
one half while ignoring the other half. The difficulty in selectively
attending to one half of a face presented in its aligned configura-
tion relative to a misaligned configuration has been interpreted as
evidence for some form of holistic face processing (Cheung,
Richler, Palmeri, & Gauthier, 2008; Farah, Wilson, Drain, &
Tanaka, 1998).

In the original Young et al. (1987) study, participants were
asked to recognize by name the top or bottom half of a composite
face. In many contemporary classroom demonstrations of the
paradigm, this might be asking someone to recognize the top half
of a composite as Matt Damon’s face while ignoring the bottom
half of George Clooney’s face. Most contemporary versions of the
composite face task have used a same-different task whereby a
study composite is shown briefly, and then, after a short delay, a
test composite is shown and the participant must say whether the
top half (or the bottom half) of the test face matches that of the
study face.

In one adaptation of the composite face paradigm, Rossion and
Boremanse (2008) presented different bottom halves of faces with
the same top half, with the two halves either aligned or misaligned.
Recognition performance (judging half of the test face as same or
different from the study face) was poorer in the aligned condition
than in the misaligned condition. Performance in the aligned
condition was also worse for upright faces compared with inverted
faces, suggesting that aligned upright faces, but not misaligned or
inverted faces, are processed holistically (but see Richler, Mack,
Palmeri, & Gauthier, 2011).

More recent versions of the composite face task employ a
slightly elaborated, complete design, in which changes to the top
and bottom half between study and test can be either congruent or
incongruent with one another (see, e.g., Cheung et al., 2008;
Gauthier & Bukach, 2007). In the partial design (as used by
Rossion & Boremanse, 2008), the to-be-ignored half was always
different regardless of whether the to-be-attended half was the
same or different. Poorer performance in the partial design could
consequently be due to a response bias (see Gauthier & Bukach,
2007). The complete design introduces both congruent changes
(the to-be-ignored half is the same when the attended half is the
same) and incongruent changes (the to-be-ignored half is different
when the attended half is the same). If there is interference from
the to-be-ignored half, then one predicts an interaction between
congruency and alignment (or inversion, depending on the manip-
ulation) in the complete design. Misalignment makes it easier to
ignore the irrelevant half, consequently resulting in a reduction in
sensitivity for incongruent changes because there is effectively
only one piece of information rather than two—the top or bottom
face half—signaling a change. For the aligned trials, there is both
an effect of being able to use the irrelevant dimension on the
congruent trials to boost performance and a failure to ignore the
irrelevant dimension on the incongruent trials to harm perfor-
mance. This interaction has been observed in a many experiments
(e.g., Cheung et al., 2008; Chua, Richler, & Gauthier, 2014, 2015;
Richler et al., 2011, 2015).
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Limitations of Part–Whole and Composite Face
Paradigms

Most researchers interpret the reduction in recognition perfor-
mance for upright aligned faces compared with scrambled, in-
verted, or misaligned faces as indicative of holistic processing
(e.g., Hayward et al., 2016; Richler et al., 2008; Rossion &
Boremanse, 2008; Young et al., 1987). One challenge is that the
concept of holism has numerous meanings and the precise mean-
ing of holism is not uniformly identifiable from the results of these
tasks (Richler et al., 2012). Many different definitions of holism
could explain the results: participants could make the wrong de-
cision about parts or halves of an upright faces due to unintended
retrieval of a whole face template, disruption of the geometry of
configural aspects of the face when combined in a different face
context, or failure of selective attention. And notions of indepen-
dence, say between face halves or face parts, are sometimes
confused with notions of separability (as pointed out by Ashby &
Townsend, 1986; Fitousi, 2015). Unlike standard empirical dem-
onstrations of the part–whole and composite face paradigms,
where holism is only inferred from reduced recognition perfor-
mance, we adopt a double factorial paradigm that allows us to
determine the precise nature of processing underlying those faces
through the identification of information-processing architecture.

Our work follows on that of Fitousi (2015) and Fifić and Townsend
(2010). Fitousi (2015) examined processing of composite faces com-
prised of top and bottom face halves using a composite face task, a
series of unidimensional categorization tasks (following Garner,
1974) and a redundant target detection task. The composite face task
was employed to ensure that the faces showed the necessary com-
posite face effect. Having shown this effect, the Garner tasks were
used to determine whether composite faces exhibited characteristics
classically associated with stimulus integrality.

Stimulus integrality is a concept closely aligned with the idea of
holistic processing. Integrality refers to stimulus dimensions that
are difficult to attend to in isolation. Instead, performance with
integral stimuli appears to be better described as processing of the
whole object. In contrast, separability refers to dimensions that can
be attended to easily in isolation. There are a number of converg-
ing operations demonstrating a difference between integral and
separable dimensions (see Griffiths, Blunden, & Little, 2017, for a
recent review) including, as described later, the applicability of
different distance metrics to explain similarity data via multidi-
mensional scaling (Euclidean for integral and city-block for sep-
arable; Nosofsky, 1992) and the utility of different processing
architectures for explaining response times (namely, coactive pro-
cessing for integrality and serial or parallel processing for separa-
bility; see, e.g., Fifić, Nosofsky, & Townsend, 2008; Little, Nosof-
sky, Donkin, & Denton, 2013). Fitousi (2015) also applied another
important test of integrality: Garner’s selective attention tasks.

The classic Garner tasks are a set of selective attention tasks
whereby a baseline condition is compared with two other conditions,
a correlated condition and a filtering condition. In the baseline con-
dition, two items that vary only on a single relevant dimension (with
other dimensions held constant) are presented for the observer to
categorize. In the correlated condition, there are again two items but
these items have correlated variation on relevant and irrelevant di-
mensions. In the filtering condition, four items are presented with two
items per category, with one dimension relevant for categorization

and the other dimension irrelevant. We direct the reader to a recent
comprehensive review by Algom and Fitousi (2016) and to our own
recent work on this task (Little, Wang, & Nosofsky, 2016).

The Garner tasks identify integrality by determining whether cat-
egorization response times are (a) faster than baseline when there is
correlated variation along the irrelevant dimension and (b) slower than
baseline when there is irrelevant variation in the filtering task. Detec-
tion of facilitation and interference effects implies that the dimensions
are integral, which is commensurate with certain notions of holistic
processing (Pomerantz & Pristach, 1989). By contrast, with separable
dimensions, irrelevant dimensional variation is ignored and perfor-
mance is the same in all three conditions. In Fitousi (2015), although
a composite face effect was observed, neither facilitation nor inter-
ference in the Garner task were observed. Richler, Palmeri, and
Gauthier (2015) have similarly argued that the Garner tasks and the
composite face task may tap different constructs of holistic processing
and, therefore, it may be reasonable to expect different results. We
return to this idea in our General Discussion.

Fitousi (2015) also used a redundant target task to assess work-
load capacity. He predicted that if the top and bottom face halves
were processed holistically, then these composites should show a
target detection benefit when presented together (compared with
presented in isolation) over and above a mere statistical facilitation
(the minimum time prediction) provided by a baseline independent
race model (Raab, 1962). Observing that processing is faster than
the minimum time prediction is sometimes termed supercapacity
and is consistent with a notion of coactivity (Miller, 1982;
Townsend & Eidels, 2011; Townsend & Nozawa, 1995). To ex-
plain, a coactive model predicts that redundant information is
pooled into a common processing channel, providing one formal
definition of the concept of holistic processing (see also Farah et
al., 1998; Gold, Mundy, & Tjan, 2012; Maurer, Le Grand, &
Mondloch, 2002; Tanaka & Farah, 1993; Young et al., 1987).
Consequently, a coactive model predicts that redundant targets
should be processed even faster than the baseline minimum time
prediction of an independent race model. Although Fitousi ob-
served a composite face effect, he did not observe supercapacity.
In fact, capacity was limited.

In summary, when measured using tasks which assess indepen-
dence (Garner) or processing capacity (redundant target detection),
composite faces do not appear to show evidence consistent with
the notion of coactivity, one important theoretical characterization
of holistic processing. However, we note that because the Garner
tasks are selective attention tasks, they do not allow for a direct
measure of coactivity (see Little et al., 2013, for a discussion of
this point). Instead, we require a divided attention task which
allows us to factorially manipulate the difficulty of processing of
both the top and bottom face halves (see Algom, Fitousi, & Eidels,
2017). Furthermore, the measure of capacity relies on the assump-
tion of context invariance (Townsend & Nozawa, 1995). That is,
the face halves must be processed at the same rate both in isolation
and when presented together. This assumption may be readily
violated in practice. Hence, in the present article, we expand on
these past approaches by moving beyond questions of indepen-
dence to ask whether faces are processed according to a specific
type of architecture using a measure that does not require context
invariance to hold.

Certain architectures map to certain types of processing. For
instance, in our previous work applying systems factorial method-
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ologies to differentiate processing architecture (Townsend & No-
zawa, 1995), we found that integral dimension stimuli, such as
Munsell colors created by varying brightness and saturation, are
processed coactively (Fifić et al., 2008; Little et al., 2013). Hence,
coactivity seems to accord well with certain notions of holistic
processing. By contrast, with separable dimension stimuli, such as
shape and size (Moneer, Wang, & Little, 2016), we found little
evidence of coactivity and instead found processing consistent
with serial or parallel processing (or, typically, a trial-by-trial
mixture of serial and parallel processing; Fifić, Little, & Nosofsky,
2010; Little, Nosofsky, & Denton, 2011; Moneer et al., 2016). The
notion of coactivity or pooling across the top and bottom face
halves also seems to accord with the idea of holism being emergent
from the sum of the different face parts, facial geometry, or
retrieval of face templates. And the retrieval of face templates is
consistent with the notion of exemplar-based processing (see, e.g.,
Nosofsky & Palmeri, 1997). Fifić, Little, and Nosofsky (2010)
showed that an exemplar-based model makes predictions that are
formally identical to a coactive processing model.

An alternative definition of holism is provided by the idea that
holistic processing represents a learned, strategic allocation of
attention (Richler et al., 2012; Wong & Gauthier, 2010). The
interaction in the complete composite face design, a hallmark of
holistic processing, reflects effective use of attention or a failure to
disengage attention selectively from specific face parts (Chua et
al., 2014, 2015; Richler et al., 2011; Richler, Wong, & Gauthier,
2011). However, this failure of selective attention hypothesis can
make predictions consistent with either coactive processing or
serial or parallel processing.

To clarify these theoretical characterizations, we use the term
processing architecture to refer to the organization of mental pro-
cesses (Kantowitz, 1974; Schweickert, 1992; Sternberg, 1969;
Townsend, 1984). Serial processing indicates sequential processing of
stimulus dimensions (the top half of the face is processed followed by
the bottom half) and parallel processing indicates simultaneous pro-
cessing of dimensions (both top and bottom are processed at the same
time). These models can be further defined by their stopping rule.
With a self-terminating stopping rule, processing stops whenever a
decision can be made, even if only one dimension has been assessed.
With an exhaustive stopping rule, processing continues until both
dimensions have been assessed, even if a decision could have been
made earlier. Both serial and parallel architectures are multichannel
processing models, where each dimension is processed indepen-
dently. They can be contrasted with the coactive architecture, where
both dimensions are pooled into a single channel that then drives a
decision-making process.1 Crucially, the mechanisms of the coactive
architecture are analogous to the pooling aspect of certain character-
izations of holistic processing: each stimulus feature is integrated into
a single channel and processed together instead of being analyzed
independently.

