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• Main Diffusion Model parameters estimated with high precision by all methods.
• Across-trial variability in non-decision time recovered accurately.
• Large uncertainty for across-trial variability in drift rate and starting point.
• Prior restrictions on parameters improve estimation.
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a b s t r a c t

For many years the Diffusion Decision Model (DDM) has successfully accounted for behavioral data from
a wide range of domains. Important contributors to the DDM’s success are the across-trial variability
parameters, which allow the model to account for the various shapes of response time distributions
encountered in practice. However, several researchers have pointed out that estimating the variability
parameters can be a challenging task. Moreover, the numerous fitting methods for the DDM each come
with their own associated problems and solutions. This often leaves users in a difficult position. In this
collaborative project we invited researchers from the DDM community to apply their various fitting
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methods to simulated data and provide advice and expert guidance on estimating the DDM’s across-trial
variability parameters using these methods. Our study establishes a comprehensive reference resource
and describes methods that can help to overcome the challenges associated with estimating the DDM’s
across-trial variability parameters.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The Diffusion Decision Model (DDM) has a long and successful
history of accounting for response time (RT) and accuracy data
from a wide range of domains, including lexical decision (Rat-
cliff, Gomez, & McKoon, 2004; Wagenmakers, Ratcliff, Gomez,
& McKoon, 2008; Yap, Sibley, Balota, Ratcliff, & Rueckl, 2015),
memory-retrieval (McKoon&Ratcliff, 1996;White, Kapucu, Bruno,
Rotello, & Ratcliff, 2014), perceptual decision-making (Ratcliff,
2002; Smith, Ratcliff, & Sewell, 2014; Smith, Ratcliff, & Wolfgang,
2004), as well as data from neurophysiological studies (Kühn et
al., 2011; Philiastides, 2006; for reviews see Forstmann, Ratcliff,
& Wagenmakers, 2016; Ratcliff & McKoon, 2008; Ratcliff, Smith,
Brown, & McKoon, 2016; Smith & Ratcliff, 2009). The DDM be-
longs to the class of sequential sampling models for two-choice
RT tasks (Ratcliff, 1978; Ratcliff et al., 2004). It conceptualizes RT
and accuracy as the result of the accumulation of noisy information
over time toward two absorbing boundaries. Fig. 1 illustrates the
components of the model. The four main parameters are boundary
separation a, drift rate v, starting point z, andnon-decision time Ter .
Boundary separation is the distance between the response bound-
aries and determines the trade-off between response speed and
accuracy. Greater boundary separation means that more informa-
tion needs to be accumulated to trigger a response,which results in
longer RTs and higher accuracy. Drift rate v represents the quality
of the information that is being accumulated. Higher drift rate
means that the mean rate of information accumulation is quicker,
which leads to faster andmore accurate responses. Starting point z
represents an apriori bias towards one of the two response options.
A starting point higher than themidpoint between the boundaries,
a/2, means that less information needs to be accumulated to reach
the upper boundary, and the corresponding response option is
chosen faster and more frequently. Non-decision time represents
processes not related to the decision process, such as stimulus
encoding or response execution. In addition to these main param-
eters, the DDM includes three across-trial variability parameters
that we discuss next.

A key factor in the DDM’s success is its ability to account for the
different and varied shapes of the RT distributions in a wide range
of experimental paradigms. For example, a typical phenomenon
in RT experiments is that mean RTs differ between correct and
error responses. Such patterns bedeviled early sequential sampling
models and several authors suggested adding across-trial variabil-
ity parameters to account for these phenomena (Laming, 1968;
Ratcliff, 1978; Ratcliff & Tuerlinckx, 2002; Smith & Vickers, 1988;
Van Zandt & Ratcliff, 1995). Specifically, allowing the starting point
of the accumulation process to vary across trials enables models to
produce fast errors (Laming, 1968), whereas allowing the drift rate
of the accumulation process to vary across trials enables models to
produce slow errors (Ratcliff, 1978). These variability parameters
allow the DDM to account for the benchmark result that errors
tend to be slower than correct responses when accuracy is high,
and errors tend to be faster than correct responses when accuracy
is low. Moreover, using a combination of both types of variability
enables the DDM to also account for crossover patterns where
errors are slower than correct responses when accuracy is low,
and errors are faster than correct responses when accuracy is high
(Ratcliff, McKoon, & van Zandt, 1999; Ratcliff & Rouder, 1998;

Fig. 1. Drift diffusion model (DDM) and its parameters. See Section 1 for details.

Wagenmakers et al., 2008). In addition, Ratcliff and Tuerlinckx
(2002) have suggested that an across-trial variability component
in the non-decision time parameter might be needed to account
for experimental manipulations that affect the leading edge of the
RT distribution. The lexical decision data in Ratcliff et al. (2004),
for example, required across-trial variability in non-decision time
to account for a shift in the 10th percentile of the RT distribution.

Although across-trial variability parameters clearly play an im-
portant role in the DDM’s ability to fit empirical data, several au-
thors have reported difficulties in estimating the parameter values.
For example, Lerche and Voss (2017) assessed the retest reliability
of DDM parameter estimates over two separate sessions using a
lexical decision task, a recognitionmemory task, and an associative
priming task. In their model fits, Lerche et al. only allowed for
across-trial variability in non-decision time but not in drift rate
or starting point. Their results for the lexical decision task, for
instance, showed that the estimated variability in non-decision
time correlated only modestly to weakly between sessions (r =

.20 − .55). On the other hand, estimates for the four main DDM
parameters (i.e., starting point, drift rate, boundary separation,
and non-decision time) correlated modestly to strongly between
sessions (r = .30 − .90). Results for the recognition memory and
associative priming tasks were similar. Taken together, the results
of Lerche et al.’s study suggest that the DDM’smain parameters can
be estimated reliablywhereas the retest reliability of the variability
in non-decision time is notably lower. Results from Lerche, Voss,
and Nagler (2017) suggest that this lower retest reliability is due
to a lack of true score stability, rather than unreliable estimation;
in simulation studies they found a high correlation between true
values and estimates of the variability in non-decision time.

In another example, Yap, Balota, Sibley, and Ratcliff (2012) used
a large corpus of lexical decision data that had been collected in
two sessions (Balota et al., 2007) to evaluate the retest reliability of
the DDM parameters. To compute the within-session reliability of
the parameter estimates, Yap et al. split the data into halves based
on odd and even trials and computed the correlation between
parameter estimates from each half of the data. To assess the
between-session reliability, Yap et al. computed the correlation
between parameter estimates from the first session and parame-
ter estimates from the second session. This analysis showed that
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estimates for the main DDM parameters were strongly correlated
within (r = .81 − .93) as well as between experimental sessions
(r = .65 − .74). However, although estimates of starting point
variability correlated strongly within experimental sessions (r =

.81), the estimates for drift rate and non-decision time variability
correlated less strongly within sessions (r = .65 for both parame-
ters), and correlations betweenparameter estimates fromdifferent
sessions were relatively weak for all three variability parameters
(r = .39− .50). Yap et al. explain the lowwithin-session reliability
of the drift rate and non-decision time variabilities with the fact
that both model parameters depend on the distribution of error
RTs. Because there are typically relatively few observations for
error responses, these parameters are not well constrained by the
data, which leads to less reliable parameter estimates.

However, Yap et al.’s lexical decision data featured 819 par-
ticipants with 3374 trials per participant. Together with a mean
error rate of 14.4%, this suggests that there was, on average, a
total of 486 error RTs for each participant. Consequently, when
Yap et al. split their data into two halves to compute the within-
session reliability, each half included an average of 243 error
responses based on which the across-trial variability parameters
could be estimated. If such a sizable data set is insufficient for
reliable estimation, this suggests that estimation of the across-
trial variability parameters in many other applications of the DDM
may also be poor. In functional neuroimaging, one of the fastest
growing areas of application of the DDM, there are often practical
limitations on the experimental design and the number of trials
that can be obtained. This raises the question whether factors be-
yond the number of trials and conditions can be utilized to improve
estimation performance in standard experimental designs.

For example, conventional methods typically fit the DDM on
an individual basis and, therefore, require that sufficient data are
available for each participant (e.g., Ratcliff, 2002; Vandekerckhove
& Tuerlinckx, 2007; Voss & Voss, 2007). Recently developed hi-
erarchical Bayesian methods, on the other hand, use all available
data in the group to mutually inform parameter estimates across
participants (Vandekerckhove, Tuerlinckx, & Lee, 2011; Wiecki,
Sofer, & Frank, 2013). Specifically, hierarchical Bayesian models
assume that participants’ parameters are drawn from a common
group-level distribution. Because the participant-level and group-
level parameters are estimated simultaneously, the parameter es-
timates for individual participants are informed by the parameter
estimates for the rest of the group. This mutual dependence of the
parameter estimates reduces the influence of outliers on group-
level parameters and yields parameter estimates for individual
participants with the smallest estimation error (Efron & Morris,
1977). Hierarchical Bayesian methods might therefore be able to
reliably estimate across-trial variability parameters in situations
where conventional methods fail.

However, estimating across-trial variabilities in hierarchical
Bayesian implementations of the DDM comes with its own chal-
lenges. For example, the HDM package for JAGS (Plummer, 2003)
and Stan (Carpenter et al., 2017) implements a version of the
DDM’s first-passage time distribution where all across-trial vari-
ability parameters are fixed to 0 (Vandekerckhove et al., 2011;
Wabersich & Vanderkerckhove, 2014). Nevertheless, trial-to-trial
variability in the model parameters can be added using a mixture
of first-passage time distributions where the drift rate parame-
ter, for instance, is sampled from a normal distribution for each
draw from the first-passage time distribution. Unfortunately, in
our experience adding the across-trial variability parameters to the
model inevitably leads to erratic behavior of the MCMC chains and
a lack of convergence. Specifically, when we generated 5000 trials
from the DDMwith across-trial variability in drift rate but all other
across-trial variabilities fixed to 0, fitting a model with a mixture
of first-passage time distributions as described above resulted

in MCMC chains that remained stuck at their initial values. The
convergence problemmight be resolved by using another sampler
that is more suitable for the DDM, as for example implemented in
the HDDM software package (e.g., Wiecki et al., 2013).

However, deciding which sampling algorithm to use requires
expert knowledge and experience that is often not available to
the naive user. Similar knowledge gaps are likely to also exist
for conventional fitting methods, where choosing a suitable nu-
merical optimization algorithm, for example, requires extensive
experience. This leaves the practitioner in a precarious situation.
On the one hand, across-trial variability parameters can be critical
to the DDM’s ability to fit different data patterns. On the other
hand, estimating across-trial variability parameters is inherently
challenging. Obtaining good parameter estimates might critically
depend on expert knowledge that is not available to the average
user.

The goal of the presentwork is, therefore, to conduct a survey of
the available methods and to provide a platform for experts from
the DDM community to share their knowledge and recommen-
dations for estimating the DDM’s across-trial variability parame-
ters. Specifically, we generated three data sets with numbers of
trials and experimental conditions as typically used in functional
neuroimaging or clinical psychology. We invited experts to apply
their preferred fitting methods to the three data sets and give rec-
ommendations for estimating across-trial variability parameters in
each scenario.

It should be noted that the present work is not a compre-
hensive parameter recovery study but aims to showcase different
fitting methods in a typical application. A comprehensive review
on the estimation of the across-trial variability parameters under
different experimental designs and generating parameter values
with conventional fitting methods can be found in Ratcliff and
Tuerlinckx (2002).

2. Structure of the collaborative project

We generated three synthetic data sets that differed in com-
plexity and invited researchers from the DDM community to apply
their fitting methods to each data set. Collaborators were asked to
provide a short summary of their methods and results, including
their parameter estimates and a measure of the uncertainty asso-
ciated with the parameter estimates (e.g., confidence intervals or
credible intervals), and to provide advice for other users, including
descriptions of problems encountered, workaround solutions, and
general recommendations. The invitation letter is available on the
project’s Open Science Framework (OSF) site: osf.io/fjy8z/.

2.1. Data sets

We based the structure of the simulated data on a typical setup
for a perceptual decision experiment with three conditions that
differ only in their level of difficulty (i.e., drift rate). The data sets
were generated from the full DDM using the rtdists (Singmann
et al., 2016) R package (R Core Team, 2015). Each data set was
generated with three different drift rates vEasy, vMedium, vHard for
the three experimental conditions, and common values across
experimental conditions for boundary separation a, non-decision
time Ter , relative starting point z (i.e., z ∈ [0, 1]), across-trial
variability in drift rate sv ,1 across-trial variability in non-decision
time sTer , and across-trial variability in starting point sz . Here v

is mean drift rate and sv is the standard deviation of the normal

1 We use the notation sv for consistency with the notation for the remaining
across-trial variability parameters.Most published studies denote variability in drift
rate as η, as introduced in Ratcliff (1978).

https://osf.io/fjy8z/
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distribution from which v is sampled, Ter refers to the mean non-
decision time and sTer is the range of the uniform distribution from
which Ter is sampled, and z is the mean relative starting point and
sz is the range of the uniform distribution from which the relative
starting point is sampled. Data were generated with the diffusion
scale parameter set to s = 1.

Table 1 shows the generating parameter values for each data
set. The data and detailed descriptions are available at osf.io/
fjy8z/. Our generating parameter values were based on Matzke
andWagenmakers (2009) survey of parameter values estimated in
empirical studies.

2.1.1. Level 1
Level 1 of our collaborative project assessed how well the

across-trial variability parameters can be estimated for an indi-
vidual participant independent of the four main DDM parameters.
We therefore provided the data-generating values of the main
parameters and asked collaborators to estimate the values of the
three across-trial variability parameters. The data set consisted of
1000 simulated trials for each experimental condition for a single
participant.

The data for Level 1 are shown in the top row of Fig. 2. His-
tograms show the RT distribution for correct (positive x-axis) and
incorrect (negative x-axis) responses in the Easy (left column),
Medium (middle column), and Hard (right column) condition. As
can be seen, RT distributions have the typical right skew. The
number of error responses is lowest in the condition with the
highest drift rate (i.e., Easy) and increases with decreasing drift
rate, thus exhibiting typical patterns produced by the DDM.

2.1.2. Level 2
Level 2 of our collaborative project assessed how well the

across-trial variability parameters can be estimated for an individ-
ual participant when the values of the main DDM parameters are
unknown. We therefore asked collaborators to estimate all DDM
parameters from the data. The data set again consisted of data of
a single participant with 1000 trials for each of the three experi-
mental conditions. Only drift rate differed between experimental
conditions.

The data for Level 2 are shown in the bottom row of Fig. 2.
RT distributions have a typical right skew. The number of error
responses is lower than for Level 1 due to the higher drift rates used
to generate the data. Nevertheless, there is a total of 468 error RTs
available to characterize the error RT distributions.

2.1.3. Level 3
Level 3 of our project assessed whether pooling data across

participants improves estimation of the group-level across-trial
variability parameters. We therefore generated a hierarchical data
set and asked collaborators to estimate the means and standard
deviations of the group-level parameter distributions. The data set
consisted of simulated data of 20 participants with 1000 trials for
each of the three experimental conditions. Themain DDMparame-
ters for each participant had been sampled from a common group-
level normal distribution N (µk, σk) with mean µk and standard
deviation σk that was truncated to the range of admissible values
for each DDM parameter. Across-trial variability parameters were
fixed across participants.

The data for Level 3 are shown in Fig. 3. Histograms show the
average number of trials of 20 simulated participants in each RT
bin. The total number of error trials ranged between 150 and 1014,
with an average of 498.5.

2.2. Overview of collaborators and methods

We received contributions from nine groups of collaborators
from the DDM community. Table 2 summarizes the estimation
methods and summary statistics used by our collaborators. As
the collaborators used three main estimation methods, we will
group contributions by method. In what follows we present a brief
description of each estimation method followed by a summary of
the main results. The full reports by each team of collaborators can
be found in the Appendix; supplementary materials are available
on the project’s OSF page (osf.io/fjy8z/).

To foreshadow our main conclusions, all estimation methods
used by our collaborators could accurately recover across-trial
variability in non-decision time. Estimates of the across-trial vari-
ability in drift rate and starting point, on the other hand, were
associated with considerable uncertainty and tended to miss the
true parameter value by a wide margin.

3. Estimation methods

3.1. Bayesian estimation

Five contributions used Bayesian estimation methods. For Lev-
els 1 and 2, these methods assumed that the DDM parameters
were drawn from a parameter-specific prior distribution. Four of
the five contributions (Hawkins, van Ravenzwaaij, Frank et al., and
Annis & Palmeri) based the parameterization of these prior distri-
butions on Matzke and Wagenmakers’ (2009) survey of published
parameter estimates. For Level 3, Annis and Palmeri used a two-
step analysis for the Level 3 data, in which they first obtained
parameter estimates for each participant and subsequently esti-
mated the group-level distributions for these posterior estimates.
Heathcote, Hawkins, van Ravenzwaaij, and Frank et al. used a hi-
erarchical modeling approach that assumed that participant-level
parameters were drawn from a common group-level distribution.
These group-level distributions are characterized by the group-
level parameters, which were estimated from the data.

Heathcote, Hawkins, and van Ravenzwaaij assumed all group-
level distributions to be normal distributions truncated to the
range of plausible values of the particular model parameter
(e.g., the distribution of Ter was truncated below at 0). The means
of these group-level distributions were in turn assigned truncated
normal prior distributions; Hawkins and van Ravenzwaaij’s pa-
rameterization of these prior distribution was again loosely based
on Matzke and Wagenmakers’ (2009) survey. The standard devia-
tions of the group-level distributions were assigned gamma prior
distributions. Frank et al. assumed different group-level distribu-
tions for the main DDM parameters that were specific to each pa-
rameter (e.g., the a parameter was assigned a gamma distribution).
The parameters of these group-level distributions were in turn as-
signed gamma or truncated normal prior distributions. The across-
trial variability parameters, on the other hand, were assigned a
single common value for all participants that was sampled from
a half-normal (sv and sTer ) or a beta (sz) prior distribution.

