
Bayesian inference with Stan: A tutorial on adding
custom distributions

Jeffrey Annis1 & Brent J. Miller1 & Thomas J. Palmeri1

Psychonomic Society, Inc. 2016

Abstract When evaluating cognitive models based on fits to
observed data (or, really, any model that has free parameters),
parameter estimation is critically important. Traditional tech-
niques like hill climbing by minimizing or maximizing a fit
statistic often result in point estimates. Bayesian approaches
instead estimate parameters as posterior probability distribu-
tions, and thus naturally account for the uncertainty associated
with parameter estimation; Bayesian approaches also offer
powerful and principled methods for model comparison.
Although software applications such as WinBUGS (Lunn,
Thomas, Best, & Spiegelhalter, Statistics and Computing, 10,
325–337, 2000) and JAGS (Plummer, 2003) provide
Bturnkey^-style packages for Bayesian inference, they can be
inefficient when dealing with models whose parameters are
correlated, which is often the case for cognitive models, and
they can impose significant technical barriers to adding custom
distributions, which is often necessary when implementing
cognitive models within a Bayesian framework. A recently
developed software package called Stan (Stan Development
Team, 2015) can solve both problems, as well as provide a
turnkey solution to Bayesian inference. We present a tutorial
on how to use Stan and how to add custom distributions to it,
with an example using the linear ballistic accumulator model
(Brown & Heathcote, Cognitive Psychology, 57, 153–178.
doi:10.1016/j.cogpsych.2007.12.002, 2008).

Keywords Bayesian inference . Stan . Linear ballistic
accumulator . Probabilistic programming

The development and application of formal cognitive models
in psychology has played a crucial role in theory development.
Consider, for example, the near ubiquitous applications of
accumulator models of decision making, such as the diffusion
model (see Ratcliff & McKoon, 2008, for a review) and the
linear ballistic accumulator model (LBA; Brown &
Heathcote, 2008). These models have provided theoretical
tools for understanding such constructs as aging and intelli-
gence (e.g., Ratcliff, Thapar, & McKoon, 2010) and have
been used to understand and interpret data from functional
magnetic resonance imaging (Turner, Van Maanen,
Forstmann, 2015; Van Maanen et al., 2011), electroencepha-
lography (Ratcliff, Philiastides, & Sajda, 2009), and neuro-
physiology (Palmeri, Schall, & Logan, 2015; Purcell, Schall,
Logan, & Palmeri, 2012). Nearly all cognitive models have
free parameters. In the case of accumulator models, these in-
clude the rate of evidence accumulation, the threshold level of
evidence required to make a response, and the time for mental
processes not involved in making the decision. Unlike general
statistical models of observed data, the parameters of cogni-
tive models usually have well-defined psychological interpre-
tations. This makes it particularly important that the parame-
ters be estimated properly, including not just their most likely
value, but also the uncertainty in their estimation.

Traditional methods of parameter estimation minimize or
maximize a fit statistic (e.g., SSE, χ2, ln L) using various hill-
climbing methods (e.g., simplex or Hooke and Jeeves). The
result is usually point estimates of parameter values, and pos-
sibly later applying such techniques as parametric or nonpara-
metric bootstrapping to obtain indices of the uncertainty of
those estimates (Lewandowsky & Farrell, 2011). By contrast,

Electronic supplementary material The online version of this article
(doi:10.3758/s13428-016-0746-9) contains supplementary material,
which is available to authorized users.

* Jeffrey Annis
jeff.annis@vanderbilt.edu

1 Vanderbilt University, 111 21st Ave S., 301 Wilson Hall,
Nashville, TN 37240, USA

Behav Res
DOI 10.3758/s13428-016-0746-9

http://dx.doi.org/10.1016/j.cogpsych.2007.12.002
http://dx.doi.org/
http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-016-0746-9&domain=pdf

Bayesian approaches to parameter estimation naturally treat
model parameters as full probability distributions (Gelman,
Carlin, Stern, Dunson, Vehtari, & Rubin, 2013; Kruschke,
2011; Lee &Wagenmakers, 2014). By so doing, the uncertain-
ty over the range of potential parameter values is also estimat-
ed, rather than a single point estimate.

Whereas a traditional parameter estimation method might
find some vector of parameters, θ, that maximizes the likeli-
hood of the data, D, given those parameters [P(D | θ)], a
Bayesian method will find the entire posterior probability dis-
tribution of the parameters given the data, P(θ | D), by a con-
ceptually straightforward application of Bayes’s rule: P(θ | D)
= P(D | θ) P(θ) / P(D). A virtue—though some argue it is a
curse—of Bayesian methods is that they allow the researcher
to express their a priori beliefs (or lack thereof) about the
parameter values, as a prior distribution P(θ). If a researcher
thinks all values are equally likely, they might choose a uni-
form or otherwise flat distribution to represent that belief;
alternatively, if a researcher has reason to believe that some
parameters might be more likely than others, that knowledge
can be embodied in the prior as well. Bayes provides the
mechanism to combine the prior on parameter values, P(θ),
with the likelihood of the data given certain parameter values,
P(D | θ), resulting in the posterior distribution of the parame-
ters given the data, P(θ | D).

Bayes is completely generic. It could be used with a model
having one parameter or one having dozens or hundreds of
parameters. It could rely on a likelihood based on a well-
known probability distribution, like a normal or a Gamma
distribution, or it could rely on a likelihood of response times
predicted by a cognitive model like the LBA.

Although the application of Bayes is conceptually straight-
forward, its application to real data and real models is anything
but. For one thing, the calculation of the probability of the data
term in the denominator, P(D), involves a multivariate inte-
gral, which can be next to impossible to solve using traditional
techniques for all but the simplest models. For small models
with only one or two parameters, the posterior distribution can
sometimes be calculated directly using calculus or can be rea-
sonably estimated using numerical methods. However, as the
number of parameters in the model grows, direct mathemati-
cal solutions using calculus become scarce, and traditional
numerical methods quickly become intractable. For more so-
phisticated models, a technique called Markov chain Monte
Carlo (MCMC) was developed (Brooks, Gelman, Jones, &
Meng, 2011; Gelman et al., 2013; Gilks, Richardson, &
Spiegelhalter, 1996; Robert & Casella, 2004). MCMC is a
class of algorithms that utilize Markov chains to allow one
to approximate the posterior distribution. In short, a given
MCMC algorithm can take the prior distribution and likeli-
hood as input and generate random samples from the posterior
distribution without having to have a closed-form solution or
numeric estimate for the desired posterior distribution.

The first MCMC algorithm was the Metropolis–Hastings
algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, &
Teller, 1953; Hastings, 1970), and it is still popular today as a
defaultMCMCmethod.On each step of the algorithm a proposal
sample is generated. If the proposal sample has a higher proba-
bility than the current sample, then the proposal is accepted as the
next sample; otherwise, the acceptance rate is dependent upon
the ratio of the posterior probabilities of the proposal sample and
the current sample. The Bmagic^ of MCMC algorithms like
Metropolis–Hastings is that they do not require calculating the
nasty P(D) term in Bayes’s rule. Instead, by relying on ratios of
the posterior probabilities, the P(D) term cancels out, so the
decision to accept or reject a new sample is based solely on the
prior and the likelihood, which are given. The proposal step is
generated via a random process that must be Btuned^ so that the
algorithm efficiently samples from the posterior. If the proposals
are wildly different from or too similar to the current sample, the
sampling process can become very inefficient. Poorly tuned
MCMC algorithms can lead to samples that fail to meet mini-
mum standards for approximating the posterior distribution or to
Markov chain lengths that become computationally intractable
on even the most powerful computer workstations.

A different type ofMCMC algorithm that largely does away
with the difficulty of sampler tuning isGibbs sampling. Several
software applications have been built around this algorithm
(WinBUGS: Lunn, Thomas, Best, & Spiegelhalter, 2000;
JAGS: Plummer, 2003; OpenBUGS: Thomas, O’Hara,
Ligges, & Sturtz, 2006). These applications allow the user to
easily define their model in a specification language and then
generate the posterior distributions for the respective model
parameters. The fact that the Gibbs sampler does not require
tuning makes these applications effectively Bturnkey^methods
for Bayesian inference. These applications can be used for a
wide variety of problems and include a number of built-in
distributions; one must only specify, for example, that the prior
on a certain parameter is distributed uniformly or that the like-
lihood of the data given the parameter is normally distributed.
Although these programs provide dozens of built-in distribu-
tions, researchers inevitably will discover that some particular
distribution they are interested in is not built into the applica-
tion. This will often be the case for specialized cognitive
models whose distributions are not part of the standard suites
of built-in distributions that come with these applications.
Thus, it is necessary for the researcher who wishes to use one
of these Bayesian inference applications to add a custom dis-
tribution to the application’s distribution library. This process,
however, can be technically challenging using most of the ap-
plications listed above (see Wabersich & Vandekerckhove,
2014, for a recent tutorial with JAGS).

