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• We provide a tutorial on estimating marginal likelihoods through thermodynamic integration and steppingstone sampling.
• For each method we provide a conceptual explanation, the mathematical details, and a description of how to implement them.
• We use the Linear Ballistic Accumulator as a running example to illustrate how to apply the method, and to display the accuracy of the method in

complex psychological models.
• We extend the methods to hierarchical models, and apply them to empirical data from the rapid decision-making literature.
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a b s t r a c t

One of the more principled methods of performing model selection is via Bayes factors. However,
calculating Bayes factors requires marginal likelihoods, which are integrals over the entire parameter
space, making estimation of Bayes factors for models with more than a few parameters a significant
computational challenge. Here, we provide a tutorial review of two Monte Carlo techniques rarely used
in psychology that efficiently compute marginal likelihoods: thermodynamic integration (Friel & Pettitt,
2008; Lartillot & Philippe, 2006) and steppingstone sampling (Xie, Lewis, Fan, Kuo, & Chen, 2011). The
methods are general and can be easily implemented in existing MCMC code; we provide both the details
for implementation and associated R code for the interested reader.While Bayesian toolkits implementing
standard statistical analyses (e.g., JASP Team, 2017; Morey & Rouder, 2015) often compute Bayes factors
for the researcher, those using Bayesian approaches to evaluate cognitive models are usually left to
compute Bayes factors for themselves. Here, we provide examples of themethods by computingmarginal
likelihoods for a moderately complex model of choice response time, the Linear Ballistic Accumulator
model (Brown & Heathcote, 2008), and compare them to findings of Evans and Brown (2017), who used a
brute force technique.We then present a derivation of TI and SS within a hierarchical framework, provide
results of a model recovery case study using hierarchical models, and show an application to empirical
data. A companion R package is available at the Open Science Framework: https://osf.io/jpnb4.

© 2019 Elsevier Inc. All rights reserved.

Formal cognitive models that attempt to explain cognitive pro-
cesses using mathematics and simulation have been a cornerstone
of scientific progress in the field of cognitive psychology. When
presented with several competing cognitive models, a researcher
aims to select between these different explanations in order to
determinewhichmodel provides themost compelling explanation
of the underlying processes. This is not as simple as selecting the
model that provides the best quantitative fit to the empirical data:
Models that are more complex have greater amounts of flexibility
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United States.

E-mail address: jeff.annis@vanderbilt.edu (J. Annis).

and can over-fit the noise in the data (Myung, 2000; Myung &
Pitt, 1997). Therefore, some method of selecting between models
is required that balances goodness-of-fit with model complexity.
This need has led to serious discussions about the right approach
to model selection. Finding principled methods that are able to
successfully select the best model can be difficult (e.g., Evans,
Howard, Heathcote, & Brown, 2017), especially for cognitive pro-
cessmodels,which are often functionally complex (Evans&Brown,
2017).

Traditionally, model selection has relied on finding the set
of model parameter values that maximize some goodness-of-fit
function and then penalizing that fit with some measure of model
complexity based on the number of parameters in the model (e.g.,
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Busemeyer & Diederich, 2010; Lee, 2001; Lewandowsky & Far-
rel, 2011; Shiffrin, Lee, Kim, & Wagenmakers, 2008; Wasserman,
2000); then different models can be compared because they are
put on equal footing via the added penalty term. However, such
methods take an overly simplistic approach to model selection by
ignoring a model’s functional form and assuming that all parame-
ters make an equal contribution to a model’s flexibility (Myung &
Pitt, 1997). Alternatively, a Bayesian framework provides a prin-
cipled way to account for the flexibility contained in a complex
process model beyond a mere parameter count (Annis & Palmeri,
2017; Shiffrin et al., 2008). Several non-Bayesian methods have
been proposed for accounting for the flexibility of a model’s func-
tional form (e.g., Grünwald, Myung, & Pitt, 2005; Ly, Marsman,
Verhagen, Grasman, & Wagenmakers, 2017; Myung, Navarro, &
Pitt, 2006). We only concern ourselves with Bayesian approaches
in this tutorial.

We start with Bayes’ rule applied to parameter estimation. This
aims to find the joint posterior distribution of the parameter vector
✓ given the observed data vector D. This probability, p(✓|D), via
Bayes’ rule is:

p(✓|D) = p(D|✓)p(✓)
p(D)

, (1)

where p(✓) is the prior probability of the parameters, p(D|✓) is
the likelihood of the parameters given the data, and p(D) is a
normalizing constant called themarginal likelihood. In its full form,
the marginal likelihood is equal to the integral over all possible
values of the model parameters, thereby making Bayes’ rule:

p(✓|D) = p(D|✓)p(✓)R
p(D|✓0)p(✓0)d✓0 , (2)

Because there is usually a vector of parameters in a cognitive
model, calculating the marginal likelihood involves calculating a
multiple integral; note thatwithin themultiple integral, this vector
is explicitly denoted by ✓0 rather than ✓ to make clear that these
are different values from one another, but from now on, we will
simply refer to the vector of parameters using ✓ alone. Outside
of a handful of simple examples, such integrals cannot be solved
analytically and cannot be estimated using standard numerical
methods. In the case of Bayesian parameter estimation, where the
goal is to calculate the posterior, this challenge is largely avoidedby
Markov ChainMonte Carlo (MCMC)methods (e.g., Brooks, Gelman,
Jones, &Meng, 2011);MCMC circumvents any need to estimate the
marginal likelihood because the integral cancels out via a ratio of
posteriors used in many MCMC algorithms. As we see below, in
the case of Bayesian model selection, the marginal likelihood, the
denominator of Eq. (2), is of key interest and so the integral must
be estimated.

Becausewe are interested inmodel comparison, it can be useful
to make the model we are working with explicit in that the prob-
abilities are all conditional on the model being assumed; outside
of model selection, the model is often assumed implicitly. Now,
Bayes’ rule can be re-written to include an explicit notation of
modelM:

p(✓|D,M) = p(D|✓,M)p(✓|M)
p(D|M)

. (3)

A common form of Bayesian model selection involves another
application of Bayes’ rule, but now to determine the posterior
probability of eachmodel,Mk, given the data,D, and to selectmodel
kwith the highest probability:

p(Mk|D) = p(D|Mk)p(Mk)
p(D)

, (4)

The denominator is another normalizing constant, but this one
marginalizes across all possible models, not any particular model

(and is not the same as the denominator in Eq. (1) since that one
conditionalized on a particular model implicitly). Because alterna-
tive models are discrete objects, this turns into a summation over
models, rather than an integral:

p(Mk|D) = p(D|Mk)p(Mk)PM
j=1 p(D|Mj)p(Mj)

, (5)

where p(Mk|D) is the posterior probability of model k, p(Mk) is the
prior probability of model k, p(D|Mk) is the marginal likelihood
(this is the same marginal likelihood that is the denominator in
Eqs. (1)–(3)), and

PM
j=1 p(D|Mj)p(Mj) is a normalizing factor, which

is constant across models, and therefore, can be ignored in relative
model comparison. In the case of twomodels, the ratio of posterior
probabilities gives the posterior odds:
p(M1|D)
p(M2|D) = p(D|M1)

p(D|M2)
⇥ p(M1)

p(M2)
, (6)

which is a function of the prior odds, p(M1)
p(M2)

, and the Bayes factor,
p(D|M1)
p(D|M2)

; note that the use of an odds ratio eliminates the need to cal-
culate the denominator in Eqs. (4) and (5). It is common to perform
Bayesian model selection in the absence of any explicitly stated
prior onmodels. In that case, the goal of Bayesianmodel selection is
to compute the Bayes factor, which weighs the evidence provided
by the data in favor of one model over another (Jeffreys, 1961) and
is given by the ratio of the marginal likelihoods for each model:

B12 = p(D|M1)
p(D|M2)

=
R
p(D|✓M1 ,M1)p(✓M1 |M1)d✓M1R
p(D|✓M2 ,M2)p(✓M2 |M2)d✓M2

, (7)

where ✓M1 and ✓M2 are the parameter vectors for M1 and M2,
respectively. Computing the marginal likelihoods requires esti-
mating integrals that cannot be solved using standard techniques.

The Bayes factor marginalizes over the entire parameter space,
thereby taking into account the complexity of the model result-
ing from its entire functional form. There are many off-the-shelf
software packages (e.g., JASP Team, 2017; Morey & Rouder, 2015)
that can estimate Bayes factors for a range of standard statistical
models, such regression and ANOVA (e.g., Rouder & Morey, 2012;
Rouder, Morey, Speckman, & Province, 2012). Formore complex or
non-linearmodels, such as those developed by cognitivemodelers,
off-the-shelf software packages generally do not exist. Instead,
methods for estimating Bayes factors must be applied bymodelers
themselves.

Methods that have previously been applied to cognitivemodels
include the Savage–Dickey ratio test (e.g., Wagenmakers, Lodew-
yckx, Kuriyal, & Grasman, 2010), product space methods (Lodew-
yckx, Kim, Lee, Tuerlinckx, Kuppens, & Wagenmakers, 2011), the
grid approach (Lee, 2004; Vanpaemel & Storms, 2010), and bridge
sampling (Gronau, Sarafoglou et al., 2017; Meng & Wong, 1996)),
a generalization of Chib’s method (Chib, 1995; Chib & Jeliazkov,
2001). Table 1 gives an overview of the practical considerations
for these methods. Although the Savage–Dickey ratio has proved
popular due to being computationally inexpensive and easy to
implement, it is only applicable to instances where one model is
nested within another model (that is, onemodel is a special case of
a more general model), limiting its scope.

For non-nested model comparison, methods such as the
product space method can be used. This method requires the
embedding of the two competing models within a supermodel
that contains an indicator variable that selects one of the models
on each iteration of the MCMC chain. The proportion of times
a particular model is selected is the posterior probability of the
model. The product space method can suffer from mixing issues
in which a chain fails to jump between models efficiently. This
results in the need for very long MCMC runs, or for the use of
more sophisticated algorithms to get the sampler tomake efficient
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Table 1

Comparison of practical considerations for commonly used methods of computing Bayes factors.
Method Easy for

beginners
Easy to compare
many models

Applicable to
non-nested models

Requires minimal
posterior samples

Requires a single
MCMC run

Scales with
dimensions

Grid approach Y Y Y NAd NAe N
Arithmetic mean Ya Y Y NAd NAe N
Savage–Dickey ratio Y N N Y Y Y
Product space N N Y N Y Y
Bridge sampling Yb Y Y N Y Y
TI/SS Yc Y Y Y N Y

aWhile the arithmeticmean approach is conceptually simple and is not difficult to implement naïvely, in practical situations it usually requires the use of specialized hardware
and software that might be foreign to the beginner.
bAlthough bridge sampling would likely be difficult for beginner users to implement, Gronau, Singmann and Wagenmakers (2017) have created a package that would be
broadly applicable to most situations.
cTI/SS requires setting tuning parameters such as the number of temperatures and the temperature schedule. While prior research has shown certain tuning parameters to
work well, this nevertheless adds complexity to the approach for the beginner.
dThis method does not require posterior samples.
eThis method does not require MCMC.

jumps (Lodewyckx et al., 2011). The grid approach suffers from the
curse of dimensionality in which the computational expense in-
creases exponentially with the number of parameters, making this
approach impractical formodelswithmore than a few parameters.

