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e computations may be conducted elsewhere and provid-
d as input to the cerebellum. However, lesion results
rovide evidence that the cerebellum may be at least a
ecessary node for this computation [5]. When the nodulus
nd uvula are surgically removed, the VOR is no longer
nsistent with the state of the head, indicating that
tegration of rotation and acceleration signals to track
ead position does not occur. Therefore, the cerebellum
ppears to be a necessary structure to integrate the infor-
ation from the otolith and canal afferents to provide state
stimation, as reflected in the activity of the P cells.

further evidence that the cerebellum may be critical for
the encoding of forward models.

In summary, Laurens et al. [1] provide new evidence
that translation-selective neurons in lobules IX/X of the
cerebellum estimate the state of the head using a compu-
tation that is consistent with a forward model.
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Sensory illusions are a powerful method to test for
e neural basis of forward models. For example, when
eople use a manipulandum to move a cursor on the
reen, the geometric relationship between the motion
f the hand and the motion of the cursor can be altered.
fter people learn the new relationship, they form an
lusion regarding the motion of their own hand. Interest-
gly, people with cerebellar damage can also learn this
lationship but do not form the illusion [6], providing
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ove observed that patterns of functional MRI (fMRI)
rain activity were more consistent with patterns of
presentations predicted by exemplar models than by

rototype models. Their work represents the theoretical
ower of emerging approaches to model-based cogni-
ve neuroscience.

 primary aim of cognitive science is to understand the
echanisms that give rise to faculties of mind like percep-
on, learning, and decision making. One approach forma-
zes hypotheses about cognitive mechanisms in
mputational models. Cognitive models predict behavior,
ke the errors people make and the time it takes them to
spond, and how behavior varies under different condi-
ons, using different stimuli, with different amounts of
arning. Another approach turns to the brain to identify
eural mechanisms associated with different aspects of
gnition, using techniques like neurophysiology, electro-
hysiology, and fMRI.
These two come together in a powerful new approach
lled model-based cognitive neuroscience [1]. Cognitive
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odels decompose complex behavior into representations
nd processes and these latent model states are used to
xplain the modulation of brain states under different
xperimental conditions. Reciprocally, neural measures
rovide additional data that help constrain cognitive mod-
ls and adjudicate between competing cognitive models
at make similar predictions of behavior. For example,
rain measures are related to cognitive model parameters
tted to individual participant data [2], measures of brain
ynamics are related to measures of model dynamics [3,4],
odel parameters are constrained by neural measures [4],
odel parameters are used in statistical analyses of neural
ata [5], or neural data, behavioral data, and cognitive
odels are analyzed jointly within a hierarchical statisti-
l framework [6].
Mack, Love, and Preston [7] adopted a model-based
gnitive neuroscience approach to understand the mech-
nisms involved in category learning [8]. Consider every-
ay categories like dogs, cars, or chairs. Categories like
ese are abstractions in the sense that collections of
isibly different objects are treated as the same kind of
ing. But does that imply that the mental representations
f categories are inherently abstract and that category
arning involves creating abstractions? The earliest work
n categorization assumed abstraction, either in the form
f logical rules defining category membership or in the
rm of abstract prototypes capturing the family resem-
lance of category members. However, later work showed
at cognitive models based on memory for experienced
tegory exemplars could predict experimental results
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that seemed to instead suggest abstraction. Although
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Figure 1. (A) Probability of a Category A response for each training stimulus (A1–

the exemplar model (green) and the prototype model (blue). (B) Latent model stat

(T1–T7) predicted by the exemplar model (green) and the prototype model (blue).

by multivoxel pattern analysis (MVPA) and representational match predicted b

correspondence. (D) MI between MVPA and model predictions (representatio

significantly better for the exemplar than the prototype model (green), for six the

prototype than the exemplar model (blue). Adapted, with permission, from [7].
-
s

l

r

-

r

,

-
tations – summed similarity to exemplars for the exemplar
model versus summed similarity to prototypes for the
prototype model – constitutes a latent model signature
that Mack and colleagues called representational match.
Although when fitted to behavioral data, the exemplar
and prototype models make similar quantitative predic-
tions about the probability that any given object is
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B1–B4) and transfer stimulus (T1–T7) observed from participants (gray), predicted b

presentational match) for each training stimulus (A1–A5, B1–B4) and transfer stimulu

orrespondence [mutual information (MI)] between patterns of brain activity reveale

 exemplar model (green) and the prototype model (blue); higher MI means close

 match) for individual participants; correspondence for thirteen participants wa

as no significant difference (black), and for only one participant was it better for th
t
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many argue that the evidence favors exemplar models,
debate about exemplar models versus prototype models
continues [8–10]. Could patterns of brain activity help
adjudicate this theoretical controversy?

In [7], before scanning, participants learned to classify
novel objects into one of two categories. Using a standard
category-learning procedure [8] over several training
blocks, participants viewed an object on each trial, catego-
rized it as a member of Category A or B, and received

the representational match for any given object tha
governs its predicted categorization (Figure 1B). Are
the patterns of brain activity measured by fMRI while
participants categorize each object more consistent with
the representational match predicted by an exempla
model or a prototype model?

It is common to use multivoxel pattern analysis (MVPA
to identify patterns of brain activity that predict differen
kinds of stimuli, responses, or conditions. In [7], the goa
l
-

t

s
-
s
r

-

r

s
-

corrective feedback. In the scanner, participants catego
rized training objects and new transfer objects as member
of Category A or B without feedback (Figure 1A).

Mack and colleagues [7] used common mathematica
formalizations of exemplar and prototype models, fitting
them to the probability of categorizing objects as a membe
of each category for every participant (Figure 1A). The
models make the same assumptions about how objects are
represented, how similarities between objects and stored
representations are computed, and how categorization
decisions are made. Both models assume that categoriza
tion decisions are based on the relative similarity of an
object to stored category representations. Naturally, they
differ in the nature of those representations. For the
exemplar model the evidence that an object is a membe
of Category A is based on the summed similarity of the
object to stored exemplars of Category A divided by the
summed similarity to stored exemplars of both categories
whereas for the prototype model the evidence is based on
the similarity of the object to the prototype of Category A
divided by the summed similarity to prototypes of both
categories.

The summed similarity to the stored category represen
-

l

was instead to use MVPA to identify patterns of brain
activity that predict different values of representationa
match for different objects, where values of representation
al match came from fits of either the exemplar model or the
prototype model to individual participant categorization
data. A mutual information (MI) measure was used to
quantify the relationship between brain states and laten
model states, with higher MI reflecting greater consistency
between patterns of voxel activity in the brain and pattern
of representational match predicted by a model. The ex
emplar model was more consistent with brain measure
than the prototype model, producing significantly greate
MI measures (Figure 1C,D).

In [7], the exemplar and prototype models make nearly
identical predictions about behavior. So comparing pat
terns of brain states with patterns of behavior, as might be
traditionally done in cognitive neuroscience, would neve
uncover how the brain represents categories. Instead, by
comparing how patterns of brain states compare with
predicted latent model states we can begin to answer thi
fundamental question. Categories are learned by remem
bering exemplars not abstracting prototypes [2,8,9]. With
its joint use of computational models of cognition with
brain measures, this work well illustrates the growing
sophistication and theoretical power of model-based cogni
tive neuroscience approaches [1–6].
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