In addition to the technical challenges of adding custom dis-
tributions, both the Gibbs and Metropolis–Hastings algorithms
often do not sample efficiently from posterior distributions with
correlated parameters (Hoffman & Gelman, 2014; Turner,

Behav Res

Sederberg, Brown, & Steyvers, 2013). Some MCMC algo-
rithms (e.g., MCMC-DE; Turner et al., 2013) are designed to
solve this problem, but these algorithms often require careful
tuning of the MCMC algorithm parameters to ensure efficient
sampling of the posterior. In addition, implementingmodels that
use such algorithms can be more difficult than implementing
models in turnkey applications, because the user must work at
the implementation level of the MCMC algorithm.

Recently, a new type of MCMC application has emerged,
called Stan (Hoffman & Gelman, 2014; Stan Development
Team, 2015). Stan uses the No-U-Turn Sampler (NUTS;
Hoffman & Gelman, 2014) which extends a type of MCMC
algorithm known as Hamiltonian Monte Carlo (HMC; Duane,
Kennedy, Pendleton, & Roweth, 1987; Neal, 2011) NUTS re-
quires no tuning parameters and can efficiently sample from
posterior distributions with correlated parameters. It is therefore
an example of a turnkey Bayesian inference application that
allows the user to work at the level of the model without having
to worry about the implementation of the MCMC algorithm
itself. In this article, we provide a brief tutorial on how to use
the Stan modeling language to implement Bayesian models in
Stan using both built-in and user-defined distributions; we do
assume that readers have some prior programming experience
and some knowledge of probability theory.

Our first example is the exponential distribution. The ex-
ponential is built into the Stan application. We will first define
the model statistically, and then outline how to implement a
Bayesian model based on the exponential distribution using
Stan. Following this implementation, we will show how to run
the model and collect samples from the posterior. As we will
see, one way that this can be done is by interfacing with Stan
via another programming language, such as R. The command
to run the Stan model is sent from R, and then the samples are
sent back to the R workspace for further analysis.

Our second example will again consider the exponential
distribution, but this time instead of using the built-in expo-
nential distribution, we will explicitly define the likelihood
function of the exponential distribution using the tools and
techniques that allow the user to define distributions in Stan.

Our third example will illustrate how to implement a more
complicated user-defined function in Stan—the LBA model
(Brown&Heathcote, 2008).Wewill then show how to extend
this model to situations with multiple participants and multiple
conditions.

Throughout the tutorial, we will benchmark the results from
Stan against a conventional Metropolis–Hastings algorithm. As
we will see, Stan performs equally as well as Metropolis–
Hastings for the simple exponential model, but much better for
more complex models with correlated dimensions, such as the
LBA. We are quite certain that suitably tuned versions of
MCMC-DE (Turner et al., 2013) and other more sophisticated
methods would perform at least as well as Stan. The goal here
was not to make fine distinctions between alternative successful

applications, but to illustrate how to use Stan as an application
that perhaps may be adopted more easily by some researchers.

Built-in distributions in Stan

In Stan, a Bayesian model is implemented by defining its
likelihood and priors. This is accomplished in a Stan program
with a set of variable declarations and program statements that
are displayed in this article using Courier font. Stan sup-
ports a range of standard variable types, including integers,
real numbers, vectors, and matrices. Stan statements are proc-
essed sequentially and allow for standard control flow ele-
ments, such as for and while loops, and conditionals such
as if-then and if-then-else.

Variable definitions and program statements are placed with-
in what are referred to in Stan as code blocks. Each code block
has a particular function within a Stan program. For example,
there is a code block for user-defined functions, and others for
data, parameters, model definitions, and generated quantities.
Our tutorial will introduce each of these code blocks in turn.

To make the most out of this tutorial, it will be necessary to
install both Stan (http://mc-stan.org/) and R (https://cran.r-
project.org/), as well as the RStan package (http://mc-stan.
org/interfaces/rstan.html) so that R can interface with Stan.
Step-by-step instructions for how to do all of this can be found
online (http://mc-stan.org/interfaces/rstan.html).

An example with the exponential distribution

In this section, we provide a simple example of how to use
Stan to implement a Bayesian model using built-in distribu-
tions. For simplicity, we will use a one-parameter distribution:
the exponential. To begin, suppose that we have some data (y)
that appear to be exponentially distributed. We can write this
in more formal terms with the following definition:

yeExponential λð Þ; ð1Þ

This asserts that the data points (y) are assumed to come from
an exponential distribution, which has a single parameter called
the rate parameter, λ. Using traditional parameter-fitting
methods, we might find the value of λ that maximized the
likelihood of observed data that we thought followed an expo-
nential. Because here we are using a Bayesian approach, we
can conceive of our parameters as probability distributions.

What distribution should we choose as the prior on λ? The
rate parameter of the exponential distribution is bounded be-
tween zero and infinity, so we should choose a distribution
with the same bounds. One distribution that fits this criterion is
the Gamma distribution. Formally, then, we can write

λeGamma α;βð Þ: ð2Þ

Behav Res

http://mc-stan.org/
https://cran.r-project.org/
https://cran.r-project.org/
http://mc-stan.org/interfaces/rstan.html
http://mc-stan.org/interfaces/rstan.html
http://mc-stan.org/interfaces/rstan.html

The Gamma distribution has two parameters, referred to as the
shape (α) and rate (β) parameters; to represent our prior beliefs
about what parameter values are more likely than others, we
chose weakly informative shape and rate parameters of 1. So,
Eq. 1 specifies our likelihood, and Eq. 2 specifies our prior.
This completes the specification of the Bayesian model in
mathematical terms. The next section shows how to easily im-
plement the exponential model in the Stan modeling language.

Stan code To implement this model in Stan, we first open a
new text file in any basic text editor. Note that the line num-
bers in the code-text boxes in this article are for reference and
are not part of the actual Stan code. The body of every code
block is delimited using curly braces {}; Stan programming
statements are placed within these curly braces. All statements
must be followed by a semicolon.

In the text file, we first declare a data block as is shown in
Box 1. The data code block stores all of the to-be-modeled
variables containing the user’s data. In this example, we can see
that the data we will pass to the Stan program are contained in a
vector of size LENGTH. It is important to note that the data are
not explicitly defined in the Stan program itself. Rather, the Stan
program is interfaced via the command line or an alternative
method (like RStan), and the data are passed to the Stan program
in that way. We will describe this procedure in a later section.

Box 1 Stan code for the exponential model (in all Boxes,
line numbers are included for illustration only)

The next block of code is the parameters block, in
which all parameters contained in the Stan model are declared.
Our exponential model has only a single parameter λ. Here,
that parameter lambda is a real number of type real and is
bounded on the interval [0, ∞), so we must constrain our

variable within that range in Stan. We do this by adding the
<lower=0> constraint as part of its definition.

The third block of code is the model block, in which the
Bayesian model is defined. The model described by Eqs. 1
and 2 is easily implemented, as is shown in Box 1. First, the
variables of the Gamma prior, alpha and beta, are defined
as real numbers of type real, and both are assigned our
chosen values of 1.0. Note that unlike the variables in the
data and parameters blocks, variables defined in the
model block are local variables. This means that their scope
does not extend beyond the block in which they are defined; in
less technical terms, other blocks do not Bknow^ about vari-
ables initialized in the model block.

After having defined these local variables, the next part of
the model block defines a sampling statement. The sampling
statement lambda ~ gamma(alpha,beta) indicates that
the prior on lambda is sampled from a Gamma distribution
with rate and shape parameters alpha and beta, respective-
ly. Note that sampling statements contain a tilde character (~),
distinct from the assignment character (<-) in Stan. The next
statement, Y ~ exponential(lambda), is also a sam-
pling statement and indicates that the data Y are exponentially
distributed with rate parameter lambda.

The final block of code in the Stan file is the generated
quantities block. This block can be used, for example, to
perform what is referred to as a posterior predictive check.
The purpose of the check is to determine whether the model
accurately fits the data in question; in other words, this lets us
compare model predictions with the observed data. Box 1
shows how this is accomplished in Stan. First, a real-number
variable named pred is created. This variable will contain the
predictions of the model. Next, the exponential random num-
ber generator (RNG) function exponential_rng takes as
input the posterior samples of lambda and outputs the pos-
terior prediction. The posterior prediction is returned from
Stan and can be used outside of Stan—for example, to com-
pare the predictions to the actual data in order to assess visu-
ally how well the model fits the data.

This completes the Stan model. When all the code has been
en te r ed in to the tex t f i l e , we save the f i l e as
exponential.stan. Stan requires that the extension .stan
be used for all Stan model files.

R code Stan can be interfaced from the command line, R,
Python, MATLAB, or Julia.1 In this article, we will describe
how to use the R interface for Stan, called RStan (Stan
Development Team, 2015). Links to online instructions for
how to install R and RStan were given earlier.

1 Julia is a relatively new high-level programming language for scientific
and technical computing, similar in nature to R, MATLAB, and Python
(http://julialang.org/).

Behav Res

http://julialang.org/

In this section, wewill be first simulating data and then fitting
the model to those simulated data. This is in contrast to most
real-world applications, in which models are fit to the actual
observed data from an experiment. It is good practice before
fitting a model to real data to fit the model to simulated data
with known parameter values and try to recover those values. If
the model cannot recover the known parameter values of the
model that generated the simulated data, then it will never be
able to be fitted with any confidence to real observed data. This
type of exercise is usually referred to as parameter recovery.
Here, this also serves us well in a tutorial capacity.