The bridge sampling method is very promising compared to
many past methods used in cognitive modeling, requiring samples
from the posterior, the definition of and sampling from an addi-
tional proposal distribution, and the definition of a bridge function.
It has been successfully applied to several situations involving
high-dimensional models and has an R package that only requires
the user to provide posterior samples, which bypasses the need
for the user to define a proposal distribution or bridge function
(Gronau, Singmann et al., 2017; Gronau, Sarafoglou et al., 2017).
However, as discussed by Gronau, Sarafoglou et al. (2017), the
accuracy of the bridge sampling algorithm is highly dependent
on an accurate representation of the joint posterior distribution,
which implies that a large number of posterior samples are often
required, especially in the case of complex cognitive models.

Because our main aim is to provide a tutorial and application of
two additional methods of estimating marginal likelihoods, we do
not discuss the above methods any further and refer readers inter-
ested in different methods for estimating the marginal likelihood
to reviews by Friel and Wyse (2012) and Liu et al. (2016).

Specifically, in this article, we outline two recent advancements
in methods for computing Bayes factors that also show promise:
thermodynamic integration (TI; Friel & Pettitt, 2008) and stepping-
stone sampling (SS; Xie, Lewis, Fan, Kuo, & Chen, 2011). These
methods are part of the general class of Monte Carlo methods
(Brooks et al., 2011) that rely on drawing random samples from a
distribution in order to compute an estimate of an integral. TI and
SS have been used in fields such as biology (Lartillot & Philippe,
2006), phylogenetics (e.g., Xie et al., 2011), ecology (e.g., Liu et al.,
2016), statistics (e.g., Friel & Pettitt, 2008), and physics (e.g., Ogata,
1989), but to the best of our knowledge they have not previously
been applied to problems of selecting between models in psychol-
ogy. Importantly, TI and SS compute the Bayes factor through a
mathematically rigorous, but conceptually and practically simple
extension of MCMC techniques. We believe that the simplicity of
these methods, along with our tutorial and online code, will help
allow more psychology researchers who are familiar with MCMC
techniques to calculate Bayes factors for comparing models, while
also adding alternative methods for users of other methods to
explore.

We provide an introduction to the techniques and demonstrate
their viability with one widely applicable cognitive model of deci-
sion making, the Linear Ballistic Accumulator model (LBA; Brown
& Heathcote, 2008). We provide an R package (R Core Team, 2017)
for implementing TI and SS, available at the Open Science Frame-
work: https://osf.io/jpnb4. TI and SS are fairly easy to implement

within existing code that samples from the posterior, and there-
fore, the descriptions from our article should be straightforward to
implement within any programming language used for cognitive
modeling and Bayesian inference.

From here, our article takes the following format: We begin
with a brief overview of the process of estimating the marginal
likelihood necessary to compute the Bayes factor, with an initial fo-
cus on conceptually simple, but computationally expensive ‘‘brute
force sampling’’ methods for illustration. Next, we detail the TI and
SS methods, including both conceptual explanations and detailed
mathematical derivations. After this, we present example applica-
tions of TI and SS with LBA, comparing these to recent applications
of brute forcemethodswith LBAbyEvans andBrown (2017). Lastly,
we apply the TI and SSmethods to hierarchicalmodels, which have
becomeprominent in cognitivemodeling and forwhich brute force
sampling methods are impossible to use in practice; we present
applications of TI and SS in a hierarchical framework with LBA,
applied to both simulated and observed data. Although TI and SS
are completely general and apply to any Bayesian model, we know
of no prior derivations of TI or SS in a hierarchical framework.

While we illustrate the marginal likelihood estimates using TI
and SS, as well as estimates obtained using brute force sampling, it
is important to note that for the LBA model, and indeed for most
cognitive models, there is no known ground truth for the Bayes
factor because the marginal likelihoods cannot be calculated an-
alytically. While the estimates we provide, and the comparisons to
brute force sampling, do not validate thesemethods, TI and SS have
been validated using models with analytically-available marginal
likelihoods. For example, Friel and Wyse (2012) used two Gaus-
sian linear non-nested regression models with gamma priors that
had analytically-available marginal likelihoods to compare sev-
eral estimation methods, including Chib’s method (Carlin & Chib,
1995), annealed importance sampling (Neal, 2001), nested sam-
pling (Skilling, 2006), harmonic mean (Newton & Raftery, 1994),
and TI. They found that TI performed better than nested sam-
pling and the harmonic mean and performed similarly to Chib’s
method and annealed importance sampling. A similar approach
was used by Liu et al. (2016), who used a Gaussian model with
an analytically-available marginal likelihood, comparing nested
sampling, harmonicmean, arithmeticmean (Kass & Raftery, 1995),
and TI. They found that TI produced highly accurate, low variance
estimates of the analytically available marginal likelihood. The
SS method has also been validated by Xie et al. (2011), using a
Gaussian model with an analytically-available marginal likelihood
to compare SS to TI and the harmonic mean. They found that SS
and TI produced accurate estimates of the marginal likelihood and
outperformed the harmonic mean.
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1. Basic Monte Carlo methods for estimating marginal likeli-

hoods

Monte Carlo integration techniques take advantage of the rela-
tionship between expected values and their corresponding integral
representations. Consider first the definition of the expected value
of the random variable, ✓:

E[✓] =
Z

✓p(✓)d✓, (8)

where p(✓) is the probability of ✓. The law of large numbers tells us
that the arithmetic average of n samples drawn with probability
p(✓) converges on the expected value as n approaches infinity.
Thus, with a sufficient number of samples (and finite variance), we
can estimate the expected value with an average:

E [✓] ⇡ 1
n

nX

i=1

✓i. (9)

where ✓i is sampled from p(✓). This can be generalized to the
expected value of a function f applied to ✓ as:

E [f (✓)] =
Z

f (✓)p(✓)d✓ (10)

⇡ 1
n

nX

i=1

f (✓i). (11)

where ✓i ⇠ p(✓) as above.
Weare now in a position to useMonte Carlomethods for solving

many integrals. Imagine being tasked with solving an integral that
can be expressed in the general form of Eq. (10), where f (✓) is some
arbitrary function and p(✓) defines a probability distribution from
which samples can be drawn. The integral can be estimated by
taking randomsamples from p(✓), passing those randomly sampled
✓ values through f (✓), and taking the arithmetic average. What
began as the definition of expected value becomes away to solve an
integral — an integral that may be impossible to solve analytically
or using standard numerical methods.

This logic forms one of the simplest Monte Carlo techniques to
estimate an integral: the arithmetic mean estimator. In the context
of estimating the marginal likelihood under Bayes, it is computed
by drawing random samples, ✓i, from the prior distribution, p(✓),
computing the likelihood, p(D|✓i), for each sample, and then taking
the arithmetic mean:

p(D) =
Z

p(D|✓)p(✓)d✓ (12)

= E [p(D|✓)] (13)

⇡ 1
n

nX

i=1

p(D|✓i), (14)

where ✓i ⇠ p(✓) (note again that we assume conditionalizing on
model M implicitly rather than explicitly). The arithmetic mean
estimator requires samples to be drawn from prior. Unfortunately,
the likelihood is often highly peaked compared to the prior, mean-
ing that relatively few random samples (from the prior) will be
drawn within the highest-density areas of the likelihood function.
This will generally lead to underestimation of the marginal likeli-
hood unless a very large number of samples are used. Although this
issue can theoretically be solved with a huge number of samples,
the computational burden placed on a CPU quickly becomes over-
whelming with the significant increases in the number of samples
often required (e.g., see Fig. 1).

Evans andBrown (2017) provided amethod for alleviating some
of the computational burden arising from the need for very large
numbers of samples when calculating the arithmetic mean by

Fig. 1. Estimated number of days to collect the corresponding sample size using
a brute-force Monte Carlo approach to estimating the marginal likelihood with a
GPU vs. a CPU. The points represent actual data and the dotted line represents the
predictions. Evans and Brown (2017) found sample sizes of approximately 1e8 are
sufficient for accurate estimates of marginal likelihoods for single participant LBA
models with 6 parameters. For hierarchical models, more may be needed.

using graphical processing unit (GPU) technology to quickly com-
pute, in parallel, a large number of samples from the prior. For in-
stance, they found that sample sizes of approximately 100,000,000
were necessary to approach reasonable estimates of the marginal
likelihood for one 6-parameter cognitive model for a single
participant; on their hardware, a process that would take a couple
of days for CPU computing (Fig. 1) was possible within minutes
using GPU computing. However, the GPU method of Evans and
Brown (2017) has limitations: First, the method can be difficult
to implement technically, and requires relatively expensive GPU
hardware on high-end desktop workstations to reap the full com-
putational benefits, meaning that it may not be feasible for the
average user.1 Second, and perhaps more important, the GPU
method does not entirely circumvent the curse of dimensionality,
whereby ever-growing numbers of samples are needed for ever-
more-complexmodels. For example,whenusinghierarchicalmod-
els, which model the data of multiple participants simultaneously
using both parameters for individuals as well as parameters for
the group, the number of brute-force samples required to gain
a precise and stable approximation of the marginal likelihood
becomes exponentially greater. Even using GPU methods, it is
unlikely to be able to achieve reasonable sampling within any
reasonable amount of time.

Onemethod of increasing the efficiency of the sampling process
is importance sampling. Importance sampling was one of the first
Monte Carlo methods used to estimate marginal likelihoods in the
statistics literature (Newton & Raftery, 1994). Instead of sampling
from the prior, as is done with the arithmetic mean estimator,
importance sampling involves sampling from another distribution,
called the importance distribution, and then re-weighting the sam-
ples to obtain an unbiased estimate.

1 While all laptop and desktop computers have some kind of a graphics proces-
sor, only expensive high-end laptops and desktop workstations have the kinds of
CUDA-capable GPUs that are required to run these kinds of computations.
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Here, we illustrate an estimation of p(D) using importance sam-
pling. This derivation requires defining an importance distribution,
g(✓), a proper probability distribution (from which random sam-
ples can be drawn) that more closely resembles the shape of the
likelihood, usually with heavier tails than the posterior. In the case
of estimating the marginal likelihood, the importance sampling
equation is:

p(D) =
Z

p(D|✓)p(✓)d✓ (15)

=
Z

p(D|✓)p(✓)
g(✓)

g(✓)d✓. (16)

Note that we have not changed the marginal likelihood, but have
only multiplied it by 1, g(✓)/g(✓).

Before we represent this integral as an expected value, the
importance sampling equation for the marginal likelihood is com-
monly written with a denominator equal to the integral of the
prior, using the same importance distribution, g(✓). This interme-
diate step is performed so the equation simplifies to a convenient
representation. Again, this does not change themarginal likelihood
as we are only dividing it by 1:

p(D) =
R p(D|✓)p(✓)

g(✓) g(✓)d✓
R p(✓)

g(✓)g(✓)d✓
. (17)

Now we can plug in just about any appropriate importance distri-
butionwe choose. If we set the importance distribution, g(✓), equal
to the prior, p(✓), we obtain the arithmetic mean estimator shown
earlier:

p(D) =
R p(D|✓)p(✓)

p(✓) p(✓)d✓
R p(✓)

p(✓)p(✓)d✓
(18)

=
E

h
p(D|✓)p(✓)

p(✓)

i

E

h
p(✓)
p(✓)

i (19)

⇡ 1
n

nX

i=1

p(D|✓i). (20)

where ✓i ⇠ p(✓).
When the posterior, p(✓|D), is used as the importance distribu-

tion, we obtain the harmonic mean estimator (Newton & Raftery,
1994):

p(D) =
R p(D|✓)p(✓)

p(✓|D) p(✓|D)d✓
R p(✓)

p(✓|D)p(✓|D)d✓
(21)

=
E✓|D

h
p(D|✓)p(✓)
p(✓|D)

i

E✓|D
h

p(✓)
p(✓|D)

i (22)

⇡ 1
1
n

Pn
i=1

1
p(D|✓i)

. (23)

where ✓i ⇠ p(✓|D) and the subscript ✓|D inE✓|D emphasizes that the
expected value is taken with respect to the posterior distribution
of ✓.