Within the Bayesian framework, point estimates for the pa-
rameters are obtained by computing a measure of the central
tendency for the marginal posterior distribution of each model
parameter. The contributions reported here used the posterior
mean or posterior median. Uncertainty about parameter estimates
is described by the width of the marginal posterior distribution.
All five contributions used the 95% highest density interval (HDI),
which, for a unimodal posterior distribution, describes the narrow-
est interval around the posterior mode that includes 95% of the
posterior probability mass.

As the marginal posterior distributions for the DDM are not
available in closed-form, numerical methods must be used to

https://osf.io/fjy8z/
https://osf.io/fjy8z/
https://osf.io/fjy8z/
https://osf.io/fjy8z/
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Fig. 2. Histograms of simulated RTs for Level 1 and Level 2. Error RTs are shown on the negative x-axis. MRT is the mean response time, #Err is the number of error RTs out
of 1000 simulated trials per condition.

Fig. 3. Histograms of simulated RTs for Level 3. Error RTs are shown on the negative x-axis. Histograms show the mean number of observations per RT bin, upper and lower
outlines show the 0.9 and 0.1 quantile of the number of observations per RT bin across 20 simulated participants, respectively. Av #Err is the average number of error RTs
out of 1000 simulated trials per condition.
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Table 1
Generating parameter values for synthetic data.

a vEasy vMedium vHard Ter z sv sTer sz
Level 1 1 3.5 2.5 1.5 0.35 0.45 2.2 0.1 0.4
Level 2 0.8 4 3 2 0.43 0.55 1.8 0.1 0.2
Level 3 µk 0.8 4 3 2 0.43 0.55 1.6 0.15 0.3

σk 0.3 1 1 1 0.1 0.02 0 0 0

Individual Participants Level 3

PP1 0.54 3.15 1.66 2.37 0.39 0.51
PP2 1.52 3.54 3.20 1.29 0.49 0.56
PP3 0.32 5.37 2.18 0.03 0.38 0.56
PP4 0.58 4.63 3.22 1.27 0.37 0.54
PP5 0.49 4.78 4.05 0.92 0.45 0.55
PP6 0.86 3.74 3.12 3.18 0.53 0.56
PP7 0.73 5.07 2.58 2.67 0.18 0.50
PP8 0.53 2.91 2.38 2.41 0.54 0.55
PP9 1.27 6.11 1.84 2.07 0.47 0.56
PP10 0.53 6.08 3.45 1.95 0.39 0.56
PP11 0.39 5.87 5.60 1.55 0.24 0.54
PP12 0.48 4.63 5.51 1.17 0.42 0.54
PP13 1.37 4.55 3.85 2.27 0.37 0.57
PP14 1.32 3.72 5.11 2.98 0.49 0.52
PP15 0.71 2.83 1.31 3.10 0.41 0.53
PP16 0.87 3.96 2.47 0.83 0.27 0.55
PP17 0.70 3.84 3.27 2.42 0.39 0.53
PP18 1.11 4.36 3.39 2.76 0.39 0.56
PP19 1.20 5.60 4.09 2.42 0.35 0.57
PP20 0.90 5.37 2.67 2.19 0.37 0.54

Note. µk is the group-level mean for parameter k, σk is the corresponding group-level standard deviation. The diffusion
coefficient was s = 1 for all data sets. Level 1: data for one participant, main DDM parameters known. Level 2: data for
one participant, main DDM parameters unknown. Level 3: data for twenty participants, group-level and individual-level
parameters unknown. PPj indicates the generating values for simulated participant j.

Table 2
Estimation methods and measures of uncertainty for parameter estimates used by collaborators.

Collaborator Fitting method Parameter estimate Measure of uncertainty

Annis & Palmeri (Ann) NHB PM 95% HDI
Frank, Krypotos, & Wiecki (Fra) HB PM 95% HDI
Hawkins (Haw) HB PMD 95% HDI
Heathcote (Hea) HB PMD 95% HDI
Servant & Logan (Ser) χ2 BF 95% BCI
Singmann & Kellen (Sin) ML BF 95% BCI
Starns (Sta) χ2 BF L10, 95% CI
Van Ravenzwaaij (Rav) HB PMD 95% HDI
Voss & Lerche (Vos) ML BF 95% BCI

Note. Abbreviations of contributor names are indicated in brackets.
NHB: non-hierarchical Bayesian, HB: hierarchical Bayesian, χ2: χ2-minimization for RT quantiles, ML: maximum-
likelihood estimation.
PM: posterior mean, PMD: posterior median, BF: best fitting parameter.
X% HDI: X% highest density interval, X% BCI: X% bootstrap confidence interval, X% CI: X% confidence interval, L10:
likelihood-based uncertainty interval.

approximate the posterior mean or median and the 95% HDI.
Heathcote, Hawkins, and van Ravenzwaaij used the Differential-
EvolutionMarkov ChainMonte Carlo (MCMC) algorithm (ter Braak,
2006), and Frank et al. used the Slice-Sampling MCMC algorithm
(Neal, 2003). Despite some differences in the implementational
details, both algorithms are based on the construction of a number
of Markov chains that have the target posterior distribution as
their equilibrium distribution. An approximation of the posterior
density is obtained by observing theMarkov chains after they have
converged to their equilibrium distribution, which can then be
used to compute relevant summary statistics. Annis and Palmeri
used the Laplace approximation of the joint posterior density of
all DDM parameters for each participant to estimate the poste-
rior modes and covariance matrix. Based on these estimates, they
used numerical integration by Componentwise Adaptive Gauss–
Hermite Iterative Quadrature to compute the posterior mean and
95% HDI. For Level 3 they used the same numerical integration
method to approximate the posterior means for each participant.
These estimates were then combined in a Bayesian model to esti-
mate the group-level mean and standard deviation for each DDM
parameter using Hamiltonian MCMC sampling.

3.2. Maximum-likelihood estimation

Two contributions used maximum-likelihood estimation. This
method uses the DDM’s likelihood function to numerically ap-
proximate the parameter values thatmaximize the joint likelihood
of the observed data for each participant. Singmann and Kellen
used an algorithm based on Newton’s method (Kaufman & Gay,
2003) to find the ML estimators of the DDM parameters; Voss
and Lerche computed the ML estimators using a version of the
Simplex algorithm (Nelder & Mead, 1965).

Both groups used bootstrap confidence intervals (BCI) to quan-
tify the uncertainty associated with the ML estimators. Singmann
and Kellen based their BCIs on 1000 bootstrap samples, Voss and
Lerche based their BCIs on 200 bootstrap samples and only re-
ported intervals for the across-trial variability parameters.

For Level 3, Voss and Lerche obtained ML estimates of the
parameter values for each individual participant and reported the
average estimated value across participants. Singmann and Kellen
did not fit the Level 3 data.
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3.3. χ2 minimization

Two contributions used χ2 minimization. This method esti-
mates the DDM parameters that minimize the deviation between
observed and predicted RT quantiles for correct and incorrect
responses. Specifically, for the .1, .3, .5, .7, and .9 quantiles, the
method minimizes the χ2 statistic:

χ2
=

∑
i

N(pi − πi)2

πi
, (1)

where N is the total number of observations, pi and πi denote the
observed and predicted proportions of trials in bin i, respectively,
and the summation is over 12 quantiles (6 for correct responses
and 6 for error responses).

Servant and Logan excluded errors from the χ2 computation
when their number was below 10, Starns excluded errors from the
χ2 computation when their number was below 5. Both contribu-
tions used the Simplex algorithm (Nelder & Mead, 1965) to find
the parameter values that minimize the χ2 statistic across exper-
imental conditions. However, whereas Starns estimated separate
drift rates for each experimental condition and ‘‘left’’ and ‘‘right’’
stimuli, Servant and Logan estimated a single drift rate for each
experimental condition. Moreover, Servant and Logan imposed a
number of constraints on z, sz , sv , and sTer to guarantee sensible
parameter estimates.

For Levels 1 and 2, Servant and Logan quantified the uncertainty
associated with their parameter estimates using parametric BCIs.
To this end, they generated 50 bootstrap data sets from the model
with the best-fitting parameter values and again fit the DDM to
these bootstrap data sets using χ2 minimization. To quantify the
uncertainty associated with his parameter estimates, Starns fixed
each DDM parameter in turn to a value above or below the best-
fitting value and used χ2 minimization on the remaining parame-
ters to find the parameter value at which the likelihood of the data
was 10 times lower than the likelihoodunder the best-fitting value.

For Level 3, both contributions used χ2 minimization to find
the best fitting parameter values for each individual participant
and reported the average across participants. Starns quantified the
uncertainty for his parameter estimates using conventional 95%
confidence intervals whereas Servant and Logan did not report
measures of uncertainty.

4. Results

Fig. 4 presents a summary of the across-trial variability pa-
rameter estimates for Level 1 reported by our collaborators and
the distribution of parameter values observed in empirical studies
reported in Matzke andWagenmakers (2009) as a reference point.
The vertical line indicates the generating value for each parameter,
dots indicate point estimates obtained by different estimation
methods and error bars show the corresponding measures of un-
certainty reported by our collaborators. Results shown in gray are
based on fits of the full DDM where the main DDM parameters
were not fixed to the true values.

The results for sTer are shown in the left panel. As can be seen,
all point estimates for sTer were close to the generating value and
the uncertainty intervals were very narrow compared to the range
of values typically found in empirical studies, indicating that sTer
could be estimated reliably by all estimation methods.

Similarly, most point estimates for sv , shown in the middle
panel, were close to the generating parameter value and uncer-
tainty intervals were relatively narrow compared to the range of
values observed in empirical studies. The estimate for sv reported
by Frank et al., shown in gray, was associated with a relatively
wide uncertainty interval. As explained in their contribution, Frank
et al.’s fitting method does not allow users to fix parameters to

a specific value, and thus could not take advantage of the known
DDM parameter values for this data set. Similarly, van Raven-
zwaaij’s initial model fit did not fix the main DDM parameters
to their known values. The corresponding point estimate for sv ,
shown in gray, missed the generating parameter value by a wide
margin. As he explains in his contribution, this was due to a
misspecified prior distribution for sv , which strongly biased the
parameter estimate.2 The second estimate, which fixed the main
DDM parameters to their known values and used an appropriate
prior distribution, shown in black,was comparable to the estimates
obtained with other methods.

Finally, most point estimates of sz for the Level 1 data, shown in
the right panel, missed the generating parameter value. Compared
to the range of parameter values observed in empirical studies, the
uncertainty intervals associated with these point estimates were
relatively narrow. This bias in the estimates of sz suggests that
the parameter might not be sufficiently constrained by the data,
even if the value of the z parameter is known exactly. Similar to
the results for sv , Frank et al.’s estimate for sz was associated with
a relatively wide uncertainty interval as their estimation method
could not take advantage of the known DDM parameter values.
Van Ravenzwaaij’s initial point estimate for sz , shown in gray, also
missed the generating parameter value by a wide margin. The
second estimate, shown in black, which used an appropriate prior
distribution and fixed the known DDM parameters, was compara-
ble to the estimates obtained with other methods.

The results for Level 2 show complementary patterns to the
observations above. Fig. 5 shows the point estimates and uncer-
tainty intervals for the Level 2 data compared to the distribution of
parameter values typically observed in empirical studies. Similar to
the results for Level 1, all estimates for sTer , shown in the left panel,
were close to the generating parameter value and uncertainty
intervals were narrow across methods, which again indicates that
all estimation methods could reliably recover the value of sTer .
Moreover, the width of the uncertainty intervals for Level 2 was
similar to that for Level 1 for all estimationmethods, which further
suggests that sTer is sufficiently constrained by the data and is not
strongly dependent on the values of the main DDM parameters.

Point estimates of sv for Level 2, shown in the middle panel,
showed relatively small deviations from the generating parameter
value compared to the range of values observed in empirical stud-
ies. However, across estimation methods there was considerable
uncertainty associated with these point estimates, with uncer-
tainty intervals spanning nearly half the range of empirical values.
Moreover, compared to Level 1, point estimates for Level 2 showed
higher variability around the generating value and the uncertainty
associated with these estimates approximately doubled. Interest-
ingly, uncertainty intervalswere similar inwidth across estimation
methods and the increase in uncertainty from Level 1 to Level 2
was also comparable across estimation methods. Taken together,
these results suggest that sv is dependent on the values of the
main DDM parameters. Indeed, Singmann and Kellen found strong
correlations between a, v, z and sv , and Hawkins found a strong
correlation between v and sv . The initial estimate for sv reported by
van Ravenzwaaij againmissed the generating parameter value by a
widemargin. However, a second estimate that used an appropriate
prior distribution was comparable to the estimates obtained with
other methods.

Finally, point estimates of sz for Level 2, shown in the right panel
of Fig. 5, deviated considerably from the generating parameter
value compared to the range of values observed in empirical stud-
ies and uncertainty intervals spanned half the range of empirical

2 Note that van Ravenzwaaij’s misspecified prior distribution for sv also biased
the posterior variance for sv and sz , resulting in relatively narrow uncertainty
intervals.
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Fig. 4. Estimates for across-trial variability parameters for Level 1 obtained with different estimationmethods. Histograms at the bottom show the distribution of parameter
values observed in empirical studies reported in Matzke and Wagenmakers (2009). The vertical line in each panel shows the generating parameter value. Dots indicate
parameter estimates obtained by our collaborators, error bars represent the measures of uncertainty reported by our collaborators (see Table 2). Labels indicate the first
author, abbreviations in brackets indicate the fitting methods (B: Bayes, ML: maximum-likelihood estimation, χ2: χ2-minimization for RT quantiles). Results shown in gray
did not fix the main DDM parameters to their known values. 1This fit was obtained on request of the organizers after the generating parameter values had been published.
2This fit was obtainedwith an incorrectly scaled prior distribution on sv . 3This fit was obtainedwith a corrected prior distribution on sv after the generating parameter values
had been published; see van Ravenzwaaij’s contribution in Appendix A.3 for details.

Fig. 5. Estimates for across-trial variability parameters for Level 2 obtained with different estimationmethods. Histograms at the bottom show the distribution of parameter
values observed in empirical studies reported in Matzke and Wagenmakers (2009). The vertical line in each panel shows the generating parameter value. Dots indicate
parameter estimates obtained by our collaborators, error bars represent the measures of uncertainty reported by our collaborators (see Table 2). Labels indicate the first
author, abbreviations in brackets indicate the fitting methods (B: Bayes, ML: maximum-likelihood estimation, χ2: χ2-minimization for RT quantiles). 1This fit was obtained
using accuracy-coding. 2This fit was obtained using stimulus-coding after the generating parameter values had been published; see Frank et al.’s contribution in Appendix A.4
for details. 3This fit was obtained with an incorrectly scaled prior distribution on sv . 4This fit was obtained with a corrected prior distribution on sv after the generating
parameter values had been published; see van Ravenzwaaij’s contribution in Appendix A.3 for details.
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values. Moreover, compared to Level 1, point estimates showed
increased variability and uncertainty intervals doubled in width
for most methods. Similar to sv , the increase in uncertainty for
estimates of sz from Level 1 to Level 2 was comparable for all
estimation methods. However, point estimates obtained from hi-
erarchical Bayesian methods tended to lie closer to the generating
parameter value than estimates obtained with other methods,
which largely yielded estimates close to 0. This relatively better
performance of hierarchical Bayesian methods is likely due to the
specification of the prior distribution for sz , which is mostly based
on the empirical distribution of parameter values reported by
Matzke andWagenmakers (2009). Consequently, even if sz cannot
be estimated accurately from the data, the prior distribution will
pull point estimates into a region with higher prior probability.
These results suggest that sz , similar to sv , is not sufficiently
constrained by the data and is dependent on the values of the
main DDM parameters. This conclusion is again supported by the
strong correlations between sz and Ter reported by Hawkins, and
Singmann and Kellen.

In contrast to the across-trial variability parameters, the main
DDMparameters could be estimatedwith high precision across es-
timation methods. The top row in Fig. 6 shows the point estimates
and uncertainty intervals for the Level 2 data compared to the
distribution of parameter values typically observed in empirical
studies. As can be seen, point estimates were close to the generat-
ing parameter values and uncertainty intervals were narrow for a,
Ter , and z. Only Starns’s, and Voss and Lerche’s estimates for Ter and
Franks et al.’s second estimate for z missed the generating value.
The latter result is due to reporting 1−z instead of z and correcting
Franks et al.’s estimate for this misreporting yields a value much
closer to the generating parameter value. Similarly, point estimates
for the drift rates v were close to the generating parameter values
across estimationmethods; only vanRavenzwaaij’s initial estimate
missed the generating value. Although uncertainty intervals for v

were wider than for the other main DDM parameters, the intervals
are relatively narrow compared to the range of parameter values
observed in empirical studies. These results suggest that the main
DDM parameters can be estimated with relatively high precision
at the level of individual participants.

The relationship between the main DDM parameters and the
across-trial variability parameters is shown in Fig. 7. Gray lines
indicate the generating parameter values and black dots show the
parameter estimates obtainedby our collaborators. The size of each
dot indicates how the correlation between the correspondingmain
DDM parameter and the across-trial variability parameter would
change if the data point was removed from the computation of the
correlation, with larger dots being associated with larger changes
in the estimated correlation. It is important to note that DDM
parameters are generally not independent; Ratcliff and Tuerlinckx
(2002), for instance, found correlations betweenmostDDMparam-
eters for individual participants to be at least 0.5. We, therefore,
only consider correlations greater than 0.5 to be noteworthy. As
can be seen in Fig. 7, for sTer (top row) data points for all parame-
ters except a are similar in size, which means that the estimated
correlations between sTer and the main DDM parameters are not
driven by outliers. For a, removal of the outlier in the bottom
right corner of the panel resulted in a correlation of r = 0.57,
which suggests that estimation of awas strongly dependent on sTer .
The correlations for the remaining main parameters were small
to medium in size, which suggests that the estimation of these
parameters was not critically dependent on sTer across estimation
methods.