Measuring Processing Architecture

Our methodology follows closely from Fifić and Townsend (2010)
who examined processing architecture in the categorization of
second-order features, such as the distance between the eyes or the
distance between the nose and the mouth. We describe the details of
Systems Factorial Technology (SFT) methodology in the following
section, but to aid our discussion, we refer the reader to Figure 1. This

figure shows the two conditions used by Fifić and Townsend (2010)
as well as the condition used in the present experiments. In their OR
task, a target category member can be identified by noting that either
the eyes were closer or that the lips were higher than the sole contrast
category member. In their AND task, a target category member could
only be categorized if both features were different from the contrast
category members features. Hence, responding in the AND task had
to be exhaustive (in order to be accurate).

Fifić and Townsend (2010) tested interaction contrasts in both
conditions when the faces were presented in the same context that
they were learned, in a new face context, and in isolation (an isolated
features condition, as in the part–whole paradigm). As described later,
these interaction contrasts allow one to distinguish between serial and
parallel, self-terminating and exhaustive models as well as coactive
processing models. For their OR task, processing was most consistent
with parallel, self-terminating processing in the old and new face
contexts. In their isolated features OR condition, processing varied
between parallel and serial self-terminating processing across observ-
ers. For their AND condition, however, some observers did show
contrasts consistent with coactivity but only in the old face context;
the remaining participants were more consistent with serial processing
in the old face context and either serial or parallel processing in the
remaining conditions. Nonetheless, Fifić and Townsend’s (2010) ex-
periment did provide some indication that, at least for some observers,
there were consistent differences between part and whole conditions
that were consistent with the notion that holistic processing reflects
coactivity. The fact that coactivity was not invariant across tasks may
implicate a strategic attentional mechanism (rather than more mono-
lithic holistic pooling irrespective of task).

In the present experiments, we apply a similar methodology but
to the composite face task by using factorially manipulated top and
bottom face halves as our set of stimuli. We test not only upright
and aligned faces but also inverted and misaligned faces. Our
methodology differs from Fifić and Townsend (2010) in two
substantial ways: First, we extend our analysis to not only the
target category items but also the contrast category items. Fifić et
al. (2010; see also Cheng, Moneer, Christie, & Little, 2017; Little
et al., 2015) showed that a large number of processing models
make unique predictions regarding the contrast category items;
these items add converging evidence as to the underlying process-
ing architecture. Second, we complement the nonparametric inter-
action contrast SFT methodology with computational modeling.
This allows us to test a number of novel explanations of processing
beyond the canonical models which make up SFT. For example,
we parametrically test mixtures of processing models (see, e.g.,
Little et al., 2011), and we provide strong tests of coactivity by
systematically increasing the flexibility of the coactive model (see,
e.g., Fifić et al., 2010).2 In the following section, we outline how
the use of interaction contrasts via SFT on target category stimuli

1 The coactive model can be thought of a parallel facilitatory model with
perfect facilitation between the channels (see Eidels, Houpt, Altieri, Pei, &
Townsend, 2011).

2 Our implementation of the coactive model assumes that there is no
correlation in the perceptual representation of the top and bottom halves
(i.e., perceptual independence; Ashby & Townsend, 1986). We test a
highly flexible model which allows a freely varying drift rate for each face.
This model contains models which allow violations of perceptual indepen-
dence as a special case.
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and the contrast category allow us to differentiate processing
models in our design (see Figures 2 and 3). We then present our
experiment.

Systems Factorial Technology (SFT)

A critical feature of our design is that it links face categorization
performance with Systems Factorial Technology (SFT; Fifić et al.,
2010; Little, Altieri, Fifić, & Yang, 2017; Townsend & Nozawa,

1995; Townsend & Wenger, 2004, see Figure 1). There are several
good recent tutorial reviews of SFT (Algom, Eidels, Hawkins,
Jefferson, & Townsend, 2015; Altieri, Fific, Little, & Yang, 2017;
Harding et al., 2016). We provide a capsule summary of the
relevant aspects of SFT we utilized.

The current study focuses on two sets of SFT analyses: the mean
interaction contrast (MIC) and survivor interaction contrast (SIC).
To explain how these interaction contrast analyses can differenti-
ate processing architectures, note that the four members of the

Figure 1. From left to right (top), schematic of the stimulus spaces in Fifić and Townsend (2010)’s OR and
AND conditions, and the stimulus space used in the current article. In the center, we show the general
combination of faces used in the upright aligned face category space for the present experiment; the actual face
images were drawn from Kayser (1997) and are available from the authors on request. Dimension X is created
by morphing top halves Face 3 and 4. Dimension Y is created by morphing bottom halves Face 1 and 2. We also
show an example of the face layout from each of the four conditions (bottom).
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target category (x1y1, x1y2, x2y1, and x2y2) vary according to their
discriminability (relative to the category boundary) on both dimen-
sions. Stimuli closer to the category boundary should be harder to
distinguish from the contrast category and are described as having
low discriminability (L). Correspondingly, stimuli further from the
boundaries should be easier to distinguish and are described as
having high discriminability (H). With regards to Figure 1, stim-
ulus x1y1 is hereafter referred to as the LL stimulus, x1y2 as LH,
x2y1 as HL, and x2y2 as HH. The interaction contrasts can be
computed by combining these factorially manipulated dimensions
both at the mean and distributional level. Both interaction contrasts
provide a powerful tool for differentiating processing models.

Mean Interaction Contrast (MIC)

In our experiment, the target category faces require both dimen-
sions to be processed, and hence are categorized using an AND
rule. Distinct patterns of mean reaction times (RTs) for the target
category items are illustrated in Figure 2 (left column). The mean
reaction time (RT) interaction can be summarized as:

MIC ! (RTLL " RTLH) " (RTHL " RTHH). (1)

As shown in Figure 2, the serial, parallel, and coactive architectures
each make a characteristically different prediction. Here we focus
only on the exhaustive response patterns because self-termination in
the target category would lead to a high error rate in our design.

The serial architecture predicts an additive pattern of mean RTs
(MIC ! 0). To explain, when both dimensions are processed exhaus-
tively, the overall RT predicted by a serial model is given by the sum
of processing both dimensions. Hence, the increase in RT from HH to
HL should be approximately equal to the increase in RT from LH to
LL. A parallel architecture predicts an underadditive pattern (MIC "
0). With an AND rule, the parallel architecture’s predictions are given
as the maximum processing time taken to process both dimensions.
Hence, the processing time of the LH, HL, and LL stimuli will be
much closer to each other than to the HH stimulus. For the coactive
architecture, the pattern of RTs is predicted to be overadditive
(MIC # 0; Fifić et al., 2010; Houpt & Townsend, 2011; Townsend &
Nozawa, 1995). The intuition is that because information from both
channels is pooled together, a single low discriminability value does

Figure 2. Left panels: Illustration of the three main patterns of mean RTs for the target category with their
corresponding MIC values. L denotes low discriminability on a dimension; H denotes high discriminability on
a dimension. Right panels: Illustration of survivor interaction contrasts (SICs) associated with the different
processing architectures.
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not act to slow the entire RT; however, processing is slowed consid-
erably when both dimensions have low discriminability.

Survivor Interaction Contrast (SIC)

The survivor interaction contrast (SIC) allows us to gain further
diagnostic information by analyzing the entire RT distribution for
each target category item rather than merely the means. The SIC is
computed analogously to the MIC but uses the survivor function,
S(t), for each item. The survivor function is defined as the prob-
ability that a randomly observed time T takes longer than t time
units to complete: S(t) ! p(T # t); the survivor function is just one
minus the cumulative distribution function often used to portray
RT distributions. When t ! 0, S(t) ! 1 because all processing
times exceed zero, and as t approaches infinity, S(t) moves toward
zero. Slower processing is associated with greater values of the
survivor function across the time domain. To estimate the survivor
functions, we used the Kaplan-Meier estimator (Kaplan & Meier,

1958), which right censors any error trials by treating the response
times for these trials as missing data. The SIC is given as:

SIC(t) ! !SLL(t) " SLH(t)" " !SHL(t) " SHH(t)". (2)

Like the MIC, the SIC produce qualitatively distinct patterns for
each of the processing architectures (see Figure 2, right column).
Serial architectures are characterized by having equal positive and
negative areas under the curve, parallel architectures by an entirely
negative curve, and coactive architectures by a small negative deflec-
tion that then becomes largely positive. The integral of the SIC gives
the value of the MIC (Townsend, 1990); hence, the MIC is a measure
of the positive and negative area of the SIC.

Contract Category Predictions

The mean RTs from the contrast category items provide an
extended set of qualitative contrasts for distinguishing between the
architectures (Fifić et al., 2010). RT patterns from the contrast

Figure 3. Schematic illustration of contrast category mean RT patterns adapted from Fifić, Little, and Nosofsky
(2010).
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category items for all the architectures are necessarily exhaustive
due to the logical rule defining their categorization (both dimen-
sions must be processed to confirm categorization into the target
category). Unlike the target category items, RT patterns from the
contrast category items can reveal whether processing is governed
by an exhaustive or self-terminating rule for the serial and parallel
models. Detailed intuitive descriptions of the qualitative predic-
tions and their rationale can be found in Fifić et al. (2010, pp.
313–317).

For instance, consider the difference between fixed-order and
mixed-order serial self-termination processing. For a fixed-order
serial self-terminating process that processes dimension x be-
fore dimension y, the mean RTs for the first processed dimen-
sion are approximately equivalent (see Figure 3, top left panels).
For the second processed dimension, however, the mean RTs for
the interior stimulus (e.g., x1y0, see Figure 1) are slower than the
mean RTs for the exterior stimulus (e.g., x2y0); we use the terms
interior, (I) and exterior (E) to refer to a stimulus’s position in the
category space (for reference see Figure 1). The reason for this is
because after processing dimension x, which satisfies the vertical
rule bound in favor of the target category, processing must switch
to dimension y. Because it is harder to discriminate x1 from x0 than
it is to discriminate x2 from x0, this switch will occur later for the
interior stimulus than the exterior stimulus. By contrast, for mixed
order serial self-terminating processing (Figure 3, middle left
panel), where either x or y may be processed first from trial to trial,
both interior stimuli are predicted to have longer RTs than both
exterior stimuli. This is because on some trials, depending on
which dimension is processed first, processing will have to switch
to the other dimension, and, again, this is will occur later for the
interior stimuli than for the exterior stimuli.

A key contrast to these predictions is provided by the coactive
architecture. Now, the interior stimuli are predicted to be pro-
cessed faster than the exterior stimuli. The intuition is that in
pooling across both dimensions, the interior stimuli pool more
evidence for a contrast category response than the exterior stimuli
since they are closer to the lower left-hand corner of the stimulus
space (i.e., the contrast category). In sum, the pattern of RTs from
both categories offer a rich set of additional diagnostic data that
allow differentiation of (a) architecture, (b) stopping rule, and (c)
for serial processing, the order in which the dimensions are pro-
cessed.

Behavioral Experiment

The aim of our present experiment is to investigate the archi-
tecture underlying the processing of composite faces. In separate
conditions, we focus on the processing of upright and inverted,
aligned and misaligned faces. If composite faces are processed
holistically when upright and aligned but not in any of the other
conditions, we should find coactivity for upright aligned faces but
independent (serial or parallel) processing for misaligned or in-
verted faces. This result would be consistent with some of the
existing literature that suggests that inverted and misaligned faces
are not processed holistically.