The marginal likelihood estimate produced from the harmonic
mean estimator is ‘‘computationally free’’ because it is obtained
using the same samples from which posterior inferences can be
drawn (via MCMC). It is also a more efficient estimator than the
prior importance distribution, as its density is more peaked in the
high likelihood areas. However, this efficiency comes at the cost of
bias. Because the harmonicmean estimator uses the posterior as its
importance distribution, it tends to ignore low likelihood regions,
such as those comprising the prior, leading to overestimates of the

marginal likelihoods (Xie et al., 2011). In addition, the harmonic
mean can also, theoretically, have infinite variance (Lartillot &
Philippe, 2006; Newton & Raftery, 1994). In the section describing
steppingstone sampling, we will show how this importance sam-
pling scheme is improved.

2. Thermodynamic integration and steppingstone sampling

In this section, we detail the thermodynamic integration and
steppingstone samplingmethods of estimating themarginal likeli-
hood. Our goal is to provide sufficient details for an interested user
to implement these methods for complex cognitive models.

2.1. Thermodynamic integration (TI)

2.1.1. Conceptual introduction
The thermodynamic integration (TI) approach involves drawing

samples from Bayesian posterior distributions whose likelihood
functions are raised to different powers (called temperatures, t)
that range between 0 and 1. Wewill show how this computational
‘‘trick’’ provides a way of estimating the marginal likelihood of the
original target posterior distribution.

Posteriors (Eq. (1)) whose likelihoods are raised to the power
of 0 obviously are equivalent to the prior, and posteriors whose
likelihoods are raised to the power of 1 obviously constitute the
full posterior distribution. Raising the likelihood to a power be-
tween 0 and 1, therefore, results in a posterior distribution having
some mixture of the prior and posterior. After sampling from
each posterior, the log-likelihood (ln p(D|✓), not raised to a power)
under each sample is computed. The mean log-likelihood under
each power posterior constitutes points along a curve. The area
under this one-dimensional curve, which can be estimated using
ordinary numerical integration techniques, equals the logmarginal
likelihood. One can then transform the logmarginal likelihood into
themarginal likelihood and use this value to comparewith another
model in a Bayes factor. Note that we present all results using the
log marginal likelihood as it is often easier to depict graphically,
given that the marginal likelihood is usually a very large number.
Likewise, we present Bayes factors on the log scale as well.

2.1.2. Mathematical details
The key to the TI approach is to raise the likelihood in the

posterior to a power, t. The following derivations will ultimately
represent the logmarginal likelihood as a one-dimensional integral
with respect to t, which can then be solved using standard numer-
ical methods.

Before proceeding with these derivations, we first define a new
posterior distribution that is a function of both D and t (assuming
modelM implicitly):

p(✓|D, t) = p(D|✓)tp(✓)
p(D|t) . (24)

This is called the power posterior; note this is only equivalent to
the posterior in Eqs. (1)–(3) when temperature t = 1. The power
posterior has the following marginal likelihood, which we refer to
as the power marginal likelihood:

p(D|t) =
Z

p(D|✓)tp(✓)d✓, t 2 [0, 1] . (25)

Let us step through how this simple transformation can be capital-
ized upon to estimate a marginal likelihood, p(D).

We begin by recasting the log marginal likelihood as the dif-
ference between the log power marginal likelihoods at t = 1 and
t = 0:

ln p(D) = ln p(D|t = 1) � ln p(D|t = 0). (26)
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Given that p(D|t = 0) ends up simply being the integral of the prior
distribution, which integrates to 1 (assuming the requisite proper
priors), its log equals zero. And we note again that p(D|t = 1) is
equal to the targetmarginal likelihood. So this step is just rewriting
the log of the marginal likelihood in a different form, but a form
that will be useful below.

We then introduce the following identity:

ln p(D|t = 1) � ln p(D|t = 0) =
Z 1

0

d
dt

ln p(D|t)dt. (27)

This just follows from the definition of a definite integral over the
bounds of t. We now have a one-dimensional integral with respect
to t. However, the integrand contains a derivative, whichwewould
like to represent in a more convenient form.

The remainder of the derivation involves computing this deriva-
tive and representing the result as an expected value that can be
estimated using MCMC. To begin with, taking the derivative with
respect to t, we find the following:
d
dt

ln p(D|t) = 1
p(D|t)

d
dt

p(D|t) (28)

This again leaves us with another derivative to compute. We first
replace p(D|t) with its integral definition from Eq. (25). Then, the
derivative and integral commute (by the Leibniz integral rule2),
moving the d

dt inside the integral, which becomes a partial @
@t

because the interior term also depends on ✓:
d
dt

p(D|t) =
Z

@

@t
p(D|✓)tp(✓)d✓. (29)

The next step just solves the derivative using the fact that @
@t a

t =
at ln a.Z

@

@t
p(D|✓)tp(✓)d✓ =

Z
p(D|✓)t ln p(D|✓)p(✓)d✓. (30)

Substituting back into Eq. (28) we obtain the following:
d
dt

ln p(D|t) = 1
p(D|t)

Z
p(D|✓)t ln p(D|✓)p(✓)d✓. (31)

After rearranging we have:

d
dt

ln p(D|t) =
Z

p(D|✓)tp(✓)
p(D|t) ln p(D|✓)d✓. (32)

Notice that the integrand is now composed of one term that is the
power posterior and another term that is the log-likelihood. We
can represent this as an expected value, referred to in the literature
(e.g., Friel, Hurn, &Wyse, 2014; Friel &Wyse, 2012) as the expected
log posterior deviance:
Z

p(D|✓)tp(✓)
p(D|t) ln p(D|✓)d✓ = E✓|D,t [ln p(D|✓)]. (33)

Because the integral in Eq. (33) can be written in terms of an ex-
pected value and because we can sample from the power posterior
using standard MCMC techniques, we can estimate the integral
using the Monte Carlo integration methods described earlier.

Finally, substituting the above into Eqs. (26) and (27), we find
that the logmarginal likelihood is equal to the integralwith respect
to t of the expected posterior deviance from 0 to 1:

ln p(D) =
Z 1

0
E✓|D,t [ln p(D|✓)]dt. (34)

2 The order of integration and differentiation can be interchanged whenever
the model is regular. In particular, when the model is twice differentiable in the
parameters for almost every observation with a Fisher information that is bounded
away from zero and infinity on the whole range of the parameter space. This
includesmost exponential families, but this condition should be validated explicitly.

Box I. Pseudo-code algorithm for estimating themarginal likelihood using TI or SS,
where each power posterior is run independently. K is the number of temperatures,
and N is in the number of iterations in the chain at each temperature.

Box II. Pseudo-code algorithm for estimating the marginal likelihood using the
quasistatic method. The resulting MCMC chain is a single, long MCMC chain in that
the all current samples are dependent on their previous samples, even at points in
which the chain changes temperatures. k is the number of temperatures, and n is in
the number of iterations in the chain at each temperature.

While this is yet another integral, it is just a one-dimensional
integral over t, which can be estimated using standard numerical
integration techniques. While the derivation may seem compli-
cated, the resulting algorithmic implementation is actually quite
simple.

2.1.3. Implementation
Approximating the integral in Eq. (34) is straightforward: Draw

samples from power posteriors across a range of temperatures,
compute the mean log-likelihood under each temperature, and
numerically integrate over the resulting curve to produce an es-
timate of the log marginal likelihood of the target posterior distri-
bution. Thankfully, random sampling from the power posterior is
possible using a standard Metropolis–Hastings algorithm (Brooks
et al., 2011; Hastings, 1970), and standard numerical integration
techniques are readily applied to the one-dimensional problem.

The algorithm for generating the random samples from the
power posterior needed to estimate the log marginal likelihood
with TI (and later, SS) is outlined in Box I. The inner loop, over i,
is a standard MCMC (Metropolis–Hastings) sampler with the ex-
ception that samples are drawn from a posterior whose likelihood
is raised to a particular temperature. The outer loop, over j, cycles
through the various temperatures, t. This procedure therefore re-
sults in an array of MCMC chains, with each chain at a different
temperature between 0 and 1. In practice, this procedure can be
run with multiple chains so that convergence can more easily be
assessed at each temperature.

In addition to running each power posterior independently, a
single, long MCMC run can also be used. This is referred to by
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Fig. 2. The evolution of several superimposed MCMC chains running under different temperatures. Black lines represent the location of each temperature index along the
chains. The dashed lines represent the burn-in period after initializing each temperature. The initial temperature is 1 (posterior sampling) and the final temperature is 0
(prior sampling). The samples become increasingly spread out as the posterior transitions to the prior.

Lartillot and Philippe (2006) as the quasistatic method. Box II
shows the pseudo-code for the quasistatic method. The quasistatic
method (Box II) and independent method (Box I) begin exactly the
same for the first temperature rung, but unlike the independent
method, the quasistatic method does not re-initialize the chain at
each subsequent temperature. Rather, the chain continues, using
the previous sample to compute the acceptance probability of the
current proposal. This is equivalent to using the final sample from
temperature tj as the initial sample at temperature tj + 1. The
quasistaticmethod canbe run from t = 0 to t = 1 (i.e. an annealing
schedule), or in reverse from t = 1 to t = 0 (i.e. a melting
schedule). Fig. 2 shows the evolution of MCMC chains produced by
the quasistatic algorithm. After an initial burn-in periodwhose end
is denoted by the first dotted line, samples are initially drawn at
temperatures of 1. These are pure posterior samples. After drawing
n samples from the posterior at t = 1, the temperature changes to
the next temperature rung in the schedule (depicted at the second
solid line at 1000 iterations). At this temperature, another burn-
in period begins and is followed by 700 sampling iterations. This
process continues until the temperature is reduced down to 0,
the final temperature rung in the schedule. Since the quasistatic
method avoids having to burn-in from random starting points for
each temperature, it can often achieve higher accuracy in fewer
samples than running each power posterior independently. The
intuition behind the quasistatic method is that good samples for
temperature tj are also reasonable for tj+1,whenever the latter does
not differ much from the former.