Box 2 shows the R code that will run the parameter
recovery example. The first three lines of the R code clear
the workspace (line 1), set the working directory (line 2),
and load the RStan library (line 3). Then we generate some
simulated data, drawing 500 exponentially distributed
samples (line 5) assuming a rate parameter, lambda, equal
to 1. These simulated data, dat, will then be fed into Stan to
obtain parameter estimates for lambda. If the Stan
implementation is working correctly, we should obtain a
posterior distribution of λ that is centered over 1. So far, all
of this is just standard R code.

Box 2 R code for running the exponential model in Stan and
for retrieving and analyzing the returned posterior samples

The Stanmodel described earlier (exponential.stan)
is run via the stan function. This is the way that R Btalks^ to
Stan, tells it what to run, and gets back the results of the Stan
run. The first argument of the function, file, is a character
string that defines the location and name of the Stan model
file. This is simply the Stan file from Box 1. The data argu-
ment is a list containing the data to be passed to the Stan
program. Stan will be expecting a variable named Y to be
holding the data (see line 3 of the Stan code in Box 1). We
assign the variable dat (in this case, our simulated draws

from an exponential) the name Y in line 8 so that Stan knows
that these are the data. Stan also expects a variable named
LENGTH to be holding the length of the data vector Y. We
assign the variable len (the length of dat computed in line
6) the name LENGTH. This is the way that R feeds data into
Stan. Next, the warmup argument defines the number of steps
used to automatically tune the sampler in which Stan opti-
mizes the HMC algorithm. These samples can be discarded
afterward and are referred to as warmup samples. The iter
argument defines the total number of iterations the algorithm

Behav Res

will run. Choosing the number of iterations and warmup steps
usually proceeds by starting with relatively small numbers and
then doubling them, each time checking for convergence
(discussed below). It is recommended that warmup be half
of iter. The chains argument defines the number of inde-
pendent chains that will be consecutively run. Usually, at least
three chains are run. After running the model, the samples are
returned and assigned to the fit object.

A summary of the parameter distributions can be obtained
by using print(fit)2 (line 10), which provides posterior
estimates for each of the parameters in the model. Before any
inferences can be made, however, it is critically important to
determine whether the sampling process has converged to the
posterior distribution. Convergence can be diagnosed in sev-
eral different ways. One way is to look at convergence statis-
tics such as the potential scale reduction factor, R̂ (Gelman &
Rubin, 1992), and the effective number of samples, Neff

(Gelman et al., 2013), both of which are output in the summa-
ry statistics with print(fit). A rule of thumb is that when
R̂ is less than 1.1, convergence has been achieved; otherwise,
the chains need to be run longer. The Neff statistic gives the
number of independent samples represented in the chain. For
example, a chain may contain 1,000 samples, but this may be
equivalent to having drawn very few independent samples
from the posterior. The larger the effective sample size, the
greater the precision of the MCMC estimate. To give an esti-
mate of an acceptable effective sample size, Gelman et al.
(2013) recommended an Neff of 100 for most applications.
Of course, the target Neff can be set higher if greater precision
is desired.

Both the R̂ and Neff statistics are influenced by what is
referred to as autocorrelation. To give an example, adjacent
samples usually have some amount of correlation, due to the
way that MCMC algorithms work. However, as the samples
become more distant from each other in the chain, this corre-
lation should decrease quickly. The distance between succes-
sive samples is usually referred to as the lag. The autocorre-
lation function (ACF) relates correlation and lag. The values
of the ACF should quickly decrease with increasing lag; ACFs
that do not decrease quickly with lag often indicate that the
sampler is not exploring the posterior distribution efficiently
and result in increased R̂ values and decreased Neff values.

The ACF can easily be plotted in R on lines 12 and 14. The
separate chains are first collapsed into a single chain with
as.matrix(fit) (the as.matrix function is part of
the base package in R), and the ACF of lambda is plotted
with acf(mcmc_chain[,'lambda']), shown in Fig. 1.
The acf function is part of the stats package, a base

package in R that is loaded automatically when R is opened.
The left panel of Fig. 1 shows that the autocorrelation drops to
values close to zero at around lags of six for the samples
returned by Stan. The Metropolis–Hastings algorithm has
slightly higher autocorrelation but is still reasonable in this
example.

High autocorrelation indicates that the sampler is not
efficiently exploring the posterior distribution. This can
be overcome by simply running longer chains. By run-
ning longer chains, the sampler is given the chance to
explore more of the distribution. The technique of run-
ning longer chains, however, is sometimes limited by
memory and data storage constraints. One way to run
very long chains and reduce memory overhead is to use
a technique called thinning, which is done by saving
every n th posterior sample from the chain and
discarding the rest. Increasing n reduces autocorrelation
as well as the resulting size of the chain. Although
thinning can reduce autocorrelation and chain length, it
leads to a linear increase in computational cost with
increases in n. For example, if one could only save 1,
000 samples, but needed to run a chain of 10,000 sam-
ples to effectively explore the posterior, one could thin
by ten steps, and those 1,000 samples would have lower
autocorrelation than if 1,000 samples were generated
without thinning. If memory constraints are not an is-
sue, however, it is advised to save the entire chain
(Link & Eaton, 2011).

Another diagnostic test that should always be per-
formed is to plot the chains themselves (i.e., the posterior
sample at each iteration of the MCMC). This can be used
to determine whether the sampling process has converged
to the posterior distribution; it is easily performed in R
using the traceplot function (part of the RStan pack-
age) on line 16. The left panel of Fig. 2 shows the sam-
ples from Stan, and the right panel shows the samples
from Metropolis–Hastings. The researcher can use a few
criteria to diagnose convergence. First, as an initial visual
diagnostic, one can determine whether the chains look
Blike a fuzzy caterpillar^ (Lee & Wagenmakers, 2014)—
do they have a strong central tendency with evenly dis-
tributed aberrations? This indicates that the samples are
not highly correlated with one another and that the sam-
pling algorithm is exploring the posterior distribution ef-
ficiently. Second, the chains should also not drift up or
down, but should remain around a constant value. Lastly,
it should be difficult to distinguish between individual
chains. Both panels of Fig. 2 clearly demonstrate all of
these criteria, suggesting convergence to the posterior
distribution.

Once it is determined that the sampling process has con-
verged to the posterior, we can then move on to analyzing the
parameter estimates themselves and determining whether the

2 The print function behaves differently given different classes of ob-
jects in R. For the Stan fit object, it prints a summary table. The RStan
library must be loaded for this behavior to occur (the library defines the
fit object in R).

Behav Res

model can fit the observed (in this case, simulated) data. Lines
18 through 20 of the R code (Box 2) show how the posterior
predictive can be obtained by plotting the data (dat) as a
histogram and then overlaying the density of predicted values,
pred. The left panel of Fig. 3 shows that the posterior pre-
dictive density (solid line) fits the data (histogram bars) quite
well. Lastly, line 22 of the R code shows how to plot the
posterior distribution of λ with the following command:
plot(density(mcmc_chain[,'lambda'])). There
are two steps to this command. First, the density function, a
base function in R, is called. This function estimates the den-
sity of the posterior distribution of λ from theMCMC samples
held in mcmc_chain[,'lambda']. Second, the plot
function, also part of the base R distribution, is called, which
outputs a plot of the density plot of the MCMC samples. It is
also possible to call the histogram function, hist, and plot

the samples as a histogram. The right panel of Fig. 3
shows the posterior distribution of λ. The 95 % highest
density interval (HDI) is also depicted. The HDI is the
smallest interval that can be obtained in which 95 % of
the mass of the distribution rests; this interval can be
obtained from the summary stat ist ics output by
print(fit). The HDI is different from a confidence
interval because values closer to the center of the HDI
are Bmore credible^ than values farther from the center
(e.g., Kruschke, 2011). As the HDI increases, uncertainty
about the parameter value also increases. As the HDI de-
creases, the range of credible values also decreases, there-
by decreasing the uncertainty. Figure 3 shows that 95 %
of the mass of λ is between 0.92 and 1.09, indicating that
parameter recovery was successful, since the simulated
data were generated with λ = 1.

Fig. 1 Autocorrelation function
of the rate parameter

Fig. 2 Samples from each chain
as a function of iteration
generated by Stan (left) and
Metropolis–Hastings (right)

Behav Res

As we have just seen, the Stan model successfully recov-
ered the single parameter value of λ that was used to generate
the exponentially distributed data. Oftentimes, parameter re-
covery is more rigorous, testing recovery over a range of
parameter values. The parameter recovery process can be re-
peated many times, each time storing the actual and recovered
parameter values. A plot can then be made of the actual pa-
rameter values as a function of the recovered parameter
values. The values should fall close to the diagonal (i.e., the
recovered parameters should be close to the actual parame-
ters). This also lets us explore howwell Stan does over a range
of parameterizations of the exponential.