On the other hand, Richler, Mack, Palmeri, and Gauthier (2011)
showed that inverted (aligned) faces in a composite face task also
show the hallmarks of holistic processing in a composite face task.
But for inverted faces, the interaction effect (in the complete
composite design) takes longer (in time) to emerge. In the present
experiment, where stimuli are displayed until a response is made,
we might expect also to see coactivity in the inverted aligned
condition. Consequently, our approach poses and tests a series of
strong hypotheses about the notion of holistic processing. We
summarize these predictions in Table 1.

General Method

Participants

Nineteen participants from the University of Melbourne com-
munity were randomly assigned to the upright aligned (N ! 5),
upright misaligned (N ! 5), inverted aligned (N ! 5), and inverted
misaligned (N ! 4) conditions. One participant from the upright
aligned condition and one participant from the upright misaligned
condition were removed from further analysis due to error rates
over 30% for one of the items. Participants received $6 for each
session plus a $2 bonus per session for accurate performance
(#90%). Testing humans was approved under Melbourne Human
Research Ethics Committee 1034866.

Stimuli and Apparatus

A 3 $ 3 matrix of faces was created using a field morphing
technique (Steyvers, 1999). The base face halves used in this
experiment are shown in Figure 1 (middle panel) for the upright

Table 1
Summary of Predictions for Theories of Composite Face Processing

Theory Condition

Target category predictions

Contrast category InferenceMIC SIC

Holistic processing of
upright faces only

Upright aligned Overadditivity (MIC # 0) Mostly positive Interior " Exterior Coactive
Other conditions Underadditive or additive

(MIC $ 0)
Negative or S-shaped Interior # Exterior Serial or Parallel

Composite faces processed
as separable objects

All conditions Underadditive or additive
(MIC $ 0)

Negative or S-shaped Interior # Exterior Serial or Parallel

Holistic processing of
aligned faces

Aligned Overadditivity (MIC # 0) Mostly positive Interior " Exterior Coactive
Misaligned Underadditive or additive

(MIC $ 0)
Negative or S-shaped Interior # Exterior Serial or Parallel

Note. MIC ! mean interaction contrast; SIC ! survivor interaction contrast.
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conditions (Goldstone & Steyvers, 2001, Experiment 1; Kayser,
1997). The inverted conditions were created by rotating these
components 180 degrees. Top face halves were formed by mor-
phing Faces 3 and 4, and bottom face halves were formed by
morphing Faces 1 and 2. The top and bottom halves were then
combined to create the nine face stimuli. Thus, each face in the
stimulus space can be defined by a combination of values on the
top and bottom face halves (e.g., the face in the top left corner of
the space in Figure 1 is 100% Face 1, 0% Face 2, 100% Face 3, and
0% Face 4).3

Each composite face was presented upright or inverted in either
an aligned or misaligned fashion (between conditions; see Figure
1). The stimuli were presented on a 1,280 $ 1,024 resolution
monitor set at a viewing distance of 70 cm. Each face subtended a
visual angle of 4.66° $ 2.46° in the aligned condition, and 4.66° $
3.93° in the misaligned condition. The gap between the face halves
subtended a visual angle of 0.16° in all conditions. A Gaussian
filter was applied to blur the edges around each of the faces. RTs
were collected using a calibrated response box (Li, Liang, Kleiner,
& Lu, 2010).

Procedure

Each participant completed eight 1-hr sessions on consecutive
or near-consecutive days over a period of 2 weeks. Participants
were instructed to respond accurately but also told that RTs were
being recorded. At the start of each trial, a fixation cross was
presented for 1,500 ms. A single face was then presented and the
participant was required to indicate whether the face belonged to
the target category or the contrast category by pressing the appro-
priate button on the response box. Feedback was provided only if
the response was incorrect (i.e., “. . . WRONG . . .”) or after 5,000
ms when the trial timed out (i.e., “. . . TOO SLOW . . .”). A blank
interval of 2,000 ms was inserted between trials.

Each face was presented 50 times per session for a total of 400
times per participant across all eight sessions. In each session,
there were 10 blocks of 45 trials each, with the presentation order
of the faces randomized within each block. Between blocks, par-
ticipants were allowed to take a short break and given feedback on
their performance accuracy for the previous block.

Data Analysis

Following related precedents using SFT, we focus our analysis
on individual participant ANOVAs to assess the target category
results and on planned t tests to assess the contrast category results.
These analyses allow us to make inferences about the specific
processing patterns for each individual participant. One shortcom-
ing of this method is that because our manipulation of face align-
ment and direction is between subjects, we provide no direct
comparison between conditions. However, our focus is on the
specific processing architectures arising for each participant in
each condition. Our nonparametric and parametric modeling anal-
yses allow for a consistent interpretation across conditions.

Results

In all conditions, Session 1 was considered practice and ex-
cluded from analysis.4 For each participant and each item, trials

with RTs less than 200 ms or greater than the 99.9% overall RT
were excluded. Timeouts were also excluded. This resulted in less
than 2% of trials being removed. The mean correct RTs, mean
error RTs, and error rates for each participant are presented in
Tables 2 and 3 for the upright and inverted conditions, respec-
tively. As shown, error rates tended to be low across all the items
for most participants with the exception of the LL stimulus and the
Ix and Ex stimuli. We refer to participants by an abbreviation of
their assigned condition (e.g., UA1 is the first participant in the
upright aligned condition).

Before turning to the individual conditions, we note some results
which were consistent for all participants in all conditions. To
analyze the target category, we conducted a 7 (session: 2–8) $ 2
(top half: L or H) $ 2 (bottom half: L or H) ANOVA on the
target-category RTs for each individual participant (see Table 4
and Table 6). These results show that: (a) the main effects of top-
and bottom-half discriminability were significant for all partici-
pants in all conditions indicating that our manipulation was suc-
cessful. (b) There was a main effect of session for all participants
indicating that RTs became faster with practice. (c) For some
subjects, session interacted with one or both dimensions indicating
that one or both dimensions became processed more quickly
relative to the other dimension across trials. (d) The three-way
interaction between session, top, and bottom half was not signif-
icant for any observers, indicating that the relationship between the
target category items was stable across sessions; the sole exception
to this was Participant UM4. The three-way interaction indicates
that the relationship between the target category items was unsta-
ble across sessions. A possibility is simply that performance had
not stabilized by the second session. Because we wish to examine
only asymptotic behavior, we examined the data after removing
Session 2 (i.e., in addition to Session 1), in which case the
three-way interaction was no longer significant. These are the
analyses reported in Table 4.

For the contrast category, following Fifić et al. (2010), we
conducted a series of planned t tests comparing the redundant
stimulus with each of the other contrast category stimuli and
comparing the interior with the exterior stimuli on both dimen-
sions. These comparisons showed that for all of the subjects, the
redundant stimulus was faster than the remaining stimuli, ruling
out any exhaustive processing model. For all participants, with the
exception of UA4 and UM2, the top half of the face is processed
faster than the bottom half of the face, regardless of whether the
face is presented at the top or bottom of the display (e.g., in the
upright and inverted conditions, respectively; see Tables 5 and 7).

Having covered the results that are consistent across all the
conditions, we now turn to the two primary diagnostic measures:

3 In our initial pilot tests, the upright condition was much easier than the
inverted condition such that there were only minimal RT differences
between the L and H levels. This precludes the analysis of the SFT
contrasts since we did not find effective influence of the manipulations of
the top and bottom face halves (Townsend & Nozawa, 1995). To increase
the difficulty of the upright condition, rather than use 0%, 50%, and 100%
morph levels on each dimension, we used 20%, 40%, and 80%.

4 Due to a programming error, for some participants the first few
experimental trials from the first block of a session were also removed.
This lead to the removal of one experimental trial for UA4, UM1, UM4,
IA2, and IA3; two experimental trials for UA1, UM2, UM3, IA4, and IM2;
and three experimental trials for IM1.
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the two-way interaction of target and direction of that interaction
(the MIC) between the top and bottom face halves for the target
category stimuli and the interior versus exterior comparison for the
contrast category stimuli. The pattern of results across these two
measures allows us to rule out different model architectures de-
scribing how the top and bottom halves are integrated when
making a category decision. To remind the reader, coactive pro-
cessing would be identified by a significant, positive MIC, along
with a mostly positive SIC, coupled with faster mean RTs for the
interior than exterior contrast category items. Serial processing
would be identified if the target category MIC is near zero (and
non-significant) coupled with a slower interior than exterior con-
trast category items. Parallel processing would be consistent with
a significant negative MIC, and a negative SIC, coupled with a
non-significant interior/exterior comparison indicating no differ-
ence in the mean RTs.

Upright Aligned Condition

Target category. Figure 4 (top row) shows the SIC and mean
RTs for the target category items for the upright aligned condition.
Referring to the model predictions in Figure 2, participants in the
upright aligned condition were most consistent with the underaddi-
tive predictions of the parallel model (or the serial model for
Participant UA4). For Participant UA3, the significant Top $
Bottom interaction confirms that the MIC was negative supporting
an inference of parallel processing (see Table 4). This interaction

was not significant for the Participants UA1, UA2, or UA4 which
is suggestive of serial processing.

Contrast category. The contrast category analyses suggest
some differences between participants (see Table 5 and Figure 5,
top row). For UA1, the analysis indicates parallel self-terminating
processing since there is no difference between the interior and
exterior stimuli on either dimension consistent with parallel self-
terminating processing. For Participant UA2, there is no difference
between interior and exterior stimuli on the bottom face half, but
the exterior is faster than the interior on the top face half. For
Participants UA3 and UA4, the exterior stimulus is faster than the
interior stimulus for only the top dimension. For the bottom
dimension, however, the interior stimulus tends to be faster than
for the exterior stimulus, and the comparison is only significant for
Participant UA4. The contrast-category results for Participants
UA3 and UA4 are inconsistent with any of the models.

Summary. Taken together, for Participants UA1 and UA2,
the SIC appears to be underadditive, but the interaction contrast is
non-significant. When coupled with the contrast category results,
the data are suggestive of parallel self-termination for Participant
UA1 but of mixed order serial-self termination for Participant
UA2. In previous work, this result has been commonly found when
processing is best explained as a trial-by-trial mixture of serial and
parallel processing (cf. Little et al., 2011; Moneer et al., 2016). For
Participant UA3, the SIC is mostly negative, and the MIC is signifi-
cantly negative suggesting parallel processing. Participant UA4’s
target category results look serial, and this inference is supported by

Table 2
Observed Mean Correct and Error RTs (ms) and Error Rates for Individual Stimuli for Each Observer in the Upright
Face Conditions

Observer Variable

Item

HH HL LH LL Ex Ix Ey Iy R

UA1 RT correct 950 1,292 1,201 1,473 1,319 1,281 1,087 1,110 1,030
RT error — 1,916 1,424 1,648 1,446 1,594 1,282 1,305 1,110
p(error) .00 .10 .14 .27 .11 .07 .05 .03 .01

UA2 RT correct 796 1,041 1,069 1,264 989 1,034 918 1,009 842
RT error 1,026 1,152 1,264 1,341 1,267 1,447 940 1,772 1,362
p(error) .01 .08 .07 .14 .15 .07 .04 .06 .01

UA3 RT correct 683 1,020 887 1,154 1,106 1,167 1,014 907 745
RT error — 1,503 1,903 1,544 1,626 1,825 1,163 1,206 1,537
p(error) .00 .04 .01 .07 .09 .09 .06 .02 .01

UA4 RT correct 888 1,256 1,339 1,656 1,104 1,260 1,210 1,079 1,007
RT error — 1,595 1,730 1,623 1,763 1,741 1,838 2287 1,200
p(error) .00 .01 .04 .17 .08 .05 .05 .01 .00

UM1 RT correct 914 1,196 1,290 1,492 1,166 1,172 1,064 1,068 995
RT error — 1,287 1,253 1,584 1,527 1,674 1,440 1,653 2156
p(error) .00 .02 .06 .10 .13 .05 .03 .01 .00

UM2 RT correct 822 970 1,112 1,224 925 982 976 974 884
RT error 1,237 2,068 1,385 1,435 1,265 1,299 1,616 1,803 1,518
p(error) .00 .02 .06 .17 .10 .04 .13 .09 .00

UM3 RT correct 783 989 1,219 1,353 1,061 1,103 987 938 867
RT error 824 1,297 1,219 1,138 1,376 1,570 1,538 1,669 1,432
p(error) .01 .03 .04 .13 .14 .11 .05 .05 .01

UM4 RT correct 684 857 829 934 955 880 724 735 686
RT error 718 1,202 1,010 954 1,054 1,200 945 930 987
p(error) .01 .09 .11 .22 .23 .21 .04 .03 .01

Note. UA ! upright aligned; UM ! upright misaligned; HH ! high-high stimulus x2y2; HL ! high-low stimulus x2y1; LH ! low-high stimulus x1y2;
LL ! low-low stimulus x1y1; R ! redundant stimulus x0y0; Ix and Iy denote the interior stimuli on the top half x1y0 and bottom half x0y1 dimensions
respectively; Ex and Ey denote the exterior stimuli on the top half x2y0 and bottom half x0y2 dimensions, respectively.
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a non-significant MIC. However, for both of these participants, the
top dimension shows longer exterior than interior RTs but the bottom
dimension shows longer interior than exterior RTs.