After the chain of samples at each temperature are collected
as per the algorithm in Box I or Box II, the mean log-likelihood is
computed given samples from each power posterior. This involves
computing the log likelihood, ln p(D|✓i), under each sample ✓i, and
then calculating the average across samples within each t. That av-
erage approximates E✓|D,t [ln p(D|✓)]. We then plot E✓|D,t [ln p(D|✓)]
as a function of t. An example of one such curve is shown in Fig. 3.
The estimate of the integral in Eq. (34) is simply the area under
this curve, which can be estimated using any variety of standard

Fig. 3. The mean log-likelihood computed under samples drawn from a posterior
raised to the corresponding temperature. The area under the curve, shown in
gray, is the estimate of the marginal likelihood produced from the thermodynamic
integration method. Note the Monte Carlo standard error bars are not plotted
because they too small to be displayed.

numerical integration techniques. For example, Friel and Pettitt
(2008) suggest the simple trapezoidal rule:

ln p(D) ⇡
kX

j=2

tj � tj�1

2

"
1
n

nX

i=1

ln p(D|✓i,j) + 1
n

nX

i=1

ln p(D|✓i,j�1)

#
.

(35)



74 J. Annis, N.J. Evans, B.J. Miller et al. / Journal of Mathematical Psychology 89 (2019) 67–86

where t forms the set of temperatures (sometimes referred to
as the temperature schedule with each temperature, indexed by
j, referred to as a rung), k is the total number of temperatures,
and n is the number of samples. Also, note that the two terms in
Eq. (35) are from rungs j and j�1 and that they may have differing
numbers of samples. Following Friel and Pettitt (2008), the Monte
Carlo variance associated with the estimate can also be obtained
in two steps. The first step is to compute the TI estimate using the
trapezoidal rule under each sample:

TIi =
kX

j=2

tj � tj�1

2
⇥
ln p(D|✓i,j) + ln p(D|✓i,j�1)

⇤
, i = 1, . . . , n.

(36)

This results in a vector TI, where each element, TIi, is the TI estimate
corresponding to theMCMC sample, i. The samplemean, µ̂TI , is the
average over TI. In the second step, the variance of µ̂TI is given by:

Var(µ̂TI ) = 1
n
Var(TI). (37)

One could then compute the standard error or construct a 95%
confidence interval if desired.

There are two major sources of error in the TI approach: The
sampling error associated with MCMC and the error associated
with the discretization of k temperatures. In general, the error
associated with MCMC sampling can be reduced by increasing the
number of samples per power posterior or using a more efficient
sampler (for discussions, see Brooks et al., 2011; Turner, Sederberg,
Brown, & Steyvers, 2013). The discretization introduces error in the
TI estimate of the logmarginal likelihood aswell. The development
of methods that aim to decrease the discretization error is an
active area of research (e.g., Friel et al., 2014; Hug, Schwarzfischer,
Hasenauer, Marr, & Theis, 2016; Oates, Papamarkou, & Girolami,
2016). Research has shown that there are ways to increase the
accuracy of the TI estimate via changes in temperature schedule.
One method is simply to increase the number of temperature
rungs, which increases the stability of the integral, but obviously
comes at the cost of an increased computational workload. We
found that in many situations a curve with 30–35 or more points
worked well, and this may be a good place for an interested user
to begin with their model. There is currently no known solution to
picking the optimal number of rungs and therefore it is left to the
judgment of the researcher.

A visual examination of the thermodynamic curve after finding
the mean log-likelihood under each power posterior can serve as a
sanity check. The curve should be smooth; it is a strictly increasing
function of temperature (Friel et al., 2014). If a higher temperature
point has a lower marginal likelihood then it indicates there is
something wrong with the MCMC sampling procedure that was
used (e.g., possibly thatmore sampling is needed, or a longer burn-
in process is required).

An additional method to reduce error is to change the distribu-
tion of the temperature rungs. One of the first papers that intro-
duced TI (Lartillot & Philippe, 2006) simply used an evenly spaced
temperature schedule. Since then, temperature schedules leading
to more efficient estimation of the marginal likelihood have been
devised. Such methods commonly place more rungs near small
values of t, where the expected likelihood, E✓|D,t ln p(D|✓), tends to
change more rapidly. A commonly used scheduling framework is
one that sets tj to the (j � 1)th quantile of a Beta(↵, 1) distribution
(Xie et al., 2011):

tj =
✓

j � 1
k � 1

◆1/↵

, (38)

where k is the total number of temperatures, j = 1, 2, . . . , k, and ↵
is a tuning parameter that modulates the skew of the distribution

over t. When ↵ = 1, the temperatures are uniformly distributed
over the interval. As ↵ decreases towards zero, temperatures be-
come positively skewed. ↵ values of 0.30 (Xie et al., 2011) and 0.25
(Friel & Pettitt, 2008) have been shown to be suitable for a range
of models such as (but not limited to) linear regression models,
hiddenMarkov random fieldmodels, and continuous-timeMarkov
chain models. In general, this moderate skew towards the prior
works well because most of the rungs are going to be located in
places in which the curve changes rapidly. Fig. 3 illustrates what
the distribution of 20 temperature rungs looks likewhen↵ = 0.30.

Attempts to improve the numerical integration method have
also been made (e.g., Friel et al., 2014; Hug et al., 2016). For
example, Friel et al. (2014) used a corrected trapezoidal rule that
takes into account the second derivative (i.e., the variance) of the
log-likelihood:

ln p(D) ⇡
kX

j=2

tj � tj�1

2

"
1
n

nX

i=1

ln p(D|✓i,j) + 1
n

nX

i=1

ln p(D|✓i,j�1)

#

�
kX

j=2

�
tj � tj�1

�2

12
⇥
Var(ln p(D|✓i,j)) � Var(ln p(D|✓i,j�1))

⇤
.

(39)

Friel et al. showed that the correction term improves the esti-
mate with nearly zero additional computational cost, only requir-
ing the variance of the log-likelihoods under the power posterior
samples at each temperature rung. Note that the corrected trape-
zoidal rule is based on the variance of the entire power posterior
sample and therefore we do not consider its Monte Carlo variance.

2.2. Steppingstone Sampling (SS)

2.2.1. Conceptual introduction
Steppingstone sampling (SS; Xie et al., 2011) proceeds in largely

the same way as TI: sample from power posteriors at a variety of
temperatures and then use the resulting samples to compute the
estimate of the marginal likelihood. The only practical difference
between TI and SS is the formula used to compute the estimate.
The SS estimator uses a variant of importance sampling. The basic
idea is to use adjacent, slightly more diffuse power posteriors as
importance distributions. For example, the power posterior with
a temperature of 0.1 is a slightly more diffuse power posterior
than the one at 0.2 and therefore performs well as an importance
distribution. More formally, for each power marginal likelihood,
p(D|tj), an estimate is obtained using p(D|tj�1) as an importance
distribution. Each estimate, p(D|tj), is then combined using the SS
estimator to obtain an estimate of the marginal likelihood, p(D).

2.2.2. Mathematical details
The SS approach exploits the following identity:

p(D) = p(D|t = 1)
p(D|t = 0)

=
kY

j=1

p(D|tj)
p(D|tj�1)

, (40)

where p(D|tj) takes the same formas thepowermarginal likelihood
from TI, given in Eq. (25). It is probably easiest to demonstrate
why this identity holds with an example. Consider k = 3 and
temperatures that are evenly spaced, then:

p(D) =
R
p(D|✓) 1

3 p(✓)d✓
R
p(D|✓) 0

3 p(✓)d✓

R
p(D|✓) 2

3 p(✓)d✓
R
p(D|✓) 1

3 p(✓)d✓

R
p(D|✓) 3

3 p(✓)d✓
R
p(D|✓) 2

3 p(✓)d✓
. (41)

Now cancel out common terms in the numerator and denominator,
which results in:

p(D) =
R
p(D|✓)p(✓)d✓R

p(✓)d✓
. (42)



J. Annis, N.J. Evans, B.J. Miller et al. / Journal of Mathematical Psychology 89 (2019) 67–86 75

The denominator is simply the integral of the prior. Given a proper
prior, this will integrate to 1 and we will be left with the marginal
likelihood, p(D).

The procedure then estimates each of the k ratios using im-
portance sampling. The importance distribution for each power
posterior, p(D|tj), is p(D|tj�1), the reason being that the distribu-
tion at the lower adjacent temperature, p(D|tj�1), is slightly more
diffuse than p(D|tj) and therefore serves as a useful importance
distribution. The following derivations will generate estimates of
all p(D|tj) using this importance sampling framework. Then, these
ratios will be substituted into Eq. (40) to obtain the SS estimator of
p(D).

Recall the definition of the power marginal likelihood raised to
the temperature, tj:

p(D|tj) =
Z

p(D|✓)tj p(✓)d✓. (43)

We can rewrite this in an importance sampling framework using
the power posterior raised to temperature tj�1 as the importance
distribution:

p(D|tj) =
Z

p(D|✓)tj p(✓)
p(✓|D, tj�1)

p(✓|D, tj�1)d✓. (44)

In order to help to simplify the equation later, we perform an
intermediate step before representing it as an expected value. To
do this, we divide by the integral of the prior, again using the power
posterior raised to the previous temperature as the importance
distribution:

p(D|tj) =
R p(D|✓)tj p(✓)

p(✓|D,tj�1)
p(✓|D, tj�1)d✓

R p(✓)
p(✓|D,tj�1)

p(✓|D, tj�1)d✓
. (45)

This trick was also performed earlier for the harmonic mean
derivation. It is only done to ensure the final representation is in
a mathematically convenient form. Remember, this is equivalent
to dividing by 1, given proper priors. We then represent the
numerator and denominator as expected values:
R p(D|✓)tj p(✓)

p(✓|D,tj�1)
p(✓|D, tj�1)d✓

R p(✓)
p(✓|D,tj�1)

p(✓|D, tj�1)d✓
=

E✓|D,tj�1

h
p(D|✓)tj p(✓)
p(✓|D,tj�1)

i

E✓|D,tj�1

h
p(✓)

p(✓|D,tj�1)

i . (46)

To obtain a computable approximation, the ratio of expected val-
ues can be approximated with the following ratio of averages over
a large number of random samples:

E✓|D,tj�1

h
p(D|✓)tj p(✓)
p(✓|D,tj�1)

i

E✓|D,tj�1

h
p(✓)

p(✓|D,tj�1)

i ⇡
1
n

Pn
i=1

p(D|✓i,j�1)
tj p(✓i,j�1)p(D|tj�1)

p(D|✓i,j�1)
tj�1 p(✓i,j�1)

1
n

Pn
i=1

p(✓i,j�1)p(D|tj�1)

p(D|✓i,j�1)
tj�1 p(✓i,j�1)

. (47)

After simplifying we find the following:

p(D|tj) ⇡ 1
n

nX

i=1

p(D|✓i,j�1)tj

p(D|✓i,j�1)tj�1

"
1
n

nX

i=1

1
p(D|✓i,j�1)tj�1

#�1

. (48)

where ✓j�1,i ⇠ p(✓|D, tj�1). In a similar fashion, it is straightforward
to show (see the Appendix for the full derivation):

p(D|tj�1) ⇡
"
1
n

nX

i=1

1
p(D|✓i,j�1)tj�1

#�1

, (49)

where ✓i ⇠ p(✓|D, tj�1). Lastly, substituting the estimators of
p(D|tj) and p(D|tj�1) into Eq. (40), we have the steppingstone es-
timator:

bSS =
kY

j=1

1
n

nX

i=1

p(D|✓i,j�1)tj

p(D|✓i,j�1)tj�1
, (50)

where ✓j�1,i ⇠ p(✓|D, tj�1).

2.2.3. Implementation
As noted in Boxes I and II, the same samples (minus the samples

from the power posterior at t = 1, p(✓|D, t = 1)) used for TI can
be used to produce samples for the steppingstone estimate as well.
The only difference is how those samples are used to estimate the
marginal likelihoods.