Similarly, for sv (middle row) data points in the panels for a,
Ter , and v are similar in size, which suggests that the estimated
correlations are not driven by outliers. There are sizable positive
correlations between sv and a, and between sv and all three drift

rates v. This means that estimates of a and v were critically de-
pendent on sv . The correlation between sv and z was strongly
influenced by a single data point, removal of which increased the
correlation to r = 0.67. This suggests that estimation z was also
critically dependent on sv .

Finally, for sz (bottom row) data points in the panels for Ter and
z are similar in size, which suggests that the estimated correlations
are not driven by outliers. Themedium-sized negative correlations
with Ter and z indicate that estimates for these parameters were
not critically dependent on sz . The correlations of sz with a and
v were influenced by a single outlier. However, removal of this
outlier did not yield sizable correlations, which suggests that es-
timates for a and v were not critically influenced by sz .

Fig. 8 shows the point estimates and measures of uncertainty
for the across-trial variability parameters for the Level 3 data
reported by our collaborators. The results are similar to those for
the participant-level estimates for the Level 2 data. As can be
seen, estimates for µsTer showed near perfect agreement with the
generating parameter value. Moreover, compared to the range of
empirical values for sTer , uncertainty intervals for the Level 3 data
were negligible across estimation methods, which indicates that
the parameter µsTer could be estimated with high precision. Point
estimates for µsv showed somewhat higher variability around
the generating parameter value. However, this variability was
small compared to the range of sv values observed in empirical
studies and uncertainty intervals for the point estimates of µsv
were relatively narrow. Finally, point estimates for µsz deviated
considerably from the generating parameter value compared to
the range of values in empirical studies and uncertainty intervals
were relatively wide for most estimation methods. Similar to the
uncertainty intervals for the participant-level estimates for Level 2,
uncertainty intervals forµsz for Level 3were relativelywide,which
suggests that sz is insufficiently constrained by the data.

The results for the estimation of the group-level main DDM
parameters parallel those for the individual-level parameters. The
bottom row in Fig. 6 shows the point estimates and uncertainty
intervals for the Level 3 data compared to the distribution of
parameter values typically observed in empirical studies. As can
be seen, point estimates were close to the generating parameter
values and uncertainty intervals were narrow for a. Similarly, most
contributors’ point estimates for Ter , v, and z were also close to
the generating parameter value and the associated uncertainty
intervals were narrow compared to the range of empirical values.
As for Level 2, Starns’, and Voss and Lerche’s estimates for Ter
were larger than the generating group-level parameter, and Frank
et al.’s estimates for zwere smaller than the generating group-level
parameter. These deviations might, therefore, reflect biases in the
estimation of the individual-level parameters. Finally, Servant and
Logan’s, Starns’, and Voss and Lerche’s estimates for v overesti-
mated the drift rates in the easy andmedium conditions. However,
it is hard to assess whether these deviations reflect systematic
biases in the estimation methods because there are no uncertainty
intervals available for these group-level estimates and there were
no comparable deviations visible for the Level 2 data. Taken to-
gether, these results show that the group-level main DDM param-
eters can be estimated with acceptable precision, although some
methods might provide biased point estimates for Ter , z, and v.

The relationship between group-level estimates of the main
DDM parameters and group-level estimates of the across-trial
variability parameters is shown in Fig. 9. Gray lines indicate the
generating parameter values and black dots show the parame-
ter estimates obtained by our collaborators. The size of each dot
indicates how the correlation between the corresponding main
DDM parameter and the across-trial variability parameter would
change if the data point was removed from the computation of the
correlation, with larger dots being associated with larger changes
in the estimated correlation.
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Fig. 6. Estimates for the main DDM parameters for Levels 2 and 3 obtained with different estimation methods. Histograms at the bottom show the distribution of parameter
values observed in empirical studies reported in Matzke and Wagenmakers (2009). The vertical line in each panel shows the generating parameter value. Dots indicate
parameter estimates obtained by our collaborators, error bars represent the measures of uncertainty reported by our collaborators (see Table 2). Uncertainty intervals for
Levels 2 and 3 were not available for some contributions that used χ2-minimization and maximum-likelihood estimation. Labels indicate the first author, abbreviations
in brackets indicate the fitting methods (B: Bayes, HB: hierarchical Bayes, NHB: non-hierarchical Bayes, ML: maximum-likelihood estimation, χ2: χ2-minimization for RT
quantiles). 1This fit was obtained using accuracy-coding. 2This fit was obtained using stimulus-coding after the generating parameter values had been published. The large
deviation from the generating value is due to misreporting 1 − z instead of z; see Frank et al.’s contribution in Appendix A.4 for details. 3This fit was obtained with an
incorrectly scaled prior distribution on sv . 4This fit was obtained with a corrected prior distribution on sv after the generating parameter values had been published; see van
Ravenzwaaij’s contribution in Appendix A.3 for details.

As can be seen, for sTer (top row) data points in each panel are
similar in size, which suggests that the estimated correlations be-
tween sTer and themainDDMparameters are not driven by outliers.
Similar to Level 2 after outlierswere removed, the correlations for a
and z are medium-sized or small, which suggests that estimates of
these group-level parameters were not critically dependent on sTer
across estimation methods. However, in contrast to Level 2, there
are sizable negative correlations between sTer and Ter , and between
sTer and vEasy and vMedium for Level 3. This suggests that estimation
of these group-level parameters was critically influenced by sTer .

For sv (middle row) data points in the panels for a, and v are
similar in size, which suggests that the estimated correlations
are not driven by outliers. In contrast to Level 2, the correlation
between the estimates for sv and a is only medium-sized, which
suggests that estimation of the group-level parameter a was not
critically dependent on the estimation of sv . The estimated correla-
tion between sv and Ter was strongly influenced by two data points.
Removal of these data points increased the correlation to r = 0.61,
which suggests that sv critically influenced the estimation of the
group-level parameter Ter . Similar to Level 2, there are sizable
positive correlations between sv and all three drift rates v. This
means that, also on the group-level, estimates of v were critically
dependent on sv . Moreover, as for Level 2, there is only a weak

correlation between sv and the group-level parameter z, which
suggests that estimates of z were not critically dependent on sv .

Finally, for sz (bottom row) data points in all panels are similar
in size, which suggests that the estimated correlations are not
driven by outliers. Despite some differences in size, similar to Level
2, correlations between sz and a, sz and Ter , and between sz and z
were not substantial. This means that estimation performance for
these group-level parameters was not critically dependent on the
estimation of sz . In contrast to Level 2, the sizable positive corre-
lations between sz and vEasy and vMedium suggest that estimation of
these group-level drift rates was critically influenced by sz .

Taken together, the results for Level 3 confirm the strong cor-
relations between sv and estimates of v observed for Level 2, but
suggest additional strong correlations between v and sTer , between
v and sz , and between Ter and sTer . Moreover, the results for Level
3 did not show the strong correlation between a and sv observed
for Level 2. These results might be taken to suggest different
dependencies between estimates of DDM group-level parameters
than between estimates of participant-level parameters. However,
these discrepancies might equally well be a product of chance
variation due to the small number of contributions on which the
correlations are based.
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Fig. 7. Correlations between the main DDM parameters and the across-trial variability parameters across estimation methods. Thin gray lines in each panel show the
generating parameter values. Dots indicate parameter estimates obtained by our collaborators. Dot size represents the change in the estimated correlation if the data point
is removed from the computation of the correlation; larger dots correspond to a larger change in correlation,∆r = |rall data − rleave out i|. Results from van Ravenzwaaij’s initial
fit are not included as parameter estimates were considerably biased.

Fig. 8. Estimates for the across-trial variability parameters for Level 3 obtained with different estimation methods. Histograms at the bottom show the distribution of
parameter values observed in empirical studies reported in Matzke and Wagenmakers (2009). The vertical line in each panel shows the generating parameter value. Dots
indicate parameter estimates obtained by our collaborators, error bars represent the measures of uncertainty reported by our collaborators (see Table 2). Labels indicate
the first author, abbreviations in brackets indicate the fitting methods (HB: hierarchical Bayes, NHB: non-hierarchical Bayes, ML: maximum-likelihood estimation, χ2:
χ2-minimization for RT quantiles). 1This fit was obtained using accuracy-coding. 2This fit was obtained using stimulus-coding after the generating parameter values had
been published; see Frank et al.’s contribution in Appendix A.4 for details.

5. Advice

5.1. Bayesian estimation

Our collaborators discussed two main problems often encoun-
teredwith Bayesianmethods that rely onMCMCsampling. First, ef-
fective approximation of the posterior density requires thatMCMC

chains have converged to their equilibrium distribution. That is,
MCMC samples should reflect genuine samples from the posterior
distribution. However, chains might get stuck at a particular value
for longer periods of time without having converged, or exhibit
a very slow drift towards the equilibrium distribution. In both
cases automatic convergence checksmight falsely indicate that the
chains have converged. Users should, therefore, always visually
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Fig. 9. Correlations between group-level means of main DDM parameters and across-trial variability parameters across estimation methods. Thin gray lines in each panel
show the generating parameter values. Dots indicate parameter estimates obtained by our collaborators. Dot size represents the change in the estimated correlation if the
data point is removed from the computation of the correlation; larger dots correspond to a larger change in correlation, ∆r = |rall data − rleave out i|.

check that chains have converged and are fluctuating around a
common value.

If a sufficient number of chains have been sampled, post-hoc
removal of non-converged chains might help address conver-
gence problems without affecting parameter estimates. For the
DE-MCMC algorithm, one way to address convergence problems
is to use a migration step during burn-in in which samples are
exchanged between chains. This allows chains that are far from the
other chains to be pulled towards a common value.

Second, the across-trial variability parameters are associated
with a relatively flat likelihood function, and hence are not well
constrained by the data. In a hierarchical setting in particular, this
can result in poor prior updating, where MCMC chains remain
stuck in the prior distribution. Such problems can be detected
by superimposing the prior distribution and the posterior distri-
butions in a single figure to verify that the estimates reflect the
posterior more than the prior. Moreover, repeated sampling with
different sensible prior settings should yield similar results for the
posterior samples if prior updating occurred.

Users of numerical integration methods might benefit from
using estimates of the posterior mode and covariance matrix ob-
tained from a Laplace approximation to initialize the quadrature
procedure. The Simplex algorithm provides a fast and efficient
way to compute Laplace approximations. One limitation of quadra-
turemethods is that their use is limited tomodels with 10 or fewer
parameters, which typically precludes applications to hierarchical
models.

In general, users of Bayesian estimation methods should be
aware that these methods are sensitive to serious misspecifica-
tions of prior distributions. Users should therefore check that prior
specifications are sensible and priors might need to be rescaled
for different parameterizations of the DDM (e.g., if the diffusion
coefficient s is changed from0.1 to 1). Lastly, users should be aware
that estimating posterior means and HDIs in hierarchical models
using MCMC sampling is computationally expensive.

5.2. Maximum-likelihood estimation

Parameter estimation using ML methods requires efficient nu-
merical optimization. Within the setup used by Singmann and

Kellen, use of the nlminb algorithm (Kaufman & Gay, 2003) is rec-
ommendas it converges quickly on global optima. In the setupused
by Voss and Lerche, the Simplex algorithm seems to provide a
good compromise between speed of convergence and convergence
to global, rather than local, optima.

One drawback of ML estimation methods is their sensitivity
to contaminant RTs, which can considerably bias parameter esti-
mates. Whereas in the present study all RTs were known to have
been generated by the DDM, in applications to real data more
robust estimation methods should be used, such as estimation
based on the Kolmogorov–Smirnov statistic.

5.3. χ2 minimization

Parameter estimation using χ2 minimization, similar to ML es-
timation, requires efficient numerical optimization, in this case of
theχ2 statistic. The optimizationmethodused by our collaborators
relies on an iterative procedure using the Simplex algorithm.
The χ2 statistic is minimized for a set of starting values, and the
resulting parameter estimates are used as starting values for a new
iteration of optimization process. This iterative scheme is repeated
until the parameter estimates do not change substantially between
iterations. Servant and Logan observed that the resulting param-
eter estimates are dependent on the starting values used in the
first iteration, in particular for the parameters v, sv , and sz . These
instabilities in the parameter estimates might be due to trade-offs
between v and sv , and a flat likelihood function for sz , which might
be addressed by either fixing or combining parameters that are not
well recovered (White, Servant, & Logan, 2017).

Ratcliff and Childers (2015) recently suggested a further refine-
ment of the χ2 method, where the median RT of errors is used
in the computation of the χ2 statistic, rather than ignoring errors
completely if their number is below 10. This refinedmethodmight
improve parameter estimation for Level 3 where the number of
error RTs was small for some data sets.

5.4. General recommendations

Several of our collaborators reported high correlations and
trade-offs between DDM parameters. In particular, sv , sz , and v
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seem to be highly correlated, which complicates their joint es-
timation. A first way to deal with this problem is to forgo esti-
mation of the across-trial variability parameters altogether and
fix their value to 0, based on the motivation that the across-trial
variability parameters were introduced into the DDM to account
only for fine-grained details of the RT distribution (e.g., Ratcliff
& Tuerlinckx, 2002; van Ravenzwaaij, Donkin, & Vandekerckhove,
2017). In many practical applications, however, the focus is on
the main DDM parameters. In these cases, the across-trial vari-
ability parameters increase model complexity without tangible
benefits for the estimation of the main DDM parameters; the main
DDM parameters can often be estimated precisely even if the data
were generated by a DDM with non-zero across-trial variabilities
(Lerche & Voss, 2016).

Second, if users decide to estimate the across-trial variability
parameters, several steps should be taken to improve the quality
and interpretability of parameter estimates. Obtaining a sufficient
number of trials is a prerequisite for estimating the across-trial
variability parameters. However, simply increasing the length of
an experimental session means that participants might lose moti-
vation and focus, which might, in turn, introduce contaminant RTs
and thus affect the precision of parameter estimates.

As a general rule, researchers are expected to quantify the error
associatedwith the parameter estimates, for example by obtaining
bootstrap confidence intervals. However, in applications to real
data, such confidence intervals are influenced not only by the
estimation error but also by potential model misspecification, that
is, if data were generated by a different model than the DDM.
Therefore, additionalmethods such as parametric bootstrap should
be employed to more appropriately assess estimation error and
detect model misspecification.

Finally, due to the high uncertainty associated with the across-
trial parameters, comparisons of parameter estimates across par-
ticipants are notoriously unreliable. In between-subjects designs,
all parameters need to be estimated for each participant in each
condition, whichmeans that in comparisons across conditions, un-
certainty in one parameter can compound uncertainty in another.
In within-subjects designs, on the other hand, only the parameters
of interest need to be estimated in each condition, all other param-
eters are assumed to have the same value across conditions. This
might allow for meaningful comparisons of across-trial variability
parameters in some instances. In memory research, for example,
simulations studies indicate that differences in drift rate variability
between experimental conditions can be recovered with some
reliability (Starns & Ratcliff, 2014) and validation studies were able
to detect manipulations of evidence variability in empirical data
(Starns, 2014).

6. Discussion

Over the last 40 years, the DDM has become one of the most
popular models for explaining RT and accuracy data from a wide
range of domains (Forstmann et al., 2016; Ratcliff &McKoon, 2008;
Ratcliff et al., 2016). Much of this success is due to the model’s
ability to fit varied shapes of RT distributions; through the addition
of three across-trial variability parameters, the DDM can account
for subtle RT patterns that elude most competitor models (Ratcliff,
1978; Ratcliff & Tuerlinckx, 2002; Van Zandt&Ratcliff, 1995). How-
ever, several recent studies have reported difficulties estimating
these across-trial variability parameters, even in sizable data sets
(Lerche & Voss, 2016, 2017; van Ravenzwaaij & Oberauer, 2009;
Yap et al., 2012). For example, van Ravenzwaaij and Oberauer
(2009) generated data from the full DDM and considered two cri-
teria for fitting the full DDM, one based on a Kolmogorov–Smirnov
statistic and one based on amaximum-likelihood type of criterion.
They found that both fitting methods could accurately recover the

main DDM parameters as well as the across-trial variability in
non-decision time,whereas estimates of the across-trial variability
in drift rate and starting point missed the generating parameter
values by a wide margin. Ratcliff and Tuerlinckx (2002) found
similar results across a wide range of generating parameter values
for the main DDM parameters, using a maximum-likelihood and
a χ2-criterion, among others. Moreover, Ratcliff and Tuerlinckx
reported sizable correlations between the main DDM parameters
and the across-trial variability parameters, which suggests that
poor estimation of the across-trial variability parameters might
negatively affect estimation of the main DDM parameters.

These findings raise the questionwhether and howdifferent fit-
tingmethods can be optimally used to obtain the best possible esti-
mates of the across-trial parameters. Since Ratcliff and Tuerlinckxs
(2002) and van Ravenzwaaij andOberauer’s (2009) studies, several
new fittingmethods and software packages have becomeavailable.
Using these packages often requires decisions about optimization
or sampling algorithms, or adjustments to the implementation,
based on expert knowledge of the method. However, many users
do not have the required expertise nor the resources to conduct
extensive simulation studies to find the best possible approach to
fitting their data. Therefore, the current study invited experts from
the DDM community to apply their fitting methods to a standard
experimental setup and provide recommendations for estimating
the DDM’s across-trial variability parameters.