To better test the Stan model in this way, we simulated 200
sets of data over a range of values of λ. The λ parameter
values were drawn from a truncated normal distribution with
mean 2.5 and standard deviation 0.25. Each data set contained
500 data points. The Stan model was fit to each data set,
saving the mean of the posterior of lambda for each fit. The
left panel of Fig. 4 shows the parameter recovery for the ex-
ponential distribution implemented in Stan. We can see that

the parameter recovery was successful, since most values fall
close to the diagonal. If we use the classic Metropolis–
Hastings algorithm, we can see in the right panel of Fig. 4 that
its performance is very similar to our parameter recovery in
Stan.

User-defined distributions in Stan

Thus far we have implemented an exponential model in Stan
using built-in probability distributions for the likelihood and
the prior. Although there are dozens of built-in probability
distributions in Stan (as in other Bayesian applications), some-
times the user requires a distribution that might not already be
implemented. This will often be the case for specialized dis-
tributions of the kind assumed in many cognitive models. But
before moving on to complicated cognitive models, we first
want to present an example using the exponential model, but
without the benefit of using Stan’s built-in probability distri-
bution function.

Fig. 3 A posterior predictive
check (left), where the solid line
represents the predictions and the
histogram bars represent the data,
and the posterior distribution of λ
(right)

Fig. 4 Actual parameter values
plotted as a function of the
recovered parameter values for
Stan (left) and Metropolis–
Hastings (right)

Behav Res

An example with the exponential distribution, redux

The exponential distribution is a built-in distribution in Stan,
and therefore it is not necessary to implement it as a user-
defined function. We do so here for tutorial purposes.

To begin, the likelihood function of the exponential distri-
bution is

P y
!!!λ

" #
¼ ∏

N

i¼1λe
−λyi ; ð3Þ

where λ is the rate parameter of the exponential, y is
the vector of data points, each data point yi∈ [0,∞), and
N is the number of data points in y. Stan requires the

log likelihood, so we simply take the log of Eq. 3 in
our Stan implementation.

Having mathematically defined the (log) likelihood func-
tion, we can now implement it in Stan. Once we implement
the user-defined function, we can then call it just as we would
call a built-in function. In this example, we will replace the
built-in distribution, exponential, in the sampling state-
ment Y ~ exponential(lambda) in line 14 of Box 1
with a user-defined exponential distribution.

Box 3 shows how this is accomplished. To add a user-
defined function, it is first necessary to define a functions
code block. The functions block must come before all
other blocks of Stan code, but when there are no user-
defined functions this block may be omitted entirely.

Box 3 Stan code of exponential model as a user-defined
function

When dealing with functions that implement proba-
bility distributions, three important rules must be

considered. First, Stan requires the name of any func-
tion that implements a probability distribution to end

Behav Res

with _log;3 the _log suffix permits access to the
increment_log_prob function (an internal function
that can be ignored for the purposes of this tutorial),
where the total log probability of the model is comput-
ed. Second, when calling such defined functions, the
_log suffix must be dropped. Lastly, when naming a
user-defined function, the name must be different from
any bui l t - in funct ion when def in ing i t in the
functions block and it must different from any
built-in function when the _log suffix is dropped. For
example, suppose that we named our user-defined func-
tion exp_log. When called, this would be different
from the built-in exponential()function, but unfor-
tunately it would conflict with another built-in function,
exp, and result in an error. With these rules in mind,
we can now properly name our user-defined exponential
likelihood function. Line 2 of Box 3 shows that we
have named the exponential likelihood function
newexp_log. This name works because there are no
built-in function called newexp and no built-in distri-
bution newexp_log.

The newexp_log function returns a real number of
type real. The first argument of the function is the
data vector x, and the second argument is the rate pa-
rameter lam. Note that the scope of the variables within
each function is local. Within the function itself, another
local variable is defined called prob, which is a vector
of the same length as the data vector x. For each ele-
ment in the data vector, a probability density will be
computed and stored in prob, implementing the ele-
ments in Eq. 3. As we noted previously, Stan requires
the log likelihood, so instead of multiplying the proba-
bility densities, we take the natural logs and sum them.
The sum of the log densities will be assigned to the
variable lprob.4 Then lprob value—representing the
log likelihood of the exponential distribution (log of
Eq. 3)—is then returned by the function. After this,
lines 12 through 30 are identical to the code shown in
Box 1 lines 1 through 19, with the exception of the call
to newexp (Box 3 line 25) instead of the built-in Stan
exponential distribution (Box 1 line 14).

We found that this implementation produced exactly
the same results as the implementation using the built-in

distribution (Box 1). This is not surprising, given that
the built-in and user-defined exponential distributions
are mathematically equivalent.

An example with the LBA model

In this section, we briefly describe the LBA model and
how it can be utilized in a Bayesian framework, before
describing how it can be implemented in Stan.
Accumulator models attempt to describe how the evi-
dence for one or more decision alternatives is accumu-
lated over time. LBA predicts response probabilities as
well as distributions of the response times, much like
other accumulator models. Unlike some models, which
assume a noisy accumulation of evidence to threshold
within a trial, LBA instead assumes a linear and con-
t inuous accumulat ion to threshold—hence, the
Bballistic^ in LBA. LBA assumes that the variabilities
in response probabilities and response times are deter-
mined by between-trial variability in the accumulation
rate and other parameters.

LBA assumes a separate accumulator for each re-
sponse alternative i. A response is made when the evi-
dence accrued for one of these alternatives exceeds
some predetermined threshold, b. The rate of accumula-
tion of evidence is referred to as the drift rate. The
LBA model assumes that the drift rate, di, is sampled
on each trial from a normal distribution with mean vi
and standard deviation s. Figure 5 illustrates an example
in which the drift for response m1 is greater than that

3 This naming convention holds for user-defined and as well as built-in
functions. For example, in line 14 of Box 1, in the sampling statement Y ~
exponential(lambda) we are actually calling the built-in function
exponential_log by dropping the _log suffix.
4 Stan includes C++ libraries designed for efficient vector and matrix
operations, and therefore it is often more efficient to use the vectorized
form of a function. For example, the log likelihood can be computed in a
single line with lprob <- sum(log(lam) - x*lam);. For simplic-
ity, we do not consider vectorization any further, and instead refer readers
to the Stan manual.

Fig. 5 Graphical depiction of the linear ballistic accumulator (LBA)
model (Brown & Heathcote, 2008)

Behav Res

for response m2. In this example trial, the participant
will make response m1 because that accumulator reaches
its threshold, b, before the other accumulator.

Each accumulator starts with some a priori amount of
evidence. This start point is assumed to vary across
trials. The start-point variability is assumed to be uni-
formly distributed between 0 and A (A must be less
than the threshold b).

Like other accumulator models, LBA also makes the
assumption that there is a period of nondecision time, τ,
that occurs before evidence begins to accumulate (as
well as after, leading to whatever motor response is
required). In this implementation, as in some other
LBA implementations, we assume that the nondecision
time is fixed across trials.

The following equations are a formalization of these pro-
cessing assumptions, showing the likelihood function for the
LBA (see Brown & Heathcote, 2008, for derivations). Given
the processing assumptions of the LBA, the response time, t,
on trial j is given by

t j ¼ τ þmin
i

b−ai
di

$ %
: ð4Þ

Let us assume that θ is the full set of LBA parameters θ = {v1,
v2,b,A,s,τ}. Then the joint probability density function ofmak-
ing response m1 at time t (referred to as the defective PDF) is

LBA m1; tjθð Þ ¼ f t−τ v1; b;A; sjð Þ 1−F t−τ v2; b;A; sjð Þ½ &; ð5Þ

and the joint density for making response m2 at time t is

LBA m2; tjθð Þ ¼ f t−τ v2; b;A; sjð Þ 1−F t−τ v1; b;A; sjð Þ½ &; ð6Þ

where f and F are the probability density function (PDF) and
the cumulative distribution function (CDF) of the LBA distri-
bution, respectively. We refer the reader to Brown and
Heathcote for the full mathematical descriptions and justifica-
tions of the LBA’s CDF F(t) and PDF f(t). For the Stan imple-
mentation details of these distributions, please see the
Appendix.

Negative drift rates may arise in this model, because drifts
across trials are drawn from a normal distribution. If both drift
rates are negative, this will lead to an undefined response time.