Xie et al. (2011) showed that Eq. (50) can be numerically unsta-
ble in practice and that stability is improved by taking the log of
the estimator and factoring out the largest log-likelihood:

ln p(D) ⇡ ln bSS

=
k�1X

j=1

ln

"
1
n

nX

i=1

exp((ln p(D|✓i,j) � Lmax,j)(tj+1 � tj))

#

+ (tj+1 � tj) ⇤ Lmax,j,

(51)

where Lmax,j is the maximum log-likelihood under the power pos-
terior sample at temperature tj. Note the SS estimator does not
require samples from the posterior, p(✓|D, t = 1), as themaximum
temperature is k � 1. This is because the importance sampling
distribution for the power posterior at tj is the adjacent power
posterior at tj�1. It is also important to note that the log version of
SS is not an unbiased estimator of ln p(D). However, this bias dra-
matically decreases as the number of temperature rungs increases
(see Xie et al., 2011), and in the present work, we did not find this
aspect of the SS estimator to be problematic.

Since SS relies on the entire posterior sample (the maximum
sample from the setmust be computed), the variance for SS is com-
puted slightly differently than TI. The first step involves computing
exponentiated form of the k � 1 SS ratios:

rj = 1
n

�
Lmax,j

�tj+1�tj
nX

i=1

✓
p(D|✓i,j)
Lmax,j

◆tj+1�tj
, j = {1, . . . , k � 1} .

(52)

The result is then used to compute the variance of the log SS
estimate (Xie et al., 2011):

Var
�
ln bSS

� = 1
n2

k�1X

j=1

nX

i=1

✓
p(D|✓i,j)tj+1�tj

rj

◆2

. (53)

3. The linear ballistic accumulator

In this section,we illustrate how to compute themarginal likeli-
hood (and hence Bayes factors)with TI and SS for a cognitivemodel
of decision making called the Linear Ballistic Accumulator model
(LBA; Brown & Heathcote, 2008). There are three main reasons
for choosing the LBA to demonstrate TI and SS. First, the LBA is
a general model, widely applicable to a variety of tasks involving
a decision. Second, there are many demonstrations of TI and SS
using more standard statistical models (validating these methods
relative to a ground-truth analytic solution), butwe are unaware of
any demonstrations using a psychologically-motivated cognitive
model. This is important, as there are often unique issues associ-
ated with cognitive models due to their correlated structure (e.g.,
Turner et al., 2013). Third, the LBA, like many cognitive models,
is not included in off-the-shelf software packages that compute
marginal likelihoods and Bayes factors for statistical models like
regression and ANOVA (e.g., JASP Team, 2017; Rouder & Morey,
2012; Rouder et al., 2012). For models like the LBA, general meth-
ods of marginal likelihood estimation, such as TI and SS, must be
applied.

We first describe the LBA and its parameters. Next, we describe
how we use simulated data from the LBA as a test bed for TI and
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SS. Here, we use the same simulated data sets as Evans and Brown,
which allows us to compare the marginal likelihood estimates
obtained via TI and SS to those obtained by themusing a brute force
GPU-based method.

The LBA is a member of a broader class of sequential sam-
pling models (Ratcliff & Smith, 2004), which assume that decision
making is a process of accumulating evidence for various choice
alternatives over time. To make a decision, people sample noisy
evidence for each alternative at some rate (the ‘‘drift rate’’), until
the accumulated evidence for one of the alternatives reaches some
threshold level of evidence (the ‘‘response threshold’’), whereby
an overt response is triggered. Specifically, the LBA assumes that a
stimulus is perceptually encoded for some time, ⌧e. After encoding,
evidence for each response alternative, ri, begins to accumulate in
independent accumulators each having their own response thresh-
olds, bi. The rate at which evidence accumulates in the ith accumu-
lator is the drift rate, di. The drift rates are sampled across trials
from a normal distribution with mean vi and standard deviation,
si. The starting point of the evidence accumulation process also
varies across trials and across accumulators and is assumed to be
drawn from a uniform distribution on the interval (0, A), where
A < bi. The distance between A and the threshold b is the relative
threshold, k. A response ismadewhen the first accumulator reaches
its threshold and the motor response is completed with time, ⌧r
(where ⌧e + ⌧r = ⌧ ).

The simulated data set of Evans and Brown (2017) was es-
sentially a simulation of data from a single participant from an
experiment with two conditions, where the participant completed
600 trials per condition and the response time and accuracy of each
responsewas recorded;we repeated those simulations here. Evans
and Brown referred to this as a ‘‘simple’’ data set, as the data were
generated with identical parameter values for both conditions (1
and 2), meaning that there should be no significant difference
between the data simulated in these two conditions. The data-
generating parameters for the simple model were as follows: A =
1, b = 1.4, vc = 3.5, ve = 1, sc = 1, se = 1, ⌧ = .3, where the
subscripts c and e correspond to correct and incorrect responses,
respectively.

We fitted two versions of LBA to this simulated data set (the
same as Evans and Brown): A ‘‘simple’’modelwhere no parameters
were free to vary between the two conditions (i.e., a model that
matches the process that generated the simulated data), and a
‘‘complex’’ model, where conditions 1 and 2 had different values
for the correct drift rate, response threshold, and non-decision
time.

Formally, for the simple model, the vector of choice response
times, RT , follows the LBA likelihood:

RT ⇠ LBA(k, A, vc, ve, sc, se, ⌧ ),

where vc and ve are the mean drift rates for correct and incorrect
responses, respectively, and sc and se are the corresponding stan-
dard deviations (with sc = 1, as in Evans and Brown). The priors
for both models were the same as those used by Evans and Brown,
with the simple model having the following priors:

k ⇠ TN(0.4, 0.4, 0, 1)
A, ve, se ⇠ TN(1, 1, 0, 1)
vc ⇠ TN(3, 3, 0, 1)
⌧ ⇠ TN(0.3, 0.3, 0, 1),

where TN(a, b, c, d) is the truncated normal withmean a, standard
deviation b, lower bound c, and upper bound d. For the complex
model, the likelihood of choice response times is given by:

RT j ⇠ LBA(kj, A, vc,j, ve, sc, se, ⌧j),

where j indexes the condition. The complex model has the follow-
ing priors:

kj ⇠ TN(0.4, 0.4, 0, 1)
A, ve, se ⇠ TN(1, 1, 0, 1)
vc,j ⇠ TN(3, 3, 0, 1)
⌧j ⇠ TN(0.3, 0.3, 0, 1)

In addition, each model contained a contaminant process (as in
Evans and Brown, common in some applications of decision mak-
ing models), whereby the probability density of the model was
made up of 98% of the standard LBA process, and 2% of a distri-
bution assumed to be due to random contaminants, which was a
uniform distribution between 0 and 5 s.

3.1. Examples

In this section, we provide examples of TI and SS using the LBA.
We compare them to the arithmetic mean estimator. The arith-
metic mean estimator is a very inefficient estimator that requires
an enormously large number of samples to obtain a sufficient level
of accuracy; given a large enough sample size it will eventually
converge to the true marginal likelihood. Evans and Brown used
GPU technology to obtain massive numbers of samples in a rela-
tively short period of time (see Fig. 1). We subsequently refer to
these as the brute force GPU estimates or simply GPU estimates.

Fig. 4 shows the resulting logmarginal likelihood estimates. The
solid line represents mean GPU estimate from Evans and Brown
and the dotted line represents the standard deviation, based on 10
independent runs.3 For the TI approach, we used 4 different tem-
perature rung quantities: 10, 20, 35, and 50, and an ↵ value of 0.3.
We computed the TI estimate of the log marginal likelihood using
both the standard trapezoidal rule (Eq. (35)) and the trapezoidal
rule with the correction term (Eq. (39)). Posterior samples were
drawn using DE-MCMC sampling (Turner et al., 2013) although
any MCMC sampler can be used. After a burnin of 300 iterations,
we drew a total of 700 samples for each temperature rung. We
repeated this procedure 10 times. The means and standard de-
viations of the log marginal likelihood estimates (based on 10
independent replications) are shown in Fig. 4 as a function of the
number of temperature rungs and model type. The results for the
simplemodel, inwhich noparameters varied across conditions, are
plotted on the left panel and the results for the complex model are
plotted on the right. The mean GPU estimate of the log marginal
likelihood computed by the brute force method is shown as a solid
black line and the standard deviation is shown as a dotted black
line. As expected, we observed decreases in the difference between
the arithmetic mean estimate and both types of TI with increases
in the number of temperature rungs used. The estimated variance
of the individual TI estimates (Eq. (37)) was very low, ranging
from .002 to .02 for the simple model and from .0003 to .02 for
the complex model. The TI correction method reached a stable
estimate at 10 rungs for the simple and complex model, while the
ordinary TI estimate reached stability at 35 to 50 rungs.

We tested the SS method using the same samples and data
from the TI simulation study described earlier. Fig. 4 shows the SS
estimate becomes stable at approximately 10 rungs for the simple
and complex model. It converges to the same marginal likelihood
as both forms of TI. The estimated variance of the SS estimates
(Eq. (53)) was very low, ranging from .002 to .006 for the simple
model and from .003 to .01 for the complex model. Lastly, Fig. 5
shows it produces stable Bayes factors at approximately 10 rungs,

3 For the complex model, we collected 109 samples to stabilize the estimate.
Thus, our marginal likelihood estimate may be slightly different from the original
estimate in Evans and Brown who collected 108 samples.



J. Annis, N.J. Evans, B.J. Miller et al. / Journal of Mathematical Psychology 89 (2019) 67–86 77

Fig. 4. The estimated log marginal likelihood, ln p(D), plotted as a function of the number of temperature rungs, estimation method, and model type. The solid black lines
and dashed black lines, show the estimated mean and standard deviation of ln p(D), respectively, from Evans and Brown (2017) who used a brute force GPU method. All
means and standard deviations are based on 10 independent replications of the respective method. All error bars represent standard deviations.

Fig. 5. Evidence for and against the complexmodel plotted in terms of the log Bayes
factor as a function of the number of temperature rungs. All error bars represent
standard deviations.

similar to that of the TI correctionmethod. Both TI and SS correctly
favor the simple model over the complex model, matching the
conditions that generated the simulated data.

Fig. 5 shows the estimated evidence yielded by each method
for the complexmodel over the simplemodel in terms of the Bayes
factor (depicted on the log scale for plotting purposes). Positive val-
ues indicate evidence in favor of the complex model (and against
the simple model), and negative values indicate evidence against
the complex model (and in favor of the simple model). The data
were generated from the simple model, meaning that values less
than 0 indicate correct model selection (i.e. evidence against the
complex model), with log Bayes factors of magnitude from 1 to 3

indicating positive evidence, those from 3 to 5 representing strong
evidence, and those greater than 5 indicating very strong evidence
(Kass & Raftery, 1995).4

4. Marginal likelihoods for hierarchical models

So far, we have focused onmodels of a single subject. The simul-
taneousmodeling ofmultiple subjects throughhierarchicalmodels
has become a large area of interest for models of cognition as they
allow for the simultaneous estimation of subject-level and group-
level parameters. Hierarchical models often contain hundreds of
parameters. Given that on current GPU hardware, it takes roughly
2 days to collect 1010 samples, wemight reasonably anticipate that
for a high-dimensional hierarchical model, orders of magnitude
more samples might be needed, requiring months or years of GPU
computation to converge on accurate estimates.

