category laboratory

Navigation Menu

New NSF Grant on Measuring, Mapping, and Modeling Perceptual Expertise

Posted on Aug 11, 2016

Our research group has been awarded a new three-year grant from the National Science Foundation on Measuring, Mapping, and Modeling Perceptual Expertise; PI is Isabel Gauthier, co-PI is Thomas Palmeri, and Senior Investigators are Sun-Joo Cho from Vanderbilt, Gary Cottrell from UCSD, and Mike Tarr and Deva Ramanan from Carnegie Mellon.

Our project investigates how and why people differ in their ability to recognize, remember, and categorize faces and objects. Many important real-world problems, such as forensics, medical imaging, and homeland security, demand precise visual understanding from human experts. Understanding individual differences in high-level visual cognition has received little attention compared to other aspects of human performance. Recent studies indicate that there likely is far greater variability than commonly acknowledged and that the ability to learn high-level visual skills is poorly predicted by general intelligence. Not everybody who receives training in a visual domain like matching fingerprints or detecting tumors in chest x-rays may be able to reach expert levels. Visual object recognition is a new domain in which understanding and characterizing individual differences can have real-world predictive power, adding to the contributions that psychology has made in other areas, such as clinical psychology, personality, and general intelligence. This project supports a collaborative interdisciplinary research network that aims to develop measures of individual differences in visual recognition, relate behavioral and neural markers of individual differences, develop models that explain individual differences, and relate models with neural data. Because outcomes in many real-world domains depend on decisions based on visual information, developing measures, markers, and models of individual differences in high-level visual cognition can lead to substantial improvements in identifying real-world visual talent, in real-world visual performance and training. Moreover, identifying individuals with talents at visual recognition and learning will help guide individuals into fields that demand high levels of precision. Finally, understanding how people vary in visual recognition can inform individualized training at all learning levels (not just experts). For example, recognizing cases of disability in high-level vision and learning can inform rehabilitation and remediation. The collaborative team of scientists working on this project will capitalize on their individual successes and continue training female scientists and under-represented minorities. All students conducting research as part of this collaborative network, including female scientists and minorities, will be mentored by scientists from multiple disciplines, providing them with an understanding far deeper than that achievable by one discipline or method.

The project will support the activities of a collaborative research network on the study of individual differences in visual recognition. The scientists involved in these interdisciplinary efforts will include experts in brain imaging at ultra-high field, cutting-edge methods in the development of psychological tests and the development of “deep” convolutional neural network models, which are very powerful computer models that are biologically inspired. The project will investigate how brain activity and brain structure, such as the thickness of the cortex in visual areas, can predict the quality and time-course of visual learning. The team will develop and validate tests of visual ability that can be used to make precise predictions about brain activity and behavioral performance. These brain measures and behavioral tests will be related to inform deep convolutional neural models of vision. Deep convolutional neural models are the most successful computer models to date, and the higher layers of these hierarchical networks provide outstanding models of the brain’s areas critical to object recognition, but so far they have not been used to understand individual differences. Instead of the typical approach seeking to achieve the best performance possible, the team will seek models that can mirror human variability, making errors when people make errors, being slow when people are slow, and displaying a range of visual abilities and learning as observed in humans. These powerful models will help bridge between variability in people both in behavior and in the brain.

Read More

Symposium on Model-based Cognitive Neuroscience at Psychonomics this Fall

Posted on Jul 18, 2016

Thomas Palmeri and Brandon Turner from The Ohio State University will be chairing a symposium on Model-based Cognitive Neuroscience at the 2016 Annual Meeting of the Psychonomics Society. After an Introduction to Model-based Cognitive Neuroscience, Thomas Palmeri will present Approaches to Model-Based Cognitive Neuroscience: Bridging Levels of Understanding of Perceptual Decision Making, Brandon Turner will present Joint Models of Neural and Behavioral Data, Birte Forstmann from the University of Amsterdam will present Decision Threshold Dynamics in the Human Subcortex Measured with Ultra-high Resolution Magnetic Resonance Imaging, John Anderson from Carnegie Mellon will present Combining Space and Time in the Mind, Michael Mack from the University of Toronto will present Tracking the Neural Dynamics of Conceptual Knowledge During Category Learning with Computational Model-based Neuroimaging, and Sean Polyn from Vanderbilt University will present The Neurocognitive Dynamics of Memory Search.

Full abstracts can be found on the Psychonomics Society web site:


Read More

Recent papers from the CatLab

Posted on Jul 6, 2016

Purcell, B.A., & Palmeri, T.J. (in press). Relating accumulator model parameters and neural dynamics. Journal of Mathematical Psychology. [PDF]

Turner, B.M., Forstmann, B.U., Love, B., Palmeri, T.J., & Van Maanen, L. (in press). Approaches to analysis in model-based cognitive neuroscience. Journal of Mathematical Psychology. [PDF]

Annis, J., Miller, B.J., & Palmeri, T.J. (in press). Bayesian inference with Stan: A tutorial on adding custom distributions. Behavioral Research Methods. [PDF]

Ross, D.A., & Palmeri, T.J. (in press). The importance of formalizing computational models of face adaptation aftereffects. Frontiers in Psychology. [PDF]

Read More

Mike Mack accepts faculty position at the University of Toronto

Posted on Jun 5, 2016

Mike will begin this fall as an assistant professor in the Department of Psychology at the University of Toronto. The University of Toronto is one of the oldest and most distinguished departments of psychology in the world.

Mike earned his PhD from our lab and has been a postdoctoral fellow at the University of Texas for the past several years. At Vanderbilt, Mike won the Jum Nunnally Dissertation Award, a Vanderbilt Dissertation Enhancement Grant, the Pat Burns Memorial Student Research Award, the William F. Hodges Teaching Assistant Award, and was a Learning Sciences Institute Fellow. During his postdoctoral fellowship, he has been funded by an NIH NRSA grant, he was an OPAM conference organizer, and a Memory Disorders Research Society organizer. Mike has published papers in JEP:General, JEP:HPP, Current Biology, Psychonomic Bulletin & Review, Journal of Vision, Vision Research, and several other journals and other publication outlets. His research combines behavioral experiments, functional brain imaging, and computational modeling to study human learning, memory, and categorization.

We all wish Mike the best of success in his new faculty position.

Read More

May Shen wins Lisa M. Quesenberry Foundation Award

Posted on May 30, 2016

We congratulate Jianhong (May) Shen as the 2016 winner of The Lisa M. Quesenberry Foundation Award. This was established by Irvin and Mary Ann Quesenberry and Kathryn Quesenberry to memorialize the accomplishments of their daughter and sister, Lisa M. Quesenberry. It is designed to provide research or study awards to motivated graduate students. Preferably, the awards will be made to female graduate students who are studying the field of psychology and who have overcome significant personal challenges to pursue their education. Congratulations May!

Read More