The probability of this happening is ∏
2

i¼1
Φ

−vi
s

" #
. If we assume

that at least one drift rate will be positive, then we can truncate
the defective PDF:

LBAtrunc mi; t
!!!θ

" #
¼ LBA mi; tjθð Þ

1−∏
2

i¼1Φ
−vi
s

" # : ð7Þ

Thus, this model assumes there are zero undefined re-
sponse times. This will be the model we implement in

Stan. If we consider the vector of binary responses, R,
and response times, T, for each trial i and a total of N
trials, the likelihood function is given by

P T ;Rjθð Þ ¼ ∏
N

i¼1
LBAtrunc Ti;Rijθð Þ: ð8Þ

To implement the model in a Bayesian framework, priors are
placed on each of the parameters of the LBAmodel.We chose
priors that one might encounter in real-world applications and
based them on Turner et al. (2013). First, to make the model
identifiable, we set s to a constant value (Donkin, Brown, &
Heathcote, 2009). Here, we fix s at 1. We then assume that the
priors for the drift rates are truncated normal distributions:

vieNormal 2; 1ð Þϵ 0;∞ð Þ: ð9Þ

We assume a uniform prior on nondecision time:

τeUniform 0; 1ð Þ: ð10Þ

The prior for the maximum starting evidence A is a truncated
normal distribution:

AeNormal :5; 1ð Þϵ 0;∞ð Þ: ð11Þ

To ensure that the threshold, b, is always greater than the
starting point a, we reparameterize the model by shifting b
by k units away from A. We refer to k as the relative threshold.
Thus, we do not model b directly, but as the sum of k and A,
and assume that the prior for k is a truncated normal:

keNormal :5; 1ð Þϵ 0;∞ð Þ: ð12Þ

Stan code The Stan code for the LBA likelihood function is
shown in Box 4. Note that lines 2 through 102 are omitted
from the code for the sake of brevity. These omitted lines
contain the code implementing the PDF and CDF functions
of the LBA, and can be found in the Appendix. The likelihood
function of the LBA is named lba_log (recall that the _log
suffix is only used in its definition and is dropped when the
function is called in the model block) and accepts the follow-
ing arguments: a matrix, RT, whose first column contains the
observed response times, and whose second column contains
the observed responses; the relative threshold, k; the maxi-
mum starting evidence, A; a vector holding the drift rates, v;
the standard deviation of the drift rates, s; and the nondecision
time, tau. Note that the Stan implementation of the LBA
differs from other Bayesian implementations of accumulator
models, which treat negatively coded response times as errors
and positively coded response times as correct responses (e.g.,
Wabersich & Vandekerckhove, 2014). This is a major advan-
tage of the LBA and the implementation that we present here,
in that it allows for any number of response choices.

Behav Res

Box 4 Likelihood function of the LBA implemented in Stan

First, the local variables to be used in the function are defined
(lines 105–111 in Box 4). Then, to obtain the decision threshold
b, k is added to A. On each iteration of the for loop, the
decision time t is obtained by subtracting the nondecision time
tau from the response time RT. If the decision time is greater
than zero, then the defective PDF is computed as in Eqs. 5 and 6,
and the CDF and PDF functions described earlier accordingly
are called on lines 120 and 122 (see the Appendix for the Stan
implementation of each). The defective PDF associated with
each row in RT is stored in the prob array. If the value of the
defective PDF is less than 1 × 10–10, then the value stored in
prob is set to 1 × 10–10; this is to avoid underflow problems

arising from taking the natural logarithm of extremely small
values of the defective PDF. Once all of the densities are com-
puted, the likelihood is obtained by taking the sum of the natural
logarithms of the densities in prob and returning the result.

Box 5 continues the code from Box 4 and, as in our
earlier example, shows the data block defining the
data variables that are to be modeled. The LENGTH
variable defines the number of rows in RT, whose first
column contains response times and whose second col-
umn contains responses. A response coded as 1 corre-
sponds to the first accumulator finishing first, and a
response coded as 2 corresponds to the second

Behav Res

accumulator finishing first. One of the advantages of the
LBA is that it can be applied to tasks with more than
two choices. The NUM_CHOICES variable defines the

number of choices in the task and must be equal to
the length of the drift rate vector defined in the
parameters block.

Box 5 Continuation of Stan code for the LBA model

The parameters block shows that the parameters
are all real numbers of type real and include the rel-
ative threshold k, the maximum starting evidence A, the
nondecision time tau, and the vector of drift rates v.
All parameters have normal priors truncated at zero, and
therefore are constrained with <lower=0>.

The Bayesian LBA model is implemented in the
model block, which shows that the priors for the rela-
tive threshold k and the maximum threshold A are both
assumed to be normally distributed with a mean of .5
and standard deviation 1. The prior for nondecision time
is assumed to be normally distributed with a mean of .5
and standard deviation .5, and the priors for drift rates
are distributed normally with means of 2 and standard
deviations of 1. The data, RT, is assumed to be distrib-
uted according to the LBA distribution, lba.

T h e im p l em e n t a t i o n o f t h e generated
quantities block for the LBA uses a user-defined
function called lba_rng, which generates random sim-
ulated samples from the LBA model given the posterior
parameter estimates. The function is also defined in the

functions block, along with all of the other user-
defined functions, but has been omitted in Box 4 for
brevity. The code and explanation for this function can
be found in the Appendix. This code is based on the
Brtdists^ package for R (Singman et al., 2016), which
can be found online (https://cran.r-project.org/web/
packages/rtdists/index.html). We note that porting code
from R to Stan is relatively straightforward, as they
both are geared toward vector and matrix operations
and transformations.

R codeBox 6 shows the R code that runs the LBA model
in Stan. This should look very similar to the code we
used for the simple exponential example earlier. We
again begin by clearing the workspace, setting the
working directory, and loading the RStan library. After
simulating the data from the LBA distribution using a
file called Blba.r^ (see the website listed above for the
code), which contains the rlba function that generates
random samples drawn from the LBA distribution, the
model is then run on line 10.

Behav Res

https://cran.r-project.org/web/packages/rtdists/index.html
https://cran.r-project.org/web/packages/rtdists/index.html

Box 6 R code that runs the LBA model in Stan

As we noted in our earlier example, in real-world applica-
tions of the model, the data would not be simulated but would
be collected from a behavioral experiment. We use simulated
data here for convenience of the tutorial and because we are
interested in determining whether the Bayesian model can re-
cover the known parameters used to generate the simulated data
(parameter recovery). With just some minor modification, the
code we provide using simulated data can be generalized to an
application to real data. For example, real data stored in a text
file or spreadsheet can be read into R and then formatted and
coded in the same way as the simulated data.

The Bayesian LBA model can be validated in a fashion
similar to that for the Bayesian exponential model. Figure 6
shows the autocorrelation function for each parameter. For
Stan, autocorrelation across all parameters became undetect-
able after approximately 15 iterations. The right panels shows
that the Metropolis–Hastings algorithm had high autocorrela-
tion for long lags, indicating that the sampler was not taking
independent samples from the posterior distribution. This high
autocorrelation leads to lower numbers of effective samples
and longer convergence times. The Neff values returned by
Metropolis–Hastings across all chains were on average 27 for
each parameter. This means that running 4,500 iterations (three
chains of 1,500 samples) is equivalent to drawing only 27
independent samples. On the other hand, Stan returned on av-
erage 575 effective samples for each parameter after 4,500
iterations. In addition, R̂ for all parameters was above 1.1 for
Metropolis–Hastings, and below 1.1 for Stan, indicating that
the chains converged for Stan but not for Metropolis–Hastings.

The deleterious effect of the high autocorrelation of
Metropolis–Hastings in comparison to the low autocorrelation
of Stan is apparent in Fig. 7. The left panels show the chains
produced by Stan, and the right panels show the chains produced

by Metropolis–Hastings. In the left panel, the Stan chains show
good convergence: They look like Bfuzzy caterpillars,^ it is dif-
ficult to distinguish one chain from the others, and the chains do
not drift up and down. In the right panels of Fig. 7, the
Metropolis–Hastings chains clearly do not meet any of the nec-
essary criteria for convergence. The only way we found to cor-
rect for this was to thin by at least 50 or more steps.

Figure 8 shows the results of a larger parameter recovery
study for Stan and the Metropolis–Hastings algorithm. In this
exploration, 200 simulated data sets containing 500 data points
each were generated, each with a different set of parameter
values. The parameter values were drawn randomly from a trun-
cated normal with a lower bound of 0, a mean of 1, and a
standard deviation of 1. The Stan model was fit to each data
set, and the resulting mean of the posterior distribution for each
parameter was saved. Figure 8 shows the actual parameter values
plotted against the recovered parameter values. For Stan, most of
the points fall along the diagonal, indicating that parameter re-
covery was successful. For Metropolis–Hastings, it is clear visu-
ally that parameter recovery is poorer—this is due to the afore-
mentioned difficulty this algorithm has with the inherent corre-
lations between parameters in the LBA model.

We note that parameter recovery in sequential-sampling
models is often difficult if the experimental design is uncon-
strained, like the one we present here, which benefited from a
large number of data points for each data set as well as priors
that were similar to the actual parameters that had generated
the data. We present this parameter recovery as a sanity check
to ensure that Stan can recover sensible parameter values un-
der optimal conditions. Obviously, this will not be the case in
real-world applications, and therefore, great care must be tak-
en when designing experiments to test sequential-sampling
models like the LBA.

1 rm(list=ls())
2 setwd("~/LBA/")
3 source('lba.r')
4 library(rstan)
5 #make simualated data
6 out = rlba(500,1,1,c(2,1),1,.5)
7 rt = cbind(outrt,outresp)
8 len = length(rt[,1])
9 #run the Stan model
10 fit <- stan(file = 'lba.stan',
 data = list(RT=rt,LENGTH=len,NUM_CHOICES=2),
 warmup = 750,
 iter = 1500,
 chains = 3)

Behav Res

Better Metropolis–Hastings sampling might be achieved
by careful adjustment and experimentation with the proposal
step process. Here, the proposal step was generated by sam-
pling from a normal distribution with a mean equal to the
current sample and a standard deviation of .05. Increasing
the standard deviation increases the average distance between
the current sample and the proposal, but decreases the proba-
bility of accepting the proposal. We found that different set-
tings of the standard deviation largely led to autocorrelations
similar to those we have presented here. The only thing we
found that led to improvements in autocorrelation was thin-
ning. Thinning by 50 steps led to autocorrelation dropping to
nonsignificant values at around lags of 40. At 75 steps,
Metropolis–Hastings’s performance was similar to that of
Stan, resulting in similar autocorrelation, Neff, and R̂ values.