On the surface, our contrast category results appear only partially
consistent with coactivity. However, it may be possible to explain this
by assuming that the perceived variabilities of the top and bottom
halves are not equivalent across all values of each dimension. The
implication is that due to interacting attentional demands to the top
and bottom half and to items close to the dimensional boundary, some
face halves may not be as well learned as others. This leads to
increased perceptual variability for the exterior “bottom” item com-
pared with the interior “bottom” item and would allow for the longer
exterior RT. Though post hoc, this explanation is supported by the
observations that (a) the top half is processed faster than the bottom in
almost all cases, suggesting decreased variability for the top half and
(b) the psychological representation of the upright condition shows
that the items near the boundary are more difficult to discriminate due
to the spacing of these items (see Appendix A and B). We explore this
explanation further by fitting a flexible coactive model which esti-
mates a freely varying rate of processing for each stimulus. If pro-
cessing is truly coactive, then this model should allow us to account
for these complex effects. We defer further discussion of this expla-
nation to our Computational Modeling section. In sum, the nonpara-
metric analyses reveal little evidence for coactivity in the upright
aligned face condition.

Upright Misaligned Condition

Target category. For Participants UM1, UM3, and UM4, the
SIC results are most consistent with parallel self-terminating pro-
cessing (see Figure 4). A negative MIC was observed for each
participant, indicating parallel processing. To confirm, the Top $
Bottom interaction was significantly negative for Participant UM1
and UM4 and marginal for UM3 supporting this inference (see
Table 4, right hand columns). This interaction was not significant
for UM2 which is suggestive of serial processing.

Contrast category. There was no significant difference be-
tween the interior and exterior items for UM1 or UM3 adding further
support to the inference of parallel self-terminating processing. For
UM4, the interior is processed slower than the exterior stimulus for
the top face half but this is reversed for the bottom face half.

For UM2, who showed target results consistent with serial process-
ing, we see a similar patter to UA2 in which there is no difference
between I and E for the slower of the two dimensions (for UM2, the
top), but there is a difference on the faster of the two dimensions (the
bottom) with the exterior being faster than the interior.

Summary. Taken together, the target and contrast category re-
sults provide clear evidence for parallel self-terminating processing
for UM1and UM3. UM2’s non-significant MIC, S-shaped SIC, and
significantly longer interior than exterior RT on the bottom dimension
suggest serial processing. The data for UM4 are more equivocal. The

Table 3
Observed Mean Correct and Error RTs (ms) and Error Rates for Individual Stimuli for Each Observer in the Inverted
Face Conditions

Observer Variable

Item

HH HL LH LL Ex Ix Ey Iy R

IA1 RT correct 668 821 704 885 892 846 711 684 645
RT error — 963 1,110 1,036 1,030 1,230 603 1,317 —
p(error) .00 .02 .03 .10 .11 .02 .03 .01 .00

IA2 RT correct 806 930 896 993 889 912 769 745 698
RT error 1,062 1,009 1,061 1,036 835 1,105 736 917 757
p(error) .03 .14 .06 .17 .08 .04 .05 .01 .01

IA3 RT correct 1,257 1,409 1,448 1,591 1,514 1,469 1,101 1,095 1,022
RT error 2,059 1,902 1,827 2,013 1,812 1,847 1,316 1,615 931
p(error) .01 .05 .02 .13 .17 .13 .02 .03 .01

IA4 RT correct 713 753 753 829 840 820 600 624 624
RT error 923 997 896 881 868 1,049 597 790 —
p(error) .00 .02 .01 .03 .07 .05 .01 .01 .00

IA5 RT correct 691 835 825 1,057 937 888 761 732 641
RT error 899 1,377 1,073 1,216 1,604 1,517 874 0 1,697
p(error) .00 .05 .01 .12 .06 .03 .02 .00 .00

IM1 RT correct 704 773 730 817 680 673 652 661 621
RT error 462 900 695 916 861 721 1,274 1,131 809
p(error) .00 .01 .02 .03 .04 .03 .01 .01 .00

IM2 RT correct 745 819 817 910 953 903 576 584 589
RT error 850 549 531 889 1,033 1,075 — — 1,319
p(error) .01 .00 .02 .04 .04 .02 .00 .00 .00

IM3 RT correct 899 1,035 1,039 1,180 1,187 1,310 834 813 838
RT error — 2,364 1,557 2,179 1,465 2,053 1,342 2,736 —
p(error) .00 .01 .03 .06 .05 .04 .01 .01 .00

IM4 RT correct 751 841 822 932 811 821 740 740 682
RT error 602 822 1,084 1,340 1,277 1,835 1,356 1,242 157
p(error) .00 .03 .02 .02 .04 .03 .01 .01 .00

Note. IA ! inverted aligned; IM ! inverted misaligned; HH ! high-high stimulus x2y2; HL ! high-low stimulus x2y1; LH ! low-high stimulus x1y2;
LL ! low-low stimulus x1y1; R ! redundant stimulus x0y0; Ix and Iy denote the interior stimuli on the top half x1y0 and bottom half x0y1 dimensions,
respectively; Ex and Ey denote the exterior stimuli on the top half x2y0 and bottom half x0y2 dimensions, respectively.
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target category appears to be clearly parallel, but the contrast category
shows some signs of faster interior than exterior processing as found
for two of the participants in the upright condition.

Inverted Aligned Condition

Target category. Four of the five participants in the inverted
aligned conditions show the positivity (MIC #0) associated with
coactive processing (see Figure 6). However, the Top $ Bottom
interaction is not significant for Participants IA1, IA3, and IA4
(see Table 6). By contrast, IA5’s significant positive interaction
indicates an overadditive MIC which is consistent with coactivity.
IA2’s negative SIC and significant negative interaction indicates
parallel processing.

Contrast category. Of the four participants whose target cat-
egory results suggest coactive processing, only comparisons for

IA1 show significantly shorter interior than exterior RTs on both
stimulus dimensions (see Table 7 and Figure 7). IA5 show RTs
consistent with coactivity but the interior is faster than the exterior
only on the faces which satisfy the contrast category rule for
the bottom dimension. For the remaining participants, the RTs on
the interior and exterior stimuli are equivalent (see Figure 7) or the
exterior stimulus RTs are faster than the interior stimulus RTs (see,
e.g., IA4). This result supports an inference of parallel self-
terminating processing for IA2 and IA3. Participant IA4’s results
indicate shorter RTs for the exterior top stimulus compared to the
interior top stimulus. This could indicate serial self-terminating
processing similar to Upright Aligned Participant UA2.

Summary. Taken together, we find clear evidence for parallel
self-termination (IA2) and, surprisingly, clear evidence for coact-
ivity (IA1 and IA5; see Figures 6 and 7). We are unable to
unambiguously determine processing for the remaining two par-
ticipants based on the nonparametric results; however, as described
below, the parametric modeling allows for a more conclusive
inference.

Inverted Misaligned Condition

Target category. For all participants, the observed SIC results
have a substantial positive component. For IM1 and IM2, these
SICs are most consistent with coactivity (see Figure 6; bottom row
panels). For IM3 and IM4, the SIC is also consistent with coact-
ivity, but the increased area in the early negative component could
also reflect serial processing. However, the two-way interaction
was not significant for any participant and this implies that the
MICs, though positive, were not differentiable from zero (see
Table 6).

Contrast category. For the contrast category mean RTs, only
IM2 showed a shorter RT for the interior than the exterior stimu-
lus, and only for the bottom dimension (see Figure 7). Participants
IM1 and IM4 had equivalent RTs on the interior and exterior
stimuli for both dimensions consistent with parallel self-
terminating processing (see Table 7). Participant IM3 had equiv-
alent RTs on the redundant, interior, and exterior stimuli on the top
dimension and longer interior than exterior RTs on the bottom
dimension. These results are consistent with serial self-terminating
processing.

Summary. Here again, the target and contrast categories offer
a mixed set of results that do not allow for easy interpretation.
Only IM3 can be classified on the basis of the nonparametric
results. This participant shows clear evidence of serial and self-
terminating processing. The remaining participants show SIC re-
sults that suggest coactivity but the observation is not confirmed
by the statistical analysis. The contrast category results are most
consistent with parallel self-termination. However, the results from
each category are somewhat difficult to reconcile. We turn to
computational modeling later to provide an avenue for examining
models which violate some of the assumptions inherent in the
nonparametric analysis.

Summary of SFT Results

A challenge of SFT is that heterogeneity between subjects often
precludes drawing general conclusions about processing architec-
ture; however, we can draw on other aspects of the data to offer
some interim explanations.

Table 4
Target Category Statistical Results for the Individual
Participants in the Upright Conditions

Variable df F p df F p

Participant UA1 Participant UM1

Session 6 19.17 .00 6 26.55 .00
Top 1 66.97 .00 1 310.55 .00
Bottom 1 136.67 .00 1 156.13 .00
Session $ T 6 1.29 .26 6 2.70 .01
Session $ B 6 2.04 .06 6 1.16 .33
Top $ Bottom 1 2.22 .14 1 4.98 .03
Session $ T $ B 6 0.68 .66 6 1.18 .31
Error 1,192 1,309

Participant UA2 Participant UM2

Session 6 17.04 .00 6 182.32 .00
Top 1 109.91 .00 1 393.25 .00
Bottom 1 95.44 .00 1 104.45 .00
Session $ T 6 2.19 .04 6 16.33 .00
Session $ B 6 1.19 .31 6 3.10 .01
Top $ Bottom 1 1.43 .23 1 0.47 .49
Session $ T $ B 6 0.98 .44 6 1.30 .26
Error 1,264 1,280

Participant UA3 Participant UM3

Session 6 7.88 .00 6 59.80 .00
Top 1 114.15 .00 1 619.07 .00
Bottom 1 365.38 .00 1 117.87 .00
Session $ T 6 1.08 .37 6 4.38 .00
Session $ B 6 3.02 .01 6 1.07 .38
Top $ Bottom 1 4.83 .03 1 3.67 .06
Session $ T $ B 6 1.52 .17 6 0.65 .69
Error 1,328 1,300

Participant UA4 Participant UM4

Session 6 20.56 .00 5 16.37 .00
Top 1 322.35 .00 1 95.19 .00
Bottom 1 206.21 .00 1 174.29 .00
Session $ T 6 2.94 .01 5 1.45 .20
Session $ B 6 1.69 .12 5 0.52 .76
Top $ Bottom 1 1.33 .25 1 5.31 .02
Session $ T $ B 6 2.04 .06 5 2.04 .07
Error 1,288 1,061

Note. UA ! upright aligned; UM ! upright misaligned; T ! top; B !
bottom.
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Most clearly, the nonparametric analyses of SFT do not
provide strong evidence of coactivity in the upright aligned
condition or any of the other conditions. Although there were a
small number of subjects who showed faster interior than ex-
terior stimulus mean RTs, this was never accompanied by an
overadditive MIC or SIC in the target category. Oddly, the only
evidence for any overadditivity in the target category was found
in the inverted conditions.