The experts contributing to our study used a wide range of
fitting methods for the DDM and reported similar difficulties as
Lerche and Voss (2016, 2017), van Ravenzwaaij and Oberauer
(2009), and Yap et al. (2012) when estimating the across-trial
variability parameters. Besides practical limitations, such as some
methods being unable to fit specific data structures (e.g., the hi-
erarchical structure, or the single-participant structure with some
DDM parameters known), the estimation performance of the dif-
ferent methods depended strongly on the specific DDM param-
eter. Most estimation methods used by our collaborators could
accurately recover the main DDM parameters as well as across-
trial variability in non-decision time. Estimates of the across-trial
variability in drift rate and starting point, on the other hand,
were associated with large uncertainty and tended to miss the
generating value by a widemargin. These results are largely in line
with those of Ratcliff and Tuerlinckx (2002), who could accurately
recover the main DDM parameters on the individual-level but
reported large uncertainty for estimates of across-trial variability
in drift rate and starting point. Interestingly, uncertainty intervals
in our study were similar in width across estimation methods and
the increase in uncertainty from a situation where the main DDM
parameters were known to a situation where all DDM parameters
had to be estimated was comparable for all estimation methods.
This indicates that estimation performance was not limited by the
estimation methods themselves but rather by the degree to which
specific DDM parameters are constrained by the data.

Our results further suggest tradeoffs in the estimation of the
main DDM parameters and the across-trial variability parameters.
Specifically, we found strong correlations between collaborators’
estimates for drift rate variability and drift rate as well as between
drift rate variability and boundary separation on the individual-
level. Moreover, group-level estimates of all three across-trial vari-
ability parameters were strongly correlated with estimates of drift
rate, and group-level estimates of variability in non-decision time
and drift rate were also correlated with estimates of non-decision
time. Although these correlations should be interpreted carefully
due to the small number of data points on which the correlations
are based, our results generally align with those of Ratcliff and
Tuerlinckx (2002). Ratcliff and Tuerlinckx reported strong corre-
lations on the individual-level between drift-rate variability and
boundary separation and drift rate, as well as between variability
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in starting point and boundary separation, non-decision time, and
drift rate. Our results suggest that bias in estimates of across-trial
variability in drift rate affects estimation performance for themain
parameters on all hierarchical levels, and that biased estimates
of variability in non-decision time and starting point additionally
affect group-level estimates of the main DDM parameters.

6.1. Limitations

There are three aspects of our study that might limit the gener-
alizability of our results. The first aspect concerns the setup of our
Level 3 data set, where the across-trial variability parameters were
the same for all participants. Hierarchical Bayesian methods often
assume that all individual-level parameters are sampled from a
non-degenerate group-level distribution with positive variance,
and therefore rely on a hyperprior that does not support zero
variance (e.g. Chung, Rabe-Hesketh, Dorie, Gelman, & Liu, 2013;
Gelman, 2006). However, because we assigned the same value
to the across-trial variability parameters for all participants, the
true variance of the group-level distribution was zero. This can
cause estimation problems in hierarchical Bayesian methods such
as DMC (Heathcote et al., in press) and, at the same time, gives an
unfair advantage to implementations such as HDDM (Wiecki et al.,
2013), which assumes common across-trial variability parameters
across participants. Nevertheless, the results obtained with DMC
and HDDM for the Level 3 were similar; uncertainty intervals for
non-decision time and drift rate variability were comparable in
width and point estimates were close to the generating value for
both implementations. Only uncertainty intervals for starting point
variability were wider for DMC than for HDDM and one HDDM point
estimate missed the generating value by a sizable margin. Thus,
although DMC might perform better with a different setup where
across-trial variability parameters differ between participants, the
present results suggest that DMC is relatively robust to such model
misspecification.

In addition to these technical considerations, our design choice
for the Level 3 data set highlights a more general problem in
the specification of cognitive models. Several of our contributors
were reluctant to accept certain parameter values as plausible.
Heathcote and Hawkins, for example, point out that a group-level
variance of 0 for the across-trial variability parameters is implausi-
ble. This assumption is embodied in their specification of the prior
distribution for the group-level variances, which contains 0 as a
boundary value. On the other hand, some modeling practices fix
model parameters to a specific value. HDDM, for example, assumes
a group-level variance of 0. These twomodeling approaches, either
estimating a distribution or fixing a parameter to a particular
value, essentially represent different a priori choiceswith regard to
model complexity. Although it might be argued that DDMparame-
terswill never be exactly the same across participants, the variance
might be so small to be 0 for all intents and purposes. Hence,
fixing parameter values might be an appropriate modeling choice
in some instances. The questionwhen the simplermodel should be
preferred is a complicated one and has been discussed extensively
in the literature onmodel selection.Wewill not pursue this discus-
sion here and refer the interested reader to the relevant literature
(e.g., Aho, Derryberry, & Peterson, 2014; Burnham & Anderson,
2002; Jeffreys, 1961; McQuarrie & Tsai, 1998). However, we would
like to point out that in applications of hierarchical implementa-
tions of the DDM, researchers might need to consider the level of
model complexity that is needed to answer their research question.
When the focus is on the application of a particular hierarchical
model, model complexity is a negligible factor. In contrast, when
the goal is statistical inference about or prediction based onmodel
parameters, model complexity plays a pivotal role.

The second limiting aspect concerns our choice of generating
parameter values. This issue is best highlighted by a comparison

of our results with the results of Ratcliff and Childerss (2015)
parameter recovery study. Ratcliff & Childers compared parameter
recovery using, among others, χ2-minimization, Fast-dm, and
HDDM for 48 different combinations of generating parameter values
and different numbers of conditions and trials per condition. Sim-
ilar to our results, all methods in Ratcliff & Childers’s study could
accurately recover non-decision time. However, whereas all meth-
ods in our study could accurately recover boundary separation,
in Ratcliff & Childers’ study Fast-dm and HDDM produced biased
estimates for some combinations of generating parameter values.
Similarly, whereas all methods in our study could accurately re-
cover drift rate, Ratcliff & Childers reported considerable biases
in the estimation of drift rate for some generating parameters
for HDDM and a general tendency to underestimate drift rate for
Fast-dm. Biases in the estimation of boundary separation and drift
rate in Ratcliff & Childers’ study were more pronounced for larger
generating values.

The interpretation of the discrepancies between Ratcliff and
Childers’ (2015) and our results is somewhat hampered by the fact
that Ratcliff & Childers did not report results for the across-trial
variability parameters. One notable difference between our two
studies is the range of generating values. In particular, Ratcliff &
Childers used generating values of sz = 0.2, sz = 0.6, and sz = 0.8
whereas we used values of sz = 0.2 and sz = 0.3 for the Level 2
and Level 3 data sets. Moreover, Ratcliff & Childers used generating
values of a = 1 or a = 2, whereas we used a relatively small
value of a = 0.8 for Level 2 and a small mean µa = 0.8 and
standard deviation σa = 0.3 for Level 3. At the same time, all other
generating parameters in our study fell into the middle range of
values reported in the literature.

Hence, the worse recovery performance of some methods for
themain DDMparameters in Ratcliff & Childers’s studymight have
been due to trade-offs with the across-trial variability parame-
ters and the large variability in the data resulting from relatively
extreme generating values for the main DDM parameters. This
suggests that the generally good performance of all methods in our
studymight not generalize to other settings. In particular, drift rate
and to a lesser degree also boundary separationmight be estimated
with lower precision or estimates might be systematically biased
under alternative generating parameter values.

However, we do believe that the good recovery performance
for non-decision time variability in our study will likely generalize
to other settings despite the low generating values of sTer = 0.1
for Level 1 and Level 2. As across-trial variability in non-decision
time determines how well-defined the leading edge of the RT
distributions is, it might be argued that the small generating value
caused minimal smearing of the leading edge, and might hence
be responsible for the good recovery results for this parameter.
However, despite the larger generating value for the Level 3 data,
recovery was also very accurate in this case. Moreover, Ratcliff and
Tuerlinckx (2002) could recover a generating value of sTer = 0.2
with remarkable accuracy even in the presence of contaminant RTs
when using appropriate outlier corrections.

The third limiting aspect concerns the lack of outlier RTs in our
simulated data. The results in Ratcliff and Childers (2015) suggest
that some of the methods in the present study might show worse
recovery performance if outlier RTs are present.

6.2. How and when to estimate across-trial variability parameters

The results of our simulations, in line with previous studies
(Lerche & Voss, 2016, 2017; Ratcliff & Childers, 2015; Ratcliff &
Tuerlinckx, 2002; van Ravenzwaaij & Oberauer, 2009; Yap et al.,
2012), show that the DDM’s across-trial variability parameters
are notoriously difficult to estimate. At the same time, the high
correlations between the main DDM parameters and the across-
trial variability parameters (Ratcliff & Tuerlinckx, 2002) imply
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that misestimation of the latter might bias estimates of the main
DDM parameters. This raises the question how such biases can
be minimized. A possible solution to the problem of estimating
across-trial variability parameters is to place constraints on the
admissible range of parameter values. As seen in our study, at
least for variability in starting point, hierarchical Bayesianmethods
tended to yield point estimates that were close to the generating
parameter value. This is due to the prior distribution thesemethods
place on the DDM parameters, which pulls parameter estimates
towards a priori plausible values if the data provide insufficient
information to estimate the parameters. Other fitting methods
might similarly benefit from constraining parameters to lie within
the range of values observed in previous studies, aswas done in the
contribution by Servant and Logan. However, as discussed in van
Ravenzwaaij’s contribution, such constraints need to be carefully
adjusted to the specific implementation of the DDM as incorrect
prior information can severely bias parameter estimates. A good
starting point for constructing constraints on DDM parameters are
large-scale surveys of published DDM fits, as provided by Matzke
and Wagenmakers (2009).

A further factor that might improve estimation of the across-
trial variability parameters is experimental design. The present
study aimed to showcase the application of different estimation
methods to a standard experimental design as it is often used in
functional neuroimaging and clinical psychology. This was mo-
tivated mainly by the practical constraints that derive from, for
example, neurophysiological recordings. However, in cases where
there are weak constraints on the number of conditions, designs
that use multiple appropriately spaced difficulty conditions might
allow for more precise estimation of the across-trial variability in
drift and starting point. As pointed out in the introduction, the ef-
fect of variability in drift rate and starting point is to change the rel-
ative speed of correct and error responses. In a quantile probability
function these effects are most clearly visible as a change in the
left–right symmetry of the highest quantiles (typically the .9 quan-
tile; Ratcliff & McKoon, 2008). Consequently, accurate estimation
of these shifts in symmetry requires sufficient information about
the tails of the correct and error RT distributions at different ac-
curacy levels that should span a wide range of accuracies. This has
twopractical implications. First, researchers should include several
difficulty conditions (five or six) that are spaced in a way that
accuracies span a large part of the range from 0.5 to 1.0. Second,
researchers should collect sufficient numbers of trials, especially in
low difficulty conditions, to obtain reliable estimates of the highest
quantiles of the error RT distribution. It should be noted that, as
a consequence of these two recommendations, researchers need
to collect sufficient numbers of trials for each difficulty condition.
This might not be practically feasible in research areas with strong
limitations on the total number of trials, such as clinical psychology
or functional neuroimaging.

Another possible approach for improving estimation of the
across-trial variability parameters might be to use quantile-
averaged data instead of fitting the DDM to individual partici-
pants’ data. Cohen, Sanborn, and Shiffrin (2008) considered how
model recovery is affected if models are selected based either
on individual participants’ data, or based on averaged data. Their
results showed that model recovery based on averaged data could
outperform model recovery based on individual participants’ data
if the number of trials per participant was low. It might therefore
be suggested that estimation of the DDM’s across-trial variability
parameters might also benefit from using averaged data instead
of individual data. However, this approach only yields a single
group-level estimate for each DDM parameter and provides no
information about the variance of the parameter values across
participants. This precludes statistical comparisons of parameter
estimates between experimental conditions and the computation

of correlations with external variables across participants, both
of which are often of central interest in experimental studies. A
more suitable, hybrid approach might be to use averaged data to
estimate the across-trial variability parameters and subsequently
estimate the main DDM parameters for each participant with the
across-trial variability parameters fixed to the values obtained
from the averaged data. However, Ratcliff and Childers (2015)
found that using such a hybrid approach conveyed no improve-
ment in parameter recovery over estimating the across-trial vari-
ability parameters at the participant-level.

An interesting difference between the present study and previ-
ous studies that tested recovery of across-trial variability parame-
ters is thatwhilewe found that all fittingmethods could accurately
estimate the variability in non-decision time, earlier studies found
estimates of non-decision time variability to be unreliable. For ex-
ample, Lerche and Voss (2017) reported that estimates of variabil-
ity in non-decision time correlated only weakly between sessions
of a lexical decision task, and Yap et al. (2012) found only modest
correlations between estimates of variability in non-decision time
from the same session of a lexical decision task. This discrepancy
in results is most likely due to the use of simulated data from the
DDM in the present study whereas Lerche and Voss (2017), and
Yap et al. (2012) used experimental data. In experimental data, the
true value of the variability in non-decision time might vary over
time, which results in a decreased retest reliability (Lerche & Voss,
2017).Moreover, experimental datamight contain outlier RTs. Fast
outliers in particular affect the location of the leading edge of the
RT distribution, which in turn depends on the variability in non-
decision time (Ratcliff & Tuerlinckx, 2002), thus leading to biased
estimates of non-decision time variability. Although the problem
of fast outliers can be addressed to some degree by excluding RTs
below a certain cutoff value or by explicitly modeling outliers as
being generated by a different process than the DDM, separating
genuine responses from outliers is inherently difficult (Ratcliff &
Tuerlinckx, 2002). Consequently, estimates of non-decision time
variability fromexperimental data generally need to be interpreted
with care. At the same time, this susceptibility to outliers makes
non-decision time variability an important DDM parameter. As
pointed out by Lerche and Voss (2016), variability in non-decision
time can potentially absorb the effects of fast outliers that would
otherwise bias estimates of the main DDM parameters. The results
of our present study suggest that variability in non-decision time
is only modestly correlated with boundary separation and is not
critical to the estimation of the remaining main DDM parameters
at the participant-level. Moreover, non-decision time variability is
often not of substantial interest to researchers. A pragmatic ap-
proachmight, therefore, be to viewnon-decision time variability as
a nuisance parameter and forego interpretation of this parameter.

In general, the question when to estimate across-trial vari-
abilities is more difficult to answer. This is also reflected in the
diverse recommendations our collaborators provide. Van Raven-
zwaaij recommends categorically against estimating across-trial
variability parameters. Heathcote suggests that drift rate and non-
decision time variability can usually be estimated with reasonable
precision while starting point variability should only be estimated
if there are clear indications of fast errors. Voss & Lerche prefer
simplemodels that only estimate non-decision time variability and
fix the remaining across-trial variabilities to 0. Similarly, Starns
recommends always estimating variability in non-decision time
and suggests that variability in drift rate and starting point might
be fixed to standard values in most applications.

At the core of these diverse recommendations sits the ques-
tion which DDM parameters can be neglected without negatively
affecting the estimation of other parameters. This question has
been discussed extensively in the literature. Wagenmakers, Van
der Maas, and Grasman (2007) proposed a simplified version of
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the DDM that fixed the across-trial variability parameters to 0 and
assumed that starting pointwas equidistant to the decision bound-
aries. In the ensuing debate about the appropriateness of these
simplifying assumptions, Ratcliff (2008) pointed out that applying
the simplifiedmodel to data generated from the fullmodel resulted
in biased parameter estimates. However, in applications to real
data, the generating model is unknown.

A simple heuristic to decide which across-trial variabilities to
include in amodelmight be to compare themean correct and error
RT and only include the necessary across-trial variability parame-
ters if themeans differ. Themain drawback of this approach is that
mean differences are not necessarily diagnostic. Across-trial vari-
ability parameters affect the entire distribution of correct and error
RTs, and in particular the tail quantiles. Changes in these quantiles
are notoriously difficult to detect. A more principled approach
might be to compare the results of fittingmodels with andwithout
across-trial variabilities (see also Vandekerckhove & Tuerlinckx,
2007). If both types of models yield the same conclusion, across-
trial variabilities can be safely neglected. If the conclusions differ,
careful consideration should be given to the possible causes of this
discrepancy.

Finally, in recent years there has been increasing interest in the
substantive interpretation of the across-trial variability parame-
ters. For example, several authors have argued that variability in
drift rate might be related to mind-wandering (Hawkins, Mittner,
Forstmann, & Heathcote, 2017; McVay & Kane, 2012). In these
cases, where the across-trial variability parameters themselves are
of interest, researchers need to ensure that all possible precautions
have been taken to optimize estimation of the across-trial variabil-
ity parameters (i.e., removal or explicit modeling of outlier RTs,
sufficient number of difficulty conditions and trials per participant)
before proceeding to interpret their results.

To sum up, independent of the particular DDM fitting method
used, most of our collaborators agree on two points. First, the
DDM’s across-trial variability parameters are inherently hard to es-
timate and there is considerable uncertainty associated with these
estimates. Amethod that can be used to improve this situation is to
use parameter estimates from previous studies to inform current
estimates. Second, although the across-trial variability parameters
afford the DDM a high degree of flexibility, they are often not the
focus of inference. Therefore, users should give careful consider-
ation to whether across-trial variability parameters are actually
needed in order to fit a particular data set.
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Appendix A. Individual contributions — Bayesian estimation

Unless indicated otherwise, the known parameters for the Level
1 data are set to the true value in each contribution and the DDM
parameters are defined as above. In cases where the non-decision
time parameter represents the lower bound of the non-decision
time distribution, rather than the mean, we will use T ⋆

er instead of
Ter .