A reason behind the poor sampling of Metropolis–Hastings
is the correlated parameters of the LBA. The half below the
diagonal of Fig. 9 shows the joint posterior distribution for each
parameter pair of the LBA for a given set of simulated data, and
the half above the diagonal gives the corresponding correlations.
Each point in each panel in the lower half of the grid represents a
posterior sample from the joint posterior probability distribution
of a particular parameter pair for the LBA model. For example,
the bottom left corner panel shows the joint posterior probability
distribution between τ and v1. We can see that this distribution
has negatively correlated parameters. The upper right corner
panel of the grid confirms this, showing the correlation between
τ and v1 to be –.45. Five joint distributions have correlations
with absolute values well above .50 (v1–v2, v1–b, v2–b, v2–τ, and
A–τ). These correlations in parameter values cause some

0.0

0.2

0.4

0.6

0.8

1.0

v 1
A
C
F

0.0

0.2

0.4

0.6

0.8

1.0

v 2
A
C
F

0.0

0.2

0.4

0.6

0.8

1.0

b
A
C
F

0.0

0.2

0.4

0.6

0.8

1.0

A
A
C
F

0 5 10 15 20 25 30 35

0.0

0.2

0.4

0.6

0.8

1.0

A
C
F

0 5 10 15 20 25 30 35

Lag

Stan Metropolis-HastingsFig. 6 Autocorrelation function
(ACF) of each parameter, plotted
as a function of lag, for Stan (left)
and Metropolis–Hastings (right)

Behav Res

MCMC algorithms such Gibbs sampling and the Metropolis–
Hastings to perform poorly. On the other hand, Stan does not
drastically suffer from the model’s correlated parameters.

In summary, the Stan implementation of the LBA model
shows successful parameter recovery and efficient sampling of

the posterior distribution when compared to Metropolis–
Hastings, due in large part to the correlated parameters of the
LBA model. Whereas Stan was designed with the intention to
handle these situations properly, standard MCMC techniques
such as the Metropolis–Hastings algorithm were not, and they

0

1

2

3

4

v 1

Stan Metropolis-Hastings

0

1

2

3

4

v 2

0.0
0.5
1.0
1.5
2.0
2.5
3.0

b

0.0

0.5

1.0

1.5

2.0

A

0 500 1000 1500

0.0
0.2
0.4
0.6
0.8
1.0

0 500 1000 1500

Iteration

Fig. 7 Samples of each
parameter for each iteration of
each chain for Stan (left) and
Metropolis–Hastings (right)

Fig. 8 Actual parameter values,
plotted as a function of the
parameters recovered by Stan
(left) and Metropolis–Hastings
(right)

Behav Res

do not converge to the posterior distribution in any sort of reliable
manner.

Fitting multiple subjects in multiple conditions:
a hierarchical extension of the LBA model

The simple LBA model just described was designed for a single
subject in a single condition. This is never the case in any real-
world application of the LBAmodel. In this section, we describe
and implement an LBA model that is designed for multiple sub-
jects in multiple conditions. The model will include parameters
that model performance at both the group and individual levels.
The Bayesian approach allows both the group- and individual-
level parameters to be estimated simultaneously. This type of
model is called a Bayesian hierarchical model (e.g., Kruschke,
2011; Lee & Wagenmakers, 2014). In a Bayesian hierarchical
model, the parameters for individual participants are informed by
the group parameter estimates. This reduces the potential for the
individual parameter estimates to be sensitive to outliers, and
decreases the overall number of participants necessary to achieve
reliable parameter estimates.

The model we consider assumes that the vector of response
times for each participant i in condition j is distributed according
to the LBA:

%%scale85%RTi; jeLBA ki;Ai; v1i; j; v
2
i; j; s; τ i

" #
; ð13Þ

where, as before, the responses are coded as 1 and 2, corre-
sponding to each accumulator; ki is the relative threshold; Ai is
the maximum starting evidence; vi,j

1 and vi,j
2 are the mean drift

rates for each accumulator; s is the standard deviation, held
constant across participants and conditions; and τi is the nonde-
cision time. As before, we assume that s is fixed at 1.0 and that
the prior on each parameter follows a truncated normal distribu-
tion with its own group mean μ and standard deviation σ.

kieNormal uk ;σk& '
ϵ 0;∞ð Þ ð14Þ

AieNormal uA;σA& '
ϵ 0;∞ð Þ ð15Þ

v1i; jeNormal μv1
j ;σ

v1
j

" #
ϵ 0;∞ð Þ ð16Þ

v2i; jeNormal μv2
j ;σ

v2
j

" #
ϵ 0;∞ð Þ ð17Þ

Fig. 9 The lower left of the grid
shows the joint posterior
probability distributions for each
pair of key parameters in the LBA
model fitted to a simulated set of
data. Each point in each panel
represents a posterior sample
from the joint posterior
probability distribution of a
particular parameter pair for the
LBA model. For example, the
bottom left corner panel shows
the joint posterior probability
distribution between τ and v1. The
upper right of the grid gives the
correlation between each
parameter pair. For example, the
upper right corner shows the
correlation between τ and v1 to be
–.45

Behav Res

τ ieNormal uτ ;στð Þ ϵ 0;∞ð Þ ð18Þ

Having defined the priors at the individual level, the
next step in designing a hierarchical model is to define
the group-level priors on the parameters in Eqs. 14–18.
The group-level priors that we choose are grounded on
what one might encounter in real-world situations and
are based on Turner et al. (2013). The priors for the
group-level means for k, A, and τ are assumed be con-
stant across conditions:

uk ; uAeNormal :5; 1ð Þ ϵ 0;∞ð Þ; ð19Þ

uτeNormal :5; :5ð Þ ϵ 0;∞ð Þ: ð20Þ

The priors for the group-level drift rates for each condition are
given by the following:

v1j ; v
2
jeNormal 2; 1ð Þ ϵ 0;∞ð Þ: ð21Þ

Following Turner et al., the priors for the group-level standard
deviations are each assumed to be weakly informative:

σk ;σA;σv1
j ;σ

v2
j ;σ

τeGamma 1; 1ð Þ ϵ 0;∞ð Þ: ð22Þ

This model is conceptually easy to implement in Stan, as
is shown in Box 7, even if it requires a good bit more
coding than the simple version. Lines 3 through 16 define
the group-level priors shown in Eqs. 19 through 22. Lines
13 through 16 define a for loop in which the group-level
mean drift rates are estimated for each condition j and
each accumulator n. The individual-level parameters are
defined in lines 18 through 28; for example, line 19 indi-
cates that for each subject i, the prior on k[i] is dis-
tributed according to a truncated normal distribution on
the interval (0, ∞) with mean k_mu and standard devia-
tion k_sigma. Likewise, lines 23 through 25 define the
mean drift rates on each accumulator n for each subject i
in condition j; for example, line 24 indicates that the
prior on the individual- level mean drif t rates,
v[i,j,n], is distributed according to a normal distribu-
tion with a group-level mean v_mu[j,n] and standard
deviation v_sigma[j,n]. Thus, the individual-level
drift rates are drawn from a normal distribution with
the group-level means. This is what makes the model
hierarchical and allows for the simultaneous fitting of
group-level and individual-level parameters.

Box 7 Hierarchical LBA model implemented in Stan

1 model {
2
3 k_mu ~ normal(.5,1)T[0,];
4 A_mu ~ normal(.5,1)T[0,];
5 tau_mu ~ normal(.5,.5)T[0,];
6
7 k_sigma ~ gamma(1,1);
8 A_sigma ~ gamma(1,1);
9 tau_sigma ~ gamma(1,1);
10
11 for (j in 1:NUM_COND){
12 for (n in 1:NUM_CHOICES){
13 v_mu[j,n] ~ normal(2,1)T[0,];
14 v_sigma[j,n] ~ gamma(1,1);
15 }
16 }
17
18 for (i in 1:NUM_SUBJ){
19 k[i] ~ normal(k_mu,k_sigma)T[0,];
20 A[i] ~ normal(A_mu,A_sigma)T[0,];
21 tau[i] ~ normal(tau_mu,tau_sigma)T[0,];
22 for(j in 1:NUM_COND){
23 for(n in 1:NUM_CHOICES){
24 v[i,j,n] ~ normal(v_mu[j,n],v_sigma[j,n])T[0,];
25 }
26 RT[i,j] ~ lba(k[i],A[i],v[i,j],1,tau[i]);
27 }
28 }
29 }

Behav Res

To test whether the model could successfully recover
the parameters, we simulated 20 subjects, each with 100
responses and response times. Each simulated subject’s
parameters were drawn from a group-level distribution.
Specifically, the maximum starting evidence parameter,
A, relative threshold parameter, k, and nondecision time
parameter, τ, were drawn from a truncated normal distri-
bution with a mean of .5, standard deviation of .5, and
lower bound of 0. We then varied the drift rates across
three conditions. The drift rates of the first accumulator
were drawn from a truncated normal with means of 2
(Condition 1), 3 (Condition 2), and 4 (Condition 3), re-
spectively, all with standard deviations of 1 and lower
bounds of 0. The mean drift rate of the second accumula-
tor for all three conditions was drawn from a truncated
normal with a mean of 2 and standard deviation of 1. In
applications to real data, the distribution of the drift rates
corresponding to the incorrect choice will usually have a
lower mean and larger standard deviation than the distri-
bution of the drift rates corresponding to the correct
choice.