We must turn to methods like TI and SS to have any chance
of estimating marginal likelihoods for such models. Fortunately,
TI and SS are completely general and readily apply to hierarchi-
cal models. We show how these approaches can be applied to
hierarchical models by deriving estimators within a hierarchical
framework. The upshot is we do not need to alter any of the core
mechanisms of TI or SS. The only difference is that we use subject-
level samples fromahierarchicalmodel instead of the subject-level
samples from a single-subject model.

Interestingly, the derivations show we can ignore group-level
parameters in the actual computation of the marginal likelihood
even though group-level parameters clearly influence themarginal
likelihood through the subject-level parameters. This is due to the
structure of hierarchical models in which the data are condition-
ally independent of the group-level parameters. To provide some
intuition as to why this is true, we will first describe hierarchical
models in general and give a derivation of one of the simplest esti-
mators of the marginal likelihood, the arithmetic mean estimator.
Next, we will show the derivations of TI and SS for hierarchical
models.

4 Oftentimes, the Bayes factor is presented on a linear scale rather than the log
scale. For linearly scaled Bayes factors, 3 to 20 represents positive evidence, 20 to
150 represents strong evidence, and 150 or more represents very strong evidence.
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4.1. Mathematical details for hierarchical models

In hierarchical models , subject-level parameters are sampled
from a population whose parameters are unknown quantities. For
example, wemight assume that subject-level parameters are sam-
pled from a normal distributionwith unknownmean and variance.
From a Bayesian perspective, these unknown quantities can be
treated as random variables in the same way that subject-level
parameters are treated as random variables. Therefore, in addition
to the subject-level parameter vector, ✓, we can introduce a group-
level parameter vector, �, producing a hierarchical model of the
following form:

Ds ⇠ p(Ds|✓s)
✓s ⇠ p(✓s|�)
� ⇠ p(�),

(54)

where the subscript, s, denotes the subject index. This hierarchical
model has the joint posterior, p(✓, �|D).

Given this hierarchical model structure, we now proceed to de-
riving the arithmetic mean estimator. To begin, we first define the
joint posterior according to Bayes’ rule (dropping the s subscript
for simplicity):

p(✓, �|D) = p(D|✓, �)p(✓, �)RR
p(D|✓, �)p(✓, �)d✓d� . (55)

Note that the log-likelihood, ln p(D|✓, �), is the log-likelihood
summed over all participants, ln p(D|✓, �) = P

s ln p(Ds|✓s, �). It is
often difficult to work with the posterior in this form because we
must define a joint prior distribution over ✓ and �. We can simplify
this formulation by using a basic rule of probability, p(a, b) =
p(a|b)p(a) and rewriting the posterior as:

p(✓, �|D) = p(D|✓, �)p(✓|�)p(�)RR
p(D|✓, �)p(✓|�)p(�)d✓d� . (56)

This simplifies matters, but we are still left with a likelihood that
depends on the joint distribution over ✓ and �. Given the structure
of hierarchical models, we can drop � from the likelihood because
the data are conditionally independent of the group-level parame-
ters. This independence is clear in the original formulation of the
hierarchical model where we state that Ds ⇠ p(Ds|✓s). Then, we
can write the posterior as:

p(✓, �|D) = p(D|✓)p(✓|�)p(�)RR
p(D|✓)p(✓|�)p(�)d✓d� . (57)

Having formulated the posterior in this way, we can write its
marginal likelihood as the following expected value:
ZZ

p(D|✓)p(✓|�)p(�)d✓d� = E✓,� [p(D|✓)] . (58)

and approximate this expected value with an average:

E✓,� [p(D|✓)] ⇡ 1
n

nX

i=1

p(D|✓i), (59)

where ✓i ⇠ p(✓|�i) and �i ⇠ p(�) [which is equivalent to
(✓i, �i) ⇠ p(✓, �)]. Note again, the log-likelihood, ln p(D|✓), is the
log-likelihood summed over all participants, ln p(D|✓) =P

s ln p(Ds|✓s). This is the arithmetic mean estimator of the
marginal likelihood for the hierarchical model. To obtain the sam-
ples from the joint prior distribution, �i is first sampled from
p(�). The resulting sample is then used to sample ✓i from p(✓|�i).
Equivalently, if the joint prior distribution is defined, then pairs,
(✓i, �i), can be sampled from p(✓, �). Then, for each ✓i, the likeli-
hood, p(D|✓i), is computed and the average is taken to obtain the
estimate of themarginal likelihood. Importantly,while the subject-
level parameter vector, ✓, enters directly into the computation of

the marginal likelihood, the group-level parameter vector, �, does
not. Rather, � constrains which values of ✓ are more likely, and
therefore has an indirect but, nonetheless, important influence on
the estimation of the marginal likelihood. Analogously, the group-
level parameter vector enters into marginal likelihood estimations
in such an indirect manner for TI and SS, as shown below.

For TI, given the group-level parameter vector, �, and the
subject-level parameter vector, ✓, the power marginal likelihood
is:

p(D|t) =
ZZ

p(D|✓)tp(✓|�)p(�)d✓d�, t 2 [0, 1] . (60)

Recall from the original TI derivation that we can take the log of
p(D|t) and rewrite it as the difference in the logmarginal likelihood
at t = 1 and t = 0. We can then represent this difference as an
integral:

ln p(D|t) = ln p(D|t = 1) � ln p(D|t = 0) =
Z 1

0

d
dt

ln p(D|t)dt.
(61)

Taking the derivative with respect to t we have:
d
dt

ln p(D|t) = 1
p(D|t)

d
dt

p(D|t). (62)

We must now solve the derivative of p(D|t) with respect to t.
The derivative commutes with the double integral and becomes
a partial derivative with respect to t:
d
dt

p(D|t) = d
dt

ZZ
p(D|✓)tp(✓|�)p(�)d✓d� (63)

=
ZZ

@

@t
p(D|✓)tp(✓|�)p(�)d✓d�. (64)

=
ZZ

p(D|✓)t ln p(D|✓)p(✓|�)p(�)d✓d� (65)

The partial derivative is computed by factoring out the terms that
do not depend on t , p(✓|�) and p(�), and using the rule, @

@t a
t =

at ln a. The derivative of the log of p(D|t) is then:
d
dt

ln p(D|t) = 1
p(D|t)

ZZ
p(D|✓)t ln p(D|✓)p(✓|�)p(�)d✓d�. (66)

After rearranging, we see the integrand is the product of the power
posterior and the likelihood:
d
dt

ln p(D|t) =
ZZ

p(D|✓)tp(✓|�)p(�)
p(D|t) ln p(D|✓)d✓d�. (67)

This can be written as the expected likelihood with respect to the
joint power posterior of ✓ and �:
d
dt

ln p(D|t) = E✓,�|D,t [ln p(D|✓)]. (68)

Substituting this back into the original identity for ln p(D|t) we see
it is equal to the integral over t of the expected likelihood with
respect to the joint posterior of ✓ and �:

ln p(D|t) =
Z 1

0
E✓,�|D,t [ln p(D|✓)]dt. (69)

Thus, all that is required for hierarchical TI is to draw subject-
level samples from the joint power posterior, p(✓, �|D, t). The
resulting subject-level samples, ✓i, are then used to compute the
mean likelihood under each temperature, t. The integral can then
be approximated using the trapezoidal rule (Eqs. (35) or (39)).

The SS derivation in the hierarchical framework relies on the
same identity as the non-hierarchical case (Eq. (40)):

p(D) =
kY

j=1

p(D|tj)
p(D|tj�1)

. (70)
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The numerator and denominator are derived within the impor-
tance sampling framework using the power posterior at tempera-
ture tj�1 as the importance distribution. Then, for p(D|tj) we have:

p(D|tj) =
ZZ

p(D|✓)tj p(✓|�)p(�)
p(✓, �|D, tj�1)

p(✓, �|D, tj�1)d✓d�. (71)

We then divide by the joint prior and use the power posterior at
temperature tj�1 as the importance distribution. This is done so the
equation simplifies properly and is equivalent to dividing by one.

p(D|tj) =
RR p(D|✓)tj p(✓|�)p(�)

p(✓,�|D,tj�1)
p(✓, �|D, tj�1)d✓d�

RR p(✓|�)p(�)
p(✓,�|D,tj�1)

p(✓, �|D, tj�1)d✓d�
. (72)

We then represent the numerator and denominator as expected
values with respect to the joint posterior:
RR p(D|✓)tj p(✓|�)p(�)

p(✓,�|D,tj�1)
p(✓, �|D, tj�1)d✓d�

RR p(✓|�)p(�)
p(✓,�|D,tj�1)

p(✓, �|D, tj�1)d✓d�

=
E✓,�|D,tj�1

h
p(D|✓)tj p(✓|�)p(�)

p(✓,�|D,tj�1)

i

E✓,�|D,tj�1

h
p(✓|�)p(�)

p(✓,�|D,tj�1)

i .

(73)

The numerator and denominator are then approximated by the
following averages:

E✓,�|D,tj�1

h
p(D|✓)tj p(✓|�)p(�)

p(✓,�|D,tj�1)

i

E✓,�|D,tj�1

h
p(✓|�)p(�)

p(✓,�|D,tj�1)

i

⇡
1
n

Pn
i=1

p(D|✓i,j�1)
tj p(✓i,j�1|�i,j�1)p(�i,j�1)

p(D|✓i,j�1)
tj�1 p(✓i,j�1|�i,j�1)p(�i,j�1)

p(D|tj�1)

1
n

Pn
i=1

p(✓i,j�1|�i,j�1)p(�i,j�1)

(D|✓i,j�1)
tj�1 p(✓i,j�1|�i,j�1)p(�i,j�1)

p(D|tj�1)
.

(74)

After simplifying:

p(D|tj) ⇡ 1
n

nX

i=1

p(D|✓i,j�1)tj

p(D|✓i,j�1)tj�1

"
1
n

nX

i=1

1
p(D|✓i,j�1)tj�1

#�1

, (75)

where (✓i, �i) ⇠ p(✓, �|D, tj�1). The derivation for p(D|tj�1) is
similar. These are then substituted into the SS identity (Eq. (75)).
Thus, all that is necessary for hierarchical SS is to sample from the
joint posterior and use the subject-level samples to compute the
mean likelihood at each temperature.

4.2. Example

We fit 4 different hierarchical models to a data set of 10 sim-
ulated subjects, with 2 experimental conditions, and 300 trials
per condition. One of the interesting properties of Bayes factors
is that they allow one to find evidence for the null in ways that
traditional approaches to model selection cannot. To this end, a
data set was simulated with no difference in parameters over
conditions. We used two models that are commonly of theoretical
interest: one model that assumed different drift rates for each
condition, and one model that assumed different thresholds for
each condition. In addition, we used a simple model, one with
no parameters varying over conditions, and a complex model,
with drift rate, threshold, and non-decision time all varying over
conditions. These simple and complex models can be considered
the hierarchical counterparts to the simple and complex single-
subject models described previously. The drift-rate model and the
threshold-model are both special cases of the complex model; the
simple model is a special case of all models. The full mathematical
description of the models can be found in Appendix B. We fit the

models to each of the data sets using 3 different rung values (10,
20, or 35) for 10 independent replications.5 We note again that
given the large number of samples that the brute-force method
required to give a stable estimate of the marginal likelihood in the
single-subject model with 9 parameters, we do not believe that it
would be computationally feasible to obtain a marginal likelihood
estimate for hierarchicalmodels, which all contain between 72 and
108 parameters, using this method.