A.1. Heathcote

A.1.1. Methods
Parameter estimates were obtained by Bayesianmethods using

the Differential-Evolution Markov Chain Monte Carlo (DE-MCMC;
ter Braak, 2006) sampler implemented in the R language (R Core
Team, 2015) in the Dynamic Models of Choice (DMC; Heath-
cote, Lin, & Gretton, 2016; Heathcote et al., in press) software.3 DE-
MCMC is amultiple-chainMetropolis sampler with a proposal that
automatically adapts to posterior parameter correlations using a
‘‘crossover’’ step, where each chain is updated based on aweighted
linear combination of its state and the difference between the
states of two other randomly selected chains. During ‘‘burn-in’’
(initial iterations later discarded)we also used ‘‘migration’’ steps to
pull in chains stuck in low likelihood areas (see Turner, Sederberg,
Brown, & Steyvers, 2013, for a tutorial overview of thesemethods).
The DDM likelihood was calculated using the rtdists package
(Singmann et al., 2016), with the minimum value for each data
point set to 10−10 to avoid numerical problems when calculating
log-likelihoods.

Sampling usedDMCdefaults inmost cases. For Level 1 and 2 the
crossover weight (γ ) was set at 2.38/

√
D, where D, the number

of chains, was set at three times the number of estimated DDM
parameters updated in a single block (D = 3 for Level 1 and
D = 9 for Levels 2 and 3). Level 3 estimation was hierarchical, with
the same settings when sampling DDM parameters, except group-
level parameter crossover weights were sampled from a uniform
distribution on [0.5, 1]. During burn-in the probability of doing a
migration rather than cross-over stepwas set at 0.05 for both DDM
parameters and, where applicable, group-level parameters.

Sampled DDM parameters and corresponding independent
truncated normal prior distributions, N (µ, σ )[L,U], are defined
in Table 3. In contrast to the main text, we define non-decision
time (T ⋆

er ) as the lower bound of the uniform non-decision time
distribution. The same prior was used for the drift rates in the
easy, medium and hard condition, and for fits to Levels 1 and
2. In the hierarchical case individual-level DDM parameters were
assumed to come from independent truncated normal group-level
distributions (with truncation [0, ∞] for a, v, T ⋆

er , sv and sTer , and
truncation [0, 1] for z and sz). The group-level means had the same
priors as in Table 3. The group-level standard deviations were all
given the same Gamma prior with shape parameter 2 and scale
parameter 0.25.

For Levels 1 and 2 burn-in was done in two stages. After
obtaining initial starting values by sampling from the prior, the
DMC functionrun.unstuck.dmc repeatedly sampled fresh sets of
iterations of length nmc (here nmc = 100)withmigration on (each
starting from the last value in the previous set). This was repeated
untilmeans of each chain’s summedposterior log-likelihoodswere
all less than a criterion absolute difference (by default 10) from the
median of the chain means. Subsequently, thinning was set to 10

3 DMC is based on code originally written by Brandon Turner and Scott Brown,
and comes with a set of tutorials on fitting not only the DDM but also a variety of
othermodels including the LNR (Heathcote & Love, 2012), LBA (Brown &Heathcote,
2008) and the BEESTS model of the stop-signal task with trigger failures (Matzke,
Love, & Heathcote, 2017).
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Table 3
Specification of prior distributions for DDM parameters in Heathcote’s
contribution.

a v T ⋆
er z sv sTer sz

Mean (µ) 1 2.5 0.3 0.5 1 0.5 0.5
Standard deviation (σ ) 1 3 1 1 3 1 1
Lower bound (L) 0 −∞ 0 0 0 0 0
Upper bound (U) 2 ∞ 1 1 3 1 1

(i.e., only every 10th set of posterior samples was retained; from
here the number of iterations will refer to the number retained),
migration was turned off, and the run.converge.dmc function
used to obtain a set of chains that are mixed together.

Mixing was quantified by the multivariate potential scale re-
duction factor R̂ (MPSRF; Brooks & Gelman, 1998) calculated by
the CODA package using transforms to improve normality if ap-
propriate (Plummer et al., 2016). Stationarity was simultaneously
checked by splitting the chains in half before calculating R̂ (Gelman
et al., 2013). The run.converge.dmc function first takes a fresh
set of iterations (here 100), then sets of nmc iterations (here 50)
repeatedly sampled and added, with the first nmc iterations dis-
carded if that improves R̂. The process was run until R̂was close to
one (here the default< 1.1was used). For Level 3 initial fits to each
individual data set using the same methods as applied to Level 2
were used to obtain start points for group-level parameters, based
on the means and standard deviations of the parameter estimates
for individual participants. Hierarchical models were then fit by
the h.run.unstuck.dmc and h.run.converge.dmc functions,
which apply the tests to all chains at both levels (i.e., to each
participant individually and to the group-level).

The initial instructions for the collaborative project did not
specify which boundary corresponded to ‘‘left’’. In all fits it was
assumed that ‘‘left’’ corresponded to the lower bound and sampling
performed before it was clarified that the opposite was the case.
To correct this, we refit Level 1 with z fixed at 0.55, and the
complement of the sampled z value (i.e., 1 − z) is reported.4

A.1.2. Results
Two and three cycles of run.unstuck.dmc were required for

Levels 1 and 2, respectively, and for both run.converge.dmc
completed immediately without the need for any additions. Me-
dian posterior estimates and 95% credible intervals for all levels
are shown in Table 4. For Level 1, posterior parameter estimates
were only weakly correlated (at most r = 0.23 between sv and
sTer ). Estimates for Level 2 show much greater uncertainty for sv
and sz but not for sTer . Much stronger correlations were evident
between sv and T ⋆

er (.69), between sv and a (.59), and between sv
and the drift rates (.76 - .82), as well as among the three drift
rates (.64 - .72). For both levels observed and predicted cumulative
distribution functions were a close match, indicating a very good
fit.

For Level 3 h.run.unstuck.dmc and h.run.converge.dmc
completed immediately (due to the good start points provided
by individual fits). There was, however, some visual evidence of
a small degree of initial non-stationarity. This was addressed by
taking a fresh 100 iterations with results reported in Table 4. There

4 This error was actually detected before the clarification was issued as fixing
z = .45 produced poor fits, and, assuming left corresponded to the lower bound,
fitting with z = .55 produced good fits and freely estimating all parameters for
the Level 1 data produced a median estimate of z = 0.554. True values (where
known) were within 95% credible intervals for the latter fit (a = 0.95 − 1.04,
vEasy = 2.79 − 3.81, vMedium = 2.1 − 2.91, vHard = 1.31 − 1.96, T ⋆

er = .29 − .30),
with little effect on sTer (0.097–0.117) but much more variability for sv (1.63–2.68)
and sz (0.03–0.51), consistent with Table 4. As re-doing Level 3was time consuming
and the fix straightforward, refitting was only done for Level 1.

were only weak correlations among group-level parameters. Un-
certainty about the group-level mean sv and sTer , was substantially
decreased relative to the Level 2 estimates, but this was less so for
sz . The group-level estimate µa was surprisingly much wider than
the Level 2 estimate for a. Uncertainty in the group-level standard
deviation estimates was quite large, reflecting the small sample of
20 participants.

A.1.3. Advice
Although the automatic convergence procedures (i.e., the

run.unstuck.dmc followed by the run.converge.dmc func-
tions described in detail in the methods) worked well in this
case they can sometimes fail in a number of ways. Migration
can cause false convergence at a local minimum followed by a
sometimes long period of apparent stationarity before posterior
likelihoods suddenly start increasing, although this is rare if mi-
gration probability is low, such as used here.Whenmigration is left
on overly long lower likelihood (but still valid) samples are under-
represented, especially, causing the initial samples after migration
to display a fairly subtle type of non-stationarity that automatic
convergence can sometimes fail to detect. It can also fail to pick
up other problems, such as slow drifts due to trade-offs between
parameters in more complex models. Long time scale waves in
chains for highly auto-correlated parameters can be hard for auto-
matic procedures to differentiate from burn-in, although this can
be ameliorated by appropriate thinning.5 Hence, visual inspection
of parameters chains, as well as their posterior log-likelihoods, is
desirable as a final check.6 The plot.dmc function makes it easy
to perform these checks, as illustrated in supplementarymaterials.

Because across-trial variability parameters have aweak effect it
is important to check that priors are not overly influential. This can
also be donewith plot.dmc, which allows priors to be imposed on
posterior density estimates. For example, these plots clearly show
sz has the weakest updating among DDM parameters at Level 2,
followed by sv , consistent with the credible intervals in Table 4,
with the graphs making this more immediately obvious. Similarly,
for Level 3 the weaker updating for a and sz group-level means
is clear, as well as the generally weaker updating of group-level
standard deviation parameters. Overall, priors do not seem to have
been overly influential for across-trial variability parameters, with
group-level standard deviation parameters being themost suspect.
In such cases it is advisable to check the sensitivity of estimates to
reasonable changes in the prior. However, fits with different priors
for these parameters (exponential with scale parameter one) did
not affect estimates much.

In real data the minimal individual differences in sTer (median
σ = 0.005) evident in the Level 3 fits would be suspicious, and
might indicate hierarchical sampling had fallen into a ‘‘zero vari-
ance trap’’ (Lee & Wagenmakers, 2014). The DE-MCMC sampling
of DDM between trial variability parameters are prone to this
problem if participant and group-level parameter chains are kept
in a fixed relationship, but randomly associating chains at the two
levels, as was done here, is usually a remedy. Also chain plots did
not look characteristic of the zero variance trap (where smallest
estimates usually have little variation, whereas here although they
were small they were variable), so these results may not be suspi-
cious in the present case.

5 Thinning is not strictly necessary and always throws away some information
so is sometimes not recommended. However, as long as it is not excessive it makes
handling samples (which can otherwise get very large) more computationally
convenient, and it can also make visual inspection easier.
6 More robust automatic convergence procedures are under development in

DMCandpreliminary tests have shown them to performwell inmore difficult cases.
Such approaches are particularly important in parameter recovery studieswhen the
required large numbers of fits make thorough visual inspection difficult, although
even in this context inspection of at least a subset of fits is highly recommended.
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Table 4
Parameter estimates and uncertainty intervals reported by Heathcote.

a vEasy vMedium vHard T ⋆
er z sv sTer sz

Level 1
Estimate 2.22 0.10 0.48
LB 2.02 0.10 0.41
UB 2.43 0.11 0.54

Level 2
Estimate 0.81 3.75 3.27 2.15 0.38 0.55 1.92 0.10 0.16
LB 0.78 3.31 2.88 1.83 0.37 0.54 1.42 0.09 0.01
UB 0.84 4.32 3.78 2.56 0.38 0.57 2.50 0.11 0.40

Level 3 - µk
Estimate 0.79 4.38 3.13 1.94 0.39 0.54 1.50 0.16 0.19
LB 0.47 3.93 2.65 1.56 0.34 0.53 1.37 0.15 0.02
UB 1.00 4.85 3.63 2.30 0.44 0.55 1.65 0.16 0.30

Level 3 - σk
Estimate 0.41 1.01 1.10 0.81 0.10 0.02 0.24 0.01 0.18
LB 0.29 0.75 0.84 0.60 0.07 0.02 0.16 0.00 0.10
UB 0.79 1.42 1.50 1.12 0.14 0.03 0.37 0.01 0.32

Note. Estimate: posterior median, LB: lower bound of 95% credible interval, UB: upper bound of 95% credible interval.

Table 5
Specification of prior distributions for DDM parameters in Hawkins’ contribution.

a v T ⋆
er z sv sTer sz

Mean (µ) 2 2 0.5 0.5 0 0 0
Standard deviation (σ ) 2 3 0.5 0.2 1 0.5 0.5
Lower bound (L) 0 0 0 0 0 0 0
Upper bound (U) ∞ ∞ ∞ 1 ∞ ∞ 1
Shape (m) 1 1 1 1 1 1 1
Scale (θ ) 1 2 1/3 1/3 1 1/3 1/3

A.2. Hawkins

A.2.1. Methods
No pre-processing was performed on any of the data sets. In

contrast to the main text, we defined non-decision time (T ⋆
er ) as

the lower bound of the uniform non-decision time distribution.
We used the DDM likelihood function as provided in the rtdists
package for the R statistical environment (Singmann et al., 2016).

In the Level 3 analysis we used the hierarchical Bayesian frame-
work described in Heathcote’s contribution to simultaneously
estimate parameters at the participant and group-levels. The pa-
rameterization of the truncated normal prior distributions for the
group-levelmeans,N (µ, σ )[L,U], and the parameterization of the
Gammaprior distributions for the group-level standard deviations,
Γ (m, θ ), are shown in Table 5. The half-normal prior distribution
on the three across-trial variability parameters placesmost density
at low values, meaning that non-zero estimates of the across-trial
variability parameters were driven by data. Themildly informative
prior distributions placed on the group-level parameters were
loosely drawn from Matzke & Wagenmakers (cf. Table 3, 2009).

The Level 1 and 2 analyses were not hierarchical (single par-
ticipant estimation). Therefore, those analyses used the group-
level mean (N (µ, σ )[L,U]) prior distributions specified above as
participant-level prior distributions.

Parameters were estimated using differential evolutionMarkov
chain Monte Carlo (DE-MCMC; Turner et al., 2013), using the de-
fault settings (see Turner et al., 2013).We set the number ofMCMC
chains to 3 times the number of participant-level parameters (i.e., 9
chains in the Level 1 analysis, 27 chains in the Level 2 and 3
analyses), which is the upper limit recommended by Turner et al..
We took 4000 posterior samples from each chain with a burn-
in period of 2000 samples. Convergence was monitored through
visual inspection and the multivariate potential scale reduction
factor R̂ (Brooks & Gelman, 1998).

To provide point estimates and measures of uncertainty, we
summarize the parameter estimates using the posterior median
and the 95% highest density interval (HDI; Kruschke, 2011), the

smallest interval to contain 95% of the marginal posterior density
of a parameter. We summarize individual participant parameter
estimates in the Level 1 and 2 analyses, and group-level estimates
of the mean and standard deviation parameters in the Level 3
analysis.

A.2.2. Results
Level 1. Visual inspection and R̂ indicated chain convergence (R̂ =

1.01). The parameter estimates are shown in Table 6. The three
across-trial variability parameters appeared to estimate well, with
relatively narrow uncertainty intervals.

Level 2. Visual inspection and R̂ indicated chain convergence (R̂ =

1.03). The parameter estimates are shown in Table 6. sTer appeared
to estimatewell. sv was strongly correlatedwith the three drift rate
parameters (r ′s ≥ .78), which increased the size of its uncertainty
interval. The posterior distribution of sz pushed against the lower
boundary (0) so the posterior median may be misleading. sz was
relatively strongly correlated with T ⋆

er (r = .72).

Level 3. Visual inspection indicated that the group-level chains of
themainmodel parameters had converged (i.e., vEasy, vMedium, vHard,
a, z, T ⋆

er ), but the three across-trial variability parameters had not
converged. This was at least partially due to the participant-level
chains: a few participants had a single chain that had not con-
verged, which predominantly affected one or more of their across-
trial variability parameters. Removing 3 (of 27) chains mostly
eliminated the problem and led to relatively good convergence for
all 20 participants (mean R̂ across participants 1.13, range 1.09–
1.17). Such post-hoc removal of chains can be justified on the basis
that chains are independent, and that removing those chains did
not substantially influence the effective sample size. With those
chains removed, the group-level R̂ was 1.27. This reduced to 1.04
when only considering the main model parameters. The R̂s for the
group-level across-trial variability parameters were: µsv = 1.21,
σsv = 1.25, µsz = 1.19, σsz = 1.12, µsTer = 1.03, σsTer = 1.11.
Some chains for the group-level standard deviation parameters
(i.e., σsv , σsz , σsTer ) became stuck at low values, which strongly
influenced the effective sample size for those parameters (see
online appendix). Therefore, estimates of the across-participant
variance in the across-trial variability model parameters should be
interpreted with caution. The parameter estimates are shown in
Table 6.

A.2.3. Advice
The Level 1 and 2 analyses suggest the Bayesian parameter

estimation approach outlined here has few difficulties when par-
ticipants are treated as fixed effects (i.e., each participant’s model
parameters are estimated independently of all other participants).
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Table 6
Parameter estimates and uncertainty intervals reported by Hawkins.

a vEasy vMedium vHard T ⋆
er z sv sTer sz

Level 1
Estimate 2.22 0.10 0.47
LB 2.01 0.10 0.40
UB 2.45 0.11 0.53

Level 2
Estimate 0.81 3.80 3.32 2.17 0.38 0.55 1.96 0.10 0.16
LB 0.78 3.28 2.86 1.82 0.37 0.54 1.40 0.09 0.00
UB 0.85 4.37 3.82 2.56 0.38 0.57 2.57 0.11 0.38

Level 3 - µk
Estimate 0.79 4.44 3.13 1.89 0.39 0.54 1.56 0.15 0.29
LB 0.51 3.91 2.44 1.27 0.35 0.53 1.41 0.15 0.11
UB 1.02 4.97 3.78 2.40 0.44 0.55 1.71 0.16 0.39

Level 3 - σk
Estimate 0.41 1.10 1.25 0.90 0.10 0.02 0.09 0.00 0.08
LB 0.26 0.76 0.84 0.58 0.07 0.02 0.01 0.00 0.01
UB 0.66 1.55 1.91 1.47 0.13 0.03 0.29 0.01 0.21

Note. Estimate: posterior median, LB: lower bound of 95% highest density interval, UB: upper bound of 95% highest
density interval.

In contrast, the Level 3 analysis suggests that hierarchical
Bayesian parameter estimation of the DDM can be challenging,
at least when attempting to obtain participant-level estimates of
the three across-trial variability parameters (i.e., sv , sz , sTer ) when
participants are treated as random effects. There was evidence of
poor sampling behavior: some chains failed to converge and some
group-level chains became stuck at lowvalues. Post-hoc removal of
chains that failed to converge at the participant level partially alle-
viated the problem. Although not principled, this post-processing
method is one way to rapidly improve convergence, provided
sufficiently many chains were sampled. One alternative would be
to run more sampling iterations with the methods outlined above,
though we note that we already sampled 4000 iterations so this
approach is likely to be very slow. Another alternative is to adopt
different sampling rules; for example, incorporating the migration
step in the DE-MCMC sampler (see Turner et al., 2013), which can,
at times, rapidly improve convergence particularly for participant-
level parameter estimates.