We then fit the hierarchical LBA model to the simulated
data. The group-level parameter estimates are shown in
Fig. 10. For the panels plotting v1 and v2, solid lines indicate
Condition 1, dotted lines indicate Condition 2, and dashed
lines indicate Condition 3. All other parameters were held
constant across conditions. The group-level parameter esti-
mates for the hierarchical model shown in Fig. 10 closely
align with the group-level distribution parameters used to gen-
erate the simulated data.

To further illustrate the advantages of the hierarchical LBA
model, we also fit the nonhierarchical LBA model shown in
Box 5 to the same set of simulated data. The nonhierarchical
model assumed that for each subject, the priors on k and A
were normally distributed with a mean of .5 and standard
deviation of 1. The prior on τ for each subject was normal
with mean .5 and standard deviation .5. Lastly, the prior on
the drift rate for each accumulator was drawn from a normal
distribution with a mean of 2 and standard deviation 1. Thus,
the priors on the parameters for each subject in the nonhierar-
chical model mirrored the group-level priors in the hierarchi-
cal model.

Fig. 10 Group-level parameter
estimates of the hierarchical LBA
model for simulated data. For the
panels plotting v1 and v2, solid
lines indicate Condition 1, dotted
lines indicate Condition 2, and
dashed lines indicate Condition 3

Fig. 11 Hierarchical model
parameter estimates (solid lines)
versus nonhierarchical parameter
estimates (dashed lines) for a
single subject in a single
condition

Behav Res

Figure 11 shows the hierarchical model (solid line) and
the nonhierarchical model (dotted line) individual-level
parameter estimates for the first subject in the first condi-
tion. It is clear that there is far less uncertainty in the
parameter estimates of the hierarchical model. This de-
crease in uncertainty is due to a property of hierarchical
models called shrinkage, through which the group esti-
mates inform the individual-level parameter estimates
(Kruschke, 2011). Therefore, increases in sample size will
usually result in better parameter estimates for both the
group and individual levels. This is in contrast to nonhi-
erarchical models, which treat subjects independently, so
that increases in sample size will only result in better
group-level estimates.

Speeding up runtimes

Depending on the design of the experiment and the number of
observed data points per condition, hierarchical LBA
implementations within Stan can have runtimes that are quite
long. For 20 subjects, each with 100 data points per condition,
runtimes for a single chain were approximately 3–6 h on an
Intel Xeon 2.90-GHz processor with more than sufficient
RAM. If one is equipped with a multicore machine, speed-
ups can be achieved by running multiple chains in parallel.
This is a built-in option in Stan and can be achieved in a single
l i n e a f t e r t h e RS t a n l i b r a r y i s l o a d e d , w i t h
o p t i o n s (m c . c o r e s =
parallel::detectCores()). If Stan is prohibitively
slow, we also recommend using a method in Stan that approx-
imates the posterior, called automatic differentiation variation-
al inference (ADVI; Kucukelbir, Tran, Ranganath, Gelman, &
Blei, 2016). All models coded in Stan can be run using ADVI.
Models that might take days to run in Stan using conventional
methods might take less than an hour to run using ADVI. This
can result in massive speed-ups during the initial stages of
model development, when many iterative versions of a model
need to be tested. If possible, it is recommended that the NUTS
algorithm be used to draw final inferences using starting points
based on samples drawn using ADVI. Although ADVI is be-
yond the scope of this tutorial, we have included example R
code to run the hierarchical LBAwith ADVI.

Discussion

Because parameters in cognitive models have psycholog-
ical interpretations, accurately estimating those parame-
ters is crucial for theoretical development. Traditional
parameter estimation methods find the set of parameter
values that maximize the likelihood of the data or max-
imize or minimize some other fit statistic. These methods
often result in point estimates that do not take into ac-
count the uncertainty of the estimate. The Bayesian ap-
proach to parameter estimation, on the other hand, treats
parameters as probability distributions, naturally
encompassing the estimate’s uncertainty. Because the es-
timated uncertainty of parameters factors into the com-
plexity of the underlying model, Bayesian analysis is
also particularly well-suited to aiding model selection
between models of differing complexities. This advan-
tage comes at a computational cost: Bayesian parameter
estimation beyond very simple models with only one or
two parameters requires the use of MCMC algorithms to
create samples from the posterior distribution. Some of
these algorithms, such as Metropolis–Hastings, require
careful tuning to ensure that the sampling process con-
verges to the posterior distribution. Metropolis–Hastings
and other algorithms, such as Gibbs sampling, often
show poor performance when the parameters of the mod-
el are correlated (as in cognitive models like the LBA).
Moreover, implementing custom models, such as the
LBA, can be technically challenging in many Bayesian
analysis packages.

Stan (Stan Development Team, 2015) was developed to
solve these issues by utilizing HMC (Duane, Kennedy,
Pendleton, & Roweth, 1987; Neal, 2011), which can effi-
ciently sample from distributions with correlated dimen-
sions, making it particularly easy to implement custom
distributions. We wrote this tutorial to show how to use
Stan and how to develop custom distributions in it. As
compared to some other packages, it is relatively easy to
implement a custom model distribution, so long as the
likelihood function is known (see Turner & Sederberg,
2012) . I t i s r e l a t i v e l y e a sy t o ex t end mode l
implementations to more complex scenarios that involve
multiple subjects and multiple conditions by using hierar-
chical models.

Behav Res

The computation involved in NUTS is fairly expensive and
can be slow for complex models. It should be noted that this
lowered speed is, by design, traded off for greater effective
sample rates. Other techniques, such as MCMC-DE (Turner
et al., 2013), which approximate some of the more expensive
computations involved in NUTS, may offer an alternative if
the sampling rate becomes an issue.

Although Bayesian parameter estimation has many advan-
tages over traditional methods, implementing theMCMC algo-
rithm can be technically challenging. Turnkey Bayesian infer-
ence applications allow the researcher to work at the level of the
model and not of the sampler, but they are likewise not without
issues. Stan is a viable alternative to other applications that do
automatic Bayesian inference, especially when the researcher is
interested in distributions that are uncommon and require user
implementation or when the model’s parameters are correlated.

Author note This work was supported by Grant Nos. NEI R01-
EY021833 and NSF SBE-1257098, the Temporal Dynamics of
Learning Center (NSF SMA-1041755), and the Vanderbilt Vision
Research Center (NEI P30-EY008126).

Appendix

The Stan implementations of the PDF and CDF of the
LBA are given in Boxes A1 and A2, respectively.
These functions are used in the calculation of the
likelihood function of the LBA given in Box 4 of the
main text and are nothing more than implementations of
the equations that Brown and Heathcote (2008) provid-
ed. Here, we simply note some implementation details
of each.

Box A1 Probability density function of the LBA, snipped
from Box 4 in the main text.

22 real lba_cdf(real t, real b, real A, real v, real s){
23
24 real b_A_tv;
25 real b_tv;
26 real ts;
27 real term_1;
28 real term_2;
29 real term_3;
30 real term_4;
31 real cdf;
32
33 b_A_tv <- b - A - t*v;
34 b_tv <- b - t*v;
35 ts <- t*s;
36 term_1 <- b_A_tv/A * Phi(b_A_tv/ts);
37 term_2 <- b_tv/A * Phi(b_tv/ts);
38 term_3 <- ts/A * exp(normal_log(b_A_tv/ts,0,1));
39 term_4 <- ts/A * exp(normal_log(b_tv/ts,0,1));
40 cdf <- 1 + term_1 - term_2 + term_3 - term_4;
41
42 return cdf;
43
44 }

Behav Res

Box A2 Cumulative distribution function of the LBA,
continued from Box A1

The first thing to note is that both are real-valued functions
of type real. They both take as arguments the decision time,
t, the decision threshold, b, the maximum starting evidence,
A, the drift rate, v, and the standard deviation, s. Lines 4
through 10 in Box A1 and lines 24 through 31 in Box A2
define all local variables that will be used in each computation.
After defining the local variables, the PDF or CDF is comput-
ed and the result is returned. Some built-in functions allow for
an easier computation of the PDF and CDF. The Phi function
is a built-in Stan function that implements the normal cumu-
lative distribution function. The exp function is the exponen-
tial function, and the normal_log function is the natural
logarithm of the PDF of the normal distribution, where the
last two arguments are the mean and standard deviation,
respectively.