The resulting marginal likelihoods produced by fitting each
model on the simulated data set for each method is plotted in the
top panels of Fig. 6. For the SS and TI methods across all rungs, the
marginal likelihood is highest for the null model and penalizes the
complex model more so than the models with a single parameter
varying across conditions. The SS estimator appears to become
stable with a lower number of rungs than either ordinary TI or
corrected TI. Both TI methods become stable between 20 and 35
rungs. The estimated variance of the individual SS and TI estimates
(Eqs. (53) and (37), respectively) was very low, ranging from .01 to
1.03 for SS and from .003 to .03 for TI. The bottom panel of Fig. 6
plots the evidence against the complex, drift rate, and threshold
models in terms of the log Bayes factor. SS and TI all decisively
provide evidence against each of the models across all rungs.
Unlike the raw marginal likelihoods, the Bayes factor appears to
become stable at lower rung numbers for SS and TI. This suggests
that although the marginal likelihoods were not stable at lower
rung numbers, their ratios changed at a fairly constant rate across
rungs.

Next, we fit each of the models to a simulated data set in which
drift rate varied across conditions. The top panel of Fig. 7 plots the
marginal likelihood under each model. For SS and TI, the marginal
likelihood for the drift rate model is the highest.6 The complex
model marginal likelihood was relatively high compared to the
threshold and nullmodels. Thiswasmost likely due to the complex
model containing a drift rate that varies across conditions. Stable
estimates were achieved between 10 and 20 rungs for all methods.
The estimated variance of the individual SS and TI estimates (Eqs.
(53) and (37), respectively) was very low, ranging from .004 to
1.39 for SS and from .003 to .03 for TI. The evidence against each
model when compared to the drift rate model is plotted in terms
of the log Bayes factor in the bottom panels of Fig. 7. SS and TI
both attained stable and decisive Bayes factors at 10 rungs. Note,
that we do not know whether the Bayes factors stabilized at the
correct value as we have no ground truth. Our conclusions are only
based on the fact that we know which model generated the data
and can reasonably expect that model to have the highest Bayes
factor compared to other models.

5 Since hierarchical models can be time-consuming to fit, parallelization can
greatly reduce the time needed to draw power posterior samples by running rungs
of temperatures on separate cores with the results later aggregated after all cores
have completed the work Höhna, Landis, and Huelsenbeck (2017). From a practical
perspective, this makes the parallelization of TI and SS simple to implement, which
varies from other methods of parallelization (e.g., GPU methods, methods that
send different parts of a single MCMC algorithm to different cores, etc.). For the
hierarchical models we fitted, when running 10 rungs, we used 2 cores and split
the temperature schedule into 2 equal parts thereby running 5 rungs on each core
sequentially. For 20 and 35 rungs we increased the number of cores such that each
core would run 5 rungs. For each core, DE-MCMC sampling was used with an initial
burn-in of 1000 iterations followed by a sampling period of 500 iterations. Each
successive temperature rung was then run (via the quasistatic algorithm shown
in Box II) with a burn-in of 200 iterations followed by 500 sampling iterations.
The number of chains was set to 3 times the number of parameters in the model.
This meant that each core ran a total of 5700 iterations for each chain. Each model
completed in roughly one to two hours given processor speeds ranging from 1.9 to
2.3 GHz and memory of 2 GB.
6 Even though it might appear as though the complexmodel does almost as well

as the drift model according to the Bayes factor, this is only because it is plotted on
the log scale and the scale of the y-axis is very large. The drift model is actually 6e17
times more likely than the complex model.
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Fig. 6. The top panel plots the marginal likelihood obtained for each model under the different methods given a null data set. The bottom panel plots the Bayes factor in
terms of the null model across temperature rungs and methods. Negative Bayes factors represent evidence against the corresponding model when compared to the null
model. All error bars represent standard deviations.

5. Application to empirical data

Lastly, we applied the methods to the empirical data set of
Rae, Heathcote, Donkin, Averell, and Brown (2014), whichwas also
used by Evans and Brown (2017) to test their GPU brute-force
method. Empirical data can be more prone to noise than standard
simulated data,whichmaynegatively impact our ability to obtain a
consistent estimate of the marginal likelihood within a reasonable
number of samples. Indeed, Evans and Brown found that when
applying theirmethod to this data set, the estimatedmarginal like-
lihoods becameextremely variable, to the pointwhere the variance
in the estimateswas higher than the resulting Bayes factor, making
any inferences extremely questionable.We aim to seewhether the
methodswill have similar problems of large increases in variability
when applied to empirical data, or whether our estimates will
remain relatively stable. For brevity, we keep this section purely
focused on the conclusions of the method (i.e., which model the
Bayes factors favor), and the consistency in the estimates across
multiple independent sampling runs.

Rae et al. (2014) presented participants with a perceptual dis-
crimination task containing conditions that either emphasized
speed or accuracy. Rae et al. were interested in whether the em-
phasis on response caution in the accuracy condition would result
in changes to response threshold only or to changes in response
threshold and drift rate. Rae et al. found decreases in response
caution, as well as the difference between correct and error drift
rates (i.e., a decrease in the quality of incoming evidence) in the
speed condition compared to the accuracy condition.

We fit the same two models as those described in Evans and
Brown to the Rae et al. data, a threshold-only model and a drift
rate + threshold model, as well as two additional models, a simple
model in which no parameters vary over conditions (equivalent to
the simple hierarchical model described in the previous section)
and a drift-rate-only model (equivalent to the hierarchical drift
ratemodel described in the previous section).Weused 7 cores each
running 5 temperature rungs for a total 35 temperature rungs for
10 independent replications (except for the drift + thresholdmodel
in which one of the replications was removed from the analysis



J. Annis, N.J. Evans, B.J. Miller et al. / Journal of Mathematical Psychology 89 (2019) 67–86 81

Fig. 7. The top panel plots the marginal likelihood obtained for each model under the different methods given a data set in which drift rate varied across conditions.
The bottom panel plots the Bayes factor in terms of the drift rate model across temperature rungs and methods. Negative Bayes factors represent evidence against the
corresponding model when compared to the drift rate model. All error bars represent standard deviations.

due to a stuck chain). We used the same DE-MCMC sampling and
burn-in scheme outlined in the previous section (see footnote 3).

The marginal likelihood under each model is plotted in Fig. 8
as a function of the method used. SS and TI are in agreement.
All of the methods yielded the same rank ordering of the models
in which the drift + threshold model had the highest marginal
likelihood. For the TI correctionmethod, therewasmore variability
in the estimates than was the case for the standard TI method.
We believe the increased variance in the TI correction method
was due to it being more sensitive to the convergence of the
chains than other methods. For a given power posterior, if a chain
or a group of chains converge more slowly than other chains or
become stuck, the change in log-likelihood variance between the
current power posterior and the next power posterior might be
very large. According to Eq. (39), if this change is errantly large,
it will lead to an overcorrection of the trapezoidal rule. Indeed,
we found this to be the case for one of the replications of the
drift + threshold model (removed from the current analysis and
replaced). The other methods, that only rely on the mean log-
likelihoods show much less sensitivity to convergence. Therefore,

we recommend careful examination of convergence when using
the TI correction method, possibly running longer MCMC chains
in order to ensure convergence. This issue is likely to be specific
to our DE-MCMC sampling method in which dozens of chains are
used and must all appropriately converge. There are variants of
DE-MCMC that ensure better convergence, such as migration (e.g.,
Turner et al., 2013), but we chose to use a standard DE-MCMC
sampler for simplicity and generalizability. For MCMC methods
that use fewer chains and converge appropriately, this might be
less of an issue.

The bottom panel of Fig. 8 shows the evidence against all the
other models in terms of the drift + threshold model. The log
Bayes factor gives decisive evidence against all the simpler models
across all methods. Thus, our results are consistent with those
of Rae et al. who concluded that a response caution emphasis
produces changes in threshold as well as drift rate. Our results are
also more conclusive than those of Evans and Brown, whose GPU
method yielded relatively noisy estimates compared to the ones
here, produced by TI and SS. Our results also produced marginal
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Fig. 8. The top panel plots the marginal likelihood for eachmodel under the different methods given the Rae et al. data set. The bottom panel plots the Bayes factor obtained
for each method and model. Negative evidence represents evidence against the corresponding model when compared to the drift rate + threshold model. All error bars
represent standard deviations.

likelihoods that were far larger than those produced by the GPU.
Given that all methods converged on similar marginal likelihoods,
this might suggest the GPU method as implemented by Evans and
Brown method may suffer from underestimation of the marginal
likelihood, due to the vast number of samples required for an ac-
curate estimate of the arithmeticmeanwithin hierarchicalmodels.

6. General discussion

The ability to appropriately select between competing cognitive
models is important for theory development. At the heart of any
good model selection procedure is the proper balance between
goodness-of-fit and model complexity. The Bayes factor is one
well-principled and agreed upon method of performing model
selection. In order to compute the Bayes factor, it is often necessary
to obtain the marginal likelihood for each model, a quantity that
marginalizes – integrates – over the entire parameter space.

One of the simplest approaches is the grid approach (Lee, 2004;
Vanpaemel & Storms, 2010). It is one of the easiest methods for
beginners to implement, allows easy comparisons of sets of nested

or non-nested models, and does not require the use of MCMC.
However, the grid approach is computationally intractable for all
but the most simplest possible models. See Table 1 for a summary
comparison of practical considerations for many different tech-
niques.

Recent methodological advancements, as well as the increasing
availability of powerful computing platforms, have led to efficient
methods for estimating the marginal likelihood using Monte Carlo
techniques. Monte Carlo techniques for integration take advantage
of representing the marginal likelihood integral as an expected
value and then approximating that expected value via sampling
procedures (random number generation). One of the simplest, and
widely known, Monte Carlo estimators is the arithmetic mean
estimator (see Table 1). The method does not require MCMC; an
estimate of the marginal likelihood can be obtained by sampling
from the prior distribution and computing the average likelihood
over those samples, making the approach easy for beginners. In
order to compare nested or non-nestedmodels, themethod can be
run for each model independently. A limitation of this technique
is that the likelihood is highly peaked relative to the prior and
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therefore extremely small likelihoods tend to dominate, resulting
in an underestimation of the marginal likelihood if there is an in-
sufficient sample size. Even for relatively simple models, hundreds
of millions of samples are often needed for accurate estimates.
Obtaining this many sample sizes for even the simplest model can
take days to obtain using standard CPUhardware. Evans andBrown
took advantage of themassively parallel computing power of GPU’s
to reduce the sampling time from days to minutes or hours. But
for more complexmodels, especially hierarchical models, even the
speedup from using GPU’s cannot overcome the inherent limita-
tions with the arithmetic mean approach. Additionally, the GPU
approach has the potential to be technically challenging, making
it less accessible to many beginner users.

Methods that scale well with dimensionality of the model and
have been used widely in psychology include the Savage–Dickey
method (Wagenmakers et al., 2010), the product space method
(Lodewyckx et al., 2011), and bridge sampling (Gronau, Sarafoglou
et al., 2017) (see Table 1). The commonly used Savage–Dickey ratio
provides a relatively simple method of estimating Bayes factors
and is easy for beginners to implement. In addition, it only requires
a single MCMC run to collect posterior samples. The major draw-
back is that it is limited to comparisons between nested models.
The product space method, which can be used to compare non-
nested models, suffers from being difficult to implement effec-
tively, especially for beginners (requiringmethodological ‘‘tricks’’),
and is difficult to comparemanymodels (often only twomodels are
compared). It is also not uncommon for very longMCMC runs to be
required for convergence. Bridge sampling has been implemented
within an R package (Gronau, Singmann et al., 2017)making it easy
to use for beginners. It is also possible to compare many nested
and non-nested models by simply running the method separately
for eachmodel. While bridge sampling only requires samples from
the posterior from a singleMCMC run, the accuracy of themarginal
likelihood estimate is dependent on an accurate representation of
the joint posterior distribution, which implies a large number of
posterior samples are often required.