However, even implementing these changesmight not alleviate
the problem where some chains for the group-level scale param-
eters became stuck at very low values. When a parameter exerts
only a small influence on the likelihood function of the model
– the parameter is not well constrained by data, which is the case
for the across-trial variability parameters of the DDM – there is
large uncertainty in its corresponding posterior distribution. For
example, in the Level 2 analysis the width of the 95% HDI – a
measure of uncertainty – for the sz parameter was over 13 times
wider than the 95% HDI for the z parameter. This means there was
a much larger range of plausible values for sz than z; estimates
of sz were less constrained by data. This level of uncertainty can
cause problems when hierarchically estimating the across-trial
variability parameters of theDDM. This is because participant-level
estimates of the across-trial variability parameters are onlyweakly
informed by data, so the hierarchical model shrinks those esti-
mates to very similar values across participants, which produces
close-to-zero estimates of the group-level scale parameters. Con-
sequently, caution is warranted when interpreting the group-level
estimates of these parameters. It is possible that interpretation of
the group-level estimates of the main DDM parameters is largely
unaffected.

A.3. Van Ravenzwaaij

A.3.1. Methods
Inspection of the behavioral data showed that no pre-

processing was necessary. All experiments were analyzed using

a (hierarchical) Bayesian implementation of the DDM (Ratcliff,
1978, 2002). I used the rtdists package in R (available from
https://cran.r-project.org/web/packages/rtdists/rtdists.pdf) to get
densities for the DDM parameters. For optimization, I modified the
code for the differential evolution Markov chain Monte Carlo (DE-
MCMC) hierarchical Bayesian implementation that was originally
developed for the Linear Ballistic Accumulatormodel (see Brown&
Heathcote, 2008 for the model, and Turner et al., 2013 for the DE-
MCMC hierarchical Bayesian implementation). Note that the code
can be adapted for individual model fits, which is what I did for the
first two data sets.

In my original fit for Level 1, I found that fixing the parameters
to their known values led to unsatisfactory parameter estimates.
As such, I resorted to the procedure I would follow if I had encoun-
tered this data set ‘‘in the wild’’: I left all parameters free to vary
(including the known ones).

Similar to Heathcote’s contribution, DDM parameters for Level
1 and Level 2 were sampled from independent truncated nor-
mal prior distributions, N (µ, σ )[L,U], with the parameteriza-
tion given in Table 7. These mildly informative prior distribu-
tions placed on the group-level parameters were loosely drawn
from Matzke & Wagenmakers (cf. Table 3, 2009). The first fits led
to satisfactory posterior predictives (i.e., the models fit the data
well, see Appendix A.3.2), but used an unrealistic parameterization
for the prior distribution for sv .7 The correct prior distribution is
sv ∼ N (1, 1)[0, ∞]. After consulting with the first and senior
author, the decision was made to report here the results of the
original fits and of a corrected set of fits that use the correct prior
distribution for sv and fix the known parameters for Level 1 to their
true values.

Starting points for the Markov chains were drawn from the
following distributions: vEasy ∼ N (3.5, 0.35)[0, ∞], vMedium ∼

N (2.5, 0.25)[0, ∞], vHard ∼ N (1.5, 0.15)[0, ∞], a ∼ N (1, 0.1)
[0, ∞], z ∼ N (0.5, 0.05)[0, ∞], Ter ∼ N (0.3, 0.03)[0, ∞], sz ∼

N (0.1, 0.01)[0, ∞], sv ∼ N (0.1, 0.01)[0, ∞], and sTer ∼ N

(0.1, 0.01)[0, ∞]. Note that for the corrected fits, the starting point
for sv ∼ N (1, 0.1)[0, ∞].

Similar to Heathcote’s contribution, individual-level param-
eters for the Level 3 data set were sampled from a truncated
Gaussian group-level distribution. Thus, for each parameter to be
estimated, I estimated a group-level mean parameter and a group-
level standard deviation parameter using the parameterization

7 This prior makes sense for a diffusion coefficient s = 0.1, but the diffusion
coefficient for these data sets is s = 1. I detected this error after publication of the
generating parameter values.

https://cran.r-project.org/web/packages/rtdists/rtdists.pdf
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Table 7
Specification of prior distributions for DDM parameters in van Ravenzwaaij’s contribution.

a vEasy vMedium vHard Ter z sv sTer sz
Levels 1 and 2

Mean (µ) 1 3.5 2.5 1.5 0.3 0.5 0.1 0.1 0.1
Standard deviation (σ ) 1 3.5 3.5 3.5 0.3 0.2 0.1 0.1 0.1
Lower bound (L) 0 0 0 0 0 0 0 0 0
Upper bound (U) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Level 3
Mean (µ) 1 3.5 2.5 1.5 0.3 0.5 0.1 0.1 0.1
Standard deviation (σ ) 0.5 1.5 1 0.5 0.1 0.1 0.05 0.05 0.05
Lower bound (L) 0 0 0 0 0 0 0 0 0
Upper bound (U) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Shape (m) 1 1 1 1 1 0.1 1 1 0.1
Scale (θ ) 1 1 1 1 1 1 1 1 1

given in Table 7. Priors for all group-level standard deviation
parameters were gamma distributions with a shape and a scale
parameter of 1, except for parameters σz and σsz which instead
had a shape parameter of 0.1 in order to put more prior mass
on low standard deviation values, because the starting point z is
naturally bounded between 0 and 1.8 Starting point distributions
for the Markov chains for group-level mean µ were all identical
to starting point distributions for the individual parameters, and
starting point distributions for group-level σ parameters were
derived from starting point distributions for the individual param-
eters by dividing the mean by 10 and the standard deviation by 2.

For sampling, I used 32 interacting Markov chains for all runs,
and ran each for 1000 burn-in iterations followed by 1000 iter-
ations after convergence. The interacting chains are an integral
component of the DE algorithm and speed up convergence when
parameters to be estimated are highly correlated (for details, see
ter Braak, 2006). The two tuning parameters of the differential
evolution proposal algorithm were set to standard values used
in previous work: random permutations drawn uniformly from
the interval [−.001, .001] were added to all proposals; and the
scale of the difference added for proposal generation was set to
γ = 2.38 × (2K )−0.5, where K is the number of parameters per
participant. No migration step was included. Fitting the data sets
for Levels 1 and 2 took about 3 h each on an Intel Core i3-3220 CPU
with 3.30 GHz using a single core. Fitting the data set for Level 3
took about 14 h using four cores.

A.3.2. Results
Level 1. Convergence of the MCMC chains can be examined in
Figure A1, found in the online appendix. Visual inspection of Figure
A1 shows that parameter convergence is fine for all parameters
except sz and sv . For these parameters, the histograms touch the
truncation value of zero, and the mixing seems to be relatively
poor. The posterior predictive data for the fittedmodel is compared
with the data in Figure A2. The original data are shown by points
joined by lines, and distributions of posterior predictive data are
shown by box-and-whiskers. Every observation contained in each
box-and-whiskers is based on data generated from a sample from
the joint posterior. Boxes contain 50% of the observations, and tails
extend to 100%. The top-left panel shows correct RTs, the bottom-
left panel shows error RTs, and the top-right panel shows propor-
tion correct. Deciles of .1, .5, and .9 are displayed. The figure shows
that the model fits the data well, except for an underestimation of
error RTs for the slowest quantile.

Convergence of the MCMC chains for the corrected fit can be
examined in FigureA3, found in the online appendix. Visual inspec-
tion of Figure A3 shows that parameter convergence is fine for all
three parameters. The posterior predictive data for the fittedmodel

8 These prior settings are fairly uninformative. As a result, the specific settings
will not have a large influence on the shape of the posterior.

is compared with the data in Figure A4. The figure shows that the
model fits the data well, except for an overestimation of error RTs
for the slowest quantile. This overestimation in the corrected fit,
compared to the underestimation in the initial fit, is most likely
due to the larger values of the across-trial variability parameters in
the corrected fit, which result in higher variability of the predicted
error RTs. Interestingly, the initial and corrected model fits both
seem to provide a good account of the data and they seem to be
qualitatively similar.

Estimated parameters for the two fits can be found in the
sections labeled ‘‘Level 1’’ and ‘‘Level 1 — Corrected’’ in Table 8.
Interestingly, despite both the initial and corrected fits providing a
satisfactory model fit, the estimated parameters are very different.
Aside from the expected difference in the sv parameter, all drift
rate v values obtained in the initial fit were lower than the known
values, boundary separation a obtained in the initial fit was lower
than the known value, and sz obtained in the initial fit was lower
than the value obtained in the corrected fit.

Level 2. Convergence of the MCMC chains for the first fit can
be examined in Figure A5, found in the online appendix. Visual
inspection of Figure A5 shows that parameter convergence is fine
for all parameters except sz and sv . For these parameters, the
histograms touch the truncation value zero, and the mixing seems
to be relatively poor. The posterior predictive data for the fitted
model is compared with the data in Figure A6. The figure shows
that the model fits the data well, except for an underestimation of
error RTs for the slowest quantile.

Convergence of the MCMC chains for the corrected fit can be
examined in FigureA7, found in the online appendix. Visual inspec-
tion of Figure A7 shows that parameter convergence is fine for all
parameters except sz . For this parameter, the histogram touches
the truncation value zero, and the mixing seems to be relatively
poor. The posterior predictive data for the fittedmodel is compared
with the data in Figure A8. The figure shows that themodel fits the
data well, except for an overestimation of error RTs for the slowest
quantile. Similar to the results for Level 1, this overestimation in
the corrected fit, compared to the underestimation in the initial fit,
is most likely due to the larger values of the across-trial variability
parameters in the corrected fit, which result in higher variability of
the predicted error RTs. As for the Level 1 data set, the initial and
corrected model fits both seem to provide a good account of the
data and they seem to be qualitatively similar.

Estimated parameters for the two fits can be found in ‘‘Level
2’’ and ‘‘Level 2 — Corrected’’ in Table 8. Interestingly, despite
both the initial and corrected model fits providing a satisfactory
model fit, the estimated parameters are very different. Aside from
the expected difference in the sv parameter, all drift rate v values
obtained in the initial fit were lower than values obtained in the
corrected fit, and sz obtained in the initial fit was somewhat lower
than the value obtained in the corrected fit.



66 U. Boehm et al. / Journal of Mathematical Psychology 87 (2018) 46–75

Table 8
Parameter estimates and uncertainty intervals reported by van Ravenzwaaij.

a vEasy vMedium vHard Ter z sv sTer sz
Level 1

Estimate 0.90 2.22 1.65 1.05 0.43 0.45 0.29 0.09 0.07
LB 0.88 2.05 1.49 0.88 0.33 0.44 0.04 0.08 0.00
UB 0.92 2.40 1.82 0.92 0.34 0.46 0.53 0.10 0.18

Level 1 - Corrected
Estimate 2.30 0.11 0.36
LB 2.09 0.10 0.23
UB 2.52 0.12 0.44

Level 2
Estimate 0.77 2.93 2.51 1.59 0.42 0.55 0.18 0.09 0.06
LB 0.75 2.72 2.32 1.41 0.42 0.53 0.02 0.08 0.00
UB 0.79 3.15 2.73 1.76 0.43 0.56 0.42 0.10 0.19

Level 2 - Corrected
Estimate 0.80 3.69 3.22 2.10 0.43 0.55 1.84 0.10 0.12
LB 0.78 3.31 2.85 1.81 0.42 0.54 1.38 0.09 0.01
UB 0.83 4.20 3.68 2.46 0.43 0.57 2.37 0.11 0.27

Note. Estimate: posterior median, LB: lower bound of 95% credible interval, UB: upper bound of 95% credible interval.

Level 3. Convergence of the MCMC chains for group-level param-
eters can be examined in Figure A9. The figure shows that not
all chains converged. On top of that, based on a visual inspection
of the posterior predictives I concluded that the model fit was
unsatisfactory, I was unable to get a better fit within the allotted
time. As I am not confident about the parameter estimates, I do not
report the results of this model fit further here.

A.3.3. Advice
It is not a secret that I am a proponent of fitting the ‘‘simple

DDM’’ without across-trial variability parameters (see e.g., van
Ravenzwaaij et al., 2017; van Ravenzwaaij & Oberauer, 2009). The
gain of including across-trial variability parameters, being able
to capture fast or slow errors in the data as well as the leading
edge of RT distributions, is in my opinion outweighed by the cost
of a poorer ability to capture individual differences and reduced
statistical power to detect experimental effects. It is important to
note here that my initial fit with incorrect specification of the prior
distribution for sv led to posterior predictives that were qualita-
tively similar to those presented for the corrected prior distribu-
tion. However, the estimated parameter valueswere very different,
suggesting that the full model with variability parameters may be
poorly identified.

Based on the results of fitting the three data sets, it seems that
the problem is most pertinent for parameter sz . If a researcher
does have strong theoretical reasons to fit across-trial variability
parameters, they should be aware of the known issueswith reliably
estimating these parameters (and report those as such in their
manuscript). When researchers do wish to fit the full DDM in a
Bayesian framework, it is crucial to specify wide priors for the vari-
ability parameters. Failing to do so leads to substantial differences
in results, as became clear from the initial model fits for Levels 1
and 2.

A.4. Frank, Krypotos, & Wiecki 9
A.4.1. Methods

We estimated the model parameters for the Level 1 and 2 data
sets using Bayesian estimation. Given that in the Level 3 data set
responses frommultiple participants were available, we used hier-
archical Bayesian estimation (Wiecki et al., 2013). A key advantage
of this parameter estimation approach is that parameters for each
individual participant are estimated while being constrained by
the group-level parameter distribution (Wiecki et al., 2013). As a
result, the DDM parameters are estimated more accurately than if
each participant’s data are fit independently.

9 Contributors are listed in alphabetical order.

We quantified the parameter estimates by means of the pos-
terior distributions, which were approximated via slice sampling
(Neal, 2003). As we have done in previous studies (e.g., Frank et al.,
2015),we estimated themodel parameters using theHDDMpackage
for Python (Wiecki et al., 2013).

In HDDM, the top and lower boundary could be defined based
on accuracy (i.e., the upper boundary will be coded as correct
response and the lower as error response; accuracy-coding) or
based on the presented stimulus (i.e., the upper boundary coded as
participants pressing the right button, and the lower boundary as
participants pressing the left button; stimulus-coding).We initially
decided to run an accuracy-coding model, which is most typical.
However, in response to a query about this question from the
study organizers (and after the results of the initial study had been
communicated), we realized that the parameters of this model
could not be compared with the parameters of the original study,
which were generated using a stimulus-coding model. In particu-
lar, the z parameter indicates a bias toward left or right responding,
which is not possible to capture with accuracy-coding, and it is
also possible that this influences the estimates of other parameters.
As such, we decided to fit a stimulus-coding model to correspond
to the generative model, but using otherwise identical code and
procedures. The results of both models were comparable in terms
of the across-trial variability performance. Importantly, however,
the stimulus-coding model results can be easily interpreted, with
their interpretation being in line with that of the initial data set.
Here, we present the results of the stimulus-coding models. The
results for both, accuracy and stimulus-codingmodels are available
at https://osf.io/fjy8z/.

We used informative (empirical) priors for our model param-
eters. Specifically, the prior distributions of the group means for
each parameter roughly resemble the parameter values reported
in the literature, as summarized in Matzke and Wagenmakers
(2009). For a visualization of the priors, against the histograms
of values summarized in Matzke and Wagenmakers, see Fig. 1 of
the Supplementary material of Wiecki et al. (2013). Further details
on the sampling algorithms used in the model can be found in
Wiecki, Sofer, and Frank (2016), and on the HDDM website (http:
//ski.clps.brown.edu/hddm_docs/).

A.4.2. Parameter estimation procedure
Level 1. We initially did not analyze this data set as the default
options of HDDM do not allow fixing the main DDM parameters
to specific values, but rather require them to be estimated from
the data. However, in response to queries from the organizers, we
decided to fit the whole model to the data by following the same
modeling approach as for the Level 2 data.

https://osf.io/fjy8z/
http://ski.clps.brown.edu/hddm%5Fdocs/
http://ski.clps.brown.edu/hddm%5Fdocs/
http://ski.clps.brown.edu/hddm%5Fdocs/
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Level 2. We ran two Markov Monte Carlo chains, with each chain
having 5000 samples, with 3000 samples as burn-in. The conver-
gence of each chain was assessed via visual inspection and by
computing the potential scale reduction factor R̂ (Gelman & Rubin,
1992) for each parameter.

Level 3. We used the same approach as for the Level 2 data
set but this time different parameter values were computed for
each participant for the main DDM parameters. The across-trial
variability parameters were computed only on the group-level.
This was done as these parameters are difficult to estimate for
individual participants, and as such it is recommended to be esti-
mated at the group-level (Wiecki et al., 2016). Also, given the long
computation times for this model (see Appendix A.4.4), we could
run only a single chain within the available time. Since we had a
single chain, we assessed convergence by the computation of the
Geweke statistic (Geweke, 1992), computation of the Monte Carlo
error statistic, by visual inspection of the posterior distributions,
as well as by visually inspecting the mean and variance across the
posterior distributions in windows of 200 samples to ensure they
were stable.

A.4.3. Results
We present the results of a single chain for all data sets in

Table 9. All parameters reached convergence, although not at the
same speed. For example, for the Level 3 data, the sv , sz , and
sTer parameters could benefit for more samples, despite the visual
inspection of the data suggesting convergence.