We also found no evidence for exhaustive processing. That is,
the redundant stimulus in the contrast category is always processed
as fast as or faster than the interior or exterior stimuli (clearly,
processing in the target category is forced to be exhaustive by the
experimental design).

Most of the participants show results that resemble the predic-
tions of the parallel or serial processing architectures (with some
participants exhibiting predictions which seem to fall in between
these two architectures’ predictions).

To further clarify our results, we use parametric computational
models. These allow us to test both mixtures of serial and parallel
processing along with a more flexible model of coactivity. Al-
though the error RTs are not utilized by the SFT analyses, we fit
the error RTs using parametric computational models.

Computational Modeling

We fit a set of logical rule-based models that were introduced
by Fifić et al. (2010) to differentiate potential model architec-
tures on their ability to explain our observed data. These models
have been applied to examine processing of a number of dif-
ferent stimulus dimensions during perceptual categorization
(Blunden, Wang, Griffiths, & Little, 2015; Little et al., 2011,
2013; Moneer et al., 2016). The logical rule models take their
name from the fact that the outcome of independently process-
ing multiple stimulus dimensions may combine using logical
OR or AND operations. Each of the independent processes is
modeled as an evidence accumulation process (Brown & Heath-
cote, 2008; Luce, 1986; Nosofsky & Palmeri, 1997; Ratcliff,
1978), whose predicted response times are then combine de-
pending on the specific mental architecture model. For exam-
ple, a serial self-terminating model would sum the two inde-
pendent processing times, thereby following an AND rule. A
parallel exhaustive model would use the maximum of the two
independent processes, implementing an AND rule. The corre-
sponding self-terminating processes would implement an OR
rule for certain stimuli (such as the contrast category stimuli).
Our nonparametric SFT analyses rule out exhaustive processing

Table 5
Contrast Category Statistics for the Upright Conditions

Stimulus pair Mdiff t df p Mdiff t df p

UA1 UM1

ETop - ITop 40 1.04 633 .30 %6 %.17 636 .87
EBottom - IBottom %23 %.66 665 .51 %4 %.14 681 .89
ETop - R 292 8.39 657 ".001 172 5.20 651 ".001
ITop - R 252 7.27 668 ".001 177 5.30 681 ".001
EBottom - R 57 1.81 675 .07 6 2.19 685 .03
IBottom - R 80 2.39 682 .02 73 2.30 692 .02

UA2 UM2

ETop - ITop %45 %1.45 620 .15 %57 %2.01 646 .04
EBottom - IBottom %91 %2.78 661 .01 2 .05 617 .96
ETop - R 147 5.66 641 ".001 41 1.45 660 .15
ITop - R 192 7.02 667 ".001 98 3.22 682 ".001
EBottom - R 75 2.99 678 ".001 92 2.81 649 .01
IBottom - R 166 5.50 671 ".001 90 2.75 664 .01

UA3 UM3

ETop - ITop %60 %1.58 632 .11 %42 %1.32 608 .19
EBottom - IBottom 107 4.27 672 .001 50 1.54 664 .12
ETop - R 361 13.69 662 ".001 194 6.96 644 ".001
ITop - R 422 14.11 664 ".001 236 8.03 658 ".001
EBottom - R 269 12.53 676 ".001 120 4.08 679 ".001
IBottom - R 162 8.11 690 ".001 71 2.47 679 .01

UA4 UM4

ETop - ITop %156 %4.16 652 ".001 59 2.95 492 .003
EBottom - IBottom 131 3.66 675 ".001 %31 %1.81 573 .07
ETop - R 96 2.74 668 .01 268 16.65 531 ".001
ITop - R 253 6.79 680 ".001 209 13.08 555 ".001
EBottom - R 202 5.72 679 ".001 41 2.99 581 .003
IBottom - R 72 2.04 692 .04 72 4.58 586 ".001

Note. UA ! upright aligned; UM ! upright misaligned; E ! exterior; I ! interior; R ! redundant. The
subscript Top or Bottom refers to which dimension is varying in the comparison.
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for the contrast category results. Consequently, we focus our
analyses on the self-terminating models.

To briefly summarize, following general recognition theory
(GRT; Ashby & Townsend, 1986) and the related decision bound-
ary theory (Ashby & Gott, 1988), the logical rule models assume
that the perception of any stimulus dimension (e.g., top or bottom
face half) is noisy and repeated presentations of the same dimen-
sional value may not result in the same percept (see Figure 8; panel

A; see also Richler, Gauthier, Wenger, & Palmeri, 2008). We
represent the distribution of percepts for each stimulus dimension as
a normal distribution with a mean and standard deviation. For serial
and parallel models, samples are taken from the marginal distribution
on each dimension and used to drive independent sequential sampling
decision process (shaded distributions in panel A, Figure 8). So, for
example, if the participant samples from the top face half and that face
half is identified as belonging to the target category, then evidence is
accumulated toward the target category.

For the coactive model, we assumed that each stimulus location
is identified by a bivariate normal distribution of perceptual effects
and that these perceptual effects, along the two dimensions (top
and bottom face halves), are statistically independent for each
stimulus.5 For all models, it was also assumed that all stimuli have
the same perceptual variability along the two dimensions but that
this variability differed between dimensions. Consequently, sepa-
rate free parameters, &Top and &Bot, were allowed for the standard
deviation of the normal distribution for the top and bottom face-
half dimensions, respectively. The means, ', of the perceptual
distributions were fixed to the coordinate values obtained from the
multidimensional scaling (MDS) solutions for these specific face
stimuli (see Appendix A). This analysis revealed that the pairwise
similarity ratings for faces in each condition were best captured by a
constrained grid-model using a city-block metric to capture the dis-
tance between stimuli. The better fit of a city-block distance metric
itself is evidence that our composite faces are inconsistent with some
notions of integrality (Melara, Marks, & Lesko, 1992; Nosofsky,
1992).

The models assume that the location of the decision-bounds
on the top and bottom face-half dimensions, DTop and DBot, re-
spectively, are established by each participant in order to differ-
entiate the target category from the contrast category. The evi-
dence for each category is found by integrating the bivariate
normal distribution within each of the category regions. This
evidence is used as the rate of evidence accumulation, or drift rate,
(, in the sequential sampling model.

Previous applications of the logical rule models have used a
discrete time sequential sampling model, the random-walk model;
the present application instead uses a simplified continuous model
of RT, the linear ballistic accumulator (LBA; Brown & Heathcote,
2008). Practically speaking, using the LBA instead of random
walk or diffusion processes circumvents certain problems with
optimizing discrete and continuous random walk parameters. The
various methods for modeling RTs are conceptually quite similar,
and the LBA was chosen primarily for its greater tractability.

Table 6
Target Category Statistical Results for the Inverted Conditions

Variable df F p df F p

Participant IA1 Participant IM1

Session 6 22.18 .00 6 82.98 .00
Top 1 23.52 .00 1 10.98 .00
Bottom 1 217.46 .00 1 56.41 .00
Session $ T 6 2.26 .04 6 0.24 .96
Session $ B 6 1.43 .20 6 2.53 .02
Top $ Bottom 1 2.42 .12 1 0.84 .36
Session $ T $ B 6 .46 .83 6 0.49 .81
Error 1,322 1,348

Participant IA2 Participant IM2

Session 6 49.69 .00 6 25.46 .00
Top 1 26.01 .00 1 45.38 .00
Bottom 1 52.37 .00 1 49.57 .00
Session $ T 6 2.10 .05 6 1.89 .08
Session $ B 6 1.44 .20 6 1.61 .14
Top $ Bottom 1 .69 .41 1 0.72 .40
Session $ T $ B 6 1.30 .25 6 0.83 .54
Error 1,233 1,346

Participant IA3 Participant IM3

Session 6 17.35 .00 6 78.91 .00
Top 1 26.81 .00 1 69.38 .00
Bottom 1 18.05 .00 1 58.02 .00
Session $ T 6 4.63 .00 6 10.50 .00
Session $ B 6 1.15 .33 6 2.75 .01
Top $ Bottom 1 0.00 1.00 1 .68 .41
Session $ T $ B 6 2.06 .06 6 .84 .54
Error 1,292 1,337

Participant IA4 Participant IM4

Session 6 7.71 .00 6 14.71 .00
Top 1 29.60 .00 1 17.43 .00
Bottom 1 29.41 .00 1 26.36 .00
Session $ T 6 2.18 .04 6 0.92 .48
Session $ B 6 0.83 .54 6 1.21 .30
Top $ Bottom 1 2.82 .09 1 0.29 .59
Session $ T $ B 6 1.03 .40 6 1.00 .42
Error 1,348 1,347

Participant IA5

Session 6 27.76 .00
Top 1 136.21 .00
Bottom 1 152.13 .00
Session $ T 6 3.78 .00
Session $ B 6 0.95 .46
Top $ Bottom 1 9.56 .00
Session $ T $ B 6 0.89 .50
Error 1,306

Note. IA ! inverted aligned; IM ! inverted misaligned; T ! top; B !
bottom.

5 Note that within the GRT framework, there are other possible defini-
tions of holistic processing. For instance, a violation of perceptual inde-
pendence or perceptual separability (i.e., mean shift integrality; Ashby &
Townsend, 1986) provide alternative senses of holism. Because we assume
independent channel serial and parallel models are driven by the marginal
perceptual distributions, violations of perceptual independence would only
matter for the coactive model. Because we use GRT as a “front-end” to
derive a drift rate, our free-drift model allows for a test of violations of
perceptual independence and separability in a coactive architecture (see,
e.g., Fific et al., 2010). We note, however, that there may be models with
increased generality (e.g., Townsend, Houpt, & Silbert, 2012; see Griffiths,
Blunden, & Little, 2017 for a discussion of this point).
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The LBA generates RTs by assuming that two accumulators
race against each other with the faster of the two accumulators
generating the RT (see Figure 8, panel B). A single accumulator’s
finishing time is determined by the relationship between the dis-
tance between the starting point of accumulation and the threshold
for making a decision and the rate of evidence accumulation. This
is given by the relationship: time ! distance/rate (a standard
velocity function). To achieve variability in the RT distribution,
the LBA assumes that the start point for each accumulator varies
from trial to trial according to a uniform distribution (parameter A
provides the range of this distribution) and that the drift rate varies
from trial to trial according to a normal distribution (parameter s
provides the drift rate standard deviation). LBA also has two
threshold parameters, one for the target category accumulator, and
one for the contrast category accumulator. Each model also as-
sumes a nondecision time parameter, t0, that captures time not
associated with decision-making processes (processes such as en-
coding or motor-execution). The final predicted RT is the decision
time predicted by the LBA plus the nondecision time.