Our article provides a tutorial overview of two relatively recent
techniques for estimating themarginal likelihood: thermodynamic
integration (TI; Friel & Pettitt, 2008; Lartillot & Philippe, 2006)
and steppingstone sampling (SS; Xie et al., 2011); see Table 1
for their comparison to other methods. Like the arithmetic mean
approach, both are Monte Carlo techniques. Both rely on sampling
from posteriors whose likelihood is raised to different powers, or
temperature rungs, ranging from 0 to 1. Because of the minimal
amount of additional coding necessary, TI and SS should be easy
for a beginner to implement who has existing code. After sampling
from the posteriors under different temperatures, the TI estimate
or the SS estimate can be computed using these samples. In TI, the
mean likelihood under each power posterior form points along a
curve, and the area under that curve is estimated using ordinary
numerical integration. SS combines the ideas of importance sam-
pling and power posteriors. For both methods, as the number of
rungs increases, the estimates converge to themarginal likelihood.
The distribution of the temperature rungs is an important choice
for efficient estimation of the marginal likelihood; distributions
that place more temperature rungs closer to 0 tend to produce
better estimates (Friel et al., 2014; Xie et al., 2011).

Potential users of TI and SS should note that these techniques
are not without certain disadvantages. Table 1 notes that a compu-
tational drawback of using TI and SS is their reliance on collecting
samples from posteriors raised to many different powers; this as-
pect of TI and SS is unlike other approaches such as bridge sampling
(Gronau, Sarafoglou et al., 2017), Chib’s method (Chib, 1995), or
the product space method (Lodewyckx et al., 2011). In the present
work, we found that with our particular data set and models, we
needed approximately 20–35 power posteriors to obtain stable es-
timates of the marginal likelihood. For somemodels, such as those

that might take days or weeks to estimate a single posterior, TI and
SS might be impractical given that dozens of power posteriors are
needed (unless parallel hardware is available). Whether TI and SS
will be feasible for a particular model and a particular data set will
need to be evaluated on a case-by-case basis.

Another disadvantage of TI and SS is that they rely on the user
to choose the number of temperature rungs and the tempera-
ture schedule, which might introduce additional complexity for
the beginner. Although temperature schedules that moderately
skew the rungs near the prior have been shown to work well
and 20–35 rungs worked well for our particular models, these
hyperparameters should be selected with care by the user and
may require some pilot work to determine. This is in contrast to
other techniques, such as bridge sampling, Chib’s method, or the
product space method, that operate more like black boxes. So TI
and SS should also not be viewed as the only solution to computing
Bayes factors. There are myriad techniques that might be more or
less suitable to the user’s particular domain. For excellent broad
reviews of techniques to compute marginal likelihoods see Friel
and Wyse (2012) and Liu et al. (2016).

While it is important to not conflate logical consistency with
automaticity when using TI and SS, it is just as important to not
conflate these concepts when using Bayesian model selection in
general. Priors matter, especially in Bayesian model selection (e.g.,
Gershman, 2016; Kass & Raftery, 1995; Liu & Aitkin, 2008; Van-
paemel, 2010, 2011; Vanpaemel & Lee, 2012) and both TI and SS are
sensitive to the prior, unlike other techniques such as the harmonic
mean (Xie et al., 2011). Therefore, it is the researcher’s responsibil-
ity to define appropriate priors when performing Bayesian model
selection (see Lee & Vanpaemel, 2017, for a practical discussion).
This is in contrast to posterior estimation where the priors matter
less in the case of large data sets. Just as the priors on the model
parameters influence the Bayes factor, priors on the models them-
selves, p(M), influence the posterior probability of the model and
must also be carefully specified if the posterior probability of the
model is desired.

Here, we used the Linear Ballistic Accumulator (LBA; Brown
& Heathcote, 2008) model of choice response time to illustrate
TI and SS techniques, performing many of the same comparisons
used by Evans and Brown using the GPU method. Although TI
and SS contain robust mathematical properties that should lead to
proper estimation of the posterior distribution, this accurate ap-
proximation is also dependent upon how successful the method of
sampling is at estimating the posterior distribution. We compared
their estimated marginal likelihood values to those obtained by
Evans and Brown in the case of a simple 6 parameter LBAmodel. In
this case, Evans and Brown were able to sample until they reached
the asymptote of a marginal likelihood approximation (practically
no variance), suggesting that this was an accurate estimate of
the marginal likelihood. Crucially, we found that both TI and SS
converged to these same marginal likelihood values. Note, this
does not validate themethods because there is no ground truth and
we havemerely compared TI and SS to another estimationmethod.

We provided an explicit formalization of these methods within
a hierarchical framework. Hierarchical models have recently be-
come quite popular within cognitive modeling, as they provide
the benefits of group-level inference and constraint, while still
estimating separate parameters for each individual participant.
Although the methods were originally derived to apply to any
Bayesian model, we specifically derived each method for hierar-
chical models by explicitly assuming group-level and subject-level
priors. For the methods to work under hierarchical models, it is
necessary to obtain joint posterior samples from the hierarchical
model and then to use the subject-level samples to compute the
likelihoods for each method. Importantly, this extension allows
Bayes factors to be calculated that compare different models of the
population effects, rather than only assessing these effects within
individual subjects.
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Appendix A

The steppingstone estimatorwrites themarginal likelihood as a
product of ratios ofmarginal likelihoods at adjacent temperatures:

p(D) = p(D|t = 1)
p(D|t = 0)

(A.1)

= p(D|tK )
p(D|tK�1)

p(D|tK�1)
p(D|tK�2)

. . .
p(D|tK�(K�2))
p(D|tK�(K�1))

p(D|t1)
p(D|t0) (A.2)

=
KY

j=1

p(D|tj)
p(D|tj�1)

. (A.3)

The marginal likelihood at temperature tj is estimated via im-
portance sampling using the posterior at temperature tj�1 as the
importance distribution:

p(D|tj) =
R p(D|✓)tj p(✓)

p(✓|D,tj�1)
p(✓|D, tj�1)d✓

R p(✓)
p(✓|D,tj�1)

p(✓|D, tj�1)d✓
. (A.4)

This can then be represented in terms of expected values:
R p(D|✓)tj p(✓)

p(✓|D,tj�1)
p(✓|D, tj�1)d✓

R p(✓)
p(✓|D,tj�1)

p(✓|D, tj�1)d✓
=

E✓|D,tj�1

h
p(D|✓)tj p(✓)
p(✓|D,tj�1)

i

E✓|D,tj�1

h
p(✓)

p(✓|D,tj�1)

i . (A.5)

The expected values are approximated by averages:

E✓|D,tj�1

h
p(D|✓)tj p(✓)
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1
n
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1
n
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i=1

p(✓i,j�1)p(D|tj�1)
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tj�1 p(✓i,j�1)
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After canceling like terms and simplifying, we have the following
estimator of p(D|tj):
1
n

Pn
i=1

p(D|✓i,j�1)
tj p(✓i,j�1)p(D|tj�1)

p(D|✓i,j�1)
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1
n
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p(D|✓i,j�1)
tj�1 p(✓i,j�1)
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1
n
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1
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tj�1

, (A.8)

where ✓j�1,i ⇠ p(✓|D, tj�1).
Themarginal likelihood at temperature tj�1 is also estimated via

importance sampling with the importance distribution also set to
the posterior at temperature tj�1:

p(D|tj�1) =
R p(D|✓)tj�1 p(✓)

p(✓|D,tj�1)
p(✓|D, tj�1)d✓

R p(✓)
p(✓|D,tj�1)

p(✓|D, tj�1)d✓
. (A.9)

We can represent this in terms of expected values:
R p(D|✓)tj�1 p(✓)
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The expected values are approximated by averages:
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After canceling like terms and simplifying we have the following
estimator of p(D|tj�1):
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where ✓j�1,i ⇠ p(✓|D, tj�1). Substituting and p(D|tj) into Eq. (A.9)
we have the steppingstone estimator:
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Appendix B

In this appendix, we describe additional mathematical/
simulation details of the hierarchical models used to test TI and SS.
When testing TI and SS with simulated data sets, we used a total of
4models, referred to as Simple, Complex, Drift Rate, and Threshold.
Allmodels assume choice response times are distributed according
to the LBA. We fixed the standard deviation corresponding to
the accumulator for correct responses to 1. For each model, the
likelihood of the vector of choice response times for subject i in
condition j, RT i,j, is given below:

Simple:RT i,j ⇠ LBA(Ai, ki, ⌧i, vc
i , v

e
i , s

e
i , s

c
i )

Complex:RT i,j ⇠ LBA(Ai, ki,j, ⌧i,j, vc
i,j, v

e
i , s

e
i , s

c
i ).

Drift Rate:RT i,j ⇠ LB(Ai, ki, ⌧i, vc
i,j, v

e
i , s

e
i , s

c
i )

Threshold:RT i,j ⇠ LBA(Ai, ki,j, ⌧i, vc
i , v

e
i , s

e
i , s

c
i )

The priors on subject-level parameters for the Simple model are
provided below with all truncated normal distributions having a
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lower bound of 0 and an upper bound of 1:

Ai ⇠ TN(µA, � A)
ki ⇠ TN(µk, � k)
⌧i ⇠ TN(µ⌧ , �⌧ )
vc
i ⇠ TN(µvc , �vc )

ve
i ⇠ TN(µve , � ve )

sei ⇠ TN(µse , � se ).

The priors on subject-level parameters for the Complexmodel are:

Ai ⇠ TN(µA, � A)
ki,j ⇠ TN(µk

j , �
k
j )

⌧i,j ⇠ TN(µ⌧
j , �

⌧
j )

vc
i,j ⇠ TN(µvc

j , �
vc
j )

ve
i ⇠ TN(µve , � ve )

sei ⇠ TN(µse , � se ).

The priors on subject-level parameters for theDrift Ratemodel are:

Ai ⇠ TN(µA, � A)
ki ⇠ TN(µk, � k)
⌧i ⇠ TN(µ⌧ , � ⌧ )
vc
i,j ⇠ TN(µvc

j , �
vc
j )

ve
i ⇠ TN(µve , � ve )

sei ⇠ TN(µse , � se ).

The priors on subject-level parameters for the Threshold model
are:

Ai ⇠ TN(µA, � A)
ki,j ⇠ TN(µk

j , �
k
j )

⌧i ⇠ TN(µ⌧ , � ⌧ )
vc
i ⇠ TN(µvc , � vc )

ve
i ⇠ TN(µve , � ve )

sei ⇠ TN(µse , � se ).

The priors on group-level parameterswere the same acrossmodels
and conditions:

µA, � A, µve , � ve , µse , � se ⇠ TN(1, 1)
µ⌧ , � ⌧ ⇠ TN(.3, .3)
µvc , � vc ⇠ TN(3, 3)
µk, � k ⇠ TN(.4, .4).
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