A.4.4. Advice
There are two issues that deserve attention when using the

above approach. The first relates to HDDM not allowing setting fixed
values for the main parameters. Although in principle the HDDM
code could be modified to permit this, we did not think that in
general one would want to assume fixed parameter values when
fitting real data. However, it is remarkable that evenwithout fixing
the known parameters, we could recover almost all parameter
values by just fitting the full model. The second issue relates to the
computing time needed. The user should be aware that estimating
the parameters of the full model for a data set with multiple data
points (e.g., Level 3 data), including additional participants and/or
more trials per participant, will require considerably more time
than dealing with a data set with fewer data points or when the
between trial parameters are not included. It should also be noted
that meaningful estimates of across-trial variability parameters
need a lot of MCMC samples to reach convergence (Wiecki et al.,
2016). In large parameter recovery experiments we have found
the across-trial variability parameters to not be identifiable on
the participant-level to any meaningful degree. In addition, con-
vergence of these parameters is very slow, compared to other
parameters. Estimating these parameters on the group-level alone
overcomes both of these problems. Researchers are advised to esti-
mate these parameters onlywhen they are relevant to the research
question. Alternatively, one could simply continue sampling until
chains reach convergence.

A.5. Annis & Palmeri

A.5.1. Methods
Each of the three data sets were fitted within a Bayesian

framework. We did not perform any preprocessing. In the results
reported below T ⋆

er is the lower bound of the non-decision time
distribution.

Level 1 model. For the Level 1 data set, across-trial variability
parameters sv and sTer were sampled from truncated normal prior
distributions, N (µ, σ )[L,U], and sz was sampled from a uniform
prior U (L,U). The parameterization of the priors is given in Table
10. These priors were loosely based on those reported in Matzke
and Wagenmakers (2009).

Level 2 model. For the Level 2 data set, we used moderately in-
formative priors based on Matzke and Wagenmakers (2009). All
parameters were sampled from truncated normal prior distribu-
tions, N (µ, σ )[L,U], except z and sz , which were sampled from a
uniform prior U (L,U). The parameterization of the priors is given
in Table 10.

Level 3 model. The Level 3 data set consisted of 20 simulated
participants. The Bayesian model described above, applied to the
Level 2 data, was also used to estimate each simulated participant’s
parameters in the Level 3 data; because we were trying out a
new Bayesian inference engine (LaplacesDemon) and given the
relatively constrained time window required by this collabora-
tive project, we did not have time to develop and fit a hierar-
chical model and instead took a two-step multilevel approach
(e.g., Achen, 2005; Gelman & Hill, 2007, p. 270). After estimating
the participant-level posterior means, we treated the participant-
level posterior means as observed data in another Bayesian model
to estimate group-level means. Participant-level posterior means
were assumed to be normally distributed, with the parameteriza-
tion given in Table 10. For simplicity and to make the priors less
informative we chose not to include bounds on any of the prior
distributions. Priors on the standard deviations were weakly in-
formative (Gelman, 2006) half-Cauchy distributions with location
parameter 0 and scale parameter 5.

Fitting methods and results. Likelihoods for the DDM were ob-
tained from the rtdists package (Singmann et al., 2016). Each
data set was fit using the LaplacesDemon package in R Statisticat
LLC (2016), which contains a suite of Bayesian tools. We first
used Laplace approximation to estimate themodes and covariance
matrix for each simulated subject from each data set using initial
starting values based on those found in Table 3 of Matzke and
Wagenmakers (2009). Next, we obtained estimates of themarginal
posterior means and 95% highest density intervals (HDI) via Com-
ponentwise Adaptive Gauss–Hermite Iterative Quadrature using
the posterior modes and covariance matrix obtained from the
Laplace approximation. For the first and seconddata sets,we report
the posterior means and 95% HDI’s obtained from the iterative
quadrature. For the Level 3 data set, we applied the same model
used for the Level 2 data set to each of the simulated participants.
This resulted in 20 participant-level posterior means for each pa-
rameter. Using these means as data, we then obtained the group-
level means and standard deviations. The model was fitted with
Stan (Carpenter et al., 2017). We ran 3 chains for 2000 iterations
anddiscarded the first 1000 samples. Chainswere visually assessed
for convergence and the potential scale reduction factor R̂ (Gelman
& Rubin, 1992) for all parameters was < 1.1.

A.5.2. Results
Table 11 shows the posterior means, standard deviations, and

95% HDIs for the DDM parameters for Levels 1 2, and 3. The Level
3 section of the table shows the estimated group-level means and
standard deviations of the participant-level parameters. Figures of
the fits of the model for each data set can be found in the online
appendix. For the Level 1 data, the model provided adequate fits,
but less so for incorrect responses for left stimuli, especially in
the easy condition. We suspect this is due to the low number
of incorrect responses in the easy left stimulus condition. The
model also had difficulties fitting the Level 2 data especially for
incorrect responses. For Level 3, we obtained reasonable fits with
the exception of some overestimates of error responses times for
certain subjects.
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Table 9
Parameter estimates and uncertainty intervals reported by Frank, Krypotos & Wiecki.

a vEasy vMedium vHard Ter z sv sTer sz
Level 1

Estimate 0.99 3.24 2.47 1.61 0.35 0.55a 2.12 0.11 0.27
LB 0.95 2.76 2.11 1.30 0.34 0.54a 1.63 0.09 0.02
UB 1.04 3.83 2.97 1.98 0.36 0.57a 2.72 0.12 0.52

Level 2
Estimate 0.81 3.70 3.22 2.11 0.43 0.45a 1.84 0.10 0.14
LB 0.78 3.29 2.83 1.79 0.42 0.43a 1.37 0.09 0.01
UB 0.84 4.15 3.64 2.45 0.43 0.46a 2.33 0.11 0.34

Level 3 - µk
Estimate 0.86 4.49 3.14 1.92 0.47 0.46a 1.55 0.15 0.28
LB 0.70 3.93 2.67 1.48 0.43 0.45a 1.44 0.15 0.22
UB 1.04 4.86 3.62 2.39 0.52 0.47a 1.66 0.15 0.34

Note. Estimate: posterior mean, LB: lower bound of 95% credible interval, UB: upper bound of 95% credible interval.
a These parameter estimates were misreported due to a bug; the values reported here are 1 − z instead of z. Correcting
for this misreporting gives estimates much closer to the generating parameter value z = 0.55.

Table 10
Specification of prior distributions for DDM parameters in Annis & Palmeri’s contribution.

a vEasy vMedium vHard T ⋆
er z sv sTer sz

Levels 1 and 2
Mean (µ) 1 3 2 1 0.3 – 1 0.1 –
Standard deviation (σ ) 1 1 1 1 0.5 – 0.5 0.25 –
Lower bound (L) 0 0 0 0 0 0 0 0 0
Upper bound (U) ∞ ∞ ∞ ∞ ∞ 1 ∞ ∞ 1

Level 3
Mean (µ) 1 3 2 1 0.5 0.5 1 0.1 0.1
Standard deviation (σ ) 5 5 5 5 2 1 5 5 2

A.5.3. Advice
The LaplacesDemon package contains numerous methods for

fitting Bayesian models. Our advice to users fitting the DDM using
this package would be to start with a Laplace approximation to
estimate the posteriormodes and covariancematrix.We found this
step to greatly improve the accuracy of the iterative quadrature
and believe it would likely lead to faster convergence of MCMC
chains. There are many different optimization algorithms used
internally by the Laplace approximation routine. We found that
the Nelder–Mead Simplex algorithm produced the best fits in the
least amount of time. Once the posterior modes and covariance
matrix are obtained these can then be input into one of many
other algorithms in LaplacesDemon such as iterative quadrature,
Particle Monte Carlo (PMC), or Markov Chain Monte Carlo (MCMC)
to more efficiently obtain posterior estimates. We found that this
two-step process led to high quality fits in most cases.

A drawback of the iterative quadrature method we used is that
it is only useful for models with 10 or fewer parameters. Therefore,
it cannot be used for hierarchicalmodels. If the user is interested in
fitting a hierarchical model we recommend first obtaining poste-
rior modes for each subject using Laplace approximation and then
using these as starting points in one of the various MCMC or PMC
algorithms available in LaplacesDemon.

Appendix B. Individual contributions — maximum-likelihood
estimation

B.1. Singmann & Kellen

B.1.1. Methods
We estimated the DDM parameters using a trialwise maximum

likelihoodprocedure (Myung, 2003),whichwas implementedwith
the statistical software R (R Core Team, 2015) and package rt-
dists (Singmann et al., 2016). Because we did not impose any
hierarchical structure at the level of the parameters, we confined
our analysis to the first two data sets (Level 1 and Level 2). We
also did not exclude any trials because all RTs were within normal

ranges (fastest RT = 0.307 s, slowest RT = 1.774 s). For each
data set we used a wrapper function for the probability density
function of the DDM. This wrapper function had separate drift rate
value for each condition, with a positive sign for right stimuli and
a negative sign for left stimuli. The data and wrapper function
were passed to a non-linear minimization algorithm that searched
for the parameters that minimize the negative sum of the log-
likelihoods.10

Initially, we considered a variety of different non-linear opti-
mization routines (for an overview, see Nash & Varadhan, 2011),
but ultimately settled on the nlminb algorithm (Kaufman & Gay,
2003), which implements a variation of Newton’s method that
allows for the use of analytical and approximated (i.e., quasi-
Newton) gradients or Hessians (in the present case, we had to rely
on the latter). Our preference for this algorithm is in part due to its
ability to quickly converge on global optima (i.e., it rarely gets stuck
in local optima) but also to our long experiencewith it when fitting
different types of models (see also Singmann & Kellen, 2013).

In order to estimate the uncertainty of our parameter estimates,
we implemented a non-parametric bootstrap procedure (Efron &
Tibshirani, 1994). For each data set we created 1000 bootstrapped
data sets. The bootstrap was performed in a stratified manner:
We randomly sampled with replacement from each drift rate by
stimulus type condition (i.e., the ratio of the different item types
remained the same, but the distribution of RTs and responses
within each item type was bootstrapped). Note that individual tri-
als (i.e., combination of RT and corresponding response) remained
intact throughout this procedure. We avoided local minima by
performing five fitting runs with independent initial start values
for each (bootstrapped or original) data set, and only considering
the results from the best run.

10 The full R scripts for performing the analysis reported here are available in the
supplemental materials. See also https://cran.rstudio.com/web/packages/rtdists/
vignettes/reanalysis_rr98.html.

https://cran.rstudio.com/web/packages/rtdists/vignettes/reanalysis%5Frr98.html
https://cran.rstudio.com/web/packages/rtdists/vignettes/reanalysis%5Frr98.html
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Table 11
Parameter estimates and uncertainty intervals reported by Annis & Palmeri.

a vEasy vMedium vHard T ⋆
er z sv sTer sz

Level 1
Estimate 2.16 0.10 0.47
LB 1.98 0.10 0.42
UB 2.35 0.11 0.52

Level 2
Estimate 0.80 3.48 3.02 1.96 0.38 0.55 1.57 0.10 0.01
UB 0.78 3.24 2.79 1.75 0.37 0.54 1.37 0.09 0.00
LB 0.81 3.72 3.25 2.17 0.38 0.56 1.77 0.10 0.19

Level 3 - µk
Estimate 0.81 4.17 2.97 1.82 0.39 0.54 1.18 0.15 0.14
UB 0.64 3.71 2.45 1.45 0.35 0.53 1.00 0.15 0.09
LB 0.98 4.63 3.47 2.20 0.43 0.55 1.35 0.16 0.20

Level 3 - σk
Estimate 0.38 1.02 1.13 0.84 0.10 0.02 0.39 0.01 0.13
UB 0.28 0.73 0.81 0.61 0.07 0.02 0.28 0.01 0.10
LB 0.53 1.44 1.60 1.19 0.14 0.03 0.54 0.01 0.19

Note. Estimate: posterior mean, LB: lower bound of 95% highest density interval, UB: upper bound of 95% highest density
interval.

B.1.2. Results
We evaluated model fit by visually comparing the observed RT

distributions with the predicted RT distributions. These compar-
isons suggested a good fit for both data sets (see supplementary
materials). In the results reported below, T ⋆

er is themean of the non-
decision time distribution.

Level 1. The across-trial variabilities for the Level 1 data could be
estimatedwith reasonable precision, and the bootstrap parameter-
distributions appeared to take on a Gaussian shape (see supple-
mentarymaterials). The parameter estimates are given in Table 12.

Level 2. Theparameter estimates, the univariate distribution of the
bootstrapped parameters, as well as the bivariate scatterplots for
the Level 2 data are presented in Fig. 10. The histograms clearly
show a problemwith the sz parameter as its distribution exhibits a
bimodal shape, with one large peak at 0 and a smaller peak around
0.2. None of the other univariate parameter distributions appeared
to be pathological. In the case of the bivariate scatterplots, we
found considerable correlations among several parameters. These
correlations were especially large for sv (when paired with the
other drift rates and sTer ), between a and z, among the three drift
rates, and between sz and T ⋆

er . Moreover, we found the precision of
drift rate and drift rate variability parameters to be rather low. The
parameter estimates are given in Table 12.

B.1.3. Advice
Our results suggest a differential pattern regarding the utility

of estimating the across-trial variability parameters in the DDM. If
one has as much data as in the present case, sTer , and to a lesser
extend sz , can be estimated with reasonable precision. Regarding
sz , the analysis of the Level 2 data suggests thatwhen the variability
is in fact at the lower bound of zero, any small inaccuracy will lead
towards an inflated estimate. Given that it is doubtful whether sz
can be truly zero in any real data set, we do not find this to be a
severe problem.

The presence of large variabilities for some parameters, to-
gether with very strong correlations among parameters, indicate
that the full DDM fails to provide a characterization of the data that
is as clear as onewould hope.More precisely, evenwith a large data
set, sv is estimatedwith little precision (at least if themagnitude of
sv is as large as in the present data). This suggests that when one is
interested in the parameter estimates, such as when applying the
DDM in a cognitive–psychometric context (Batchelder, 1998), one
should have little hopes of ever getting trustworthy estimates.

When considering whether or not to estimate the across-trial
variabilities, it is important to consider the role of these param-
eters. The main motivation behind them is to capture the more

fine-grained aspects of the RT distributions (Ratcliff & Tuerlinckx,
2002). Consequently, it should not be surprising that these pa-
rameters are difficult to estimate and are particularly vulnerable
to the stochastic variability in the data. The presence of strong
parameter correlations furthermore suggests that very similar (but
not exactly equal) predictions canbe obtainedwhen jointly varying
some of the parameters. This parameter fungibility suggests that
a particularly large value of sv is more likely to be due to a large
value of v than to be a genuine independent effect. Models that
contain highly correlated parameters are also known as sloppy
models (Brown & Sethna, 2003) a class to which we believe the full
DDM belongs to.

Our general advice is twofold. When the research goal is along
the lines of cognitive–psychometrics, simpler models, for example
the four-parameterWienermodel (Vandekerckhove, 2014), should
probably be preferred. The costs associated with a more complex
model do not appear to pay off.

If one nevertheless wants to estimate the across-trial vari-
abilities (e.g., to account for differences in the RT distribution
between error responses and correct responses) one should use
bootstrap (or similar simulation-based) procedures to estimate
the variability of the estimates obtained. In the case of real data
one should complement the present non-parametric bootstrap
procedure with a parametric analog (i.e., generate synthetic data
from the obtained parameter estimates and use those data to
obtain parameter estimates). If the true data-generating process
does not conform well to the postulates of the DDM, a comparison
of the variability estimates obtained from parametric and non-
parametric bootstrap would allow for a fairer assessment of the
actual variability and heighten the probability of detecting prob-
lems such as the ones associated with sz in the analysis of Level 2
data.

B.2. Voss & Lerche

B.2.1. Methods
Overview. Data were analyzed with fast-dm 30.2 (Voss, Voss,
& Lerche, 2015, cf. also Voss & Voss, 2007, 2008). Fast-dm is an
open source C program for parameter estimation in the DDM. Orig-
inally, fast-dm fitted predicted and observed cumulative RT dis-
tributions by minimizing the Kolmogorov–Smirnov statistic (Voss,
Rothermund, & Voss, 2004). This method proved to be very robust
in the case of contaminated RT distributions (Lerche & Voss, 2016).
However, because in the present data there is no evidence for
fast outliers or other forms of contamination and because across-
trial variabilities are especially difficult to estimate (Lerche & Voss,
2017), a Maximum Likelihood (ML) method recently implemented
in fast-dmwas used for the present project.
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Table 12
Parameter estimates and uncertainty intervals reported by Singmann & Kellen.

a vEasy vMedium vHard T ⋆
er z sv sTer sz

Level 1
Estimate 2.22 0.10 0.47
LB 2.00 0.09 0.37
UB 2.43 0.11 0.53

Level 2
Estimate 0.80 3.63 3.17 2.07 0.38 0.44 1.79 0.10 0.00
UB 0.78 3.21 2.79 1.76 0.37 0.43 1.26 0.09 0.000
LB 0.83 4.28 3.69 2.50 0.38 0.46 2.42 0.11 0.27

Note. Estimate: ML estimate, LB: lower bound of 95% bootstrap confidence interval, UB: upper bound of 95% bootstrap
confidence interval.

Fig. 10. Pairs plot for results of the Level 2 data reported by Singmann & Kellen. Themain diagonal shows the (univariate) histograms of the non-parametric bootstrap based
parameter distributions; the maximum likelihood estimate is displayed as a black triangle. The lower triangle shows the bivariate scatterplots of parameter distributions
(where each point is plotted with 90% transparency so that larger numbers of overlapping points appear darker). The upper triangle shows the absolute values of the
correlations between parameters with larger correlations printed in larger font.