For the serial and parallel architectures, there are separate ac-
cumulators for the top and bottom face halves (see Figure 8; panel
C). By contrast, for the coactive model, there is a single accumu-
lator for the entire face. Each pair of accumulators contains one
accumulator corresponding to the target category and one accu-
mulator corresponding to the contrast category. The drift rates for
each pair of accumulators are determined by the marginal percep-
tual distributions along each dimension (see Figure 8, panel A). To
determine the drift rates (e.g., the top face half dimension), we
integrate the marginal distribution with respect to the decision
boundary to determine the area under the curve that falls into each
category region along that dimension; hence, the drift rates for the
correct and error accumulators sum to one.

In total, there are nine free parameters across the models: the
perceptual standard deviation parameters (&Top and &Bot); location
of the decision-bounds on the top and bottom face-half dimensions
(DTop and DBottom); the range of the start-points for evidence
accumulation (A); the correct and error thresholds (bTarget and
bContrast); drift rate variability (s); and nondecision time (t0). The

Table 7
Contrast Category Statistics for the Inverted Conditions

Stimulus pair M t df p M t df p

IA1 IM1

ETop - ITop 46.23 2.39 648 .02 6.86 0.43 675 .67
EBottom - IBottom 27.18 2.04 685 .04 %9.15 %.54 692 .59
ETop - R 247.34 15.01 657 .00 58.10 4.08 683 .00
ITop - R 201.11 13.70 689 .00 51.24 3.33 688 .00
EBottom - R 65.68 5.48 687 .00 30.58 2.06 694 .04
IBottom - R 38.50 3.03 696 .00 39.73 2.49 694 .01

IA2 IM2

ETop - ITop %22.31 %1.07 655 .28 50.38 2.84 675 .00
EBottom - IBottom 23.60 1.31 678 .19 %8.75 %0.61 698 .54
ETop - R 190.76 10.28 667 .00 363.97 23.07 681 .00
ITop - R 213.06 11.37 678 .00 313.59 20.14 690 .00
EBottom - R 70.34 4.05 677 .00 %13.42 %1.04 697 .30
IBottom - R 46.75 2.72 691 .01 %4.67 %0.32 697 .75

IA3 IM3

ETop - ITop 45.20 0.85 586 .40 %123.60 %3.00 660 .00
EBottom - IBottom 5.34 0.13 680 .90 21.09 0.83 692 .41
ETop - R 492.54 11.34 635 .00 348.94 10.51 678 .00
ITop - R 447.34 10.09 645 .00 472.54 12.56 680 .00
EBottom - R 79.19 2.03 687 .04 %3.77 %0.13 694 .89
IBottom - R 73.84 1.93 687 .05 %24.85 %0.93 696 .35

IA4 IM4

ETop - ITop 19.84 1.28 656 .20 %10.59 %0.43 672 .67
EBottom - IBottom %24.48 %2.31 690 .02 %0.20 %0.01 691 .99
ETop - R 215.67 15.60 672 .00 128.70 5.99 682 .00
ITop - R 195.83 12.68 680 .00 139.28 6.01 684 .00
EBottom - R %24.37 %2.07 694 .04 58.23 2.92 693 .00
IBottom - R 0.11 0.01 692 .99 58.43 2.74 692 .01

IA5

ETop - ITop 49.35 1.90 664 .06
EBottom - IBottom 29.06 1.49 690 .14
ETop - R 296.06 13.18 675 .00
ITop - R 246.71 10.29 685 .00
EBottom - R 119.94 6.08 689 .00
IBottom - R 90.88 4.47 697 .00
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serial self-terminating model requires an additional parameter, px

representing the probability that, on a given trial, the top half is
processed before the bottom half.

We also fit an additional independent channel model that as-
sumed that for any stimulus, the top and bottom half may be
processed in parallel on some of the trials and serially on other
trials. This mixture of processing might represent fluctuations in
controlled attention across the course an experiment (e.g., Sch-
neider & Shiffrin, 1977). The mixed serial-parallel model also
includes the px parameter (as in the serial self-terminating model).
In addition, the mixed serial-parallel model includes another extra
parameter, pSerial, which represents the proportion of serial trials.
To allow for differences between the parallel and serial compo-
nents, we multiplied the perceptual variability parameters in the
parallel component by a freely estimated constant, &Parallel !
m&Serial. We also estimated a separate starting point parameter,
AParallel, for the parallel model component.

To model coactivity, we assume that the stimulus is represented
by a joint bivariate perceptual distribution. For this model, a single
drift rate is estimated by integrating the bivariate distribution with
respect to both decision boundaries. To provide a more powerful
test of coactivity that was unconstrained by our assumptions of the
locations or variances of each stimulus, we fit a free-stimulus-drift
model which simply estimates, as a free parameter, the drift rate
associated with each stimulus. If we find that our constrained

independent channel models fit better than this highly flexible
model, then this would provide a strong result arguing against
coactivity.

Fitting Procedure

We implemented the logical rules models in a hierarchical
Bayesian framework. To compute the likelihood for each item, we
simulated 50,000 data points from the model and used Holmes’s
(2015) probability density approximation method (PDA; see also,
Turner & Sederberg, 2014) to determine the likelihood of each
choice and each observed RT. The likelihood of the parallel, and
coactive logical rule models (LR) is given the product over RTs
and response on each trial:

L#DTop, DBot, %Top
2 , %Bot

2 , A, bA, bb, s, t0 |resp, rt$!

%
i!1

N

LR#respi, rti |DTop, DBot, %Top
2 , %Bot

2 , A, bA, bb, s, t0$
(1)

The serial self-terminating model has an addition parameter, px.
The mixed serial-parallel model adds four additional parameters
(px, pSerial, m, Aparallel) and the free drift model replaces the GRT
parameters (DTop, DBot, &Top

2 , &Bot
2 ) with freely estimated drift rates

for each item ((HH, (HL, (LH, (LL, (Ex, (Ix, (Ey, (Iy, (R).
We used Differential Evolution Markov chain Monte Carlo

(DE-MCMC; Turner, Sederberg, Brown, & Steyvers, 2013) to

Figure 4. Observed target category SICs (solid black line) for upright aligned (top row) and upright misaligned
(bottom row) participants. 95% bootstrapped CI’s (thin dotted lines) are also shown. The small inset figures show
the target category mean RTs. The two left hand points have low discriminability on the top half, and the two
right-hand points have high discriminability on the top half. The solid line (with black marker) has low
discriminability on the bottom half; the dotted line (with white marker) has high discriminability on the bottom
half. Error bars represent )1 SE. Some of the standard error bars for the mean RTs are too small to be seen.
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efficiently generate proposals from the posterior distributions of
each parameter. The variability in the likelihood approximation
can result in “stuck” chains if an accepted parameter set results in
an unusually high likelihood. To overcome this, we resampled the
likelihood of any existing chains anytime the current proposal was
rejected (see Holmes, 2015, p. 17). This resulted in good mixing
between the chains and good convergence after an initial burn-in
period. We used a burn-in period of 1,150 iterations with a deter-
ministic migration step (Turner et al., 2013) occurring every 20
iterations between iterations 501 to 700. For the remainder of
sampling, we used a migration step instead of a crossover step with
a probability of .05. For a handful of model fits, we increased the
burn-in by taking an additional 1000 iterations. We used three
times the number of parameters for each model to determine the
number of chains. To improve sampling, parameters were trans-
formed to lie in the range %* to +*. A total of 750 iterations per
chain were estimated giving, at a minimum, 20.000 posterior
samples per parameter. Prior distributions were selected to be
relatively informative for each parameter placing each parameter
in the range determined by previous applications of these models;
the prior distribution settings are shown in Appendix C.

We used the deviance information criterion (DIC; Spiegelhalter,
Best, Carlin, & van der Linde, 2002) to compare each of the
models. The deviance of a posterior sample of parameters, ,, is
computed as D(,) ! %2 lnp(y|,). The DIC is computed as:

DIC ! D!(&) ' 2pD (2)

where D!#&$ is the mean of the distribution of posterior deviances
and pD ! D!#&$ " D#&!$. &! is the average posterior parameter values.
Thus, DIC penalizes the average negative log likelihood by a term
which accounts for the functional form complexity of model.6 The
model that yields the smallest DIC is preferred. The DIC for each
subject and each model is presented in Table 8.

Summary of Model Fits

With few exceptions, the most preferred model was the mixed
serial-parallel model. This model was preferred for two partici-
pants in the upright aligned conditions, all four participants in the

6 An alternative version of DIC uses pD ! 2var(ln p(y|,)) (Gelman,
Hwang, & Vehtari, 2014). We tested this version as well; the results were
the same. We also conducted a series of parameter and model recovery
tests to compare both versions of DIC to the Watanabe-Akaike Information
Criterion (WAIC; Watanabe, 2010) to determine how well each could
recover the data generating model. Model/parameter recovery is useful
because it allows the researcher to determine whether a given method is
biased in its results (Heathcote, Brown, & Wagenmakers, 2015). Our
results indicated that both versions of DIC recovered the generating model
accurately, but WAIC did not. For example, WAIC did not accurately
recover the coactive model when it was the generating model. We therefore
opted to use DIC for our model comparison analysis.

Figure 5. Observed contrast category mean RTs for the upright aligned (top row) and upright misaligned
(bottom row) participants. Error bars represent )1 SE. Some of the standard error bars for the mean RTs are too
small to be seen. The label “Top” refers to items which satisfy the category B rule on the top face half (i.e., the
vertical boundary) but vary on the bottom face half values. Correspondingly, the label “Bottom” refers to items
which satisfy the category B rule on the bottom face half (i.e., the horizontal boundary) but vary on the top face
half values.
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upright misaligned condition, four of five participants in the in-
verted aligned condition, and three of four participants in the
inverted misaligned condition. One participant in the upright
aligned condition (UA4) was better fit by the serial self-
terminating model. Hence, overall, we found little evidence of a
difference between conditions.

Overall, we did not find strong evidence for coactivity in the
upright aligned condition (or any condition for that matter). There
were two subjects (one in the upright aligned condition, UA3, and
one in the inverted aligned condition, IA5) who were best fit by the
free stimulus drift model. The better fit of this model could
indicate pooling across the top and bottom face halves for these
participants.

We plot the 25, 50, and 75 percentiles for the correct and error
RTs for each item and each subject in Figure 9. The models fit the
data well and the parameter estimates were sensible. Detailed
posterior predictive distributions for each subject and each item
along with posterior parameter distributions are available in the
supplementary materials.

Discussion

A summary of both the nonparametric and parametric results
is provided in Table 9. While there are occasionally discrepan-
cies that arise between the nonparametric and parametric re-
sults, we note that the parametric results consider both the
correct and error RTs for all items simultaneously, unlike the
nonparametric result. Consequently, we weight our discussion

toward the outcome of our computational model fitting. Across
all four conditions, our modeling results revealed the processing
was largely consistent with a mixture of serial and parallel
processing for a number of subjects. This type of mixture model
has been found to provide good fits for a number of different
stimulus types including overlapped separable dimensions (Lit-
tle et al., 2011; Experiment 2) and whole object features (e.g.,
size, color, and saturation varied within a single object; Moneer
et al., 2016). Hence, for many subjects, it appears they treated
the composite faces no different from other objects with sepa-
rable dimensions. There was some evidence of pooling (indexed
by the free drift model) for two of the observers, but this
appeared in both the upright aligned condition and the inverted
misaligned condition.