Box A3 implements the LBA model in Stan. This code
is based on the Brtdists^ package for R (Singman et al.,
2015), which can be found online (https://cran.r-project.
org/web/packages/rtdists/index.html). All Stan functions
that generate samples from a given distribution are
ca l l ed random number genera to r s (RNGs) . To
distinguish between functions, RNGs must contain the
_rng suffix. For example, the RNG for the exponential
distribution is called exponential_rng. Here, we

name the function that generates samples from the LBA
model lba_rng. After defining the local variables, the
drift rates for each accumulator are drawn from the
normal distribution. Negative drift rates result in
negative response times, and drift rates of zero result in
undefined response times. The LBA model that we
implement assumes that at least one accumulator has a
positive drift rate, and therefore no negative or
undefined response times. This is achieved in the
while loop beginning on line 64, in which drift rates
are drawn from the normal distribution until at least one
drift rate is positive. The loop terminates after a maximum
of 1,000 iterations if at least one positive drift rate has not
been drawn. If this is the case, a negative value is
returned, denoting an undefined response time (lines 79
and 80). In practice, we have found this works very well
and will not return negative or undefined response times
given a reasonable model and data. After drawing the drift
rates, the start points for each accumulator are drawn (line
84). The finishing times of each accumulator are
computed according to the processing assumptions of
the LBA on line 85. Lastly, the response alternative and
lowest positive response time are stored in the pred
vector and returned.

22 real lba_cdf(real t, real b, real A, real v, real s){
23
24 real b_A_tv;
25 real b_tv;
26 real ts;
27 real term_1;
28 real term_2;
29 real term_3;
30 real term_4;
31 real cdf;
32
33 b_A_tv <- b - A - t*v;
34 b_tv <- b - t*v;
35 ts <- t*s;
36 term_1 <- b_A_tv/A * Phi(b_A_tv/ts);
37 term_2 <- b_tv/A * Phi(b_tv/ts);
38 term_3 <- ts/A * exp(normal_log(b_A_tv/ts,0,1));
39 term_4 <- ts/A * exp(normal_log(b_tv/ts,0,1));
40 cdf <- 1 + term_1 - term_2 + term_3 - term_4;
41
42 return cdf;
43
44 }

Behav Res

https://cran.r-project.org/web/packages/rtdists/index.html
https://cran.r-project.org/web/packages/rtdists/index.html

Box A3 LBA random number generator (RNG). The mod-
el assumes that on every trial at least one of the drift rates is
positive. Code is continued from Box A2.

Behav Res

References

Brooks, S., Gelman, A., Jones, G. L., & Meng, X. L. (2011).Handbook of
Markov chain Monte Carlo. Boca Raton, FL: Chapman &Hall/CRC.

Brown, S. D., & Heathcote, A. (2008). The simplest complete model of
choice reaction time: Linear ballistic accumulation. Cognitive
Psychology, 57, 153–178. doi:10.1016/j.cogpsych.2007.12.002

Donkin, C., Brown, S. D., & Heathcote, A. (2009). The overconstraint of
response time models: Rethinking the scaling problem.
Psychonomic Bulletin & Review, 16, 1129–1135. doi:10.3758/
PBR.16.6.1129

Duane, S., Kennedy, A. D., Pendleton, B. J., & Roweth, D. (1987).
Hybrid Monte Carlo. Physics Letters B, 195, 216–222.

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., &
Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Boca Raton,
FL: Chapman & Hall/CRC.

Gelman, A., & Rubin, D. B. (1992). Inference from iterative simulation
using multiple sequences. Statistical Science, 7, 457–511.

Gilks,W. R., Richardson, S., & Spiegelhalter, D. J. (1996).Markov chain
Monte Carlo in practice. Boca Raton, FL: Chapman & Hall/CRC.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov
chains and their applications. Biometrika, 57, 97–109.

Hoffman, M. D., & Gelman, A. (2014). The No-U-Turn sampler:
Adaptively setting path lengths in Hamiltonian Monte Carlo.
Journal of Machine Learning Research, 15, 1351–1381.

Kruschke, J. K. (2011). Doing Bayesian data analysis: A tutorial with R
and BUGS. Burlington, MA: Academic Press.

Kucukelbir, A., Tran, D., Rajesh, R., Gelman, A., & Blei, D. M. (submit-
ted). Automatic differentiation variational inference. Retrieved May
5, 2016, from http://arxiv.org/pdf/1603.00788v1.pdf

Lee, M. D., &Wagenmakers, E.-J. (2014). Bayesian cognitive modeling:
A practical course. New York, NY: Cambridge University Press.

Lewandowsky, S., & Farrell, S. (2011). Computational modeling in cog-
nition: Principles and practice. Thousand Oaks, CA: Sage.

Link, W. A., & Eaton, M. J. (2011). On thinning of chains in MCMC.
Methods in Ecology and Evolution, 3, 112–115.

Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000).
WinBUGS—A Bayesian modelling framework: Concepts, struc-
ture, and extensibility. Statistics and Computing, 10, 325–337.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &
Teller, E. (1953). Equations of state calculations by fast computing
machines. Journal of Chemical Physics, 21, 1087–1092.

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A.
Gelman, G. L. Jones, &X. L.Meng (Eds.),Handbook ofMarkov chain
Monte Carlo (pp. 113–162). Boca Raton, FL: Chapman & Hall/CRC.

Palmeri, T. J., Schall, J. D., & Logan, G. D. (2015). Neurocognitive
modelling of perceptual decisions. In J. R. Busemeyer, Z. Wang, J.

T. Townsend, & A. Eidels (Eds.),Oxford handbook of computation-
al and mathematical psychology (pp. 320–340). Oxford, UK:
Oxford University Press. doi:10.1093/oxfordhb/9780199957996.
013.15

Plummer, M. (2003, March). JAGS: A program for analysis of Bayesian
graphical models using Gibbs sampling. Paper presented at the 3rd
International Workshop on Distributed Statistical Computing,
Vienna, Austria.

Purcell, B. A., Schall, J. D., Logan, G. D., & Palmeri, T. J. (2012). Gated
stochastic accumulator model of visual search decisions in FEF.
Journal of Neuroscience, 32, 3433–3446.

Ratcliff, R., &McKoon, G. (2008). The diffusion decisionmodel: Theory
and data for two-choice decision tasks. Neural Computation, 20,
873–922. doi:10.1162/neco.2008.12-06-420

Ratcliff, R., Philiastides, M. G., & Sajda, P. (2009). Quality of evidence
for perceptual decision making is indexed by trial-to-trial variability
of the EEG. Proceedings of the National Academy of Sciences, 106,
6539–6544.

Ratcliff, R., Thapar, A., & McKoon, G. (2010). Individual differences,
aging, and IQ in two-choice tasks. Cognitive Psychology, 60, 127–
157. doi:10.1016/j.cogpsych.2009.09.001

Robert, C., & Casella, G. (2004). Monte Carlo statistical methods. New
York, NY: Springer.

Singman, H., Brown, S., Gretton, M., Heathcote, A. Voss, A., Voss, J., &
Terry, A. (2016). rtdists: Response time distributions (Version 0.4-
9).

Stan Development Team. (2015). Stan: A C++ library for probability and
sampling (Version 2.8.0).

Thomas, A., O’Hara, B., Ligges, U., & Sturtz, S. (2006). Making BUGS
Open. R News, 6(1), 12–17.

Turner, B. M., & Sederberg, P. B. (2012). Approximate Bayesian com-
putation with differential evolution. Journal of Mathematical
Psychology, 56, 375–385.

Turner, B. M., Sederberg, P. B., Brown, S. D., & Steyvers, M. (2013). A
method for efficiently sampling from distributions with correlated
dimensions. Psychological Methods, 18, 368–384. doi:10.1037/
a0032222

Turner, B. M., Van Maanen, L., & Forstmann, B. U. (2015). Combining
cognitive abstractions with neurophysiology: The neural drift diffu-
sion model. Psychological Review, 122, 312–336.

van Maanen, L., Brown, S. D., Eichele, T., Wagenmakers, E.-J., Ho, T.,
Serences, J. T., & Forstmann, B. U. (2011). Neural correlates of trial-
to-trial fluctuations in response caution. Journal of Neuroscience,
31, 17488–17495. doi:10.1523/JNEUROSCI.2924-11.2011

Wabersich, D., &Vandekerckhove, J. (2014). Extending JAGS:A tutorial
on adding custom distributions to JAGS (with a diffusion model
example). Behavior Research Methods, 46, 15–28.

Behav Res

http://dx.doi.org/10.1016/j.cogpsych.2007.12.002
http://dx.doi.org/10.3758/PBR.16.6.1129
http://dx.doi.org/10.3758/PBR.16.6.1129
http://arxiv.org/pdf/1603.00788v1.pdf
http://dx.doi.org/10.1093/oxfordhb/9780199957996.013.15
http://dx.doi.org/10.1093/oxfordhb/9780199957996.013.15
http://dx.doi.org/10.1162/neco.2008.12-06-420
http://dx.doi.org/10.1016/j.cogpsych.2009.09.001
http://dx.doi.org/10.1037/a0032222
http://dx.doi.org/10.1037/a0032222
http://dx.doi.org/10.1523/JNEUROSCI.2924-11.2011