Data preparation and model specification. For the analysis, re-
sponses ‘‘left’’ and ‘‘right’’ were recoded as 1 and 0, respectively,
which are the codes for upper vs. lower thresholds in fast-dm,
and drift rates were estimated separately for each type of stimuli
(i.e., ‘‘left’’ and ‘‘right’’). Individual data sets (Level 3) were saved
into separate files. Fast-dm commands for all analyses are pre-
sented in Table 13 (see Voss et al., 2015 for further explanations
on the handling of fast-dm). Note that fast-dm currently does
not allow setting specific values for parameters that vary between
conditions. The commands for the Level 1 analysis (Table 13, left
column) result in an estimation of the six drift rates from data. We
present results not only from this analysis, but from an additional
calculation that fixes also the drift rates to the correct values. How-
ever, the latter analysis cannot be performed with the published
version of fast-dm, but requires changes in the code.

Table 13
Fast-dm commands for Voss & Lerche’s analysis.

Level 1 Level 2 & 3

method ml method ml
precision 4 precision 4
set d 0 set d 0
set p 0 set p 0
set a 1 depends v cond stim
set zr 0.45 format TIME RESPONSE

[cond stim
set t0 0.35 load *.dat
depends v cond stim log level2_3.par
format TIME RESPONSE cond stim
load L1.dat
log level1.par
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The control commands first set the estimation method to max-
imum likelihood and set a rather high precision for the calculation
of the predicted density functions (default is precision = 3). Then,
settings for the standard DDM are given (d = 0 indicates that
the same non-decision time is used for both thresholds, see Voss,
Voss, & Klauer, 2010, and p = 0 indicates that the percentage of
guessing is set to 0, see Ratcliff, 2002). For the Level 1 analysis the
parameters a, z, and Ter are set to the true values. The depends
command allows the drift to vary between conditions. Finally, the
names of data columns and of input and output files are specified.

In three further sets of estimation procedures, all analyses were
repeated setting one of the three across-trial variability parameters
to zero. This allows for testing whether the model fit (i.e., the log-
likelihood) decreases substantiallywhen theparameter is removed
from the model.

B.2.2. Results
Fast-dm was run on a PC with an Intel i7 Processor with

2.93 GHz. Mean calculation time was 3909 s (about 1 h) per data
set. Estimated parameters are presented in Table 14.

Estimates of across-trial variability parameters. For the Level 1 data,
across-trial variability parameters were estimated first restricting
all parameters to the true values (which required an adaptation
of the code), and – subsequently –with the published version of
fast-dm 30.2 (which required the estimation of the six drift
rates). Thus, the latter approach has more degrees of freedom,
because the six drift rates are estimated. Here we only report
the mean drift rate across stimulus types for each experimental
condition. As can be seen from Table 14, estimates for the across-
trial variabilities are nearly identical for both calculations. The
confidence intervals shown in the table were estimated from 200
bootstrap-samples for Level 1 and Level 2 data.

Model fit. Likelihood of model estimation was compared for full
models with restricted models, where one of the across-trial vari-
ability parameters was fixed to zero. The results, shown in Table
2 in the online appendix, indicated that model fit decreases dra-
matically for all models when the across-trial variability of non-
decision times is set to zero. For the variabilities of starting point
and drift rates results are not as clear cut: In many models, the fit
is not affected strongly when removing these parameters from the
model.

B.2.3. Advice
The present study confirms previous results (e.g., Lerche &

Voss, 2016) showing that especially across-trial variabilities of drift
and starting point are hard to estimate. Accuracy of estimates
for across-trial variability of non-decision time is typically much
larger. Whenever these variability parameters are in the focus of
interest, researchers need to use all available tools to increase the
precision of parameter estimation.

The easiest method to ensure high precision of parameter esti-
mation in general is to use large data sets. Large real data, however,
might come alongwith their ownproblems, since participants tend
to lose motivation and attention while processing large numbers
of trials, which in turn could result in an increased number of con-
taminated trials (contaminated means that the internal response
selectionmechanisms changes from a diffusion-likemechanism to
others, e.g. guessing). Such contamination need not even result in
outlier RTs, which makes it hard to detect.

A second recommendation is to use efficient estimation pro-
cedures. Here, we decided to use a ML-estimation. However, ML
results can be strongly biased when data is contaminated (Lerche
& Voss, 2016). So, it might be a safer option to use a more stable
procedure (e.g., the Kolmogorov–Smirnov distance)when real data
are analyzed to avoid such biases.

Finally, one has to balance advantages and disadvantages of
including across-trial variability parameters. On the one hand, only
these parameters give the model the full flexibility to account for
different patterns observed in real RT data from different tasks.
Thus, these across-trial variability parameters seem to be theoret-
ically necessary to make the DDM plausible. On the other hand,
the across-trial variabilities are often not the focus of psychological
theories, and seem to make the model unnecessarily complex:
Recently, Lerche and Voss (2016) demonstrated that the precision
of estimates for somemodel parameters (drift, threshold, and non-
decision time) can be increased when across-trial variabilities for
drift and starting point were not estimated, even if data were
simulated with notable variability (see also van Ravenzwaaij et al.,
2017).

Appendix C. Individual contributions — χ2 minimization

C.1. Servant & Logan

C.1.1. Methods
Themodel was simultaneously fit to correct and error RT distri-

butions (.1, .3, .5, .7, .9 quantiles) and to accuracy data using a χ2

method. Model fits were run in FORTRAN. The χ2 method and the
FORTRAN code have been fully described by Ratcliff (2002).

The χ2 statistic has the following form:

χ2
=

∑
i

N(pi − πi)2

πi
(2)

where N is the number of observations grouped into bins bounded
by RT quantiles. pi and πi are, respectively, the observed and
predicted proportions of trials in bin i, and sum to 1 across each pair
of correct and error distributions. The summation over i extends
over the 12 bins in each experimental condition (6 bins for correct
trials and 6 bins for error trials). Errors were excluded from the
χ2 computation when their number was < 10. The χ2 statistic
was minimized with a Simplex routine (Nelder & Mead, 1965).
Details regarding the parameterization of Simplex are provided
in the Advice section.

We added several constraints on themodel during theSimplex
minimization process. First, the (absolute) starting point z was
constrained to not exceed 80% of boundary separation a. Secondly,
half the width of across-trial variability in starting point sz/2 was
constrained to not exceed 90% of the minimal distance between
starting point and decision bounds. Thirdly, across-trial variabil-
ity parameters sz , sv , and sTer were constrained to remain ≥ 0.
Fourthly, across-trial variability in drift rate was constrained to
remain≤ 3.29, themaximal value fromMatzke andWagenmakers
(2009) survey of parameter values estimated in empirical studies.
Finally, half the width of across-trial variability in non-decision
timewas constrained to not exceed 90% ofmean non-decision time
Ter .

For Levels 1 and 2, measures of uncertainty for parameter
estimates were obtained using a parametric resampling procedure
(bootstrap). We generated 50 samples by running 50 simulations
from the model using best-fitting parameters. Each sample con-
tained the same number of trials per condition as the original data.
Themodelwas then fit to each of the 50 samples.We computed the
95% bootstrap confidence interval (2.5% and 97.5% quantiles) over
the 50 bootstrap parameter estimates. For Level 3, we fit themodel
to each individual data set, and report the mean of parameter
estimates over the 20 subjects.
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Table 14
Parameter estimates and uncertainty intervals reported by Voss & Lerche.

a vEasy vMedium vHard z Ter sv sTer sz
Level 1 - Restricted Fita

Estimate 2.24 0.11 0.42
UB 2.00 0.10 0.30
LB 2.43 0.12 0.49

Level 1 - Full Fit
Estimate 3.42 2.60 1.71 2.29 0.11 0.41
UB 2.04 0.09 0.30
LB 2.53 0.11 0.51

Level 2
Estimate 0.80 3.64 3.18 2.07 0.55 0.43 1.80 0.10 0.00
UB 1.39 0.09 0.00
LB 2.42 0.11 0.29

Level 3 - µk
Estimate 0.84 4.47 3.23 1.97 0.46 0.54 1.44 0.15 0.29

Level 3 - σk
Estimate 0.34 1.22 1.24 0.84 0.09 0.03 0.60 0.02 0.18

Note. Estimate: ML estimate for Levels 1 and 2, meanML estimate across participants for Level 3, LB: lower bound of 95%
bootstrap confidence interval, UB: upper bound of 95% bootstrap confidence interval. Drift rate estimates are averaged
across left and right stimuli.
a The code of fast-dmwas adapted to allow the fixation of drift rates to true values in separate conditions.

C.1.2. Results
Best-fitting parameters for each Level are presented in Table 15.

Plots of observed versus predicted data are provided in the online
Appendix (Fig. 1). Themodelswith the obtainedparameter settings
provide a good description of the data sets.

For Levels 1 and 2, the Simplex search converged quickly. The
uncertainty associated with across-trial variability parameters is
much larger for Level 2 than Level 1. In particular, the 95%bootstrap
CI for sz (Level 2) is very large (0–0.5152), which might indicate a
sloppy spectrum of sensitivity (i.e., a flat likelihood surface). 95%
bootstrap CIs associated with parameter v (Level 2) also appear
relatively wide, which might suggest a trade-off between v and sv .

For Level 3, the Simplex search converged generally quickly.
Constraints on across-trial variability parameters were critical to
keep these parameters in a reasonable range. Without these con-
straints, sz and sv often went negative. In addition, sv sometimes
reached very large values. The best-fitting sv was equal to the upper
bound (3.29) for subjects 3 and 12.

C.1.3. Advice
The Simplex search in the Fortran code is implemented as

follows. One set of starting values is initially entered. We used
mean values from Matzke and Wagenmakers (2009) survey of
parameter values estimated in empirical studies (with s = 1,
a = 1.25, absolute z = 0.63, Ter = .435, vEasy = 2.23, vMedium =

2.23 , vHard = 2.23, sTer = .183, sv = 1.33, and absolute
sz = .37). Simplex is then run several times, using the best-fitting
parameters from fit N − 1 as the starting values for fit N . The
process is repeated until the parameters do not change from one
iteration to the next by a small amount. We observed, however,
that different starting values yielded slightly different best-fitting
parameters. For example, we ran additional fits for Level 3 using
vEasy = 3.5, vMedium = 2.5, vHard = 1.5. The best-fitting parameters
were µa = 0.85, µvEasy = 5.16, µvMedium = 3.71, µvHard =

2.21, µTer = 0.46, µz abs = 0.47, µsv = 0.37, µsTer = 2.06,
µsz abs = 0.15. Here zabs is the absolute starting point and szabs is
the corresponding across-trial variability.

Main variations between these additional fits and those re-
ported in Table 15 concern v, sv and sz . These variations might be
explained by (i) a trade-off between v and sv and (ii) a relatively
flat likelihood surface associated with parameter sz .11 To further

11 Alternatively, variations between additional fits and Table 15 may suggest a
local minimum problem. However, most of the parameter values are very close,

investigate (i), we computed the correlation between v and sv
across our 50 bootstrap parameter estimates from Level 2 for each
difficulty condition. These correlations were very high (easy: r =

.85; medium: r = .85; difficult: r = .86), demonstrating a trade-
off between v and sv (larger v is associatedwith larger sv; see online
Appendix (Fig. 2). Parameters that are notwell recovered should be
fixed or combined (e.g., see our recent parameter recoverywork on
time-varying DDMs; White et al., 2017).

Ratcliff and Childers (2015) recently introduced some refine-
ments of the χ2 method. In particular, the median RT of errors is
used if the number of errors is lower than the number of quantiles
in a given condition. We instead excluded errors from the χ2

computation when their number was < 10. Using the Ratcliff and
Childers refinement in Level 3 (where a fewdata sets are associated
with a small number of errors)might improve parameter recovery.

C.2. Starns

C.2.1. Methods
We performed fits using the χ2 method described in Ratcliff

and Tuerlinckx (2002) using FORTRAN programs written by Roger
Ratcliff. These programs find the parameter values that minimize
χ2 using the Simplex algorithm. We did not remove any trials
before fitting. We did not have a method for providing interval
measurements on parameters from a single participant’s data set,
because we have never done this in a paper. If we ever actually
have to do single-participant inference for one of our projects, we
will develop something more sophisticated like putting together
an MCMC chain to estimate posterior distributions for parameter
values. However, for the intervals reported for Levels 1 and 2, we
used a quick-and-dirty method to get a feel for how tightly the
parameters were constrained by data. We fixed the parameter at
a value above or below its best-fitting value, reran the fit allowing
the other parameters to be optimized, and found the point atwhich
the likelihood with the fixed value was 10 times lower than the
likelihood with the optimal value. If the data do not place much
constraint on a parameter value, then we should be able to move it
over awide rangewithout substantially affecting the fit (producing
a wide interval).

and it seems that Simplex ended up in the same region. In addition, χ2 values
associated with parameters in Table 15 and the additional fits were close (Table 15:
mean χ2 = 59.6; additional fits: mean χ2 = 61.9).
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Table 15
Parameter estimates and uncertainty intervals reported by Servant & Logan.

a vEasy vMedium vHard Ter z sv sTer sz
Level 1

Estimate 2.25 0.10 0.42
LB 2.11 0.10 0.33
UB 2.49 0.11 0.49

Level 2
Estimate 0.81 3.72 3.30 2.17 0.43 0.56 2.06 0.10 0.02
LB 0.78 3.25 2.81 1.81 0.42 0.54 1.52 0.07 0.00
UB 0.93 4.54 3.91 2.75 0.44 0.57 2.90 0.11 0.52

Level 3 - µk
Estimate 0.84 4.78 3.46 2.07 0.47 0.54 1.66 0.15 0.37

Level 3 - σk
Estimate 0.36 1.36 1.61 0.90 0.10 0.02 0.90 0.01 0.31

Note. Estimate: best-fitting parameter value for Levels 1 and 2, mean of best-fitting parameter values for individual
participants for Level 3. LB: lower bound of 95% bootstrap confidence interval, UB: upper bound of 95% bootstrap
confidence interval.

Table 16
Parameter estimates and uncertainty intervals reported by Starns.

a vEasy vMedium vHard Ter z sv sTer sz
Level 1

Estimate 2.25 0.10 0.42
LB 2.02 0.09 0.30
UB 2.51 0.12 0.51

Level 2
Estimate 0.80 3.75 3.35 2.15 0.43 0.56 2.05 0.10 0.01
LB 1.54 0.08 0.00
UB 3.10 0.11 0.45

Level 3 - µk
Estimate 0.83 4.84 3.47 2.11 0.45 0.54 1.89 0.15 0.32
LB 0.67 4.27 2.90 1.69 0.43 0.53 1.59 0.15 0.27
UB 1.00 5.37 4.00 2.59 0.52 0.55 2.18 0.16 0.37

Note. Estimate: best-fitting parameter value for Levels 1 and 2, mean of best-fitting parameter values for individual
participants for Level 3. LB: lower parameter value at which the likelihood was 10 times lower than the likelihood under
the best fitting value for Levels 1 and 2, lower bound of 95% confidence interval for Level 3, UB: upper parameter value at
which the likelihood was 10 times lower than the likelihood under the best fitting value for Levels 1 and 2, upper bound
of 95% confidence interval for Level 3. Drift rate estimates are averaged across left and right stimuli.

For the Level 3 data, we found the best-fitting parameters for
each participant and simply calculated standard 95% confidence
intervals using these estimates. This is not an ideal procedure, as
it does not acknowledge uncertainty in parameter estimates for
individual participants. Nevertheless, this simple technique does
a good job in parameter recovery simulations (at least for themain
model parameters; Ratcliff & Tuerlinckx, 2002).

C.2.2. Results
Level 1. The best-fitting parameter estimates are reported in Ta-
ble 16. With the main model parameters fixed, there was tight
constraint on these estimates; that is, the fit deteriorated quickly
as we moved the parameters away from their optimal values.

Level 2. For the Level 2 data we estimated separate drift rates
for left and right stimuli, in case the drift rates for left and right
stimuli were not mirrored (same absolute value with different
signs), but it appears that they were based on the fits. The values
reported here are the mean absolute drift rates across stimuli. In
our best-fitting model, χ2 was 55.6. The corresponding parameter
estimates are reported in Table 16. Estimating all of the parameters
dramatically reduced the constraint on sz and sv . In other words,
these parameters had to be moved far from their optimal values
to get a substantial change in fit (i.e., a likelihood 10 times lower
than the optimal likelihood). The constraint on sTer remained very
similar to the Level 1 fit.

Level 3. The same model described for Level 2 was fit to each
participant. Across data sets, χ2 values ranged from 35 to 79.7
with a mean of 56.9. The corresponding parameter estimates are
reported in Table 16.

C.2.3. Advice
We would not advise using standard programs if a researcher

wants to make conclusions about variability in starting point
or non-decision time. No one really seriously endorses the as-
sumed uniform distributions for these parameters; researchers
have largely ignored this simplification because it does not seem to
affect the types of conclusions they want to make (e.g., detecting
effects on speed/accuracy trade-off, information quality, or bias).
We do not take estimates of starting point variability from any fit
that we run that seriously.

We have, however, been interested in detecting differences
in drift rate variability in memory research. Although there is
low constraint on this parameter, parameter recovery simulations
suggest that the model can detect differences in this parameter
between conditions with standard experiment designs (Starns &
Ratcliff, 2014). Also, validation studies show that themodel can de-
tect manipulations of evidence variability in fits to empirical data
(Starns, 2014). So we have more confidence in the sv estimates, at
least in terms of differences across conditions.

In fitting Level 2, we noticed that sz and sv strongly covary
when the average drift rate is also freely estimated. That is, when
we would increase sv , say, then sz would also increase and the
average drift rate would get farther from zero. This makes sense in
hindsight, given that sz and sv have opposite effects on the relation
between correct and error RTs (increasing sz promotes fast errors
and sv promotes slow errors; Ratcliff & McKoon, 2008). So a lot of
the noise in estimating sz and sv comes because they trade off, and
the estimates for both would probably get much better if there
was a way to place additional constraint on one of them (we are
not sure how this could be achieved). This also makes us more
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confident in conclusions about changes in sv across conditions that
are constrained to have the same sz than in conclusions about the
absolute value of sv within a single condition.
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