The key point, however, is that there is not unequivocal
evidence for coactivity (one standard definition of holistic
processing) when participants categorize upright aligned faces.
Nor is there clear evidence that upright faces are treated any
differently from misaligned or inverted faces. Overall, there is
no clean distinction between the processing of upright aligned
faces and other faces. Any differences that we observed be-
tween upright and inverted, aligned and misaligned faces were
largely quantitative rather than qualitative (see also Richler et
al., 2011).

To ensure that face stimuli we used in our experiments
yielded typical holistic processing effects, we conducted a
standard composite face task using these stimuli and report the

Figure 6. Observed target category SICs (solid black line) for inverted aligned (top row) and inverted
misaligned (bottom row) participants. 95% bootstrapped CI’s (thin dotted lines) are also shown. The small inset
figures show the target category mean RTs. The two left hand points have low discriminability on the top half,
and the two right-hand points have high discriminability on the top half. The solid line (with black marker) has
low discriminability on the bottom half; the dotted line (with white marker) has high discriminability on the
bottom half. Error bars represent )1 SE. Some of the standard error bars for the mean RTs are too small to be
seen.
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results in Appendix D. Our composite task results confirm that
our upright faces (and our inverted faces) demonstrate an in-
teraction between congruency and alignment, which is the hall-
mark of holistic processing in the composite face task (cf.
Richler et al., 2011). Although the faces we use appear to be
processed holistically in the standard composite face task, we
find no clear evidence that this is linked to coactivity in the
categorization task (assessed with either SFT or computational
modeling).

General Discussion

We examined processing architectures underlying face pro-
cessing using a set of composite face morphs in a categorization
task. One operationalization of holistic processing is coactivity
or pooling across the top and bottom face halves (Farah et al.,
1998; Gold et al., 2012; Maurer et al., 2002; Tanaka & Farah,
1993; Young et al., 1987). Using a set of strong nonparametric
and parametric inference techniques comparing a number of
different processing models, we found little evidence for coact-
ivity in the processing of upright aligned composite faces.
Instead, processing of faces, whether upright or inverted,
aligned or misaligned, consisted of mostly a mixture of serial
and parallel processing.

Implications for Theories of Face Processing

The interaction between congruency and alignment in the
complete composite face design is one of the strongest pieces of
evidence that upright aligned faces are processed holistically.

However, as argued by Richler et al. (2012), the concept of
“holism” can mean a variety of different things in terms of
representations and processes. For example, holism can mean
that upright aligned faces have emergent properties beyond a
simple summing of individual features, that upright aligned
faces prompt the retrieval of holistic facial templates, that
upright aligned faces allows for use of stable configurations of
features and their metric relationships, or that upright aligned
faces allow for the use of an overlearned pattern of selective
attention.

In the present article, we operationalize holism as coactivity,
which implies a pooling of the top and bottom face halves into
a single representation. This notion of coactivity acts as a proxy
that accords well with several of the notions of holistic pro-
cessing listed above, especially ideas of face templates and face
configurality (see, e.g., Fifić et al., 2010; Fifić & Townsend,
2010). Our findings of a lack of coactivity, and instead consis-
tent serial/parallel processing across all conditions seems, we
argue, more consistent with the ideas underlying the selective
attention account of the composite face effect (Richler et al.,
2012).

The selective attention account of the composite face effect
argues that the interaction in the composite face task arises due
to an inability to disengage from an overlearned pattern of
attention when presented with an upright aligned face. While
this theory does not provide strong constraints on processing,
we feel that it is at least consistent with a parallel processing
account of composite face performance. For instance, in the
composite face task, one is instructed to ignore one half of the

Figure 7. Observed contrast category mean RTs for the inverted aligned (top row) and inverted misaligned
(bottom row) participants. Error bars represent )1 SE. Some of the standard error bars for the mean RTs are too
small to be seen. The label “Top” refers to items which satisfy the category B rule on the top face half (i.e., the
vertical boundary) but vary on the bottom face half values. Correspondingly, the label “Bottom” refers to items
which satisfy the category B rule on the bottom face half (i.e., the horizontal boundary) but vary on the top face
half values.
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face. Misalignment improves one’s ability to selectively attend
only to the instructed face half. Congruent changes (where the
top and bottom halves are either both the same or both different
from a to-be-remembered face) result in improvement in sen-
sitivity compared with incongruent changes. If the top and
bottom halves are processed in parallel, then the effect of
congruency likely occurs at the decision stage of processing.
The implication is that there may be some confusion in the
decision about whether a particular sample of evidence arose
from the top or bottom face half. Our findings demonstrate that
this confusion does not necessarily arise early in processing,
which would have been observed as coactive processing.

Fifić and Townsend (2010) argued that there may be weaker
definitions of holistic processing that can explain experiment
effects typically used to infer holistic processing. For instance,
there is a sense in which exhaustive processing may represent a
form of weak holism. However, we found no evidence for
exhaustive processing in our task (excluding, of course, the
target category, where exhaustive processing is mandated by
design). In some sense, parallel processing may also imply a

weak form of holism since it can be used to explain tasks from
other paradigms which demonstrate findings thought to be due
to holistic processing.

For example, consider recent work using SFT to examine the
other race effect. The other race effect occurs when recognition
of faces of one’s own race is faster or more accurate than faces
of another race. This is usually taken to indicate holistic pro-
cessing of own race faces. Yang, Fifić, Chang, and Little (2017)
demonstrated using a similar task to the categorization task
used here that processing of own race faces was better charac-
terized by a parallel self-terminating processing model whereas
the processing of other race faces was better characterized by a
serial self-terminating processing model. The increased effi-
ciency afforded by parallel processing was sufficient to explain
the other race effect as observed in the standard other race
paradigm. That study also found no evidence of coactive pro-
cessing.

The fact that we did not find evidence of coactive processing
in our task does not rule out other dynamic models that involve
pooling at an earlier stage of processing. For instance, initial

Figure 8. Panel A: GRT representation assumed by the logical rule models. The category space is represented
by nine bivariate normal distributions. The marginal distributions on each dimension are shaded. Panel B: LBA
accumulator pairs for the top and bottom face halves. Panel C: Example of serial, parallel, and coactive
processing architectures as applied to a target category stimulus.
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encoding of the face may proceed coactively only for attention
processes to break down the face into components at a later
stage.7 By manipulating divided attention and discriminability,
we are necessarily concerned with whether processing is pooled
or not during the later decision stage of processing. Examining
pooling during encoding would likely require a different task
with a manipulation of discriminability tailored to that partic-
ular stage of processing.

Relation to Previous Research on Composite
Face Processing

As in the present task, Fitousi (2015) found a composite face
interaction effect but no evidence of supercapacity (an indica-
tion of coactivity) and no evidence for Garner interference (an
indication of integrality). Similar task-specific differences have
been observed by Richler et al. (2015), which prompted those
researchers to argue that the composite face task taps a different
type of holistic processing from that tapped in phenomena such
as Garner interference. By implication, this would also extend
to Fitousi’s redundant target task.

Richler et al.’s (2015) argument was based on a comparison
of an interaction in the composite face task (the hallmark of
holistic processing in that task) for faces differing in features
but having the same configuration. This result contrasted with
the earlier Amishav and Kimchi’s (2010) finding that these
same configuration stimuli did not show interference in a Gar-
ner filtration task, a result that they attributed to the indepen-
dence of features and configurations. Richler et al. (2015)
argued that the composite task is different from Garner inter-
ference for a number of reasons including generality (the com-
posite task tends to be face specific) and susceptibility to
stimulus discriminability (e.g., Melara & Mounts, 1993). As
noted by Richler et al. (2015), even if both tasks measure failure
of selective attention, it is not the case that either task can reveal

anything about the source of that failure. The present task offers
additional insight into the specific processing differences that
occur in different tasks. By utilizing SFT, we are able to point
quite clearly to the precise nature of processing that underlies
performance on our task in processing composite faces. How-
ever, we find little evidence of (a) consistent holistic processing
for upright aligned faces or (b) a real difference between
upright and inverted faces.

Why did we not find coactivity for upright faces? Blaha
(2017) recently reviewed a series of capacity studies showing
that the evidence for the related concept of supercapacity for
faces is mixed even within a single task. For instance, Ingvalson
and Wenger (2005) found evidence for supercapacity with faces
in a redundant target task, but Perry, Blaha, and Townsend
(2008) and Donnelly, Cornes, and Menneer (2012) did not.
Further, Wenger and Townsend (2006) found some evidence for
supercapacity but only in some face conditions (specifically,
faces shown in the studied context in the studied configuration).
Blaha’s (2017) careful critique identified a number of factors
that may have contributed to these different results. In the
present case, this analysis is informative because our categori-
zation task is closely related to the redundant target task used in
those experiments (Townsend & Nozawa, 1995).

One factor that seemed to contribute to a failure to find
supercapacity is requiring subjects to make fine discriminations
in order to differentiate faces. First, these discriminations might
invoke selective attention, thus breaking the general facial
gestalt. Second, certain tasks might emphasize reliance on the
facial gestalt, thereby allowing pooling to occur more naturally
than in tasks that require some selective attention. For example,
Ingvalson and Wenger (2005) used a change detection task,
much like the composite face task, to demonstrate supercapac-

7 We thank an anonymous reviewer for this suggestion.

Table 8
DIC Values for Each Model and Each Participant

Condition

Model

Participant Serial ST Parallel ST Coactive Mixed S-P Free Drift

Upright aligned UA1 4963.1 4955.4 4925.9 4903.3 4920.8
UA2 2912.9 2728.7 2756.9 2622.7 2734.4
UA3 1284 1198.4 1096.5 1089 1039
UA4 4357.6 4512.2 4391.7 4375.7 4374.8

Upright misaligned UM1 3281.1 3318.5 3238.3 3154.6 3238.4
UM2 2891.9 2823.3 2781.6 2720.4 2778.3
UM3 3420.3 3522 3450.7 3282 3447.3
UM4 1047.2 1023.5 1013.2 1005.5 1009.1

Inverted aligned IA1 %1258.7 %1436.9 %1457.7 !1529.6 %1477.8
IA2 819.09 897.05 893.62 721.96 882.64
IA3 6216.9 6225.6 6171.1 5950.8 6189.8
IA4 %2393.6 %2268.1 %2327.7 !2498.5 %2317.6
IA5 809.11 735.23 666.15 638.08 630.88

Inverted misaligned IM1 %1638.9 %1744.5 %1807.3 !1913.8 %1802.3
IM2 %1801.2 %1395.9 %1493.6 !1858.9 %1476.9
IM3 2201.3 2353.5 2247.9 2101.4 2268.1
IM4 318.46 %68.554 %78.667 !350.97 %58.265

Note. ST ! self-terminating; SP ! serial-parallel. Lowest DIC model is bolded and italicized.
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ity with faces. With the caveat that analysis of capacity requires
an assumption of context invariance, which may not hold ex-
perimentally, we feel that this analysis has much explanatory
power for the present experiments. Importantly, it suggests a
way forward for reconciling the composite face task with tasks
aimed at uncovering the underlying mental architecture of face
processing. Although our task can clearly uncover coactivity
when it exists (see also, Little et al., 2013), our tasks may have
been susceptible to subject specific selective attention strate-
gies.

What underlies differences in performance with upright and
inverted, aligned and misaligned faces in the composite face
task? The absence of strong evidence for coactivity in our
task implicates some other mechanism for explaining the inter-
action between upright faces and inverted or misaligned faces
which arises in the composite face task. Our best guess for this
mechanism is a failure of selective attention (Chua et al., 2014,
2015; Richler et al., 2011). A complete explanation of our
results and the composite face task results is that processing in
the composite face task may proceed in parallel or in serial (in
most cases), but is coupled with an inability to completely

ignore one face half when faces are presented in an upright and
aligned fashion. By contrast, inversion and misalignment aid
selective attention to the relevant face half.

One difference between our task and the composite face
paradigm is the analysis of individuals versus group averaged
data, respectively. There are a number of arguments for why
analyzing group data can be misleading. For instance, the
average data may not accurately represent any single individual
(e.g., Estes & Maddox, 2005; Liew, Howe, & Little, 2016;
Navarro, Griffiths, Steyvers, & Lee, 2006). Hence, averaging in
the composite face paradigm may result in masking individual
differences in expression of the interaction effect (between
congruency and alignment in the composite design). While
there is some evidence for a correlation between different
holistic processing tasks (DeGutis, Wilmer, Mercado, & Cohan,
2013; but see Wang, Li, Fang, Tian, & Liu, 2012), there is
debate about the nature of these relationships (Richler, Floyd, &
Gauthier, 2015; Sunday, Richler, & Gauthier, 2017). One path
to reconciling the differing results between tasks would be to
conduct individual level analyses on a double factorial recog-
nition task in which the processing requirements are much

Figure 9. Mean posterior predictions of the mixed serial-parallel model for the 25%, 50%, 75% percentiles for
the correct and error RTs. Each point represents a single item from a single subject from the upright aligned (x’s),
upright misaligned (o’s), inverted aligned (-’s), and inverted misaligned (!’s).
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closer to the composite face task but which has the ability to
draw inferences as we do in our present experiments. We leave
this as a target for future research.
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Appendix A

Multidimensional Scaling

MDS solutions were obtained from participants through a Hu-
man Intelligence Task (HIT) on the Amazon Mechanical Turk
platform. Participants completed the task for either the upright
aligned (N ! 31), upright misaligned (N ! 32), inverted aligned
(N ! 29), or inverted misaligned (N ! 31) conditions. For each
condition, there were 36 unique pairings of the nine stimuli. For
half of the participants, each pair was presented six times for each
subject; for the remaining half, each pair was presented twice. The
order of presentation was completely randomized, as was the
left-right presentation of each face. The experiment was self-
paced.

We computed the averaged similarity rating for each pair of
stimuli and found the two-dimensional scaling solutions for each
condition by fitting these averaged ratings using a model which
assumed a negative linear relationship between the distance be-
tween the estimated coordinates and the predicted similarity rat-
ings. To find the best fitting coordinates, we minimized the sum-
of-squared deviations between the predicted and observer ratings
from 100 starting points chosen to span the coordinate space.
There were 20 parameters in total (the 18 coordinate values and the
slope and the intercept of the negative linear distance-to-similarity
function) used to fit the 36 similarity ratings. We fitted a con-
strained version of the model in which the nine items were fixed to
fall on a 3 $ 3 grid but variation was allowed between each X and
Y value.

The full model provides excellent fits of the data; accounting for
98%–99% of the variance. The constrained model also provides
similarly good fits by accounting for 95%–98% of the variance.
Consequently, the constrained model is the preferred solution

because it provides an equally good fit of the data as the full model
but using fewer parameters.

The MDS solutions for the upright conditions align closely to
our morph settings (see Figure A1). As can be seen in Figure A2,
the MDS solutions for the inverted faces do not match our physical
manipulations of the stimuli (i.e., equal space between each of the
nine stimuli on both dimensions as they are 0%, 50%, 100%
morphed combinations). While the three levels on the bottom half
dimension are relatively equally-spaced, two levels in the top half
dimension are harder to discriminate from the third level. This
caused concerns as to whether it would be appropriate to use these
solutions in model-fitting. As such, we decided to obtain individ-
ual MDS solutions for a subset of our participants in the inverted
conditions. Though not presented, all participants revealed very
similar MDS spaces to the ones in Figure A2; hence, we continued
model-fitting with these MDS solutions.

In the above analyses, we assumed that the composite faces are
separable stimuli and used city block distance in computing the
distance between each stimulus. However, it is plausible that these
faces are processed holistically and thus the scaling solution with
a Euclidean distance may provide a better fit. To examine this, we
allowed the distance metric, r, to vary freely while estimating the
best-fitting coordinates. A summary of our model fits is presented
in Table B. Unsurprisingly, with the additional parameter, this
model provides the best fit of the scaling solution with the
full model accounting for 99% of the variance and the constrained
model accounting for 95%–99% of the variance. More impor-
tantly, r for each of the face sets (i.e., for each condition) is close
to one, confirming the assumption that these faces are separable
stimuli.

(Appendices continue)
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Figure A1. MDS solutions for the upright aligned (left) and misaligned (right) conditions.

Figure A2. MDS solutions for the inverted aligned (left) and misaligned (right) conditions.

(Appendices continue)
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Appendix B

Summary of the Minkowski Model Fits

Condition

Full model Constrained model

r SSD R2 BIC r SSD R2 BIC

UA 1.33 .76 .99 %84.86 1.30 1.90 .97 %102.01
UM 1.16 .42 .99 %107.75 1.20 .81 .99 %134.46
IA 1.10 .80 .99 %78.08 1.10 2.67 .95 %84.83
IM .93 .47 .99 %99.85 1.07 .90 .99 %126.84

Note. UA ! upright aligned; UM ! upright misaligned; IA ! inverted aligned; IM ! inverted misaligned.

Appendix C

Prior Parameter Values and Transformations Used in DE-MCMC Sampling

Parameter Transformation Distribution Prior parameter values

Dtop D̂Top ! logit&#DTop " x0$⁄#x1 " x0$' Normal ' ! 0 & ! .5
Dbot D̂Bot ! logit&#DBot " y0$⁄#y1 " y0$' Normal ' ! 0 & ! .5
&Top %̂Top ! log#%Top$ Normal ' ! %1.5 & ! .2
&Bot %̂Bot ! log#%Bot$ Normal ' ! %1.5 & ! .2
A Â ! log#A$ Normal ' ! %1.05 & ! .2
bA b̂A ! log#bA " A$ Normal ' ! %1.05 & ! 1
bB b̂B ! log#bB " A$ Normal ' ! %1.05 & ! 1
s ŝ ! log#s$ Normal ' ! %1.39 & ! .5
t0 t̂0 ! log#t0$ Normal ' ! %1.51 & ! .2
pX p̂x ! logit#px$ Normal ' ! 0 & ! 2
pSerial p̂Serial ! logit#pSerial$ Normal ' ! 0 & ! 2
m m̂ ! log#m$ Normal ' ! 0 & ! 2
( v̂x ! logit#vx$ Normal ' ! 0 & ! 1

Note. Each parameter was transformed to the range %* to +*. All parameters were then assigned normal distribution priors.

(Appendices continue)
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Appendix D

Composite Face Task Results

We conducted a composite face task experiment using the
complete experimental design described by Richler and Gauthier
(2013). In this task, a composite face is presented on each trial with
one face half (the top or the bottom) cued. After a brief interval, a
test face is presented and subjects must respond as to whether the
cued face part is the same or different. On congruent trials, if the
cued face half is the same (or different), the other face half is also
the same (or different). On incongruent trials, when the cued face
half is same (or different), the other face half is different (or
the same). The key analysis concerns comparison between when
the study face is aligned or misaligned. If processing is holistic
(if the subject is unable to ignore the uncued face half), then we
should find that the d-prime value computed from the hit and false
alarm rates (Green & Swets, 1966) is higher for congruent trials
than for incongruent trials and that this difference is reduced when
the faces are misaligned. Holistic processing is therefore inferred
from an interaction between congruency and alignment.

In the present task, we tested all four conditions from our
categorization experiment: upright aligned, upright inverted, in-
verted aligned, and inverted misaligned. Forty participants were
recruited from the Melbourne School of Psychological Sciences’
Research Experience Program. There were 16 blocks of 48 trials.
Only the four corner faces from Figure 1 (middle panel) were
presented. At the beginning of each block, participants were cued
to attend to either the top or bottom face half. The study face was

always upright and aligned, the test face could be either upright or
inverted or aligned or misaligned. The test face direction and
alignment was randomized on each trial such that all combinations
of study and test faces were presented across the course of the
experiment. The 256 (2 Face Set: upright vs. inverted $ 2 Cued
Half $ 2 Same vs. Diff $ 2 Congruent vs. Incongruent $ 2
Upright vs. Inverted $ 2 Aligned vs. Split $ 4 Corner Face) were
repeated three times each for a total of 768 trials.

The main results are shown in Figure C1. We analyzed these
results using a 2 Direction (Upright vs. Inverted) $ 2 Alignment
(Aligned vs. Split) $ 2 Congruency Repeated Measures ANOVA.
These results are shown in Table E. The most interesting results
are shown most clearly in the planned comparison repeated mea-
sures ANOVAs on the d-prime measure (but also reflected in the
three-way ANOVA). These results show that there is a Congru-
ency $ Alignment interaction for the upright faces, F(1, 39) !
6.53, MSE ! 0.14, p ! .01, and for the inverted faces, F(1, 39) !
4.63, MSE ! 0.12, p ! .04 (similar results were found by Richler
et al., 2011). The Congruency $ Direction interaction was not
significant for the aligned faces, F(1, 39) ! 3.41, MSE ! 0.18,
p # .07, or for the misaligned faces F(1, 39) ! 1.83, MSE ! 0.17,
p ! .18. A good summary would be that, for d-prime, there is a
main effect of direction (upright vs. inverted) and that there is a
Congruency $ Alignment interaction such that overall upright
faces are easier to recognize than inverted faces, but the hallmark

(Appendices continue)

Figure C1. Sensitivity and criterion results for upright aligned, upright misaligned, inverted aligned, and
inverted misaligned conditions. (Standard errors are shown).
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of holistic processing appears for both upright and inverted faces.
That is, misaligning the face disrupts holistic processing, but
inverting the face just dampens performance altogether (as ob-
served by Richler et al., 2011).

The criterion estimates, though of less interest in the current
analysis, seem to be in the same direction for all conditions except
for the upright aligned condition and are reported for completeness
(see Table F).

Appendix E

Repeated Measures Direction " Alignment " Congruency ANOVA

Effect df between df within MSE F p

Direction (Upright vs. Inverted) 1 39 .20 243.85 ".001
Alignment (Aligned vs. Split) 1 39 .17 16.78 ".001
Congruency 1 39 .20 51.93 ".001
Direction $ Alignment 1 39 .17 .32 #.05
Direction $ Congruency 1 39 .19 4.73 ".05
Alignment $ Congruency 1 39 .10 14.45 ".001
Dir. $ Align. $ Cong. 1 39 .16 .16 #.05

Appendix F

Repeated Measures Direction " Alignment " Congruency ANOVA

Effect df between df within MSE F p

Direction (Upright vs. Inverted) 1 39 .11 1.54 #.05
Alignment (Aligned vs. Split) 1 39 .06 24.36 ".001
Congruency 1 39 .03 .36 #.05
Direction $ Alignment 1 39 .06 21.97 ".001
Direction $ Congruency 1 39 .04 2.4 #.05
Alignment $ Congruency 1 39 .04 2.38 #.05
Dir. $ Align. $ Cong. 1 39 .04 9.09 ".01
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